aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/LoopAccessAnalysis.cpp
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2015-04-01 18:49:24 +0000
committerGerrit Code Review <noreply-gerritcodereview@google.com>2015-04-01 18:49:26 +0000
commit3fa16bd6062e23bcdb82ed4dd965674792e6b761 (patch)
tree9348fc507292f7e8715d22d64ce5a32131b4f875 /lib/Analysis/LoopAccessAnalysis.cpp
parentbeed47390a60f6f0c77532b3d3f76bb47ef49423 (diff)
parentebe69fe11e48d322045d5949c83283927a0d790b (diff)
downloadexternal_llvm-3fa16bd6062e23bcdb82ed4dd965674792e6b761.zip
external_llvm-3fa16bd6062e23bcdb82ed4dd965674792e6b761.tar.gz
external_llvm-3fa16bd6062e23bcdb82ed4dd965674792e6b761.tar.bz2
Merge "Update aosp/master LLVM for rebase to r230699."
Diffstat (limited to 'lib/Analysis/LoopAccessAnalysis.cpp')
-rw-r--r--lib/Analysis/LoopAccessAnalysis.cpp1396
1 files changed, 1396 insertions, 0 deletions
diff --git a/lib/Analysis/LoopAccessAnalysis.cpp b/lib/Analysis/LoopAccessAnalysis.cpp
new file mode 100644
index 0000000..7bedd40
--- /dev/null
+++ b/lib/Analysis/LoopAccessAnalysis.cpp
@@ -0,0 +1,1396 @@
+//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The implementation for the loop memory dependence that was originally
+// developed for the loop vectorizer.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/VectorUtils.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-accesses"
+
+static cl::opt<unsigned, true>
+VectorizationFactor("force-vector-width", cl::Hidden,
+ cl::desc("Sets the SIMD width. Zero is autoselect."),
+ cl::location(VectorizerParams::VectorizationFactor));
+unsigned VectorizerParams::VectorizationFactor;
+
+static cl::opt<unsigned, true>
+VectorizationInterleave("force-vector-interleave", cl::Hidden,
+ cl::desc("Sets the vectorization interleave count. "
+ "Zero is autoselect."),
+ cl::location(
+ VectorizerParams::VectorizationInterleave));
+unsigned VectorizerParams::VectorizationInterleave;
+
+static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
+ "runtime-memory-check-threshold", cl::Hidden,
+ cl::desc("When performing memory disambiguation checks at runtime do not "
+ "generate more than this number of comparisons (default = 8)."),
+ cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
+unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
+
+/// Maximum SIMD width.
+const unsigned VectorizerParams::MaxVectorWidth = 64;
+
+bool VectorizerParams::isInterleaveForced() {
+ return ::VectorizationInterleave.getNumOccurrences() > 0;
+}
+
+void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
+ const Function *TheFunction,
+ const Loop *TheLoop,
+ const char *PassName) {
+ DebugLoc DL = TheLoop->getStartLoc();
+ if (const Instruction *I = Message.getInstr())
+ DL = I->getDebugLoc();
+ emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
+ *TheFunction, DL, Message.str());
+}
+
+Value *llvm::stripIntegerCast(Value *V) {
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ if (CI->getOperand(0)->getType()->isIntegerTy())
+ return CI->getOperand(0);
+ return V;
+}
+
+const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
+ const ValueToValueMap &PtrToStride,
+ Value *Ptr, Value *OrigPtr) {
+
+ const SCEV *OrigSCEV = SE->getSCEV(Ptr);
+
+ // If there is an entry in the map return the SCEV of the pointer with the
+ // symbolic stride replaced by one.
+ ValueToValueMap::const_iterator SI =
+ PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
+ if (SI != PtrToStride.end()) {
+ Value *StrideVal = SI->second;
+
+ // Strip casts.
+ StrideVal = stripIntegerCast(StrideVal);
+
+ // Replace symbolic stride by one.
+ Value *One = ConstantInt::get(StrideVal->getType(), 1);
+ ValueToValueMap RewriteMap;
+ RewriteMap[StrideVal] = One;
+
+ const SCEV *ByOne =
+ SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
+ DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
+ << "\n");
+ return ByOne;
+ }
+
+ // Otherwise, just return the SCEV of the original pointer.
+ return SE->getSCEV(Ptr);
+}
+
+void LoopAccessInfo::RuntimePointerCheck::insert(
+ ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
+ unsigned ASId, const ValueToValueMap &Strides) {
+ // Get the stride replaced scev.
+ const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ assert(AR && "Invalid addrec expression");
+ const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ Pointers.push_back(Ptr);
+ Starts.push_back(AR->getStart());
+ Ends.push_back(ScEnd);
+ IsWritePtr.push_back(WritePtr);
+ DependencySetId.push_back(DepSetId);
+ AliasSetId.push_back(ASId);
+}
+
+bool LoopAccessInfo::RuntimePointerCheck::needsChecking(unsigned I,
+ unsigned J) const {
+ // No need to check if two readonly pointers intersect.
+ if (!IsWritePtr[I] && !IsWritePtr[J])
+ return false;
+
+ // Only need to check pointers between two different dependency sets.
+ if (DependencySetId[I] == DependencySetId[J])
+ return false;
+
+ // Only need to check pointers in the same alias set.
