aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-04-23 16:57:46 -0700
committerStephen Hines <srhines@google.com>2014-04-24 15:53:16 -0700
commit36b56886974eae4f9c5ebc96befd3e7bfe5de338 (patch)
treee6cfb69fbbd937f450eeb83bfb83b9da3b01275a /lib/Analysis
parent69a8640022b04415ae9fac62f8ab090601d8f889 (diff)
downloadexternal_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.zip
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.gz
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.bz2
Update to LLVM 3.5a.
Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/AliasAnalysis.cpp21
-rw-r--r--lib/Analysis/AliasAnalysisCounter.cpp21
-rw-r--r--lib/Analysis/AliasAnalysisEvaluator.cpp17
-rw-r--r--lib/Analysis/AliasDebugger.cpp20
-rw-r--r--lib/Analysis/AliasSetTracker.cpp11
-rw-r--r--lib/Analysis/Analysis.cpp29
-rw-r--r--lib/Analysis/Android.mk2
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp312
-rw-r--r--lib/Analysis/BlockFrequencyInfo.cpp32
-rw-r--r--lib/Analysis/BranchProbabilityInfo.cpp12
-rw-r--r--lib/Analysis/CFG.cpp19
-rw-r--r--lib/Analysis/CFGPrinter.cpp30
-rw-r--r--lib/Analysis/CMakeLists.txt1
-rw-r--r--lib/Analysis/CaptureTracking.cpp35
-rw-r--r--lib/Analysis/CodeMetrics.cpp6
-rw-r--r--lib/Analysis/ConstantFolding.cpp236
-rw-r--r--lib/Analysis/CostModel.cpp24
-rw-r--r--lib/Analysis/Delinearization.cpp18
-rw-r--r--lib/Analysis/DependenceAnalysis.cpp42
-rw-r--r--lib/Analysis/DomPrinter.cpp46
-rw-r--r--lib/Analysis/DominanceFrontier.cpp7
-rw-r--r--lib/Analysis/IPA/Android.mk2
-rw-r--r--lib/Analysis/IPA/CallGraph.cpp159
-rw-r--r--lib/Analysis/IPA/CallGraphSCCPass.cpp30
-rw-r--r--lib/Analysis/IPA/CallPrinter.cpp45
-rw-r--r--lib/Analysis/IPA/FindUsedTypes.cpp3
-rw-r--r--lib/Analysis/IPA/GlobalsModRef.cpp87
-rw-r--r--lib/Analysis/IPA/IPA.cpp4
-rw-r--r--lib/Analysis/IPA/InlineCost.cpp85
-rw-r--r--lib/Analysis/IVUsers.cpp52
-rw-r--r--lib/Analysis/InstCount.cpp8
-rw-r--r--lib/Analysis/InstructionSimplify.cpp365
-rw-r--r--lib/Analysis/Interval.cpp2
-rw-r--r--lib/Analysis/LazyCallGraph.cpp181
-rw-r--r--lib/Analysis/LazyValueInfo.cpp23
-rw-r--r--lib/Analysis/Lint.cpp79
-rw-r--r--lib/Analysis/LoopInfo.cpp32
-rw-r--r--lib/Analysis/LoopPass.cpp20
-rw-r--r--lib/Analysis/MemDepPrinter.cpp17
-rw-r--r--lib/Analysis/MemoryBuiltins.cpp22
-rw-r--r--lib/Analysis/MemoryDependenceAnalysis.cpp35
-rw-r--r--lib/Analysis/ModuleDebugInfoPrinter.cpp29
-rw-r--r--lib/Analysis/NOTICE69
-rw-r--r--lib/Analysis/NoAliasAnalysis.cpp35
-rw-r--r--lib/Analysis/PHITransAddr.cpp25
-rw-r--r--lib/Analysis/PostDominators.cpp5
-rw-r--r--lib/Analysis/PtrUseVisitor.cpp9
-rw-r--r--lib/Analysis/RegionInfo.cpp17
-rw-r--r--lib/Analysis/RegionPass.cpp9
-rw-r--r--lib/Analysis/RegionPrinter.cpp7
-rw-r--r--lib/Analysis/ScalarEvolution.cpp426
-rw-r--r--lib/Analysis/ScalarEvolutionAliasAnalysis.cpp8
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp212
-rw-r--r--lib/Analysis/ScalarEvolutionNormalization.cpp31
-rw-r--r--lib/Analysis/SparsePropagation.cpp9
-rw-r--r--lib/Analysis/TargetTransformInfo.cpp156
-rw-r--r--lib/Analysis/Trace.cpp3
-rw-r--r--lib/Analysis/TypeBasedAliasAnalysis.cpp22
-rw-r--r--lib/Analysis/ValueTracking.cpp30
59 files changed, 1997 insertions, 1297 deletions
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index b8b6d37..9583bbe 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -25,12 +25,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
@@ -338,7 +338,7 @@ AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
AliasAnalysis::ModRefResult
AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
- if (CX->getOrdering() > Monotonic)
+ if (CX->getSuccessOrdering() > Monotonic)
return ModRef;
// If the cmpxchg address does not alias the location, it does not access it.
@@ -370,9 +370,9 @@ namespace {
CapturesBefore(const Instruction *I, DominatorTree *DT)
: BeforeHere(I), DT(DT), Captured(false) {}
- void tooManyUses() { Captured = true; }
+ void tooManyUses() override { Captured = true; }
- bool shouldExplore(Use *U) {
+ bool shouldExplore(const Use *U) override {
Instruction *I = cast<Instruction>(U->getUser());
BasicBlock *BB = I->getParent();
// We explore this usage only if the usage can reach "BeforeHere".
@@ -388,7 +388,7 @@ namespace {
return true;
}
- bool captured(Use *U) {
+ bool captured(const Use *U) override {
Instruction *I = cast<Instruction>(U->getUser());
BasicBlock *BB = I->getParent();
// Same logic as in shouldExplore.
@@ -416,9 +416,9 @@ AliasAnalysis::ModRefResult
AliasAnalysis::callCapturesBefore(const Instruction *I,
const AliasAnalysis::Location &MemLoc,
DominatorTree *DT) {
- if (!DT || !TD) return AliasAnalysis::ModRef;
+ if (!DT || !DL) return AliasAnalysis::ModRef;
- const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD);
+ const Value *Object = GetUnderlyingObject(MemLoc.Ptr, DL);
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
isa<Constant>(Object))
return AliasAnalysis::ModRef;
@@ -472,7 +472,8 @@ AliasAnalysis::~AliasAnalysis() {}
/// AliasAnalysis interface before any other methods are called.
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
- TD = P->getAnalysisIfAvailable<DataLayout>();
+ DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
AA = &P->getAnalysis<AliasAnalysis>();
}
@@ -487,7 +488,7 @@ void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
/// if known, or a conservative value otherwise.
///
uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
- return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
+ return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
}
/// canBasicBlockModify - Return true if it is possible for execution of the
diff --git a/lib/Analysis/AliasAnalysisCounter.cpp b/lib/Analysis/AliasAnalysisCounter.cpp
index 9f4a47c..2e3bc55 100644
--- a/lib/Analysis/AliasAnalysisCounter.cpp
+++ b/lib/Analysis/AliasAnalysisCounter.cpp
@@ -14,7 +14,6 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -75,13 +74,13 @@ namespace {
}
}
- bool runOnModule(Module &M) {
+ bool runOnModule(Module &M) override {
this->M = &M;
InitializeAliasAnalysis(this);
return false;
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AliasAnalysis::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.setPreservesAll();
@@ -91,25 +90,25 @@ namespace {
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
+ void *getAdjustedAnalysisPointer(AnalysisID PI) override {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
}
// FIXME: We could count these too...
- bool pointsToConstantMemory(const Location &Loc, bool OrLocal) {
+ bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override {
return getAnalysis<AliasAnalysis>().pointsToConstantMemory(Loc, OrLocal);
}
// Forwarding functions: just delegate to a real AA implementation, counting
// the number of responses...
- AliasResult alias(const Location &LocA, const Location &LocB);
+ AliasResult alias(const Location &LocA, const Location &LocB) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc);
+ const Location &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
+ ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1,CS2);
}
};
@@ -138,10 +137,10 @@ AliasAnalysisCounter::alias(const Location &LocA, const Location &LocB) {
if (PrintAll || (PrintAllFailures && R == MayAlias)) {
errs() << AliasString << ":\t";
errs() << "[" << LocA.Size << "B] ";
- WriteAsOperand(errs(), LocA.Ptr, true, M);
+ LocA.Ptr->printAsOperand(errs(), true, M);
errs() << ", ";
errs() << "[" << LocB.Size << "B] ";
- WriteAsOperand(errs(), LocB.Ptr, true, M);
+ LocB.Ptr->printAsOperand(errs(), true, M);
errs() << "\n";
}
@@ -164,7 +163,7 @@ AliasAnalysisCounter::getModRefInfo(ImmutableCallSite CS,
if (PrintAll || (PrintAllFailures && R == ModRef)) {
errs() << MRString << ": Ptr: ";
errs() << "[" << Loc.Size << "B] ";
- WriteAsOperand(errs(), Loc.Ptr, true, M);
+ Loc.Ptr->printAsOperand(errs(), true, M);
errs() << "\t<->" << *CS.getInstruction() << '\n';
}
return R;
diff --git a/lib/Analysis/AliasAnalysisEvaluator.cpp b/lib/Analysis/AliasAnalysisEvaluator.cpp
index a571463..d9fa5a5 100644
--- a/lib/Analysis/AliasAnalysisEvaluator.cpp
+++ b/lib/Analysis/AliasAnalysisEvaluator.cpp
@@ -20,15 +20,14 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -57,12 +56,12 @@ namespace {
initializeAAEvalPass(*PassRegistry::getPassRegistry());
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AliasAnalysis>();
AU.setPreservesAll();
}
- bool doInitialization(Module &M) {
+ bool doInitialization(Module &M) override {
NoAlias = MayAlias = PartialAlias = MustAlias = 0;
NoModRef = Mod = Ref = ModRef = 0;
@@ -74,8 +73,8 @@ namespace {
return false;
}
- bool runOnFunction(Function &F);
- bool doFinalization(Module &M);
+ bool runOnFunction(Function &F) override;
+ bool doFinalization(Module &M) override;
};
}
@@ -94,8 +93,8 @@ static void PrintResults(const char *Msg, bool P, const Value *V1,
std::string o1, o2;
{
raw_string_ostream os1(o1), os2(o2);
- WriteAsOperand(os1, V1, true, M);
- WriteAsOperand(os2, V2, true, M);
+ V1->printAsOperand(os1, true, M);
+ V2->printAsOperand(os2, true, M);
}
if (o2 < o1)
@@ -111,7 +110,7 @@ PrintModRefResults(const char *Msg, bool P, Instruction *I, Value *Ptr,
Module *M) {
if (P) {
errs() << " " << Msg << ": Ptr: ";
- WriteAsOperand(errs(), Ptr, true, M);
+ Ptr->printAsOperand(errs(), true, M);
errs() << "\t<->" << *I << '\n';
}
}
diff --git a/lib/Analysis/AliasDebugger.cpp b/lib/Analysis/AliasDebugger.cpp
index f6178e3..5d61cf9 100644
--- a/lib/Analysis/AliasDebugger.cpp
+++ b/lib/Analysis/AliasDebugger.cpp
@@ -43,7 +43,7 @@ namespace {
initializeAliasDebuggerPass(*PassRegistry::getPassRegistry());
}
- bool runOnModule(Module &M) {
+ bool runOnModule(Module &M) override {
InitializeAliasAnalysis(this); // set up super class
for(Module::global_iterator I = M.global_begin(),
@@ -76,7 +76,7 @@ namespace {
return false;
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code
}
@@ -85,7 +85,7 @@ namespace {
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
+ void *getAdjustedAnalysisPointer(AnalysisID PI) override {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
@@ -94,7 +94,7 @@ namespace {
//------------------------------------------------
// Implement the AliasAnalysis API
//
- AliasResult alias(const Location &LocA, const Location &LocB) {
+ AliasResult alias(const Location &LocA, const Location &LocB) override {
assert(Vals.find(LocA.Ptr) != Vals.end() &&
"Never seen value in AA before");
assert(Vals.find(LocB.Ptr) != Vals.end() &&
@@ -103,26 +103,26 @@ namespace {
}
ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc) {
+ const Location &Loc) override {
assert(Vals.find(Loc.Ptr) != Vals.end() && "Never seen value in AA before");
return AliasAnalysis::getModRefInfo(CS, Loc);
}
ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
+ ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1,CS2);
}
-
- bool pointsToConstantMemory(const Location &Loc, bool OrLocal) {
+
+ bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override {
assert(Vals.find(Loc.Ptr) != Vals.end() && "Never seen value in AA before");
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
}
- virtual void deleteValue(Value *V) {
+ void deleteValue(Value *V) override {
assert(Vals.find(V) != Vals.end() && "Never seen value in AA before");
AliasAnalysis::deleteValue(V);
}
- virtual void copyValue(Value *From, Value *To) {
+ void copyValue(Value *From, Value *To) override {
Vals.insert(To);
AliasAnalysis::copyValue(From, To);
}
diff --git a/lib/Analysis/AliasSetTracker.cpp b/lib/Analysis/AliasSetTracker.cpp
index 2289c12..ab1005e 100644
--- a/lib/Analysis/AliasSetTracker.cpp
+++ b/lib/Analysis/AliasSetTracker.cpp
@@ -13,8 +13,8 @@
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
@@ -22,7 +22,6 @@
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -566,7 +565,7 @@ void AliasSet::print(raw_ostream &OS) const {
OS << "Pointers: ";
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I != begin()) OS << ", ";
- WriteAsOperand(OS << "(", I.getPointer());
+ I.getPointer()->printAsOperand(OS << "(");
OS << ", " << I.getSize() << ")";
}
}
@@ -574,7 +573,7 @@ void AliasSet::print(raw_ostream &OS) const {
OS << "\n " << UnknownInsts.size() << " Unknown instructions: ";
for (unsigned i = 0, e = UnknownInsts.size(); i != e; ++i) {
if (i) OS << ", ";
- WriteAsOperand(OS, UnknownInsts[i]);
+ UnknownInsts[i]->printAsOperand(OS);
}
}
OS << "\n";
@@ -628,12 +627,12 @@ namespace {
initializeAliasSetPrinterPass(*PassRegistry::getPassRegistry());
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AliasAnalysis>();
}
- virtual bool runOnFunction(Function &F) {
+ bool runOnFunction(Function &F) override {
Tracker = new AliasSetTracker(getAnalysis<AliasAnalysis>());
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
diff --git a/lib/Analysis/Analysis.cpp b/lib/Analysis/Analysis.cpp
index 98f2a55..c960123 100644
--- a/lib/Analysis/Analysis.cpp
+++ b/lib/Analysis/Analysis.cpp
@@ -9,10 +9,11 @@
#include "llvm-c/Analysis.h"
#include "llvm-c/Initialization.h"
-#include "llvm/Analysis/Verifier.h"
-#include "llvm/InitializePasses.h"
#include "llvm/IR/Module.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/InitializePasses.h"
#include "llvm/PassRegistry.h"
+#include "llvm/Support/raw_ostream.h"
#include <cstring>
using namespace llvm;
@@ -72,21 +73,33 @@ void LLVMInitializeAnalysis(LLVMPassRegistryRef R) {
LLVMBool LLVMVerifyModule(LLVMModuleRef M, LLVMVerifierFailureAction Action,
char **OutMessages) {
+ raw_ostream *DebugOS = Action != LLVMReturnStatusAction ? &errs() : 0;
std::string Messages;
+ raw_string_ostream MsgsOS(Messages);
+
+ LLVMBool Result = verifyModule(*unwrap(M), OutMessages ? &MsgsOS : DebugOS);
+
+ // Duplicate the output to stderr.