+ if (AliasSetId[I] != AliasSetId[J])
+ return false;
+
+ return true;
+}
+
+void LoopAccessInfo::RuntimePointerCheck::print(raw_ostream &OS,
+ unsigned Depth) const {
+ unsigned NumPointers = Pointers.size();
+ if (NumPointers == 0)
+ return;
+
+ OS.indent(Depth) << "Run-time memory checks:\n";
+ unsigned N = 0;
+ for (unsigned I = 0; I < NumPointers; ++I)
+ for (unsigned J = I + 1; J < NumPointers; ++J)
+ if (needsChecking(I, J)) {
+ OS.indent(Depth) << N++ << ":\n";
+ OS.indent(Depth + 2) << *Pointers[I] << "\n";
+ OS.indent(Depth + 2) << *Pointers[J] << "\n";
+ }
+}
+
+namespace {
+/// \brief Analyses memory accesses in a loop.
+///
+/// Checks whether run time pointer checks are needed and builds sets for data
+/// dependence checking.
+class AccessAnalysis {
+public:
+ /// \brief Read or write access location.
+ typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+ typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
+
+ /// \brief Set of potential dependent memory accesses.
+ typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
+
+ AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
+ DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
+
+ /// \brief Register a load and whether it is only read from.
+ void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
+ Value *Ptr = const_cast<Value*>(Loc.Ptr);
+ AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
+ Accesses.insert(MemAccessInfo(Ptr, false));
+ if (IsReadOnly)
+ ReadOnlyPtr.insert(Ptr);
+ }
+
+ /// \brief Register a store.
+ void addStore(AliasAnalysis::Location &Loc) {
+ Value *Ptr = const_cast<Value*>(Loc.Ptr);
+ AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
+ Accesses.insert(MemAccessInfo(Ptr, true));
+ }
+
+ /// \brief Check whether we can check the pointers at runtime for
+ /// non-intersection.
+ bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
+ unsigned &NumComparisons, ScalarEvolution *SE,
+ Loop *TheLoop, const ValueToValueMap &Strides,
+ bool ShouldCheckStride = false);
+
+ /// \brief Goes over all memory accesses, checks whether a RT check is needed
+ /// and builds sets of dependent accesses.
+ void buildDependenceSets() {
+ processMemAccesses();
+ }
+
+ bool isRTCheckNeeded() { return IsRTCheckNeeded; }
+
+ bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
+ void resetDepChecks() { CheckDeps.clear(); }
+
+ MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
+
+private:
+ typedef SetVector<MemAccessInfo> PtrAccessSet;
+
+ /// \brief Go over all memory access and check whether runtime pointer checks
+ /// are needed /// and build sets of dependency check candidates.
+ void processMemAccesses();
+
+ /// Set of all accesses.
+ PtrAccessSet Accesses;
+
+ /// Set of accesses that need a further dependence check.
+ MemAccessInfoSet CheckDeps;
+
+ /// Set of pointers that are read only.
+ SmallPtrSet<Value*, 16> ReadOnlyPtr;
+
+ const DataLayout *DL;
+
+ /// An alias set tracker to partition the access set by underlying object and
+ //intrinsic property (such as TBAA metadata).
+ AliasSetTracker AST;
+
+ /// Sets of potentially dependent accesses - members of one set share an
+ /// underlying pointer. The set "CheckDeps" identfies which sets really need a
+ /// dependence check.
+ DepCandidates &DepCands;
+
+ bool IsRTCheckNeeded;
+};
+
+} // end anonymous namespace
+
+/// \brief Check whether a pointer can participate in a runtime bounds check.
+static bool hasComputableBounds(ScalarEvolution *SE,
+ const ValueToValueMap &Strides, Value *Ptr) {
+ const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
+ if (!AR)
+ return false;
+
+ return AR->isAffine();
+}
+
+/// \brief Check the stride of the pointer and ensure that it does not wrap in
+/// the address space.
+static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
+ const Loop *Lp, const ValueToValueMap &StridesMap);
+
+bool AccessAnalysis::canCheckPtrAtRT(
+ LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons,
+ ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap,
+ bool ShouldCheckStride) {
+ // Find pointers with computable bounds. We are going to use this information
+ // to place a runtime bound check.
+ bool CanDoRT = true;
+
+ bool IsDepCheckNeeded = isDependencyCheckNeeded();
+ NumComparisons = 0;
+
+ // We assign a consecutive id to access from different alias sets.
+ // Accesses between different groups doesn't need to be checked.
+ unsigned ASId = 1;
+ for (auto &AS : AST) {
+ unsigned NumReadPtrChecks = 0;
+ unsigned NumWritePtrChecks = 0;
+
+ // We assign consecutive id to access from different dependence sets.
+ // Accesses within the same set don't need a runtime check.
+ unsigned RunningDepId = 1;
+ DenseMap<Value *, unsigned> DepSetId;
+
+ for (auto A : AS) {
+ Value *Ptr = A.getValue();
+ bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
+ MemAccessInfo Access(Ptr, IsWrite);
+
+ if (IsWrite)
+ ++NumWritePtrChecks;
+ else
+ ++NumReadPtrChecks;
+
+ if (hasComputableBounds(SE, StridesMap, Ptr) &&
+ // When we run after a failing dependency check we have to make sure we
+ // don't have wrapping pointers.
+ (!ShouldCheckStride ||
+ isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
+ // The id of the dependence set.
+ unsigned DepId;
+
+ if (IsDepCheckNeeded) {
+ Value *Leader = DepCands.getLeaderValue(Access).getPointer();
+ unsigned &LeaderId = DepSetId[Leader];
+ if (!LeaderId)
+ LeaderId = RunningDepId++;
+ DepId = LeaderId;
+ } else
+ // Each access has its own dependence set.
+ DepId = RunningDepId++;
+
+ RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
+
+ DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
+ } else {
+ CanDoRT = false;
+ }
+ }
+
+ if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
+ NumComparisons += 0; // Only one dependence set.
+ else {
+ NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
+ NumWritePtrChecks - 1));
+ }
+
+ ++ASId;
+ }
+
+ // If the pointers that we would use for the bounds comparison have different
+ // address spaces, assume the values aren't directly comparable, so we can't
+ // use them for the runtime check. We also have to assume they could
+ // overlap. In the future there should be metadata for whether address spaces
+ // are disjoint.
+ unsigned NumPointers = RtCheck.Pointers.size();
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i + 1; j < NumPointers; ++j) {
+ // Only need to check pointers between two different dependency sets.
+ if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
+ continue;
+ // Only need to check pointers in the same alias set.
+ if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
+ continue;
+
+ Value *PtrI = RtCheck.Pointers[i];
+ Value *PtrJ = RtCheck.Pointers[j];
+
+ unsigned ASi = PtrI->getType()->getPointerAddressSpace();
+ unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
+ if (ASi != ASj) {
+ DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
+ " different address spaces\n");
+ return false;
+ }
+ }
+ }
+
+ return CanDoRT;
+}
+
+void AccessAnalysis::processMemAccesses() {
+ // We process the set twice: first we process read-write pointers, last we
+ // process read-only pointers. This allows us to skip dependence tests for
+ // read-only pointers.
+
+ DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
+ DEBUG(dbgs() << " AST: "; AST.dump());
+ DEBUG(dbgs() << "LAA: Accesses:\n");
+ DEBUG({
+ for (auto A : Accesses)
+ dbgs() << "\t" << *A.getPointer() << " (" <<
+ (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
+ "read-only" : "read")) << ")\n";
+ });
+
+ // The AliasSetTracker has nicely partitioned our pointers by metadata
+ // compatibility and potential for underlying-object overlap. As a result, we
+ // only need to check for potential pointer dependencies within each alias
+ // set.
+ for (auto &AS : AST) {
+ // Note that both the alias-set tracker and the alias sets themselves used
+ // linked lists internally and so the iteration order here is deterministic
+ // (matching the original instruction order within each set).
+
+ bool SetHasWrite = false;
+
+ // Map of pointers to last access encountered.
+ typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
+ UnderlyingObjToAccessMap ObjToLastAccess;
+
+ // Set of access to check after all writes have been processed.
+ PtrAccessSet DeferredAccesses;
+
+ // Iterate over each alias set twice, once to process read/write pointers,
+ // and then to process read-only pointers.
+ for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
+ bool UseDeferred = SetIteration > 0;
+ PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
+
+ for (auto AV : AS) {
+ Value *Ptr = AV.getValue();
+
+ // For a single memory access in AliasSetTracker, Accesses may contain
+ // both read and write, and they both need to be handled for CheckDeps.
+ for (auto AC : S) {
+ if (AC.getPointer() != Ptr)
+ continue;
+
+ bool IsWrite = AC.getInt();
+
+ // If we're using the deferred access set, then it contains only
+ // reads.
+ bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
+ if (UseDeferred && !IsReadOnlyPtr)
+ continue;
+ // Otherwise, the pointer must be in the PtrAccessSet, either as a
+ // read or a write.
+ assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
+ S.count(MemAccessInfo(Ptr, false))) &&
+ "Alias-set pointer not in the access set?");
+
+ MemAccessInfo Access(Ptr, IsWrite);
+ DepCands.insert(Access);
+
+ // Memorize read-only pointers for later processing and skip them in
+ // the first round (they need to be checked after we have seen all
+ // write pointers). Note: we also mark pointer that are not
+ // consecutive as "read-only" pointers (so that we check
+ // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
+ if (!UseDeferred && IsReadOnlyPtr) {
+ DeferredAccesses.insert(Access);
+ continue;
+ }
+
+ // If this is a write - check other reads and writes for conflicts. If
+ // this is a read only check other writes for conflicts (but only if
+ // there is no other write to the ptr - this is an optimization to
+ // catch "a[i] = a[i] + " without having to do a dependence check).
+ if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
+ CheckDeps.insert(Access);
+ IsRTCheckNeeded = true;
+ }
+
+ if (IsWrite)
+ SetHasWrite = true;
+
+ // Create sets of pointers connected by a shared alias set and
+ // underlying object.
+ typedef SmallVector<Value *, 16> ValueVector;
+ ValueVector TempObjects;
+ GetUnderlyingObjects(Ptr, TempObjects, DL);
+ for (Value *UnderlyingObj : TempObjects) {
+ UnderlyingObjToAccessMap::iterator Prev =
+ ObjToLastAccess.find(UnderlyingObj);
+ if (Prev != ObjToLastAccess.end())
+ DepCands.unionSets(Access, Prev->second);
+
+ ObjToLastAccess[UnderlyingObj] = Access;
+ }
+ }
+ }
+ }
+ }
+}
+
+namespace {
+/// \brief Checks memory dependences among accesses to the same underlying
+/// object to determine whether there vectorization is legal or not (and at
+/// which vectorization factor).
+///
+/// This class works under the assumption that we already checked that memory
+/// locations with different underlying pointers are "must-not alias".
+/// We use the ScalarEvolution framework to symbolically evalutate access
+/// functions pairs. Since we currently don't restructure the loop we can rely
+/// on the program order of memory accesses to determine their safety.