+ if (DebugOS && OutMessages)
+ *DebugOS << MsgsOS.str();
- LLVMBool Result = verifyModule(*unwrap(M),
- static_cast<VerifierFailureAction>(Action),
- OutMessages? &Messages : 0);
+ if (Action == LLVMAbortProcessAction && Result)
+ report_fatal_error("Broken module found, compilation aborted!");
if (OutMessages)
- *OutMessages = strdup(Messages.c_str());
+ *OutMessages = strdup(MsgsOS.str().c_str());
return Result;
}
LLVMBool LLVMVerifyFunction(LLVMValueRef Fn, LLVMVerifierFailureAction Action) {
- return verifyFunction(*unwrap<Function>(Fn),
- static_cast<VerifierFailureAction>(Action));
+ LLVMBool Result = verifyFunction(
+ *unwrap<Function>(Fn), Action != LLVMReturnStatusAction ? &errs() : 0);
+
+ if (Action == LLVMAbortProcessAction && Result)
+ report_fatal_error("Broken function found, compilation aborted!");
+
+ return Result;
}
void LLVMViewFunctionCFG(LLVMValueRef Fn) {
diff --git a/lib/Analysis/Android.mk b/lib/Analysis/Android.mk
index 86d71f0..76eee74 100644
--- a/lib/Analysis/Android.mk
+++ b/lib/Analysis/Android.mk
@@ -67,6 +67,7 @@ include $(BUILD_HOST_STATIC_LIBRARY)
# For the device
# =====================================================
+ifneq (true,$(DISABLE_LLVM_DEVICE_BUILDS))
include $(CLEAR_VARS)
LOCAL_MODULE:= libLLVMAnalysis
@@ -76,3 +77,4 @@ LOCAL_SRC_FILES := $(analysis_SRC_FILES)
include $(LLVM_DEVICE_BUILD_MK)
include $(LLVM_GEN_INTRINSICS_MK)
include $(BUILD_STATIC_LIBRARY)
+endif
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index b2c2011..e267374 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -17,14 +17,18 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
@@ -33,11 +37,21 @@
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include <algorithm>
using namespace llvm;
+/// Cutoff after which to stop analysing a set of phi nodes potentially involved
+/// in a cycle. Because we are analysing 'through' phi nodes we need to be
+/// careful with value equivalence. We use reachability to make sure a value
+/// cannot be involved in a cycle.
+const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
+
+// The max limit of the search depth in DecomposeGEPExpression() and
+// GetUnderlyingObject(), both functions need to use the same search
+// depth otherwise the algorithm in aliasGEP will assert.
+static const unsigned MaxLookupSearchDepth = 6;
+
//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//
@@ -84,11 +98,11 @@ static bool isEscapeSource(const Value *V) {
/// getObjectSize - Return the size of the object specified by V, or
/// UnknownSize if unknown.
-static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
+static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
const TargetLibraryInfo &TLI,
bool RoundToAlign = false) {
uint64_t Size;
- if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
+ if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
return Size;
return AliasAnalysis::UnknownSize;
}
@@ -96,7 +110,7 @@ static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
/// isObjectSmallerThan - Return true if we can prove that the object specified
/// by V is smaller than Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
- const DataLayout &TD,
+ const DataLayout &DL,
const TargetLibraryInfo &TLI) {
// Note that the meanings of the "object" are slightly different in the
// following contexts:
@@ -129,7 +143,7 @@ static bool isObjectSmallerThan(const Value *V, uint64_t Size,
// This function needs to use the aligned object size because we allow
// reads a bit past the end given sufficient alignment.
- uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
+ uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
}
@@ -137,15 +151,15 @@ static bool isObjectSmallerThan(const Value *V, uint64_t Size,
/// isObjectSize - Return true if we can prove that the object specified
/// by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size,
- const DataLayout &TD, const TargetLibraryInfo &TLI) {
- uint64_t ObjectSize = getObjectSize(V, TD, TLI);
+ const DataLayout &DL, const TargetLibraryInfo &TLI) {
+ uint64_t ObjectSize = getObjectSize(V, DL, TLI);
return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
}
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
-/// arguments other than itself, which is not neccessarily true for
+/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
static bool isIdentifiedFunctionLocal(const Value *V)
{
@@ -191,7 +205,7 @@ namespace {
/// represented in the result.
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
ExtensionKind &Extension,
- const DataLayout &TD, unsigned Depth) {
+ const DataLayout &DL, unsigned Depth) {
assert(V->getType()->isIntegerTy() && "Not an integer value");
// Limit our recursion depth.
@@ -208,23 +222,23 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
case Instruction::Or:
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
// analyze it.
- if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
+ if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL))
break;
// FALL THROUGH.
case Instruction::Add:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- TD, Depth+1);
+ DL, Depth+1);
Offset += RHSC->getValue();
return V;
case Instruction::Mul:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- TD, Depth+1);
+ DL, Depth+1);
Offset *= RHSC->getValue();
Scale *= RHSC->getValue();
return V;
case Instruction::Shl:
V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
- TD, Depth+1);
+ DL, Depth+1);
Offset <<= RHSC->getValue().getLimitedValue();
Scale <<= RHSC->getValue().getLimitedValue();
return V;
@@ -245,7 +259,7 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
- TD, Depth+1);
+ DL, Depth+1);
Scale = Scale.zext(OldWidth);
Offset = Offset.zext(OldWidth);
@@ -267,15 +281,18 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
/// the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When DataLayout is around, this function is capable of analyzing everything
-/// that GetUnderlyingObject can look through. When not, it just looks
-/// through pointer casts.
+/// that GetUnderlyingObject can look through. To be able to do that
+/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
+/// depth (MaxLookupSearchDepth).
+/// When DataLayout not is around, it just looks through pointer casts.
///
static const Value *
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
SmallVectorImpl<VariableGEPIndex> &VarIndices,
- const DataLayout *TD) {
+ bool &MaxLookupReached, const DataLayout *DL) {
// Limit recursion depth to limit compile time in crazy cases.
- unsigned MaxLookup = 6;
+ unsigned MaxLookup = MaxLookupSearchDepth;
+ MaxLookupReached = false;
BaseOffs = 0;
do {
@@ -304,7 +321,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
if (const Instruction *I = dyn_cast<Instruction>(V))
// TODO: Get a DominatorTree and use it here.
if (const Value *Simplified =
- SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
+ SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
V = Simplified;
continue;
}
@@ -319,7 +336,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
// If we are lacking DataLayout information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
- if (TD == 0) {
+ if (DL == 0) {
if (!GEPOp->hasAllZeroIndices())
return V;
V = GEPOp->getOperand(0);
@@ -338,30 +355,30 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0) continue;
- BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
+ BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero()) continue;
- BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
+ BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
continue;
}
- uint64_t Scale = TD->getTypeAllocSize(*GTI);
+ uint64_t Scale = DL->getTypeAllocSize(*GTI);
ExtensionKind Extension = EK_NotExtended;
// If the integer type is smaller than the pointer size, it is implicitly
// sign extended to pointer size.
unsigned Width = Index->getType()->getIntegerBitWidth();
- if (TD->getPointerSizeInBits(AS) > Width)
+ if (DL->getPointerSizeInBits(AS) > Width)
Extension = EK_SignExt;
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
- *TD, 0);
+ *DL, 0);
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
@@ -383,7 +400,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
// Make sure that we have a scale that makes sense for this target's
// pointer size.
- if (unsigned ShiftBits = 64 - TD->getPointerSizeInBits(AS)) {
+ if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
Scale <<= ShiftBits;
Scale = (int64_t)Scale >> ShiftBits;
}
@@ -400,45 +417,10 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
+ MaxLookupReached = true;
return V;
}
-/// GetIndexDifference - Dest and Src are the variable indices from two
-/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
-/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
-/// difference between the two pointers.
-static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
- const SmallVectorImpl<VariableGEPIndex> &Src) {
- if (Src.empty()) return;
-
- for (unsigned i = 0, e = Src.size(); i != e; ++i) {
- const Value *V = Src[i].V;
- ExtensionKind Extension = Src[i].Extension;
- int64_t Scale = Src[i].Scale;
-
- // Find V in Dest. This is N^2, but pointer indices almost never have more
- // than a few variable indexes.
- for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
- if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
-
- // If we found it, subtract off Scale V's from the entry in Dest. If it
- // goes to zero, remove the entry.
- if (Dest[j].Scale != Scale)
- Dest[j].Scale -= Scale;
- else
- Dest.erase(Dest.begin()+j);
- Scale = 0;
- break;
- }
-
- // If we didn't consume this entry, add it to the end of the Dest list.
- if (Scale) {
- VariableGEPIndex Entry = { V, Extension, -Scale };
- Dest.push_back(Entry);
- }
- }
-}
-
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//
@@ -471,17 +453,16 @@ namespace {
initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() {
+ void initializePass() override {
InitializeAliasAnalysis(this);
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetLibraryInfo>();
}
- virtual AliasResult alias(const Location &LocA,
- const Location &LocB) {
+ AliasResult alias(const Location &LocA, const Location &LocB) override {
assert(AliasCache.empty() && "AliasCache must be cleared after use!");
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
@@ -492,35 +473,36 @@ namespace {
// SmallDenseMap if it ever grows larger.
// FIXME: This should really be shrink_to_inline_capacity_and_clear().
AliasCache.shrink_and_clear();
+ VisitedPhiBBs.clear();
return Alias;
}
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc);
+ ModRefResult getModRefInfo(ImmutableCallSite CS,
+ const Location &Loc) override;
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
+ ModRefResult getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) override {
// The AliasAnalysis base class has some smarts, lets use them.
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
- virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
+ bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
/// getModRefBehavior - Return the behavior when calling the given
/// call site.
- virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
+ ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
/// getModRefBehavior - Return the behavior when calling the given function.
/// For use when the call site is not known.
- virtual ModRefBehavior getModRefBehavior(const Function *F);
+ ModRefBehavior getModRefBehavior(const Function *F) override;
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(const void *ID) {
+ void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
@@ -532,9 +514,39 @@ namespace {
typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
AliasCacheTy AliasCache;
+ /// \brief Track phi nodes we have visited. When interpret "Value" pointer
+ /// equality as value equality we need to make sure that the "Value" is not
+ /// part of a cycle. Otherwise, two uses could come from different
+ /// "iterations" of a cycle and see different values for the same "Value"
+ /// pointer.
+ /// The following example shows the problem:
+ /// %p = phi(%alloca1, %addr2)
+ /// %l = load %ptr
+ /// %addr1 = gep, %alloca2, 0, %l
+ /// %addr2 = gep %alloca2, 0, (%l + 1)
+ /// alias(%p, %addr1) -> MayAlias !
+ /// store %l, ...
+ SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
+
// Visited - Track instructions visited by pointsToConstantMemory.
SmallPtrSet<const Value*, 16> Visited;
+ /// \brief Check whether two Values can be considered equivalent.
+ ///
+ /// In addition to pointer equivalence of \p V1 and \p V2 this checks
+ /// whether they can not be part of a cycle in the value graph by looking at
+ /// all visited phi nodes an making sure that the phis cannot reach the
+ /// value. We have to do this because we are looking through phi nodes (That
+ /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
+ bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
+
+ /// \brief Dest and Src are the variable indices from two decomposed
+ /// GetElementPtr instructions GEP1 and GEP2 which have common base
+ /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
+ /// difference between the two pointers.
+ void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
+ const SmallVectorImpl<VariableGEPIndex> &Src);
+
// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
// instruction against another.
AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
@@ -589,7 +601,7 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
SmallVector<const Value *, 16> Worklist;
Worklist.push_back(Loc.Ptr);
do {
- const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
+ const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
if (!Visited.insert(V)) {
Visited.clear();
return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
@@ -694,7 +706,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
"AliasAnalysis query involving multiple functions!");
- const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
+ const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
// If this is a tail call and Loc.Ptr points to a stack location, we know that
// the tail call cannot access or modify the local stack.
@@ -801,7 +813,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
// LLVM's vld1 and vst1 intrinsics currently only support a single
// vector register.
uint64_t Size =
- TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
+ DL ? DL->getTypeStoreSize(II->getType()) : UnknownSize;
if (isNoAlias(Location(II->getArgOperand(0), Size,
II->getMetadata(LLVMContext::MD_tbaa)),
Loc))
@@ -810,7 +822,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
}
case Intrinsic::arm_neon_vst1: {
uint64_t Size =
- TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
+ DL ? DL->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
if (isNoAlias(Location(II->getArgOperand(0), Size,
II->getMetadata(LLVMContext::MD_tbaa)),
Loc))
@@ -873,7 +885,7 @@ static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1,
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer. We know that V1 is a GEP, but we don't know
-/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
+/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
/// UnderlyingV2 is the same for V2.
///
AliasAnalysis::AliasResult
@@ -884,6 +896,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
const Value *UnderlyingV1,
const Value *UnderlyingV2) {
int64_t GEP1BaseOffset;
+ bool GEP1MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
// If we have two gep instructions with must-alias or not-alias'ing base
@@ -905,18 +918,25 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// See if the computed offset from the common pointer tells us about the
// relation of the resulting pointer.
int64_t GEP2BaseOffset;
+ bool GEP2MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
+ DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+ GEP2MaxLookupReached, DL);
const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+ GEP1MaxLookupReached, DL);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- assert(TD == 0 &&
+ assert(DL == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
+ // If the max search depth is reached the result is undefined
+ if (GEP2MaxLookupReached || GEP1MaxLookupReached)
+ return MayAlias;
+
// Same offsets.
if (GEP1BaseOffset == GEP2BaseOffset &&
areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
@@ -933,20 +953,26 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// exactly, see if the computed offset from the common pointer tells us
// about the relation of the resulting pointer.
const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+ GEP1MaxLookupReached, DL);
int64_t GEP2BaseOffset;
+ bool GEP2MaxLookupReached;
SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
const Value *GEP2BasePtr =
- DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
+ DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+ GEP2MaxLookupReached, DL);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- assert(TD == 0 &&
+ assert(DL == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
+ // If the max search depth is reached the result is undefined
+ if (GEP2MaxLookupReached || GEP1MaxLookupReached)
+ return MayAlias;
// Subtract the GEP2 pointer from the GEP1 pointer to find out their
// symbolic difference.
@@ -973,15 +999,19 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
return R;
const Value *GEP1BasePtr =
- DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+ GEP1MaxLookupReached, DL);
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1) {
- assert(TD == 0 &&
+ assert(DL == 0 &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
+ // If the max search depth is reached the result is undefined
+ if (GEP1MaxLookupReached)
+ return MayAlias;
}
// In the two GEP Case, if there is no difference in the offsets of the
@@ -1005,7 +1035,15 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
return NoAlias;
}
} else {
- if (V1Size != UnknownSize) {
+ // We have the situation where:
+ // + +
+ // | BaseOffset |
+ // ---------------->|
+ // |-->V1Size |-------> V2Size
+ // GEP1 V2
+ // We need to know that V2Size is not unknown, otherwise we might have
+ // stripped a gep with negative index ('gep <ptr>, -1, ...).
+ if (V1Size != UnknownSize && V2Size != UnknownSize) {
if (-(uint64_t)GEP1BaseOffset < V1Size)
return PartialAlias;
return NoAlias;
@@ -1094,6 +1132,10 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
const MDNode *PNTBAAInfo,
const Value *V2, uint64_t V2Size,
const MDNode *V2TBAAInfo) {
+ // Track phi nodes we have visited. We use this information when we determine
+ // value equivalence.
+ VisitedPhiBBs.insert(PN->getParent());
+
// If the values are PHIs in the same block, we can do a more precise
// as well as efficient check: just check for aliases between the values
// on corresponding edges.
@@ -1187,14 +1229,20 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
V2 = V2->stripPointerCasts();
// Are we checking for alias of the same value?
- if (V1 == V2) return MustAlias;
+ // Because we look 'through' phi nodes we could look at "Value" pointers from
+ // different iterations. We must therefore make sure that this is not the
+ // case. The function isValueEqualInPotentialCycles ensures that this cannot
+ // happen by looking at the visited phi nodes and making sure they cannot
+ // reach the value.
+ if (isValueEqualInPotentialCycles(V1, V2))
+ return MustAlias;
if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
return NoAlias; // Scalars cannot alias each other
// Figure out what objects these things are pointing to if we can.
- const Value *O1 = GetUnderlyingObject(V1, TD);
- const Value *O2 = GetUnderlyingObject(V2, TD);
+ const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
+ const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
// Null values in the default address space don't point to any object, so they
// don't alias any other pointer.
@@ -1243,9 +1291,9 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
// If the size of one access is larger than the entire object on the other
// side, then we know such behavior is undefined and can assume no alias.
- if (TD)
- if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
- (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
+ if (DL)
+ if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
+ (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
return NoAlias;
// Check the cache before climbing up use-def chains. This also terminates
@@ -1297,9 +1345,9 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
// If both pointers are pointing into the same object and one of them
// accesses is accessing the entire object, then the accesses must
// overlap in some way.
- if (TD && O1 == O2)
- if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
- (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
+ if (DL && O1 == O2)
+ if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
+ (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
return AliasCache[Locs] = PartialAlias;
AliasResult Result =
@@ -1307,3 +1355,73 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
Location(V2, V2Size, V2TBAAInfo));
return AliasCache[Locs] = Result;
}
+
+bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
+ const Value *V2) {
+ if (V != V2)
+ return false;
+
+ const Instruction *Inst = dyn_cast<Instruction>(V);
+ if (!Inst)
+ return true;
+
+ if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
+ return false;
+
+ // Use dominance or loop info if available.
+ DominatorTreeWrapperPass *DTWP =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DominatorTree *DT = DTWP ? &DTWP->getDomTree() : 0;
+ LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
+
+ // Make sure that the visited phis cannot reach the Value. This ensures that
+ // the Values cannot come from different iterations of a potential cycle the
+ // phi nodes could be involved in.
+ for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(),
+ PE = VisitedPhiBBs.end();
+ PI != PE; ++PI)
+ if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI))
+ return false;
+
+ return true;
+}
+
+/// GetIndexDifference - Dest and Src are the variable indices from two
+/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
+/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
+/// difference between the two pointers.
+void BasicAliasAnalysis::GetIndexDifference(
+ SmallVectorImpl<VariableGEPIndex> &Dest,
+ const SmallVectorImpl<VariableGEPIndex> &Src) {
+ if (Src.empty())
+ return;
+
+ for (unsigned i = 0, e = Src.size(); i != e; ++i) {
+ const Value *V = Src[i].V;
+ ExtensionKind Extension = Src[i].Extension;
+ int64_t Scale = Src[i].Scale;
+
+ // Find V in Dest. This is N^2, but pointer indices almost never have more
+ // than a few variable indexes.
+ for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
+ if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
+ Dest[j].Extension != Extension)
+ continue;
+
+ // If we found it, subtract off Scale V's from the entry in Dest. If it
+ // goes to zero, remove the entry.
+ if (Dest[j].Scale != Scale)
+ Dest[j].Scale -= Scale;
+ else
+ Dest.erase(Dest.begin() + j);
+ Scale = 0;
+ break;
+ }
+
+ // If we didn't consume this entry, add it to the end of the Dest list.
+ if (Scale) {
+ VariableGEPIndex Entry = { V, Extension, -Scale };
+ Dest.push_back(Entry);
+ }
+ }
+}
diff --git a/lib/Analysis/BlockFrequencyInfo.cpp b/lib/Analysis/BlockFrequencyInfo.cpp
index 62f3ab1..63049a5 100644
--- a/lib/Analysis/BlockFrequencyInfo.cpp
+++ b/lib/Analysis/BlockFrequencyInfo.cpp
@@ -16,8 +16,8 @@
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/CFG.h"
#include "llvm/InitializePasses.h"
-#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
@@ -86,7 +86,7 @@ struct DOTGraphTraits<BlockFrequencyInfo*> : public DefaultDOTGraphTraits {
OS << Node->getName().str() << ":";
switch (ViewBlockFreqPropagationDAG) {
case GVDT_Fraction:
- Graph->getBlockFreq(Node).print(OS);
+ Graph->printBlockFreq(OS, Node);
break;
case GVDT_Integer:
OS << Graph->getBlockFreq(Node).getFrequency();
@@ -114,12 +114,9 @@ char BlockFrequencyInfo::ID = 0;
BlockFrequencyInfo::BlockFrequencyInfo() : FunctionPass(ID) {
initializeBlockFrequencyInfoPass(*PassRegistry::getPassRegistry());
- BFI = new BlockFrequencyImpl<BasicBlock, Function, BranchProbabilityInfo>();
}
-BlockFrequencyInfo::~BlockFrequencyInfo() {
- delete BFI;
-}
+BlockFrequencyInfo::~BlockFrequencyInfo() {}
void BlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<BranchProbabilityInfo>();
@@ -128,6 +125,8 @@ void BlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
bool BlockFrequencyInfo::runOnFunction(Function &F) {
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
+ if (!BFI)
+ BFI.reset(new ImplType);
BFI->doFunction(&F, &BPI);
#ifndef NDEBUG
if (ViewBlockFreqPropagationDAG != GVDT_None)
@@ -136,12 +135,14 @@ bool BlockFrequencyInfo::runOnFunction(Function &F) {
return false;
}
+void BlockFrequencyInfo::releaseMemory() { BFI.reset(); }
+
void BlockFrequencyInfo::print(raw_ostream &O, const Module *) const {
if (BFI) BFI->print(O);
}
BlockFrequency BlockFrequencyInfo::getBlockFreq(const BasicBlock *BB) const {
- return BFI->getBlockFreq(BB);
+ return BFI ? BFI->getBlockFreq(BB) : 0;
}
/// Pop up a ghostview window with the current block frequency propagation
@@ -157,5 +158,20 @@ void BlockFrequencyInfo::view() const {
}
const Function *BlockFrequencyInfo::getFunction() const {
- return BFI->Fn;
+ return BFI ? BFI->Fn : nullptr;
+}
+
+raw_ostream &BlockFrequencyInfo::
+printBlockFreq(raw_ostream &OS, const BlockFrequency Freq) const {
+ return BFI ? BFI->printBlockFreq(OS, Freq) : OS;
+}
+
+raw_ostream &
+BlockFrequencyInfo::printBlockFreq(raw_ostream &OS,
+ const BasicBlock *BB) const {
+ return BFI ? BFI->printBlockFreq(OS, BB) : OS;
+}
+
+uint64_t BlockFrequencyInfo::getEntryFreq() const {
+ return BFI ? BFI->getEntryFreq() : 0;
}
diff --git a/lib/Analysis/BranchProbabilityInfo.cpp b/lib/Analysis/BranchProbabilityInfo.cpp
index 86560ca..b901c54 100644
--- a/lib/Analysis/BranchProbabilityInfo.cpp
+++ b/lib/Analysis/BranchProbabilityInfo.cpp
@@ -11,15 +11,16 @@
//
//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "branch-prob"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
-#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
@@ -483,6 +484,8 @@ void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
}
bool BranchProbabilityInfo::runOnFunction(Function &F) {
+ DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
+ << " ----\n\n");
LastF = &F; // Store the last function we ran on for printing.
LI = &getAnalysis<LoopInfo>();
assert(PostDominatedByUnreachable.empty());
@@ -591,6 +594,13 @@ getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
return DEFAULT_WEIGHT;
}
+uint32_t
+BranchProbabilityInfo::
+getEdgeWeight(const BasicBlock *Src, succ_const_iterator Dst) const {
+ size_t index = std::distance(succ_begin(Src), Dst);
+ return getEdgeWeight(Src, index);
+}
+
/// Get the raw edge weight calculated for the block pair. This returns the sum
/// of all raw edge weights from Src to Dst.
uint32_t BranchProbabilityInfo::
diff --git a/lib/Analysis/CFG.cpp b/lib/Analysis/CFG.cpp
index c3f32d3..6963760 100644
--- a/lib/Analysis/CFG.cpp
+++ b/lib/Analysis/CFG.cpp
@@ -13,10 +13,9 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CFG.h"
-
#include "llvm/ADT/SmallSet.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/Dominators.h"
using namespace llvm;
@@ -102,15 +101,9 @@ bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
// If AllowIdenticalEdges is true, then we allow this edge to be considered
// non-critical iff all preds come from TI's block.
- while (I != E) {
- const BasicBlock *P = *I;
- if (P != FirstPred)
+ for (; I != E; ++I)
+ if (*I != FirstPred)
return true;
- // Note: leave this as is until no one ever compiles with either gcc 4.0.1
- // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
- E = pred_end(P);
- ++I;
- }
return false;
}
@@ -169,8 +162,7 @@ static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
// ignoring any other blocks inside the loop body.
Outer->getExitBlocks(Worklist);
} else {
- for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
- Worklist.push_back(*I);
+ Worklist.append(succ_begin(BB), succ_end(BB));
}
} while (!Worklist.empty());
@@ -223,8 +215,7 @@ bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
return false;
// Otherwise, continue doing the normal per-BB CFG walk.
- for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
- Worklist.push_back(*I);
+ Worklist.append(succ_begin(BB), succ_end(BB));
if (Worklist.empty()) {
// We've proven that there's no path!
diff --git a/lib/Analysis/CFGPrinter.cpp b/lib/Analysis/CFGPrinter.cpp
index 9b6879a..537d6d1 100644
--- a/lib/Analysis/CFGPrinter.cpp
+++ b/lib/Analysis/CFGPrinter.cpp
@@ -28,14 +28,14 @@ namespace {
initializeCFGOnlyViewerPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F) {
+ bool runOnFunction(Function &F) override {
F.viewCFG();
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const override {}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
@@ -51,14 +51,14 @@ namespace {
initializeCFGOnlyViewerPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F) {
+ bool runOnFunction(Function &F) override {
F.viewCFGOnly();
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const override {}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
@@ -75,12 +75,12 @@ namespace {
initializeCFGPrinterPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F) {
+ bool runOnFunction(Function &F) override {
std::string Filename = "cfg." + F.getName().str() + ".dot";
errs() << "Writing '" << Filename << "'...";
std::string ErrorInfo;
- raw_fd_ostream File(Filename.c_str(), ErrorInfo);
+ raw_fd_ostream File(Filename.c_str(), ErrorInfo, sys::fs::F_Text);
if (ErrorInfo.empty())
WriteGraph(File, (const Function*)&F);
@@ -90,9 +90,9 @@ namespace {
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const override {}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
@@ -108,13 +108,13 @@ namespace {
CFGOnlyPrinter() : FunctionPass(ID) {
initializeCFGOnlyPrinterPass(*PassRegistry::getPassRegistry());
}
-
- virtual bool runOnFunction(Function &F) {
+
+ bool runOnFunction(Function &F) override {
std::string Filename = "cfg." + F.getName().str() + ".dot";
errs() << "Writing '" << Filename << "'...";
std::string ErrorInfo;
- raw_fd_ostream File(Filename.c_str(), ErrorInfo);
+ raw_fd_ostream File(Filename.c_str(), ErrorInfo, sys::fs::F_Text);
if (ErrorInfo.empty())
WriteGraph(File, (const Function*)&F, true);
@@ -123,9 +123,9 @@ namespace {
errs() << "\n";
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const {}
+ void print(raw_ostream &OS, const Module* = 0) const override {}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index 3624aac..c6d4573 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -23,6 +23,7 @@ add_llvm_library(LLVMAnalysis
InstructionSimplify.cpp
Interval.cpp
IntervalPartition.cpp
+ LazyCallGraph.cpp
LazyValueInfo.cpp
LibCallAliasAnalysis.cpp
LibCallSemantics.cpp
diff --git a/lib/Analysis/CaptureTracking.cpp b/lib/Analysis/CaptureTracking.cpp
index 79fab1b..3708e60 100644
--- a/lib/Analysis/CaptureTracking.cpp
+++ b/lib/Analysis/CaptureTracking.cpp
@@ -20,24 +20,24 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
-#include "llvm/Support/CallSite.h"
using namespace llvm;
CaptureTracker::~CaptureTracker() {}
-bool CaptureTracker::shouldExplore(Use *U) { return true; }
+bool CaptureTracker::shouldExplore(const Use *U) { return true; }
namespace {
struct SimpleCaptureTracker : public CaptureTracker {
explicit SimpleCaptureTracker(bool ReturnCaptures)
: ReturnCaptures(ReturnCaptures), Captured(false) {}
- void tooManyUses() { Captured = true; }
+ void tooManyUses() override { Captured = true; }
- bool captured(Use *U) {
+ bool captured(const Use *U) override {
if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
return false;
@@ -81,25 +81,23 @@ static int const Threshold = 20;
void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker) {
assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
- SmallVector<Use*, Threshold> Worklist;
- SmallSet<Use*, Threshold> Visited;
+ SmallVector<const Use *, Threshold> Worklist;
+ SmallSet<const Use *, Threshold> Visited;
int Count = 0;
- for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
- UI != UE; ++UI) {
+ for (const Use &U : V->uses()) {
// If there are lots of uses, conservatively say that the value
// is captured to avoid taking too much compile time.
if (Count++ >= Threshold)
return Tracker->tooManyUses();
- Use *U = &UI.getUse();
- if (!Tracker->shouldExplore(U)) continue;
- Visited.insert(U);
- Worklist.push_back(U);
+ if (!Tracker->shouldExplore(&U)) continue;
+ Visited.insert(&U);
+ Worklist.push_back(&U);
}
while (!Worklist.empty()) {
- Use *U = Worklist.pop_back_val();
+ const Use *U = Worklist.pop_back_val();
Instruction *I = cast<Instruction>(U->getUser());
V = U->get();
@@ -145,19 +143,18 @@ void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker) {
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
+ case Instruction::AddrSpaceCast:
// The original value is not captured via this if the new value isn't.