+/// At the moment we will only deem accesses as safe for:
+/// * A negative constant distance assuming program order.
+///
+/// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
+/// a[i] = tmp; y = a[i];
+///
+/// The latter case is safe because later checks guarantuee that there can't
+/// be a cycle through a phi node (that is, we check that "x" and "y" is not
+/// the same variable: a header phi can only be an induction or a reduction, a
+/// reduction can't have a memory sink, an induction can't have a memory
+/// source). This is important and must not be violated (or we have to
+/// resort to checking for cycles through memory).
+///
+/// * A positive constant distance assuming program order that is bigger
+/// than the biggest memory access.
+///
+/// tmp = a[i] OR b[i] = x
+/// a[i+2] = tmp y = b[i+2];
+///
+/// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
+///
+/// * Zero distances and all accesses have the same size.
+///
+class MemoryDepChecker {
+public:
+ typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
+ typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
+
+ MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
+ : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
+ ShouldRetryWithRuntimeCheck(false) {}
+
+ /// \brief Register the location (instructions are given increasing numbers)
+ /// of a write access.
+ void addAccess(StoreInst *SI) {
+ Value *Ptr = SI->getPointerOperand();
+ Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
+ InstMap.push_back(SI);
+ ++AccessIdx;
+ }
+
+ /// \brief Register the location (instructions are given increasing numbers)
+ /// of a write access.
+ void addAccess(LoadInst *LI) {
+ Value *Ptr = LI->getPointerOperand();
+ Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
+ InstMap.push_back(LI);
+ ++AccessIdx;
+ }
+
+ /// \brief Check whether the dependencies between the accesses are safe.
+ ///
+ /// Only checks sets with elements in \p CheckDeps.
+ bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
+ MemAccessInfoSet &CheckDeps, const ValueToValueMap &Strides);
+
+ /// \brief The maximum number of bytes of a vector register we can vectorize
+ /// the accesses safely with.
+ unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
+
+ /// \brief In same cases when the dependency check fails we can still
+ /// vectorize the loop with a dynamic array access check.
+ bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
+
+private:
+ ScalarEvolution *SE;
+ const DataLayout *DL;
+ const Loop *InnermostLoop;
+
+ /// \brief Maps access locations (ptr, read/write) to program order.
+ DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
+
+ /// \brief Memory access instructions in program order.
+ SmallVector<Instruction *, 16> InstMap;
+
+ /// \brief The program order index to be used for the next instruction.
+ unsigned AccessIdx;
+
+ // We can access this many bytes in parallel safely.
+ unsigned MaxSafeDepDistBytes;
+
+ /// \brief If we see a non-constant dependence distance we can still try to
+ /// vectorize this loop with runtime checks.
+ bool ShouldRetryWithRuntimeCheck;
+
+ /// \brief Check whether there is a plausible dependence between the two
+ /// accesses.
+ ///
+ /// Access \p A must happen before \p B in program order. The two indices
+ /// identify the index into the program order map.
+ ///
+ /// This function checks whether there is a plausible dependence (or the
+ /// absence of such can't be proved) between the two accesses. If there is a
+ /// plausible dependence but the dependence distance is bigger than one
+ /// element access it records this distance in \p MaxSafeDepDistBytes (if this
+ /// distance is smaller than any other distance encountered so far).
+ /// Otherwise, this function returns true signaling a possible dependence.
+ bool isDependent(const MemAccessInfo &A, unsigned AIdx,
+ const MemAccessInfo &B, unsigned BIdx,
+ const ValueToValueMap &Strides);
+
+ /// \brief Check whether the data dependence could prevent store-load
+ /// forwarding.
+ bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
+};
+
+} // end anonymous namespace
+
+static bool isInBoundsGep(Value *Ptr) {
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
+ return GEP->isInBounds();
+ return false;
+}
+
+/// \brief Check whether the access through \p Ptr has a constant stride.
+static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
+ const Loop *Lp, const ValueToValueMap &StridesMap) {
+ const Type *Ty = Ptr->getType();
+ assert(Ty->isPointerTy() && "Unexpected non-ptr");
+
+ // Make sure that the pointer does not point to aggregate types.
+ const PointerType *PtrTy = cast<PointerType>(Ty);
+ if (PtrTy->getElementType()->isAggregateType()) {
+ DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
+ << *Ptr << "\n");
+ return 0;
+ }
+
+ const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
+
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
+ << *Ptr << " SCEV: " << *PtrScev << "\n");
+ return 0;
+ }
+
+ // The accesss function must stride over the innermost loop.
+ if (Lp != AR->getLoop()) {
+ DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
+ *Ptr << " SCEV: " << *PtrScev << "\n");
+ }
+
+ // The address calculation must not wrap. Otherwise, a dependence could be
+ // inverted.
+ // An inbounds getelementptr that is a AddRec with a unit stride
+ // cannot wrap per definition. The unit stride requirement is checked later.
+ // An getelementptr without an inbounds attribute and unit stride would have
+ // to access the pointer value "0" which is undefined behavior in address
+ // space 0, therefore we can also vectorize this case.
+ bool IsInBoundsGEP = isInBoundsGep(Ptr);
+ bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
+ bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
+ if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
+ DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
+ << *Ptr << " SCEV: " << *PtrScev << "\n");
+ return 0;
+ }
+
+ // Check the step is constant.
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // Calculate the pointer stride and check if it is consecutive.