Count = 0;
- for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
- UI != UE; ++UI) {
+ for (Use &UU : I->uses()) {
// If there are lots of uses, conservatively say that the value
// is captured to avoid taking too much compile time.
if (Count++ >= Threshold)
return Tracker->tooManyUses();
- Use *U = &UI.getUse();
- if (Visited.insert(U))
- if (Tracker->shouldExplore(U))
- Worklist.push_back(U);
+ if (Visited.insert(&UU))
+ if (Tracker->shouldExplore(&UU))
+ Worklist.push_back(&UU);
}
break;
case Instruction::ICmp:
diff --git a/lib/Analysis/CodeMetrics.cpp b/lib/Analysis/CodeMetrics.cpp
index 8cda01a..4c8a093 100644
--- a/lib/Analysis/CodeMetrics.cpp
+++ b/lib/Analysis/CodeMetrics.cpp
@@ -13,10 +13,10 @@
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/Support/CallSite.h"
using namespace llvm;
@@ -65,11 +65,11 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
++NumVectorInsts;
if (const CallInst *CI = dyn_cast<CallInst>(II))
- if (CI->hasFnAttr(Attribute::NoDuplicate))
+ if (CI->cannotDuplicate())
notDuplicatable = true;
if (const InvokeInst *InvI = dyn_cast<InvokeInst>(II))
- if (InvI->hasFnAttr(Attribute::NoDuplicate))
+ if (InvI->cannotDuplicate())
notDuplicatable = true;
NumInsts += TTI.getUserCost(&*II);
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 3d32232..782acfa 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -25,13 +25,13 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FEnv.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include <cerrno>
@@ -1186,6 +1186,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) {
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::floor:
+ case Intrinsic::ceil:
case Intrinsic::sqrt:
case Intrinsic::pow:
case Intrinsic::powi:
@@ -1193,6 +1194,10 @@ bool llvm::canConstantFoldCallTo(const Function *F) {
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::copysign:
+ case Intrinsic::round:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
@@ -1244,15 +1249,7 @@ bool llvm::canConstantFoldCallTo(const Function *F) {
}
}
-static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
- Type *Ty) {
- sys::llvm_fenv_clearexcept();
- V = NativeFP(V);
- if (sys::llvm_fenv_testexcept()) {
- sys::llvm_fenv_clearexcept();
- return 0;
- }
-
+static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy()) {
APFloat APF(V);
bool unused;
@@ -1264,6 +1261,19 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold half/float/double");
+
+}
+
+static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
+ Type *Ty) {
+ sys::llvm_fenv_clearexcept();
+ V = NativeFP(V);
+ if (sys::llvm_fenv_testexcept()) {
+ sys::llvm_fenv_clearexcept();
+ return 0;
+ }
+
+ return GetConstantFoldFPValue(V, Ty);
}
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
@@ -1275,17 +1285,7 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
return 0;
}
- if (Ty->isHalfTy()) {
- APFloat APF(V);
- bool unused;
- APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
- return ConstantFP::get(Ty->getContext(), APF);
- }
- if (Ty->isFloatTy())
- return ConstantFP::get(Ty->getContext(), APFloat((float)V));
- if (Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold half/float/double");
+ return GetConstantFoldFPValue(V, Ty);
}
/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
@@ -1315,32 +1315,44 @@ static Constant *ConstantFoldConvertToInt(const APFloat &Val,
return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
}
-/// ConstantFoldCall - Attempt to constant fold a call to the specified function
-/// with the specified arguments, returning null if unsuccessful.
-Constant *
-llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI) {
- if (!F->hasName())
- return 0;
- StringRef Name = F->getName();
+static double getValueAsDouble(ConstantFP *Op) {
+ Type *Ty = Op->getType();
- Type *Ty = F->getReturnType();
+ if (Ty->isFloatTy())
+ return Op->getValueAPF().convertToFloat();
+
+ if (Ty->isDoubleTy())
+ return Op->getValueAPF().convertToDouble();
+
+ bool unused;
+ APFloat APF = Op->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ return APF.convertToDouble();
+}
+
+static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
+ Type *Ty, ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI) {
if (Operands.size() == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
+ if (IntrinsicID == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
- return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
+ return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
- if (!TLI)
- return 0;
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
+ if (IntrinsicID == Intrinsic::round) {
+ APFloat V = Op->getValueAPF();
+ V.roundToIntegral(APFloat::rmNearestTiesToAway);
+ return ConstantFP::get(Ty->getContext(), V);
+ }
+
/// We only fold functions with finite arguments. Folding NaN and inf is
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
@@ -1351,19 +1363,9 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
- double V;
- if (Ty->isFloatTy())
- V = Op->getValueAPF().convertToFloat();
- else if (Ty->isDoubleTy())
- V = Op->getValueAPF().convertToDouble();
- else {
- bool unused;
- APFloat APF = Op->getValueAPF();
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
- V = APF.convertToDouble();
- }
+ double V = getValueAsDouble(Op);
- switch (F->getIntrinsicID()) {
+ switch (IntrinsicID) {
default: break;
case Intrinsic::fabs:
return ConstantFoldFP(fabs, V, Ty);
@@ -1389,8 +1391,13 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
#endif
case Intrinsic::floor:
return ConstantFoldFP(floor, V, Ty);
+ case Intrinsic::ceil:
+ return ConstantFoldFP(ceil, V, Ty);
}
+ if (!TLI)
+ return 0;
+
switch (Name[0]) {
case 'a':
if (Name == "acos" && TLI->has(LibFunc::acos))
@@ -1431,7 +1438,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
return ConstantFoldFP(log, V, Ty);
else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
return ConstantFoldFP(log10, V, Ty);
- else if (F->getIntrinsicID() == Intrinsic::sqrt &&
+ else if (IntrinsicID == Intrinsic::sqrt &&
(Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
@@ -1464,9 +1471,9 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
- switch (F->getIntrinsicID()) {
+ switch (IntrinsicID) {
case Intrinsic::bswap:
- return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
+ return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::convert_from_fp16: {
@@ -1481,7 +1488,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
- return ConstantFP::get(F->getContext(), Val);
+ return ConstantFP::get(Ty->getContext(), Val);
}
default:
return 0;
@@ -1492,7 +1499,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
Constant *Op = cast<Constant>(Operands[0]);
- switch (F->getIntrinsicID()) {
+ switch (IntrinsicID) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
@@ -1514,7 +1521,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
if (isa<UndefValue>(Operands[0])) {
- if (F->getIntrinsicID() == Intrinsic::bswap)
+ if (IntrinsicID == Intrinsic::bswap)
return Operands[0];
return 0;
}
@@ -1526,37 +1533,22 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
- double Op1V;
- if (Ty->isFloatTy())
- Op1V = Op1->getValueAPF().convertToFloat();
- else if (Ty->isDoubleTy())
- Op1V = Op1->getValueAPF().convertToDouble();
- else {
- bool unused;
- APFloat APF = Op1->getValueAPF();
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
- Op1V = APF.convertToDouble();
- }
+ double Op1V = getValueAsDouble(Op1);
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return 0;
- double Op2V;
- if (Ty->isFloatTy())
- Op2V = Op2->getValueAPF().convertToFloat();
- else if (Ty->isDoubleTy())
- Op2V = Op2->getValueAPF().convertToDouble();
- else {
- bool unused;
- APFloat APF = Op2->getValueAPF();
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
- Op2V = APF.convertToDouble();
- }
-
- if (F->getIntrinsicID() == Intrinsic::pow) {
+ double Op2V = getValueAsDouble(Op2);
+ if (IntrinsicID == Intrinsic::pow) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
}
+ if (IntrinsicID == Intrinsic::copysign) {
+ APFloat V1 = Op1->getValueAPF();
+ APFloat V2 = Op2->getValueAPF();
+ V1.copySign(V2);
+ return ConstantFP::get(Ty->getContext(), V1);
+ }
if (!TLI)
return 0;
if (Name == "pow" && TLI->has(LibFunc::pow))
@@ -1566,16 +1558,16 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (Name == "atan2" && TLI->has(LibFunc::atan2))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
- return ConstantFP::get(F->getContext(),
+ if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
+ return ConstantFP::get(Ty->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
- if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
- return ConstantFP::get(F->getContext(),
+ if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
+ return ConstantFP::get(Ty->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
- if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
- return ConstantFP::get(F->getContext(),
+ if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
+ return ConstantFP::get(Ty->getContext(),
APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
@@ -1584,7 +1576,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
- switch (F->getIntrinsicID()) {
+ switch (IntrinsicID) {
default: break;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
@@ -1594,7 +1586,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
case Intrinsic::umul_with_overflow: {
APInt Res;
bool Overflow;
- switch (F->getIntrinsicID()) {
+ switch (IntrinsicID) {
default: llvm_unreachable("Invalid case");
case Intrinsic::sadd_with_overflow:
Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
@@ -1616,10 +1608,10 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
break;
}
Constant *Ops[] = {
- ConstantInt::get(F->getContext(), Res),
- ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
+ ConstantInt::get(Ty->getContext(), Res),
+ ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
};
- return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
+ return ConstantStruct::get(cast<StructType>(Ty), Ops);
}
case Intrinsic::cttz:
if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
@@ -1636,5 +1628,75 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
return 0;
}
+
+ if (Operands.size() != 3)
+ return 0;
+
+ if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
+ if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
+ if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd: {
+ APFloat V = Op1->getValueAPF();
+ APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
+ Op3->getValueAPF(),
+ APFloat::rmNearestTiesToEven);
+ if (s != APFloat::opInvalidOp)
+ return ConstantFP::get(Ty->getContext(), V);
+
+ return 0;
+ }
+ }
+ }
+ }
+ }
+
return 0;
}
+
+static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
+ VectorType *VTy,
+ ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI) {
+ SmallVector<Constant *, 4> Result(VTy->getNumElements());
+ SmallVector<Constant *, 4> Lane(Operands.size());
+ Type *Ty = VTy->getElementType();
+
+ for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
+ // Gather a column of constants.
+ for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
+ Constant *Agg = Operands[J]->getAggregateElement(I);
+ if (!Agg)
+ return nullptr;
+
+ Lane[J] = Agg;
+ }
+
+ // Use the regular scalar folding to simplify this column.
+ Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
+ if (!Folded)
+ return nullptr;
+ Result[I] = Folded;
+ }
+
+ return ConstantVector::get(Result);
+}
+
+/// ConstantFoldCall - Attempt to constant fold a call to the specified function
+/// with the specified arguments, returning null if unsuccessful.
+Constant *
+llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI) {
+ if (!F->hasName())
+ return 0;
+ StringRef Name = F->getName();
+
+ Type *Ty = F->getReturnType();
+
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
+
+ return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
+}
diff --git a/lib/Analysis/CostModel.cpp b/lib/Analysis/CostModel.cpp
index f943258..b49211d 100644
--- a/lib/Analysis/CostModel.cpp
+++ b/lib/Analysis/CostModel.cpp
@@ -53,9 +53,9 @@ namespace {
unsigned getInstructionCost(const Instruction *I) const;
private:
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool runOnFunction(Function &F);
- virtual void print(raw_ostream &OS, const Module*) const;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnFunction(Function &F) override;
+ void print(raw_ostream &OS, const Module*) const override;
/// The function that we analyze.
Function *F;
@@ -98,15 +98,12 @@ static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
TargetTransformInfo::OperandValueKind OpInfo =
TargetTransformInfo::OK_AnyValue;
- // Check for a splat of a constant.
- ConstantDataVector *CDV = 0;
- if ((CDV = dyn_cast<ConstantDataVector>(V)))
- if (CDV->getSplatValue() != NULL)
- OpInfo = TargetTransformInfo::OK_UniformConstantValue;
- ConstantVector *CV = 0;
- if ((CV = dyn_cast<ConstantVector>(V)))
- if (CV->getSplatValue() != NULL)
+ // Check for a splat of a constant or for a non uniform vector of constants.
+ if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
+ OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
+ if (cast<Constant>(V)->getSplatValue() != NULL)
OpInfo = TargetTransformInfo::OK_UniformConstantValue;
+ }
return OpInfo;
}
@@ -337,7 +334,7 @@ static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
Value *NextRdxOp;
ShuffleVectorInst *Shuffle;
- tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
+ std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
// Check the current reduction operation and the shuffle use the same value.
if (Shuffle == 0)
@@ -439,7 +436,8 @@ unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
- case Instruction::BitCast: {
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast: {
Type *SrcTy = I->getOperand(0)->getType();
return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
}
diff --git a/lib/Analysis/Delinearization.cpp b/lib/Analysis/Delinearization.cpp
index 3ed0609..fd4a2f0 100644
--- a/lib/Analysis/Delinearization.cpp
+++ b/lib/Analysis/Delinearization.cpp
@@ -17,19 +17,19 @@
#define DL_NAME "delinearize"
#define DEBUG_TYPE DL_NAME
#include "llvm/IR/Constants.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/Pass.h"
#include "llvm/IR/Type.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -49,9 +49,9 @@ public:
Delinearization() : FunctionPass(ID) {
initializeDelinearizationPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual void print(raw_ostream &O, const Module *M = 0) const;
+ bool runOnFunction(Function &F) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ void print(raw_ostream &O, const Module *M = 0) const override;
};
} // end anonymous namespace
diff --git a/lib/Analysis/DependenceAnalysis.cpp b/lib/Analysis/DependenceAnalysis.cpp
index 3b3e2ef..ff98611 100644
--- a/lib/Analysis/DependenceAnalysis.cpp
+++ b/lib/Analysis/DependenceAnalysis.cpp
@@ -60,11 +60,11 @@
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -1275,8 +1275,8 @@ bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
//
// Program 2.1, page 29.
// Computes the GCD of AM and BM.
-// Also finds a solution to the equation ax - by = gdc(a, b).
-// Returns true iff the gcd divides Delta.
+// Also finds a solution to the equation ax - by = gcd(a, b).
+// Returns true if dependence disproved; i.e., gcd does not divide Delta.
static
bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
APInt &G, APInt &X, APInt &Y) {
@@ -3178,7 +3178,7 @@ void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
/// Check if we can delinearize the subscripts. If the SCEVs representing the
/// source and destination array references are recurrences on a nested loop,
-/// this function flattens the nested recurrences into seperate recurrences
+/// this function flattens the nested recurrences into separate recurrences
/// for each loop level.
bool
DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
@@ -3189,14 +3189,42 @@ DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
return false;
SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts, SrcSizes, DstSizes;
- SrcAR->delinearize(*SE, SrcSubscripts, SrcSizes);
- DstAR->delinearize(*SE, DstSubscripts, DstSizes);
+ const SCEV *RemainderS = SrcAR->delinearize(*SE, SrcSubscripts, SrcSizes);
+ const SCEV *RemainderD = DstAR->delinearize(*SE, DstSubscripts, DstSizes);
int size = SrcSubscripts.size();
+ // Fail when there is only a subscript: that's a linearized access function.
+ if (size < 2)
+ return false;
+
int dstSize = DstSubscripts.size();
- if (size != dstSize || size < 2)
+ // Fail when the number of subscripts in Src and Dst differ.
+ if (size != dstSize)
return false;
+ // Fail when the size of any of the subscripts in Src and Dst differs: the
+ // dependence analysis assumes that elements in the same array have same size.
+ // SCEV delinearization does not have a context based on which it would decide
+ // globally the size of subscripts that would best fit all the array accesses.
+ for (int i = 0; i < size; ++i)
+ if (SrcSizes[i] != DstSizes[i])
+ return false;
+
+ // When the difference in remainders is different than a constant it might be
+ // that the base address of the arrays is not the same.
+ const SCEV *DiffRemainders = SE->getMinusSCEV(RemainderS, RemainderD);
+ if (!isa<SCEVConstant>(DiffRemainders))
+ return false;
+
+ // Normalize the last dimension: integrate the size of the "scalar dimension"
+ // and the remainder of the delinearization.
+ DstSubscripts[size-1] = SE->getMulExpr(DstSubscripts[size-1],
+ DstSizes[size-1]);
+ SrcSubscripts[size-1] = SE->getMulExpr(SrcSubscripts[size-1],
+ SrcSizes[size-1]);
+ SrcSubscripts[size-1] = SE->getAddExpr(SrcSubscripts[size-1], RemainderS);
+ DstSubscripts[size-1] = SE->getAddExpr(DstSubscripts[size-1], RemainderD);
+
#ifndef NDEBUG
DEBUG(errs() << "\nSrcSubscripts: ");
for (int i = 0; i < size; i++)
diff --git a/lib/Analysis/DomPrinter.cpp b/lib/Analysis/DomPrinter.cpp
index cde4314..0c880df 100644
--- a/lib/Analysis/DomPrinter.cpp
+++ b/lib/Analysis/DomPrinter.cpp
@@ -81,18 +81,32 @@ struct DOTGraphTraits<PostDominatorTree*>
}
namespace {
-struct DomViewer
- : public DOTGraphTraitsViewer<DominatorTree, false> {
+struct DominatorTreeWrapperPassAnalysisGraphTraits {
+ static DominatorTree *getGraph(DominatorTreeWrapperPass *DTWP) {
+ return &DTWP->getDomTree();
+ }
+};
+
+struct DomViewer : public DOTGraphTraitsViewer<
+ DominatorTreeWrapperPass, false, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits> {
static char ID;
- DomViewer() : DOTGraphTraitsViewer<DominatorTree, false>("dom", ID){
+ DomViewer()
+ : DOTGraphTraitsViewer<DominatorTreeWrapperPass, false, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits>(
+ "dom", ID) {
initializeDomViewerPass(*PassRegistry::getPassRegistry());
}
};
-struct DomOnlyViewer
- : public DOTGraphTraitsViewer<DominatorTree, true> {
+struct DomOnlyViewer : public DOTGraphTraitsViewer<
+ DominatorTreeWrapperPass, true, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits> {
static char ID;
- DomOnlyViewer() : DOTGraphTraitsViewer<DominatorTree, true>("domonly", ID){
+ DomOnlyViewer()
+ : DOTGraphTraitsViewer<DominatorTreeWrapperPass, true, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits>(
+ "domonly", ID) {
initializeDomOnlyViewerPass(*PassRegistry::getPassRegistry());
}
};
@@ -136,18 +150,26 @@ INITIALIZE_PASS(PostDomOnlyViewer, "view-postdom-only",
false, false)
namespace {
-struct DomPrinter
- : public DOTGraphTraitsPrinter<DominatorTree, false> {
+struct DomPrinter : public DOTGraphTraitsPrinter<
+ DominatorTreeWrapperPass, false, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits> {
static char ID;
- DomPrinter() : DOTGraphTraitsPrinter<DominatorTree, false>("dom", ID) {
+ DomPrinter()
+ : DOTGraphTraitsPrinter<DominatorTreeWrapperPass, false, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits>(
+ "dom", ID) {
initializeDomPrinterPass(*PassRegistry::getPassRegistry());
}
};
-struct DomOnlyPrinter
- : public DOTGraphTraitsPrinter<DominatorTree, true> {
+struct DomOnlyPrinter : public DOTGraphTraitsPrinter<
+ DominatorTreeWrapperPass, true, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits> {
static char ID;
- DomOnlyPrinter() : DOTGraphTraitsPrinter<DominatorTree, true>("domonly", ID) {
+ DomOnlyPrinter()
+ : DOTGraphTraitsPrinter<DominatorTreeWrapperPass, true, DominatorTree *,
+ DominatorTreeWrapperPassAnalysisGraphTraits>(
+ "domonly", ID) {
initializeDomOnlyPrinterPass(*PassRegistry::getPassRegistry());
}
};
diff --git a/lib/Analysis/DominanceFrontier.cpp b/lib/Analysis/DominanceFrontier.cpp
index 7e4a89f..f0787f1 100644
--- a/lib/Analysis/DominanceFrontier.cpp
+++ b/lib/Analysis/DominanceFrontier.cpp
@@ -9,7 +9,6 @@
#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -17,7 +16,7 @@ using namespace llvm;
char DominanceFrontier::ID = 0;
INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
"Dominance Frontier Construction", true, true)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
"Dominance Frontier Construction", true, true)
@@ -114,7 +113,7 @@ void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << " DomFrontier for BB ";
if (I->first)
- WriteAsOperand(OS, I->first, false);
+ I->first->printAsOperand(OS, false);
else
OS << " <<exit node>>";
OS << " is:\t";
@@ -125,7 +124,7 @@ void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
I != E; ++I) {
OS << ' ';
if (*I)
- WriteAsOperand(OS, *I, false);
+ (*I)->printAsOperand(OS, false);
else
OS << "<<exit node>>";
}
diff --git a/lib/Analysis/IPA/Android.mk b/lib/Analysis/IPA/Android.mk
index ff8a4ae..d56d931 100644
--- a/lib/Analysis/IPA/Android.mk
+++ b/lib/Analysis/IPA/Android.mk
@@ -25,6 +25,7 @@ include $(BUILD_HOST_STATIC_LIBRARY)
# For the device
# =====================================================
+ifneq (true,$(DISABLE_LLVM_DEVICE_BUILDS))
include $(CLEAR_VARS)
LOCAL_SRC_FILES := $(analysis_ipa_SRC_FILES)
@@ -36,3 +37,4 @@ LOCAL_MODULE_TAGS := optional
include $(LLVM_DEVICE_BUILD_MK)
include $(LLVM_GEN_INTRINSICS_MK)
include $(BUILD_STATIC_LIBRARY)
+endif
diff --git a/lib/Analysis/IPA/CallGraph.cpp b/lib/Analysis/IPA/CallGraph.cpp
index f042964..f43675b 100644
--- a/lib/Analysis/IPA/CallGraph.cpp
+++ b/lib/Analysis/IPA/CallGraph.cpp
@@ -8,17 +8,45 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CallGraph.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
-#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
-CallGraph::CallGraph()
- : ModulePass(ID), Root(0), ExternalCallingNode(0), CallsExternalNode(0) {
- initializeCallGraphPass(*PassRegistry::getPassRegistry());
+//===----------------------------------------------------------------------===//
+// Implementations of the CallGraph class methods.
+//
+
+CallGraph::CallGraph(Module &M)
+ : M(M), Root(0), ExternalCallingNode(getOrInsertFunction(0)),
+ CallsExternalNode(new CallGraphNode(0)) {
+ // Add every function to the call graph.
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+ addToCallGraph(I);
+
+ // If we didn't find a main function, use the external call graph node
+ if (Root == 0)
+ Root = ExternalCallingNode;
+}
+
+CallGraph::~CallGraph() {
+ // CallsExternalNode is not in the function map, delete it explicitly.
+ CallsExternalNode->allReferencesDropped();
+ delete CallsExternalNode;
+
+// Reset all node's use counts to zero before deleting them to prevent an
+// assertion from firing.
+#ifndef NDEBUG
+ for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
+ I != E; ++I)
+ I->second->allReferencesDropped();
+#endif
+ for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
+ I != E; ++I)
+ delete I->second;
}
void CallGraph::addToCallGraph(Function *F) {
@@ -62,59 +90,7 @@ void CallGraph::addToCallGraph(Function *F) {
}
}
-void CallGraph::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
-}
-
-bool CallGraph::runOnModule(Module &M) {
- Mod = &M;
-
- ExternalCallingNode = getOrInsertFunction(0);
- assert(!CallsExternalNode);
- CallsExternalNode = new CallGraphNode(0);
- Root = 0;
-
- // Add every function to the call graph.
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- addToCallGraph(I);
-
- // If we didn't find a main function, use the external call graph node
- if (Root == 0)
- Root = ExternalCallingNode;
-
- return false;
-}
-
-INITIALIZE_PASS(CallGraph, "basiccg", "CallGraph Construction", false, true)
-
-char CallGraph::ID = 0;
-
-void CallGraph::releaseMemory() {
- /// CallsExternalNode is not in the function map, delete it explicitly.
- if (CallsExternalNode) {
- CallsExternalNode->allReferencesDropped();
- delete CallsExternalNode;
- CallsExternalNode = 0;
- }
-
- if (FunctionMap.empty())
- return;
-
-// Reset all node's use counts to zero before deleting them to prevent an
-// assertion from firing.
-#ifndef NDEBUG
- for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
- I != E; ++I)
- I->second->allReferencesDropped();
-#endif
-
- for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end();
- I != E; ++I)
- delete I->second;
- FunctionMap.clear();
-}
-
-void CallGraph::print(raw_ostream &OS, const Module*) const {
+void CallGraph::print(raw_ostream &OS) const {
OS << "CallGraph Root is: ";
if (Function *F = Root->getFunction())
OS << F->getName() << "\n";
@@ -125,16 +101,11 @@ void CallGraph::print(raw_ostream &OS, const Module*) const {
for (CallGraph::const_iterator I = begin(), E = end(); I != E; ++I)
I->second->print(OS);
}
+
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void CallGraph::dump() const {
- print(dbgs(), 0);
-}
+void CallGraph::dump() const { print(dbgs()); }
#endif
-//===----------------------------------------------------------------------===//
-// Implementations of public modification methods
-//
-
// removeFunctionFromModule - Unlink the function from this module, returning
// it. Because this removes the function from the module, the call graph node
// is destroyed. This is only valid if the function does not call any other
@@ -148,7 +119,7 @@ Function *CallGraph::removeFunctionFromModule(CallGraphNode *CGN) {
delete CGN; // Delete the call graph node for this func
FunctionMap.erase(F); // Remove the call graph node from the map
- Mod->getFunctionList().remove(F);
+ M.getFunctionList().remove(F);
return F;
}
@@ -172,12 +143,17 @@ void CallGraph::spliceFunction(const Function *From, const Function *To) {
// not already exist.
CallGraphNode *CallGraph::getOrInsertFunction(const Function *F) {
CallGraphNode *&CGN = FunctionMap[F];
- if (CGN) return CGN;
-
- assert((!F || F->getParent() == Mod) && "Function not in current module!");
+ if (CGN)
+ return CGN;
+
+ assert((!F || F->getParent() == &M) && "Function not in current module!");
return CGN = new CallGraphNode(const_cast<Function*>(F));
}
+//===----------------------------------------------------------------------===//
+// Implementations of the CallGraphNode class methods.
+//
+
void CallGraphNode::print(raw_ostream &OS) const {
if (Function *F = getFunction())
OS << "Call graph node for function: '" << F->getName() << "'";
@@ -260,5 +236,52 @@ void CallGraphNode::replaceCallEdge(CallSite CS,
}
}
+//===----------------------------------------------------------------------===//
+// Out-of-line definitions of CallGraphAnalysis class members.
+//
+
+char CallGraphAnalysis::PassID;
+
+//===----------------------------------------------------------------------===//
+// Implementations of the CallGraphWrapperPass class methods.
+//
+
+CallGraphWrapperPass::CallGraphWrapperPass() : ModulePass(ID) {
+ initializeCallGraphWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+CallGraphWrapperPass::~CallGraphWrapperPass() {}
+
+void CallGraphWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+}
+
+bool CallGraphWrapperPass::runOnModule(Module &M) {
+ // All the real work is done in the constructor for the CallGraph.
+ G.reset(new CallGraph(M));
+ return false;
+}
+
+INITIALIZE_PASS(CallGraphWrapperPass, "basiccg", "CallGraph Construction",
+ false, true)
+
+char CallGraphWrapperPass::ID = 0;
+
+void CallGraphWrapperPass::releaseMemory() { G.reset(0); }
+
+void CallGraphWrapperPass::print(raw_ostream &OS, const Module *) const {
+ if (!G) {
+ OS << "No call graph has been built!\n";
+ return;
+ }
+
+ // Just delegate.
+ G->print(OS);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void CallGraphWrapperPass::dump() const { print(dbgs(), 0); }
+#endif
+
// Enuse that users of CallGraph.h also link with this file
DEFINING_FILE_FOR(CallGraph)
diff --git a/lib/Analysis/IPA/CallGraphSCCPass.cpp b/lib/Analysis/IPA/CallGraphSCCPass.cpp
index 182beca..aafc085 100644
--- a/lib/Analysis/IPA/CallGraphSCCPass.cpp
+++ b/lib/Analysis/IPA/CallGraphSCCPass.cpp
@@ -49,7 +49,7 @@ public:
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
- bool runOnModule(Module &M);
+ bool runOnModule(Module &M) override;
using ModulePass::doInitialization;
using ModulePass::doFinalization;
@@ -58,21 +58,21 @@ public:
bool doFinalization(CallGraph &CG);
/// Pass Manager itself does not invalidate any analysis info.
- void getAnalysisUsage(AnalysisUsage &Info) const {
+ void getAnalysisUsage(AnalysisUsage &Info) const override {
// CGPassManager walks SCC and it needs CallGraph.
- Info.addRequired<CallGraph>();
+ Info.addRequired<CallGraphWrapperPass>();
Info.setPreservesAll();
}
- virtual const char *getPassName() const {
+ const char *getPassName() const override {
return "CallGraph Pass Manager";
}
- virtual PMDataManager *getAsPMDataManager() { return this; }
- virtual Pass *getAsPass() { return this; }
+ PMDataManager *getAsPMDataManager() override { return this; }
+ Pass *getAsPass() override { return this; }
// Print passes managed by this manager
- void dumpPassStructure(unsigned Offset) {
+ void dumpPassStructure(unsigned Offset) override {
errs().indent(Offset*2) << "Call Graph SCC Pass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
Pass *P = getContainedPass(Index);
@@ -86,7 +86,7 @@ public:
return static_cast<Pass *>(PassVector[N]);
}
- virtual PassManagerType getPassManagerType() const {
+ PassManagerType getPassManagerType() const override {
return PMT_CallGraphPassManager;
}
@@ -424,7 +424,7 @@ bool CGPassManager::RunAllPassesOnSCC(CallGraphSCC &CurSCC, CallGraph &CG,
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool CGPassManager::runOnModule(Module &M) {
- CallGraph &CG = getAnalysis<CallGraph>();
+ CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
bool Changed = doInitialization(CG);
// Walk the callgraph in bottom-up SCC order.
@@ -570,8 +570,8 @@ void CallGraphSCCPass::assignPassManager(PMStack &PMS,
/// the call graph. If the derived class implements this method, it should
/// always explicitly call the implementation here.
void CallGraphSCCPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<CallGraph>();
- AU.addPreserved<CallGraph>();
+ AU.addRequired<CallGraphWrapperPass>();
+ AU.addPreserved<CallGraphWrapperPass>();
}
@@ -590,12 +590,12 @@ namespace {
static char ID;
PrintCallGraphPass(const std::string &B, raw_ostream &o)
: CallGraphSCCPass(ID), Banner(B), Out(o) {}
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
-
- bool runOnSCC(CallGraphSCC &SCC) {
+
+ bool runOnSCC(CallGraphSCC &SCC) override {
Out << Banner;
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
(*I)->getFunction()->print(Out);
diff --git a/lib/Analysis/IPA/CallPrinter.cpp b/lib/Analysis/IPA/CallPrinter.cpp
index 306ae7a..68dcd3c 100644
--- a/lib/Analysis/IPA/CallPrinter.cpp
+++ b/lib/Analysis/IPA/CallPrinter.cpp
@@ -22,13 +22,10 @@ using namespace llvm;
namespace llvm {
-template<>
-struct DOTGraphTraits<CallGraph*> : public DefaultDOTGraphTraits {
- DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+template <> struct DOTGraphTraits<CallGraph *> : public DefaultDOTGraphTraits {
+ DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
- static std::string getGraphName(CallGraph *Graph) {
- return "Call graph";
- }
+ static std::string getGraphName(CallGraph *Graph) { return "Call graph"; }
std::string getNodeLabel(CallGraphNode *Node, CallGraph *Graph) {
if (Function *Func = Node->getFunction())
@@ -38,49 +35,57 @@ struct DOTGraphTraits<CallGraph*> : public DefaultDOTGraphTraits {
}
};
+struct AnalysisCallGraphWrapperPassTraits {
+ static CallGraph *getGraph(CallGraphWrapperPass *P) {
+ return &P->getCallGraph();
+ }
+};
+
} // end llvm namespace
namespace {
struct CallGraphViewer
- : public DOTGraphTraitsModuleViewer<CallGraph, true> {
+ : public DOTGraphTraitsModuleViewer<CallGraphWrapperPass, true, CallGraph *,
+ AnalysisCallGraphWrapperPassTraits> {
static char ID;
CallGraphViewer()
- : DOTGraphTraitsModuleViewer<CallGraph, true>("callgraph", ID) {
+ : DOTGraphTraitsModuleViewer<CallGraphWrapperPass, true, CallGraph *,
+ AnalysisCallGraphWrapperPassTraits>(
+ "callgraph", ID) {
initializeCallGraphViewerPass(*PassRegistry::getPassRegistry());
}
};
-struct CallGraphPrinter
- : public DOTGraphTraitsModulePrinter<CallGraph, true> {
+struct CallGraphPrinter : public DOTGraphTraitsModulePrinter<
+ CallGraphWrapperPass, true, CallGraph *,
+ AnalysisCallGraphWrapperPassTraits> {
static char ID;
CallGraphPrinter()
- : DOTGraphTraitsModulePrinter<CallGraph, true>("callgraph", ID) {
- initializeCallGraphPrinterPass(*PassRegistry::getPassRegistry());
+ : DOTGraphTraitsModulePrinter<CallGraphWrapperPass, true, CallGraph *,
+ AnalysisCallGraphWrapperPassTraits>(
+ "callgraph", ID) {
+ initializeCallGraphPrinterPass(*PassRegistry::getPassRegistry());
}
};
} // end anonymous namespace
char CallGraphViewer::ID = 0;
-INITIALIZE_PASS(CallGraphViewer, "view-callgraph",
- "View call graph",
- false, false)
+INITIALIZE_PASS(CallGraphViewer, "view-callgraph", "View call graph", false,
+ false)
char CallGraphPrinter::ID = 0;
INITIALIZE_PASS(CallGraphPrinter, "dot-callgraph",
- "Print call graph to 'dot' file",
- false, false)
+ "Print call graph to 'dot' file", false, false)
// Create methods available outside of this file, to use them
// "include/llvm/LinkAllPasses.h". Otherwise the pass would be deleted by
// the link time optimization.