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C) {
+ DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
+ " SCEV: " << *PtrScev << "\n");
+ return 0;
+ }
+
+ int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
+ const APInt &APStepVal = C->getValue()->getValue();
+
+ // Huge step value - give up.
+ if (APStepVal.getBitWidth() > 64)
+ return 0;
+
+ int64_t StepVal = APStepVal.getSExtValue();
+
+ // Strided access.
+ int64_t Stride = StepVal / Size;
+ int64_t Rem = StepVal % Size;
+ if (Rem)
+ return 0;
+
+ // If the SCEV could wrap but we have an inbounds gep with a unit stride we
+ // know we can't "wrap around the address space". In case of address space
+ // zero we know that this won't happen without triggering undefined behavior.
+ if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
+ Stride != 1 && Stride != -1)
+ return 0;
+
+ return Stride;
+}
+
+bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
+ unsigned TypeByteSize) {
+ // If loads occur at a distance that is not a multiple of a feasible vector
+ // factor store-load forwarding does not take place.
+ // Positive dependences might cause troubles because vectorizing them might
+ // prevent store-load forwarding making vectorized code run a lot slower.
+ // a[i] = a[i-3] ^ a[i-8];
+ // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
+ // hence on your typical architecture store-load forwarding does not take
+ // place. Vectorizing in such cases does not make sense.
+ // Store-load forwarding distance.
+ const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
+ // Maximum vector factor.
+ unsigned MaxVFWithoutSLForwardIssues =
+ VectorizerParams::MaxVectorWidth * TypeByteSize;
+ if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
+ MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
+
+ for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
+ vf *= 2) {
+ if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
+ MaxVFWithoutSLForwardIssues = (vf >>=1);
+ break;
+ }
+ }
+
+ if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
+ DEBUG(dbgs() << "LAA: Distance " << Distance <<
+ " that could cause a store-load forwarding conflict\n");
+ return true;
+ }
+
+ if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
+ MaxVFWithoutSLForwardIssues !=
+ VectorizerParams::MaxVectorWidth * TypeByteSize)
+ MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
+ return false;
+}
+
+bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
+ const MemAccessInfo &B, unsigned BIdx,
+ const ValueToValueMap &Strides) {
+ assert (AIdx < BIdx && "Must pass arguments in program order");
+
+ Value *APtr = A.getPointer();
+ Value *BPtr = B.getPointer();
+ bool AIsWrite = A.getInt();
+ bool BIsWrite = B.getInt();
+
+ // Two reads are independent.
+ if (!AIsWrite && !BIsWrite)
+ return false;
+
+ // We cannot check pointers in different address spaces.
+ if (APtr->getType()->getPointerAddressSpace() !=
+ BPtr->getType()->getPointerAddressSpace())
+ return true;
+
+ const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
+ const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
+
+ int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
+ int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
+
+ const SCEV *Src = AScev;
+ const SCEV *Sink = BScev;
+
+ // If the induction step is negative we have to invert source and sink of the
+ // dependence.
+ if (StrideAPtr < 0) {
+ //Src = BScev;
+ //Sink = AScev;
+ std::swap(APtr, BPtr);
+ std::swap(Src, Sink);
+ std::swap(AIsWrite, BIsWrite);
+ std::swap(AIdx, BIdx);
+ std::swap(StrideAPtr, StrideBPtr);
+ }
+
+ const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
+
+ DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
+ << "(Induction step: " << StrideAPtr << ")\n");
+ DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
+ << *InstMap[BIdx] << ": " << *Dist << "\n");
+
+ // Need consecutive accesses. We don't want to vectorize
+ // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
+ // the address space.
+ if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
+ DEBUG(dbgs() << "Non-consecutive pointer access\n");
+ return true;
+ }
+
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
+ if (!C) {
+ DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
+ ShouldRetryWithRuntimeCheck = true;
+ return true;
+ }
+
+ Type *ATy = APtr->getType()->getPointerElementType();
+ Type *BTy = BPtr->getType()->getPointerElementType();
+ unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
+
+ // Negative distances are not plausible dependencies.
+ const APInt &Val = C->getValue()->getValue();
+ if (Val.isNegative()) {
+ bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
+ if (IsTrueDataDependence &&
+ (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
+ ATy != BTy))
+ return true;
+
+ DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
+ return false;
+ }
+
+ // Write to the same location with the same size.
+ // Could be improved to assert type sizes are the same (i32 == float, etc).
+ if (Val == 0) {
+ if (ATy == BTy)
+ return false;
+ DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
+ return true;
+ }
+
+ assert(Val.isStrictlyPositive() && "Expect a positive value");
+
+ if (ATy != BTy) {
+ DEBUG(dbgs() <<
+ "LAA: ReadWrite-Write positive dependency with different types\n");
+ return true;
+ }
+
+ unsigned Distance = (unsigned) Val.getZExtValue();
+
+ // Bail out early if passed-in parameters make vectorization not feasible.
+ unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
+ VectorizerParams::VectorizationFactor : 1);
+ unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
+ VectorizerParams::VectorizationInterleave : 1);
+
+ // The distance must be bigger than the size needed for a vectorized version
+ // of the operation and the size of the vectorized operation must not be
+ // bigger than the currrent maximum size.
+ if (Distance < 2*TypeByteSize ||
+ 2*TypeByteSize > MaxSafeDepDistBytes ||
+ Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
+ DEBUG(dbgs() << "LAA: Failure because of Positive distance "
+ << Val.getSExtValue() << '\n');
+ return true;
+ }
+
+ // Positive distance bigger than max vectorization factor.
+ MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
+ Distance : MaxSafeDepDistBytes;
+
+ bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
+ if (IsTrueDataDependence &&
+ couldPreventStoreLoadForward(Distance, TypeByteSize))
+ return true;
+
+ DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() <<
+ " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
+
+ return false;
+}
+
+bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
+ MemAccessInfoSet &CheckDeps,
+ const ValueToValueMap &Strides) {
+
+ MaxSafeDepDistBytes = -1U;
+ while (!CheckDeps.empty()) {
+ MemAccessInfo CurAccess = *CheckDeps.begin();
+
+ // Get the relevant memory access set.
+ EquivalenceClasses<MemAccessInfo>::iterator I =
+ AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
+
+ // Check accesses within this set.
+ EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
+ AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
+
+ // Check every access pair.
+ while (AI != AE) {
+ CheckDeps.erase(*AI);
+ EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
+ while (OI != AE) {
+ // Check every accessing instruction pair in program order.
+ for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
+ I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
+ for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
+ I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
+ if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
+ return false;
+ if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
+ return false;
+ }
+ ++OI;
+ }
+ AI++;
+ }
+ }
+ return true;
+}
+
+bool LoopAccessInfo::canAnalyzeLoop() {
+ // We can only analyze innermost loops.
+ if (!TheLoop->empty()) {
+ emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
+ return false;
+ }
+
+ // We must have a single backedge.
+ if (TheLoop->getNumBackEdges() != 1) {
+ emitAnalysis(
+ LoopAccessReport() <<
+ "loop control flow is not understood by analyzer");
+ return false;
+ }
+
+ // We must have a single exiting block.
+ if (!TheLoop->getExitingBlock()) {
+ emitAnalysis(
+ LoopAccessReport() <<
+ "loop control flow is not understood by analyzer");
+ return false;
+ }
+
+ // We only handle bottom-tested loops, i.e. loop in which the condition is
+ // checked at the end of each iteration. With that we can assume that all
+ // instructions in the loop are executed the same number of times.
+ if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
+ emitAnalysis(
+ LoopAccessReport() <<
+ "loop control flow is not understood by analyzer");
+ return false;
+ }
+
+ // We need to have a loop header.
+ DEBUG(dbgs() << "LAA: Found a loop: " <<
+ TheLoop->getHeader()->getName() << '\n');
+
+ // ScalarEvolution needs to be able to find the exit count.
+ const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
+ if (ExitCount == SE->getCouldNotCompute()) {
+ emitAnalysis(LoopAccessReport() <<
+ "could not determine number of loop iterations");
+ DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
+ return false;
+ }
+
+ return true;
+}
+
+void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
+
+ typedef SmallVector<Value*, 16> ValueVector;
+ typedef SmallPtrSet<Value*, 16> ValueSet;
+
+ // Holds the Load and Store *instructions*.
+ ValueVector Loads;
+ ValueVector Stores;
+
+ // Holds all the different accesses in the loop.
+ unsigned NumReads = 0;
+ unsigned NumReadWrites = 0;
+
+ PtrRtCheck.Pointers.clear();
+ PtrRtCheck.Need = false;
+
+ const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
+ MemoryDepChecker DepChecker(SE, DL, TheLoop);
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+
+ // Scan the BB and collect legal loads and stores.
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+
+ // If this is a load, save it. If this instruction can read from memory
+ // but is not a load, then we quit. Notice that we don't handle function
+ // calls that read or write.
+ if (it->mayReadFromMemory()) {
+ // Many math library functions read the rounding mode. We will only
+ // vectorize a loop if it contains known function calls that don't set
+ // the flag. Therefore, it is safe to ignore this read from memory.
+ CallInst *Call = dyn_cast<CallInst>(it);
+ if (Call && getIntrinsicIDForCall(Call, TLI))
+ continue;
+
+ LoadInst *Ld = dyn_cast<LoadInst>(it);
+ if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
+ emitAnalysis(LoopAccessReport(Ld)
+ << "read with atomic ordering or volatile read");
+ DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
+ CanVecMem = false;
+ return;
+ }
+ NumLoads++;
+ Loads.push_back(Ld);
+ DepChecker.addAccess(Ld);
+ continue;
+ }
+
+ // Save 'store' instructions. Abort if other instructions write to memory.
+ if (it->mayWriteToMemory()) {
+ StoreInst *St = dyn_cast<StoreInst>(it);
+ if (!St) {
+ emitAnalysis(LoopAccessReport(it) <<
+ "instruction cannot be vectorized");
+ CanVecMem = false;
+ return;
+ }
+ if (!St->isSimple() && !IsAnnotatedParallel) {
+ emitAnalysis(LoopAccessReport(St)
+ << "write with atomic ordering or volatile write");
+ DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
+ CanVecMem = false;
+ return;
+ }
+ NumStores++;
+ Stores.push_back(St);
+ DepChecker.addAccess(St);
+ }
+ } // Next instr.
+ } // Next block.
+
+ // Now we have two lists that hold the loads and the stores.
+ // Next, we find the pointers that they use.
+
+ // Check if we see any stores. If there are no stores, then we don't
+ // care if the pointers are *restrict*.
+ if (!Stores.size()) {
+ DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
+ CanVecMem = true;
+ return;
+ }
+
+ AccessAnalysis::DepCandidates DependentAccesses;
+ AccessAnalysis Accesses(DL, AA, DependentAccesses);
+
+ // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
+ // multiple times on the same object. If the ptr is accessed twice, once
+ // for read and once for write, it will only appear once (on the write
+ // list). This is okay, since we are going to check for conflicts between
+ // writes and between reads and writes, but not between reads and reads.