-ModulePass *llvm::createCallGraphViewerPass() {
- return new CallGraphViewer();
-}
+ModulePass *llvm::createCallGraphViewerPass() { return new CallGraphViewer(); }
ModulePass *llvm::createCallGraphPrinterPass() {
return new CallGraphPrinter();
diff --git a/lib/Analysis/IPA/FindUsedTypes.cpp b/lib/Analysis/IPA/FindUsedTypes.cpp
index 1c4f17d..b37344b 100644
--- a/lib/Analysis/IPA/FindUsedTypes.cpp
+++ b/lib/Analysis/IPA/FindUsedTypes.cpp
@@ -14,11 +14,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/FindUsedTypes.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
diff --git a/lib/Analysis/IPA/GlobalsModRef.cpp b/lib/Analysis/IPA/GlobalsModRef.cpp
index 7ec4644..f4097e4 100644
--- a/lib/Analysis/IPA/GlobalsModRef.cpp
+++ b/lib/Analysis/IPA/GlobalsModRef.cpp
@@ -24,12 +24,12 @@
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/InstIterator.h"
#include <set>
using namespace llvm;
@@ -94,34 +94,38 @@ namespace {
initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
}
- bool runOnModule(Module &M) {
- InitializeAliasAnalysis(this); // set up super class
- AnalyzeGlobals(M); // find non-addr taken globals
- AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
+ bool runOnModule(Module &M) override {
+ InitializeAliasAnalysis(this);
+
+ // Find non-addr taken globals.
+ AnalyzeGlobals(M);
+
+ // Propagate on CG.
+ AnalyzeCallGraph(getAnalysis<CallGraphWrapperPass>().getCallGraph(), M);
return false;
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AliasAnalysis::getAnalysisUsage(AU);
- AU.addRequired<CallGraph>();
+ AU.addRequired<CallGraphWrapperPass>();
AU.setPreservesAll(); // Does not transform code
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
- AliasResult alias(const Location &LocA, const Location &LocB);
+ AliasResult alias(const Location &LocA, const Location &LocB) override;
ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc);
+ const Location &Loc) override;
ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
+ ImmutableCallSite CS2) override {
return AliasAnalysis::getModRefInfo(CS1, CS2);
}
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
- ModRefBehavior getModRefBehavior(const Function *F) {
+ ModRefBehavior getModRefBehavior(const Function *F) override {
ModRefBehavior Min = UnknownModRefBehavior;
if (FunctionRecord *FR = getFunctionInfo(F)) {
@@ -137,7 +141,7 @@ namespace {
/// getModRefBehavior - Return the behavior of the specified function if
/// called from the specified call site. The call site may be null in which
/// case the most generic behavior of this function should be returned.
- ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
+ ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
ModRefBehavior Min = UnknownModRefBehavior;
if (const Function* F = CS.getCalledFunction())
@@ -151,15 +155,15 @@ namespace {
return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
}
- virtual void deleteValue(Value *V);
- virtual void copyValue(Value *From, Value *To);
- virtual void addEscapingUse(Use &U);
+ void deleteValue(Value *V) override;
+ void copyValue(Value *From, Value *To) override;
+ void addEscapingUse(Use &U) override;
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
+ void *getAdjustedAnalysisPointer(AnalysisID PI) override {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
@@ -189,7 +193,7 @@ char GlobalsModRef::ID = 0;
INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
"globalsmodref-aa", "Simple mod/ref analysis for globals",
false, true, false)
-INITIALIZE_PASS_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
"globalsmodref-aa", "Simple mod/ref analysis for globals",
false, true, false)
@@ -248,42 +252,33 @@ bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
GlobalValue *OkayStoreDest) {
if (!V->getType()->isPointerTy()) return true;
- for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
- User *U = *UI;
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ for (Use &U : V->uses()) {
+ User *I = U.getUser();
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Readers.push_back(LI->getParent()->getParent());
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (V == SI->getOperand(1)) {
Writers.push_back(SI->getParent()->getParent());
} else if (SI->getOperand(1) != OkayStoreDest) {
return true; // Storing the pointer
}
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
- if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
- } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
- if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
+ } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
+ if (AnalyzeUsesOfPointer(I, Readers, Writers))
return true;
- } else if (isFreeCall(U, TLI)) {
- Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
- } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // Make sure that this is just the function being called, not that it is
- // passing into the function.
- for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
- if (CI->getArgOperand(i) == V) return true;
- } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
+ } else if (Operator::getOpcode(I) == Instruction::BitCast) {
+ if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
+ return true;
+ } else if (CallSite CS = I) {
// Make sure that this is just the function being called, not that it is
// passing into the function.
- for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
- if (II->getArgOperand(i) == V) return true;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
- if (CE->getOpcode() == Instruction::GetElementPtr ||
- CE->getOpcode() == Instruction::BitCast) {
- if (AnalyzeUsesOfPointer(CE, Readers, Writers))
- return true;
- } else {
- return true;
+ if (!CS.isCallee(&U)) {
+ // Detect calls to free.
+ if (isFreeCall(I, TLI))
+ Writers.push_back(CS->getParent()->getParent());
+ else
+ return true; // Argument of an unknown call.
}
- } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
+ } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
return true; // Allow comparison against null.
} else {
@@ -308,8 +303,7 @@ bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
// Walk the user list of the global. If we find anything other than a direct
// load or store, bail out.
- for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
- User *U = *I;
+ for (User *U : GV->users()) {
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
// The pointer loaded from the global can only be used in simple ways:
// we allow addressing of it and loading storing to it. We do *not* allow
@@ -363,8 +357,7 @@ bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
// We do a bottom-up SCC traversal of the call graph. In other words, we
// visit all callees before callers (leaf-first).
- for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
- ++I) {
+ for (scc_iterator<CallGraph*> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
std::vector<CallGraphNode *> &SCC = *I;
assert(!SCC.empty() && "SCC with no functions?");
diff --git a/lib/Analysis/IPA/IPA.cpp b/lib/Analysis/IPA/IPA.cpp
index 47357cf..b26c052 100644
--- a/lib/Analysis/IPA/IPA.cpp
+++ b/lib/Analysis/IPA/IPA.cpp
@@ -12,14 +12,14 @@
//===----------------------------------------------------------------------===//
#include "llvm/InitializePasses.h"
-#include "llvm/PassRegistry.h"
#include "llvm-c/Initialization.h"
+#include "llvm/PassRegistry.h"
using namespace llvm;
/// initializeIPA - Initialize all passes linked into the IPA library.
void llvm::initializeIPA(PassRegistry &Registry) {
- initializeCallGraphPass(Registry);
+ initializeCallGraphWrapperPassPass(Registry);
initializeCallGraphPrinterPass(Registry);
initializeCallGraphViewerPass(Registry);
initializeFindUsedTypesPass(Registry);
diff --git a/lib/Analysis/IPA/InlineCost.cpp b/lib/Analysis/IPA/InlineCost.cpp
index 3bc796e..8dafc1c 100644
--- a/lib/Analysis/IPA/InlineCost.cpp
+++ b/lib/Analysis/IPA/InlineCost.cpp
@@ -21,15 +21,15 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
-#include "llvm/InstVisitor.h"
-#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -43,7 +43,7 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
friend class InstVisitor<CallAnalyzer, bool>;
// DataLayout if available, or null.
- const DataLayout *const TD;
+ const DataLayout *const DL;
/// The TargetTransformInfo available for this compilation.
const TargetTransformInfo &TTI;
@@ -142,9 +142,9 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
bool visitUnreachableInst(UnreachableInst &I);
public:
- CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
+ CallAnalyzer(const DataLayout *DL, const TargetTransformInfo &TTI,
Function &Callee, int Threshold)
- : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
+ : DL(DL), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
IsCallerRecursive(false), IsRecursiveCall(false),
ExposesReturnsTwice(false), HasDynamicAlloca(false),
ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false),
@@ -256,10 +256,10 @@ bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
/// Returns false if unable to compute the offset for any reason. Respects any
/// simplified values known during the analysis of this callsite.
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
- if (!TD)
+ if (!DL)
return false;
- unsigned IntPtrWidth = TD->getPointerSizeInBits();
+ unsigned IntPtrWidth = DL->getPointerSizeInBits();
assert(IntPtrWidth == Offset.getBitWidth());
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
@@ -275,12 +275,12 @@ bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD->getStructLayout(STy);
+ const StructLayout *SL = DL->getStructLayout(STy);
Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
continue;
}
- APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
+ APInt TypeSize(IntPtrWidth, DL->getTypeAllocSize(GTI.getIndexedType()));
Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
}
return true;
@@ -293,7 +293,7 @@ bool CallAnalyzer::visitAlloca(AllocaInst &I) {
// Accumulate the allocated size.
if (I.isStaticAlloca()) {
Type *Ty = I.getAllocatedType();
- AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
+ AllocatedSize += (DL ? DL->getTypeAllocSize(Ty) :
Ty->getPrimitiveSizeInBits());
}
@@ -330,7 +330,7 @@ bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
// Try to fold GEPs of constant-offset call site argument pointers. This
// requires target data and inbounds GEPs.
- if (TD && I.isInBounds()) {
+ if (DL && I.isInBounds()) {
// Check if we have a base + offset for the pointer.
Value *Ptr = I.getPointerOperand();
std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
@@ -399,6 +399,7 @@ bool CallAnalyzer::visitBitCast(BitCastInst &I) {
}
bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
+ const DataLayout *DL = I.getDataLayout();
// Propagate constants through ptrtoint.
Constant *COp = dyn_cast<Constant>(I.getOperand(0));
if (!COp)
@@ -412,7 +413,7 @@ bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
// Track base/offset pairs when converted to a plain integer provided the
// integer is large enough to represent the pointer.
unsigned IntegerSize = I.getType()->getScalarSizeInBits();
- if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
+ if (DL && IntegerSize >= DL->getPointerSizeInBits()) {
std::pair<Value *, APInt> BaseAndOffset
= ConstantOffsetPtrs.lookup(I.getOperand(0));
if (BaseAndOffset.first)
@@ -435,6 +436,7 @@ bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
}
bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
+ const DataLayout *DL = I.getDataLayout();
// Propagate constants through ptrtoint.
Constant *COp = dyn_cast<Constant>(I.getOperand(0));
if (!COp)
@@ -449,7 +451,7 @@ bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
// modifications provided the integer is not too large.
Value *Op = I.getOperand(0);
unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
- if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
+ if (DL && IntegerSize <= DL->getPointerSizeInBits()) {
std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
if (BaseAndOffset.first)
ConstantOffsetPtrs[&I] = BaseAndOffset;
@@ -488,7 +490,7 @@ bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
COp = SimplifiedValues.lookup(Operand);
if (COp)
if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
- COp, TD)) {
+ COp, DL)) {
SimplifiedValues[&I] = C;
return true;
}
@@ -523,9 +525,9 @@ bool CallAnalyzer::visitCmpInst(CmpInst &I) {
// a common base.
Value *LHSBase, *RHSBase;
APInt LHSOffset, RHSOffset;
- llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
+ std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
if (LHSBase) {
- llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
+ std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
if (RHSBase && LHSBase == RHSBase) {
// We have common bases, fold the icmp to a constant based on the
// offsets.
@@ -573,9 +575,9 @@ bool CallAnalyzer::visitSub(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Value *LHSBase, *RHSBase;
APInt LHSOffset, RHSOffset;
- llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
+ std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
if (LHSBase) {
- llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
+ std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
if (RHSBase && LHSBase == RHSBase) {
// We have common bases, fold the subtract to a constant based on the
// offsets.
@@ -602,7 +604,7 @@ bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
if (!isa<Constant>(RHS))
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
- Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
+ Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
SimplifiedValues[&I] = C;
return true;
@@ -721,7 +723,7 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
return false;
}
if (CS.isCall() &&
- cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
+ cast<CallInst>(CS.getInstruction())->cannotDuplicate())
ContainsNoDuplicateCall = true;
if (Function *F = CS.getCalledFunction()) {
@@ -784,7 +786,7 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
// during devirtualization and so we want to give it a hefty bonus for
// inlining, but cap that bonus in the event that inlining wouldn't pan
// out. Pretend to inline the function, with a custom threshold.
- CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
+ CallAnalyzer CA(DL, TTI, *F, InlineConstants::IndirectCallThreshold);
if (CA.analyzeCall(CS)) {
// We were able to inline the indirect call! Subtract the cost from the
// bonus we want to apply, but don't go below zero.
@@ -872,6 +874,16 @@ bool CallAnalyzer::visitInstruction(Instruction &I) {
/// viable, and true if inlining remains viable.
bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ // FIXME: Currently, the number of instructions in a function regardless of
+ // our ability to simplify them during inline to constants or dead code,
+ // are actually used by the vector bonus heuristic. As long as that's true,
+ // we have to special case debug intrinsics here to prevent differences in
+ // inlining due to debug symbols. Eventually, the number of unsimplified
+ // instructions shouldn't factor into the cost computation, but until then,
+ // hack around it here.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
++NumInstructions;
if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
++NumVectorInstructions;
@@ -921,10 +933,10 @@ bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
- if (!TD || !V->getType()->isPointerTy())
+ if (!DL || !V->getType()->isPointerTy())
return 0;
- unsigned IntPtrWidth = TD->getPointerSizeInBits();
+ unsigned IntPtrWidth = DL->getPointerSizeInBits();
APInt Offset = APInt::getNullValue(IntPtrWidth);
// Even though we don't look through PHI nodes, we could be called on an
@@ -948,7 +960,7 @@ ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(V));
- Type *IntPtrTy = TD->getIntPtrType(V->getContext());
+ Type *IntPtrTy = DL->getIntPtrType(V->getContext());
return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
}
@@ -983,12 +995,12 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
// Give out bonuses per argument, as the instructions setting them up will
// be gone after inlining.
for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
- if (TD && CS.isByValArgument(I)) {
+ if (DL && CS.isByValArgument(I)) {
// We approximate the number of loads and stores needed by dividing the
// size of the byval type by the target's pointer size.
PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
- unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
- unsigned PointerSize = TD->getPointerSizeInBits();
+ unsigned TypeSize = DL->getTypeSizeInBits(PTy->getElementType());
+ unsigned PointerSize = DL->getPointerSizeInBits();
// Ceiling division.
unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
@@ -1040,9 +1052,8 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
Function *Caller = CS.getInstruction()->getParent()->getParent();
// Check if the caller function is recursive itself.
- for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
- U != E; ++U) {
- CallSite Site(cast<Value>(*U));
+ for (User *U : Caller->users()) {
+ CallSite Site(U);
if (!Site)
continue;
Instruction *I = Site.getInstruction();
@@ -1154,7 +1165,7 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
}
}
- // If this is a noduplicate call, we can still inline as long as
+ // If this is a noduplicate call, we can still inline as long as
// inlining this would cause the removal of the caller (so the instruction
// is not actually duplicated, just moved).
if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
@@ -1168,7 +1179,7 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// \brief Dump stats about this call's analysis.
void CallAnalyzer::dump() {
-#define DEBUG_PRINT_STAT(x) llvm::dbgs() << " " #x ": " << x << "\n"
+#define DEBUG_PRINT_STAT(x) dbgs() << " " #x ": " << x << "\n"
DEBUG_PRINT_STAT(NumConstantArgs);
DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
DEBUG_PRINT_STAT(NumAllocaArgs);
@@ -1178,6 +1189,9 @@ void CallAnalyzer::dump() {
DEBUG_PRINT_STAT(SROACostSavings);
DEBUG_PRINT_STAT(SROACostSavingsLost);
DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
+ DEBUG_PRINT_STAT(Cost);
+ DEBUG_PRINT_STAT(Threshold);
+ DEBUG_PRINT_STAT(VectorBonus);
#undef DEBUG_PRINT_STAT
}
#endif
@@ -1190,7 +1204,7 @@ INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
char InlineCostAnalysis::ID = 0;
-InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
+InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID) {}
InlineCostAnalysis::~InlineCostAnalysis() {}
@@ -1201,7 +1215,6 @@ void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
}
bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
- TD = getAnalysisIfAvailable<DataLayout>();
TTI = &getAnalysis<TargetTransformInfo>();
return false;
}
@@ -1259,7 +1272,7 @@ InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
<< "...\n");
- CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
+ CallAnalyzer CA(Callee->getDataLayout(), *TTI, *Callee, Threshold);
bool ShouldInline = CA.analyzeCall(CS);
DEBUG(CA.dump());
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index b33e2cb..5317a47 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -15,14 +15,13 @@
#define DEBUG_TYPE "iv-users"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
@@ -34,7 +33,7 @@ char IVUsers::ID = 0;
INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
"Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(IVUsers, "iv-users",
"Induction Variable Users", false, true)
@@ -124,14 +123,14 @@ bool IVUsers::AddUsersImpl(Instruction *I,
// IVUsers is used by LSR which assumes that all SCEV expressions are safe to
// pass to SCEVExpander. Expressions are not safe to expand if they represent
// operations that are not safe to speculate, namely integer division.
- if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I, TD))
+ if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I, DL))
return false;
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
// Also avoid creating IVs of non-native types. For example, we don't want a
// 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
uint64_t Width = SE->getTypeSizeInBits(I->getType());
- if (Width > 64 || (TD && !TD->isLegalInteger(Width)))
+ if (Width > 64 || (DL && !DL->isLegalInteger(Width)))
return false;
// Get the symbolic expression for this instruction.
@@ -143,9 +142,8 @@ bool IVUsers::AddUsersImpl(Instruction *I,
return false;
SmallPtrSet<Instruction *, 4> UniqueUsers;
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI) {
- Instruction *User = cast<Instruction>(*UI);
+ for (Use &U : I->uses()) {
+ Instruction *User = cast<Instruction>(U.getUser());
if (!UniqueUsers.insert(User))
continue;
@@ -158,7 +156,7 @@ bool IVUsers::AddUsersImpl(Instruction *I,
BasicBlock *UseBB = User->getParent();
// A phi's use is live out of its predecessor block.
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
- unsigned OperandNo = UI.getOperandNo();
+ unsigned OperandNo = U.getOperandNo();
unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
UseBB = PHI->getIncomingBlock(ValNo);
}
@@ -187,15 +185,34 @@ bool IVUsers::AddUsersImpl(Instruction *I,
if (AddUserToIVUsers) {
// Okay, we found a user that we cannot reduce.
- IVUses.push_back(new IVStrideUse(this, User, I));
- IVStrideUse &NewUse = IVUses.back();
+ IVStrideUse &NewUse = AddUser(User, I);
// Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
// The regular return value here is discarded; instead of recording
// it, we just recompute it when we need it.
+ const SCEV *OriginalISE = ISE;
ISE = TransformForPostIncUse(NormalizeAutodetect,
ISE, User, I,
NewUse.PostIncLoops,
*SE, *DT);
+
+ // PostIncNormalization effectively simplifies the expression under
+ // pre-increment assumptions. Those assumptions (no wrapping) might not
+ // hold for the post-inc value. Catch such cases by making sure the
+ // transformation is invertible.
+ if (OriginalISE != ISE) {
+ const SCEV *DenormalizedISE =
+ TransformForPostIncUse(Denormalize, ISE, User, I,
+ NewUse.PostIncLoops, *SE, *DT);
+
+ // If we normalized the expression, but denormalization doesn't give the
+ // original one, discard this user.
+ if (OriginalISE != DenormalizedISE) {
+ DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
+ << *ISE << '\n');
+ IVUses.pop_back();
+ return false;
+ }
+ }
DEBUG(if (SE->getSCEV(I) != ISE)
dbgs() << " NORMALIZED TO: " << *ISE << '\n');
}
@@ -224,7 +241,7 @@ IVUsers::IVUsers()
void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
- AU.addRequired<DominatorTree>();
+ AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolution>();
AU.setPreservesAll();
}
@@ -233,9 +250,10 @@ bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
L = l;
LI = &getAnalysis<LoopInfo>();
- DT = &getAnalysis<DominatorTree>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
@@ -248,7 +266,7 @@ bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << "IV Users for loop ";
- WriteAsOperand(OS, L->getHeader(), false);
+ L->getHeader()->printAsOperand(OS, false);
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
OS << " with backedge-taken count "
<< *SE->getBackedgeTakenCount(L);
@@ -258,13 +276,13 @@ void IVUsers::print(raw_ostream &OS, const Module *M) const {
for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
E = IVUses.end(); UI != E; ++UI) {
OS << " ";
- WriteAsOperand(OS, UI->getOperandValToReplace(), false);
+ UI->getOperandValToReplace()->printAsOperand(OS, false);
OS << " = " << *getReplacementExpr(*UI);
for (PostIncLoopSet::const_iterator
I = UI->PostIncLoops.begin(),
E = UI->PostIncLoops.end(); I != E; ++I) {
OS << " (post-inc with loop ";
- WriteAsOperand(OS, (*I)->getHeader(), false);
+ (*I)->getHeader()->printAsOperand(OS, false);
OS << ")";
}
OS << " in ";
diff --git a/lib/Analysis/InstCount.cpp b/lib/Analysis/InstCount.cpp
index 75a49eb..3d05556 100644
--- a/lib/Analysis/InstCount.cpp
+++ b/lib/Analysis/InstCount.cpp
@@ -15,7 +15,7 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Function.h"
-#include "llvm/InstVisitor.h"
+#include "llvm/IR/InstVisitor.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -55,12 +55,12 @@ namespace {
initializeInstCountPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F);
+ bool runOnFunction(Function &F) override;
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
- virtual void print(raw_ostream &O, const Module *M) const {}
+ void print(raw_ostream &O, const Module *M) const override {}
};
}
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp
index b867af1..d8d8a09 100644
--- a/lib/Analysis/InstructionSimplify.cpp
+++ b/lib/Analysis/InstructionSimplify.cpp
@@ -22,16 +22,16 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/Operator.h"
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/ValueHandle.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -42,12 +42,12 @@ STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc, "Number of reassociations");
struct Query {
- const DataLayout *TD;
+ const DataLayout *DL;
const TargetLibraryInfo *TLI;
const DominatorTree *DT;
- Query(const DataLayout *td, const TargetLibraryInfo *tli,
- const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
+ Query(const DataLayout *DL, const TargetLibraryInfo *tli,
+ const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {}
};
static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
@@ -595,7 +595,7 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
- Q.TD, Q.TLI);
+ Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -651,9 +651,9 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
}
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
+ return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -667,17 +667,17 @@ Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
/// folding.
-static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
+static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
Value *&V,
bool AllowNonInbounds = false) {
assert(V->getType()->getScalarType()->isPointerTy());
// Without DataLayout, just be conservative for now. Theoretically, more could
// be done in this case.
- if (!TD)
+ if (!DL)
return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
- Type *IntPtrTy = TD->getIntPtrType(V->getType())->getScalarType();
+ Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType();
APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
// Even though we don't look through PHI nodes, we could be called on an
@@ -687,7 +687,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
do {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
if ((!AllowNonInbounds && !GEP->isInBounds()) ||
- !GEP->accumulateConstantOffset(*TD, Offset))
+ !GEP->accumulateConstantOffset(*DL, Offset))
break;
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
@@ -712,10 +712,10 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
/// \brief Compute the constant difference between two pointer values.
/// If the difference is not a constant, returns zero.
-static Constant *computePointerDifference(const DataLayout *TD,
+static Constant *computePointerDifference(const DataLayout *DL,
Value *LHS, Value *RHS) {
- Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
- Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
+ Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
+ Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
// If LHS and RHS are not related via constant offsets to the same base
// value, there is nothing we can do here.
@@ -737,7 +737,7 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// X - undef -> undef
@@ -831,7 +831,7 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
// Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
if (match(Op0, m_PtrToInt(m_Value(X))) &&
match(Op1, m_PtrToInt(m_Value(Y))))
- if (Constant *Result = computePointerDifference(Q.TD, X, Y))
+ if (Constant *Result = computePointerDifference(Q.DL, X, Y))
return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
// Mul distributes over Sub. Try some generic simplifications based on this.
@@ -857,9 +857,9 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
}
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
+ return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -871,7 +871,7 @@ static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -913,7 +913,7 @@ static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
}
@@ -951,7 +951,7 @@ static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -977,7 +977,7 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -1035,29 +1035,29 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
}
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
}
Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
}
Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
FastMathFlags FMF,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
}
-Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
@@ -1067,7 +1067,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
- return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
+ return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
}
}
@@ -1142,10 +1142,10 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
@@ -1158,10 +1158,10 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1177,10 +1177,10 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyRem - Given operands for an SRem or URem, see if we can
@@ -1190,7 +1190,7 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
- return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
+ return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
}
}
@@ -1247,10 +1247,10 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyURemInst - Given operands for a URem, see if we can
@@ -1263,10 +1263,10 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
@@ -1282,10 +1282,37 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
return 0;
}
-Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+}
+
+/// isUndefShift - Returns true if a shift by \c Amount always yields undef.
+static bool isUndefShift(Value *Amount) {
+ Constant *C = dyn_cast<Constant>(Amount);
+ if (!C)
+ return false;
+
+ // X shift by undef -> undef because it may shift by the bitwidth.
+ if (isa<UndefValue>(C))
+ return true;
+
+ // Shifting by the bitwidth or more is undefined.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ if (CI->getValue().getLimitedValue() >=
+ CI->getType()->getScalarSizeInBits())
+ return true;
+
+ // If all lanes of a vector shift are undefined the whole shift is.
+ if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
+ for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
+ if (!isUndefShift(C->getAggregateElement(I)))
+ return false;
+ return true;
+ }
+
+ return false;
}
/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
@@ -1295,7 +1322,7 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
if (Constant *C0 = dyn_cast<Constant>(Op0)) {
if (Constant *C1 = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { C0, C1 };
- return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
+ return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
}
}
@@ -1307,15 +1334,9 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
if (match(Op1, m_Zero()))
return Op0;
- // X shift by undef -> undef because it may shift by the bitwidth.
- if (match(Op1, m_Undef()))
- return Op1;
-
- // Shifting by the bitwidth or more is undefined.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
- if (CI->getValue().getLimitedValue() >=
- Op0->getType()->getScalarSizeInBits())
- return UndefValue::get(Op0->getType());
+ // Fold undefined shifts.
+ if (isUndefShift(Op1))
+ return UndefValue::get(Op0->getType());
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
@@ -1351,9 +1372,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
}
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
+ return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -1382,10 +1403,10 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
}
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
+ return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -1418,10 +1439,10 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
}
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
+ return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -1433,7 +1454,7 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -1518,10 +1539,10 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyOrInst - Given operands for an Or, see if we can
@@ -1532,7 +1553,7 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -1612,10 +1633,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyXorInst - Given operands for a Xor, see if we can
@@ -1626,7 +1647,7 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
Constant *Ops[] = { CLHS, CRHS };
return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
- Ops, Q.TD, Q.TLI);
+ Ops, Q.DL, Q.TLI);
}
// Canonicalize the constant to the RHS.
@@ -1672,10 +1693,10 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
return 0;
}
-Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
+Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
}
static Type *GetCompareTy(Value *Op) {
@@ -1730,7 +1751,7 @@ static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
// If the C and C++ standards are ever made sufficiently restrictive in this
// area, it may be possible to update LLVM's semantics accordingly and reinstate
// this optimization.
-static Constant *computePointerICmp(const DataLayout *TD,
+static Constant *computePointerICmp(const DataLayout *DL,
const TargetLibraryInfo *TLI,
CmpInst::Predicate Pred,
Value *LHS, Value *RHS) {
@@ -1772,8 +1793,8 @@ static Constant *computePointerICmp(const DataLayout *TD,
// numerous hazards. AliasAnalysis and its utilities rely on special rules
// governing loads and stores which don't apply to icmps. Also, AliasAnalysis
// doesn't need to guarantee pointer inequality when it says NoAlias.
- Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
- Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
+ Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
+ Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
// If LHS and RHS are related via constant offsets to the same base
// value, we can replace it with an icmp which just compares the offsets.
@@ -1817,8 +1838,8 @@ static Constant *computePointerICmp(const DataLayout *TD,
ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
uint64_t LHSSize, RHSSize;
if (LHSOffsetCI && RHSOffsetCI &&
- getObjectSize(LHS, LHSSize, TD, TLI) &&
- getObjectSize(RHS, RHSSize, TD, TLI)) {
+ getObjectSize(LHS, LHSSize, DL, TLI) &&
+ getObjectSize(RHS, RHSSize, DL, TLI)) {
const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
if (!LHSOffsetValue.isNegative() &&
@@ -1844,8 +1865,8 @@ static Constant *computePointerICmp(const DataLayout *TD,
// equality comparisons concerning the result. We avoid walking the whole
// chain again by starting where the last calls to
// stripAndComputeConstantOffsets left off and accumulate the offsets.
- Constant *LHSNoBound = stripAndComputeConstantOffsets(TD, LHS, true);
- Constant *RHSNoBound = stripAndComputeConstantOffsets(TD, RHS, true);
+ Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
+ Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
if (LHS == RHS)
return ConstantExpr::getICmp(Pred,
ConstantExpr::getAdd(LHSOffset, LHSNoBound),
@@ -1865,7 +1886,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
+ return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
// If we have a constant, make sure it is on the RHS.
std::swap(LHS, RHS);
@@ -1929,40 +1950,40 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_ULE:
- if (isKnownNonZero(LHS, Q.TD))
+ if (isKnownNonZero(LHS, Q.DL))
return getFalse(ITy);
break;
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGT:
- if (isKnownNonZero(LHS, Q.TD))
+ if (isKnownNonZero(LHS, Q.DL))
return getTrue(ITy);
break;
case ICmpInst::ICMP_SLT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
if (LHSKnownNegative)
return getTrue(ITy);
if (LHSKnownNonNegative)
return getFalse(ITy);
break;
case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
if (LHSKnownNegative)
return getTrue(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
+ if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
return getFalse(ITy);
break;
case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
if (LHSKnownNegative)
return getFalse(ITy);
if (LHSKnownNonNegative)
return getTrue(ITy);
break;
case ICmpInst::ICMP_SGT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
if (LHSKnownNegative)
return getFalse(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
+ if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
return getTrue(ITy);
break;
}
@@ -2045,8 +2066,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
// Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
// if the integer type is the same size as the pointer type.