+ ValueSet Seen;
+
+ ValueVector::iterator I, IE;
+ for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
+ StoreInst *ST = cast<StoreInst>(*I);
+ Value* Ptr = ST->getPointerOperand();
+
+ if (isUniform(Ptr)) {
+ emitAnalysis(
+ LoopAccessReport(ST)
+ << "write to a loop invariant address could not be vectorized");
+ DEBUG(dbgs() << "LAA: We don't allow storing to uniform addresses\n");
+ CanVecMem = false;
+ return;
+ }
+
+ // If we did *not* see this pointer before, insert it to the read-write
+ // list. At this phase it is only a 'write' list.
+ if (Seen.insert(Ptr).second) {
+ ++NumReadWrites;
+
+ AliasAnalysis::Location Loc = AA->getLocation(ST);
+ // The TBAA metadata could have a control dependency on the predication
+ // condition, so we cannot rely on it when determining whether or not we
+ // need runtime pointer checks.
+ if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
+ Loc.AATags.TBAA = nullptr;
+
+ Accesses.addStore(Loc);
+ }
+ }
+
+ if (IsAnnotatedParallel) {
+ DEBUG(dbgs()
+ << "LAA: A loop annotated parallel, ignore memory dependency "
+ << "checks.\n");
+ CanVecMem = true;
+ return;
+ }
+
+ for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
+ LoadInst *LD = cast<LoadInst>(*I);
+ Value* Ptr = LD->getPointerOperand();
+ // If we did *not* see this pointer before, insert it to the
+ // read list. If we *did* see it before, then it is already in
+ // the read-write list. This allows us to vectorize expressions
+ // such as A[i] += x; Because the address of A[i] is a read-write
+ // pointer. This only works if the index of A[i] is consecutive.
+ // If the address of i is unknown (for example A[B[i]]) then we may
+ // read a few words, modify, and write a few words, and some of the
+ // words may be written to the same address.
+ bool IsReadOnlyPtr = false;
+ if (Seen.insert(Ptr).second ||
+ !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
+ ++NumReads;
+ IsReadOnlyPtr = true;
+ }
+
+ AliasAnalysis::Location Loc = AA->getLocation(LD);
+ // The TBAA metadata could have a control dependency on the predication
+ // condition, so we cannot rely on it when determining whether or not we
+ // need runtime pointer checks.
+ if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
+ Loc.AATags.TBAA = nullptr;
+
+ Accesses.addLoad(Loc, IsReadOnlyPtr);
+ }
+
+ // If we write (or read-write) to a single destination and there are no
+ // other reads in this loop then is it safe to vectorize.
+ if (NumReadWrites == 1 && NumReads == 0) {
+ DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
+ CanVecMem = true;
+ return;
+ }
+
+ // Build dependence sets and check whether we need a runtime pointer bounds
+ // check.
+ Accesses.buildDependenceSets();
+ bool NeedRTCheck = Accesses.isRTCheckNeeded();
+
+ // Find pointers with computable bounds. We are going to use this information
+ // to place a runtime bound check.
+ unsigned NumComparisons = 0;
+ bool CanDoRT = false;
+ if (NeedRTCheck)
+ CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
+ Strides);
+
+ DEBUG(dbgs() << "LAA: We need to do " << NumComparisons <<
+ " pointer comparisons.\n");
+
+ // If we only have one set of dependences to check pointers among we don't
+ // need a runtime check.
+ if (NumComparisons == 0 && NeedRTCheck)
+ NeedRTCheck = false;
+
+ // Check that we did not collect too many pointers or found an unsizeable
+ // pointer.
+ if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
+ PtrRtCheck.reset();
+ CanDoRT = false;
+ }
+
+ if (CanDoRT) {
+ DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
+ }
+
+ if (NeedRTCheck && !CanDoRT) {
+ emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
+ DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
+ "the array bounds.\n");
+ PtrRtCheck.reset();
+ CanVecMem = false;
+ return;
+ }
+
+ PtrRtCheck.Need = NeedRTCheck;
+
+ CanVecMem = true;
+ if (Accesses.isDependencyCheckNeeded()) {
+ DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
+ CanVecMem = DepChecker.areDepsSafe(
+ DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
+ MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
+
+ if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
+ DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
+ NeedRTCheck = true;
+
+ // Clear the dependency checks. We assume they are not needed.
+ Accesses.resetDepChecks();
+
+ PtrRtCheck.reset();
+ PtrRtCheck.Need = true;
+
+ CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
+ TheLoop, Strides, true);
+ // Check that we did not collect too many pointers or found an unsizeable
+ // pointer.
+ if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
+ if (!CanDoRT && NumComparisons > 0)
+ emitAnalysis(LoopAccessReport()
+ << "cannot check memory dependencies at runtime");
+ else
+ emitAnalysis(LoopAccessReport()
+ << NumComparisons << " exceeds limit of "
+ << RuntimeMemoryCheckThreshold
+ << " dependent memory operations checked at runtime");
+ DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
+ PtrRtCheck.reset();
+ CanVecMem = false;
+ return;
+ }
+
+ CanVecMem = true;
+ }
+ }
+
+ if (!CanVecMem)
+ emitAnalysis(LoopAccessReport() <<
+ "unsafe dependent memory operations in loop");
+
+ DEBUG(dbgs() << "LAA: We" << (NeedRTCheck ? "" : " don't") <<
+ " need a runtime memory check.\n");
+}
+
+bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
+ DominatorTree *DT) {
+ assert(TheLoop->contains(BB) && "Unknown block used");
+
+ // Blocks that do not dominate the latch need predication.
+ BasicBlock* Latch = TheLoop->getLoopLatch();
+ return !DT->dominates(BB, Latch);
+}
+
+void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
+ assert(!Report && "Multiple reports generated");
+ Report = Message;
+}
+
+bool LoopAccessInfo::isUniform(Value *V) const {
+ return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
+}
+
+// FIXME: this function is currently a duplicate of the one in
+// LoopVectorize.cpp.
+static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
+ Instruction *Loc) {
+ if (FirstInst)
+ return FirstInst;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return I->getParent() == Loc->getParent() ? I : nullptr;
+ return nullptr;
+}
+
+std::pair<Instruction *, Instruction *>
+LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
+ Instruction *tnullptr = nullptr;
+ if (!PtrRtCheck.Need)
+ return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
+
+ unsigned NumPointers = PtrRtCheck.Pointers.size();
+ SmallVector<TrackingVH<Value> , 2> Starts;
+ SmallVector<TrackingVH<Value> , 2> Ends;
+
+ LLVMContext &Ctx = Loc->getContext();
+ SCEVExpander Exp(*SE, "induction");
+ Instruction *FirstInst = nullptr;
+
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ Value *Ptr = PtrRtCheck.Pointers[i];
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ if (SE->isLoopInvariant(Sc, TheLoop)) {
+ DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" <<
+ *Ptr <<"\n");
+ Starts.push_back(Ptr);
+ Ends.push_back(Ptr);
+ } else {
+ DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n');
+ unsigned AS = Ptr->getType()->getPointerAddressSpace();
+
+ // Use this type for pointer arithmetic.
+ Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
+
+ Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc);
+ Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc);
+ Starts.push_back(Start);
+ Ends.push_back(End);
+ }
+ }
+
+ IRBuilder<> ChkBuilder(Loc);
+ // Our instructions might fold to a constant.
+ Value *MemoryRuntimeCheck = nullptr;
+ for (unsigned i = 0; i < NumPointers; ++i) {
+ for (unsigned j = i+1; j < NumPointers; ++j) {
+ if (!PtrRtCheck.needsChecking(i, j))
+ continue;
+
+ unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
+ unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
+
+ assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
+ (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
+ "Trying to bounds check pointers with different address spaces");
+
+ Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
+ Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
+
+ Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
+ Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
+ Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
+ Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
+
+ Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
+ FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
+ Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
+ FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
+ Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
+ FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
+ if (MemoryRuntimeCheck) {
+ IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
+ "conflict.rdx");
+ FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
+ }
+ MemoryRuntimeCheck = IsConflict;
+ }
+ }
+
+ // We have to do this trickery because the IRBuilder might fold the check to a
+ // constant expression in which case there is no Instruction anchored in a
+ // the block.
+ Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
+ ConstantInt::getTrue(Ctx));
+ ChkBuilder.Insert(Check, "memcheck.conflict");
+ FirstInst = getFirstInst(FirstInst, Check, Loc);
+ return std::make_pair(FirstInst, Check);
+}
+
+LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
+ const DataLayout *DL,
+ const TargetLibraryInfo *TLI, AliasAnalysis *AA,
+ DominatorTree *DT,
+ const ValueToValueMap &Strides)
+ : TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT), NumLoads(0),
+ NumStores(0), MaxSafeDepDistBytes(-1U), CanVecMem(false) {
+ if (canAnalyzeLoop())
+ analyzeLoop(Strides);
+}
+
+void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
+ if (CanVecMem) {
+ if (PtrRtCheck.empty())
+ OS.indent(Depth) << "Memory dependences are safe\n";
+ else
+ OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
+ }
+
+ if (Report)
+ OS.indent(Depth) << "Report: " << Report->str() << "\n";
+
+ // FIXME: Print unsafe dependences
+
+ // List the pair of accesses need run-time checks to prove independence.
+ PtrRtCheck.print(OS, Depth);
+ OS << "\n";
+}
+
+const LoopAccessInfo &
+LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
+ auto &LAI = LoopAccessInfoMap[L];
+
+#ifndef NDEBUG
+ assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
+ "Symbolic strides changed for loop");
+#endif
+
+ if (!LAI) {
+ LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides);
+#ifndef NDEBUG
+ LAI->NumSymbolicStrides = Strides.size();
+#endif
+ }
+ return *LAI.get();
+}
+
+void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
+ LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
+
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ ValueToValueMap NoSymbolicStrides;
+
+ for (Loop *TopLevelLoop : *LI)
+ for (Loop *L : depth_first(TopLevelLoop)) {
+ OS.indent(2) << L->getHeader()->getName() << ":\n";
+ auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
+ LAI.print(OS, 4);
+ }
+}
+
+bool LoopAccessAnalysis::runOnFunction(Function &F) {
+ SE = &getAnalysis<ScalarEvolution>();
+ DL = F.getParent()->getDataLayout();
+ auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ TLI = TLIP ? &TLIP->getTLI() : nullptr;
+ AA = &getAnalysis<AliasAnalysis>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ return false;
+}
+
+void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+
+ AU.setPreservesAll();
+}
+
+char LoopAccessAnalysis::ID = 0;
+static const char laa_name[] = "Loop Access Analysis";
+#define LAA_NAME "loop-accesses"
+
+INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
+
+namespace llvm {
+ Pass *createLAAPass() {
+ return new LoopAccessAnalysis();
+ }
+}