- if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
- Q.TD->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
+ if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) &&
+ Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
// Transfer the cast to the constant.
if (Value *V = SimplifyICmpInst(Pred, SrcOp,
@@ -2266,7 +2287,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
+ ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
if (!KnownNonNegative)
break;
// fall-through
@@ -2276,7 +2297,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getFalse(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
+ ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
if (!KnownNonNegative)
break;
// fall-through
@@ -2295,7 +2316,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
+ ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
if (!KnownNonNegative)
break;
// fall-through
@@ -2305,7 +2326,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
+ ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
if (!KnownNonNegative)
break;
// fall-through
@@ -2548,7 +2569,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
// Simplify comparisons of related pointers using a powerful, recursive
// GEP-walk when we have target data available..
if (LHS->getType()->isPointerTy())
- if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
+ if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
return C;
if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
@@ -2588,10 +2609,10 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
+ return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -2604,7 +2625,7 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
+ return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
// If we have a constant, make sure it is on the RHS.
std::swap(LHS, RHS);
@@ -2685,10 +2706,10 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
+ return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -2699,8 +2720,12 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
unsigned MaxRecurse) {
// select true, X, Y -> X
// select false, X, Y -> Y
- if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
- return CB->getZExtValue() ? TrueVal : FalseVal;
+ if (Constant *CB = dyn_cast<Constant>(CondVal)) {
+ if (CB->isAllOnesValue())
+ return TrueVal;
+ if (CB->isNullValue())
+ return FalseVal;
+ }
// select C, X, X -> X
if (TrueVal == FalseVal)
@@ -2720,10 +2745,10 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
+ return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -2731,10 +2756,7 @@ Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
/// fold the result. If not, this returns null.
static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
// The type of the GEP pointer operand.
- PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
- // The GEP pointer operand is not a pointer, it's a vector of pointers.
- if (!PtrTy)
- return 0;
+ PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
// getelementptr P -> P.
if (Ops.size() == 1)
@@ -2744,18 +2766,19 @@ static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
// Compute the (pointer) type returned by the GEP instruction.
Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
+ if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
+ GEPTy = VectorType::get(GEPTy, VT->getNumElements());
return UndefValue::get(GEPTy);
}
if (Ops.size() == 2) {
// getelementptr P, 0 -> P.
- if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
- if (C->isZero())
- return Ops[0];
+ if (match(Ops[1], m_Zero()))
+ return Ops[0];
// getelementptr P, N -> P if P points to a type of zero size.
- if (Q.TD) {
+ if (Q.DL) {
Type *Ty = PtrTy->getElementType();
- if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
+ if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0)
return Ops[0];
}
}
@@ -2768,10 +2791,10 @@ static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
}
-Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
+Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
@@ -2805,10 +2828,10 @@ static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
+ return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -2848,15 +2871,15 @@ static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
if (Constant *C = dyn_cast<Constant>(Op))
- return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
+ return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
return 0;
}
-Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
+Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit);
}
//=== Helper functions for higher up the class hierarchy.
@@ -2901,7 +2924,7 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
Constant *COps[] = {CLHS, CRHS};
- return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
+ return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
Q.TLI);
}
@@ -2927,9 +2950,9 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
+ return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit);
}
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
@@ -2942,9 +2965,9 @@ static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
+ return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
RecursionLimit);
}
@@ -3017,136 +3040,136 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
}
Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
- User::op_iterator ArgEnd, const DataLayout *TD,
+ User::op_iterator ArgEnd, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
+ return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT),
RecursionLimit);
}
Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
- const DataLayout *TD, const TargetLibraryInfo *TLI,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
+ return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT),
RecursionLimit);
}
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
-Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
+Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
Value *Result;
switch (I->getOpcode()) {
default:
- Result = ConstantFoldInstruction(I, TD, TLI);
+ Result = ConstantFoldInstruction(I, DL, TLI);
break;
case Instruction::FAdd:
Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), TD, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT);
break;
case Instruction::Add:
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- TD, TLI, DT);
+ DL, TLI, DT);
break;
case Instruction::FSub:
Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), TD, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT);
break;
case Instruction::Sub:
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- TD, TLI, DT);
+ DL, TLI, DT);
break;
case Instruction::FMul:
Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), TD, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT);
break;
case Instruction::Mul:
- Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::SDiv:
- Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::UDiv:
- Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::FDiv:
- Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::SRem:
- Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::URem:
- Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::FRem:
- Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- TD, TLI, DT);
+ DL, TLI, DT);
break;
case Instruction::LShr:
Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->isExact(),
- TD, TLI, DT);
+ DL, TLI, DT);
break;
case Instruction::AShr:
Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->isExact(),
- TD, TLI, DT);
+ DL, TLI, DT);
break;
case Instruction::And:
- Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::Or:
- Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::Xor:
- Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::ICmp:
Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::FCmp:
Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), TD, TLI, DT);
+ I->getOperand(0), I->getOperand(1), DL, TLI, DT);
break;
case Instruction::Select:
Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
- I->getOperand(2), TD, TLI, DT);
+ I->getOperand(2), DL, TLI, DT);
break;
case Instruction::GetElementPtr: {
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
- Result = SimplifyGEPInst(Ops, TD, TLI, DT);
+ Result = SimplifyGEPInst(Ops, DL, TLI, DT);
break;
}
case Instruction::InsertValue: {
InsertValueInst *IV = cast<InsertValueInst>(I);
Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
IV->getInsertedValueOperand(),
- IV->getIndices(), TD, TLI, DT);
+ IV->getIndices(), DL, TLI, DT);
break;
}
case Instruction::PHI:
- Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
+ Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT));
break;
case Instruction::Call: {
CallSite CS(cast<CallInst>(I));
Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
- TD, TLI, DT);
+ DL, TLI, DT);
break;
}
case Instruction::Trunc:
- Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
+ Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT);
break;
}
@@ -3168,7 +3191,7 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
/// This routine returns 'true' only when *it* simplifies something. The passed
/// in simplified value does not count toward this.
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
bool Simplified = false;
@@ -3177,10 +3200,9 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
// If we have an explicit value to collapse to, do that round of the
// simplification loop by hand initially.
if (SimpleV) {
- for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
- ++UI)
- if (*UI != I)
- Worklist.insert(cast<Instruction>(*UI));
+ for (User *U : I->users())
+ if (U != I)
+ Worklist.insert(cast<Instruction>(U));
// Replace the instruction with its simplified value.
I->replaceAllUsesWith(SimpleV);
@@ -3198,7 +3220,7 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
I = Worklist[Idx];
// See if this instruction simplifies.
- SimpleV = SimplifyInstruction(I, TD, TLI, DT);
+ SimpleV = SimplifyInstruction(I, DL, TLI, DT);
if (!SimpleV)
continue;
@@ -3207,9 +3229,8 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
// Stash away all the uses of the old instruction so we can check them for
// recursive simplifications after a RAUW. This is cheaper than checking all
// uses of To on the recursive step in most cases.
- for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
- ++UI)
- Worklist.insert(cast<Instruction>(*UI));
+ for (User *U : I->users())
+ Worklist.insert(cast<Instruction>(U));
// Replace the instruction with its simplified value.
I->replaceAllUsesWith(SimpleV);
@@ -3223,17 +3244,17 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
}
bool llvm::recursivelySimplifyInstruction(Instruction *I,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
+ return replaceAndRecursivelySimplifyImpl(I, 0, DL, TLI, DT);
}
bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
assert(SimpleV && "Must provide a simplified value.");
- return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
+ return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT);
}
diff --git a/lib/Analysis/Interval.cpp b/lib/Analysis/Interval.cpp
index 26a0322..e3e785f 100644
--- a/lib/Analysis/Interval.cpp
+++ b/lib/Analysis/Interval.cpp
@@ -14,7 +14,7 @@
#include "llvm/Analysis/Interval.h"
#include "llvm/IR/BasicBlock.h"
-#include "llvm/Support/CFG.h"
+#include "llvm/IR/CFG.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
diff --git a/lib/Analysis/LazyCallGraph.cpp b/lib/Analysis/LazyCallGraph.cpp
new file mode 100644
index 0000000..ea213f2
--- /dev/null
+++ b/lib/Analysis/LazyCallGraph.cpp
@@ -0,0 +1,181 @@
+//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LazyCallGraph.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+static void findCallees(
+ SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
+ SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
+ SmallPtrSetImpl<Function *> &CalleeSet) {
+ while (!Worklist.empty()) {
+ Constant *C = Worklist.pop_back_val();
+
+ if (Function *F = dyn_cast<Function>(C)) {
+ // Note that we consider *any* function with a definition to be a viable
+ // edge. Even if the function's definition is subject to replacement by
+ // some other module (say, a weak definition) there may still be
+ // optimizations which essentially speculate based on the definition and
+ // a way to check that the specific definition is in fact the one being
+ // used. For example, this could be done by moving the weak definition to
+ // a strong (internal) definition and making the weak definition be an
+ // alias. Then a test of the address of the weak function against the new
+ // strong definition's address would be an effective way to determine the
+ // safety of optimizing a direct call edge.
+ if (!F->isDeclaration() && CalleeSet.insert(F))
+ Callees.push_back(F);
+ continue;
+ }
+
+ for (Value *Op : C->operand_values())
+ if (Visited.insert(cast<Constant>(Op)))
+ Worklist.push_back(cast<Constant>(Op));
+ }
+}
+
+LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(G), F(F) {
+ SmallVector<Constant *, 16> Worklist;
+ SmallPtrSet<Constant *, 16> Visited;
+ // Find all the potential callees in this function. First walk the
+ // instructions and add every operand which is a constant to the worklist.
+ for (BasicBlock &BB : F)
+ for (Instruction &I : BB)
+ for (Value *Op : I.operand_values())
+ if (Constant *C = dyn_cast<Constant>(Op))
+ if (Visited.insert(C))
+ Worklist.push_back(C);
+
+ // We've collected all the constant (and thus potentially function or
+ // function containing) operands to all of the instructions in the function.
+ // Process them (recursively) collecting every function found.
+ findCallees(Worklist, Visited, Callees, CalleeSet);
+}
+
+LazyCallGraph::Node::Node(LazyCallGraph &G, const Node &OtherN)
+ : G(G), F(OtherN.F), CalleeSet(OtherN.CalleeSet) {
+ // Loop over the other node's callees, adding the Function*s to our list
+ // directly, and recursing to add the Node*s.
+ Callees.reserve(OtherN.Callees.size());
+ for (const auto &OtherCallee : OtherN.Callees)
+ if (Function *Callee = OtherCallee.dyn_cast<Function *>())
+ Callees.push_back(Callee);
+ else
+ Callees.push_back(G.copyInto(*OtherCallee.get<Node *>()));
+}
+
+LazyCallGraph::Node::Node(LazyCallGraph &G, Node &&OtherN)
+ : G(G), F(OtherN.F), Callees(std::move(OtherN.Callees)),
+ CalleeSet(std::move(OtherN.CalleeSet)) {
+ // Loop over our Callees. They've been moved from another node, but we need
+ // to move the Node*s to live under our bump ptr allocator.
+ for (auto &Callee : Callees)
+ if (Node *ChildN = Callee.dyn_cast<Node *>())
+ Callee = G.moveInto(std::move(*ChildN));
+}
+
+LazyCallGraph::LazyCallGraph(Module &M) : M(M) {
+ for (Function &F : M)
+ if (!F.isDeclaration() && !F.hasLocalLinkage())
+ if (EntryNodeSet.insert(&F))
+ EntryNodes.push_back(&F);
+
+ // Now add entry nodes for functions reachable via initializers to globals.
+ SmallVector<Constant *, 16> Worklist;
+ SmallPtrSet<Constant *, 16> Visited;
+ for (GlobalVariable &GV : M.globals())
+ if (GV.hasInitializer())
+ if (Visited.insert(GV.getInitializer()))
+ Worklist.push_back(GV.getInitializer());
+
+ findCallees(Worklist, Visited, EntryNodes, EntryNodeSet);
+}
+
+LazyCallGraph::LazyCallGraph(const LazyCallGraph &G)
+ : M(G.M), EntryNodeSet(G.EntryNodeSet) {
+ EntryNodes.reserve(G.EntryNodes.size());
+ for (const auto &EntryNode : G.EntryNodes)
+ if (Function *Callee = EntryNode.dyn_cast<Function *>())
+ EntryNodes.push_back(Callee);
+ else
+ EntryNodes.push_back(copyInto(*EntryNode.get<Node *>()));
+}
+
+// FIXME: This would be crazy simpler if BumpPtrAllocator were movable without
+// invalidating any of the allocated memory. We should make that be the case at
+// some point and delete this.
+LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
+ : M(G.M), EntryNodes(std::move(G.EntryNodes)),
+ EntryNodeSet(std::move(G.EntryNodeSet)) {
+ // Loop over our EntryNodes. They've been moved from another graph, so we
+ // need to move the Node*s to live under our bump ptr allocator. We can just
+ // do this in-place.
+ for (auto &Entry : EntryNodes)
+ if (Node *EntryN = Entry.dyn_cast<Node *>())
+ Entry = moveInto(std::move(*EntryN));
+}
+
+LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
+ return new (MappedN = BPA.Allocate()) Node(*this, F);
+}
+
+LazyCallGraph::Node *LazyCallGraph::copyInto(const Node &OtherN) {
+ Node *&N = NodeMap[&OtherN.F];
+ if (N)
+ return N;
+
+ return new (N = BPA.Allocate()) Node(*this, OtherN);
+}
+
+LazyCallGraph::Node *LazyCallGraph::moveInto(Node &&OtherN) {
+ Node *&N = NodeMap[&OtherN.F];
+ if (N)
+ return N;
+
+ return new (N = BPA.Allocate()) Node(*this, std::move(OtherN));
+}
+
+char LazyCallGraphAnalysis::PassID;
+
+LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
+
+static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
+ SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
+ // Recurse depth first through the nodes.
+ for (LazyCallGraph::Node *ChildN : N)
+ if (Printed.insert(ChildN))
+ printNodes(OS, *ChildN, Printed);
+
+ OS << " Call edges in function: " << N.getFunction().getName() << "\n";
+ for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
+ OS << " -> " << I->getFunction().getName() << "\n";
+
+ OS << "\n";
+}
+
+PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
+ ModuleAnalysisManager *AM) {
+ LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
+
+ OS << "Printing the call graph for module: " << M->getModuleIdentifier()
+ << "\n\n";
+
+ SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
+ for (LazyCallGraph::Node *N : G)
+ if (Printed.insert(N))
+ printNodes(OS, *N, Printed);
+
+ return PreservedAnalyses::all();
+}
diff --git a/lib/Analysis/LazyValueInfo.cpp b/lib/Analysis/LazyValueInfo.cpp
index b6970af..3d6c583 100644
--- a/lib/Analysis/LazyValueInfo.cpp
+++ b/lib/Analysis/LazyValueInfo.cpp
@@ -18,15 +18,15 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/ConstantRange.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include <map>
@@ -302,9 +302,9 @@ namespace {
LVIValueHandle(Value *V, LazyValueInfoCache *P)
: CallbackVH(V), Parent(P) { }
-
- void deleted();
- void allUsesReplacedWith(Value *V) {
+
+ void deleted() override;
+ void allUsesReplacedWith(Value *V) override {
deleted();
}
};
@@ -1013,7 +1013,8 @@ bool LazyValueInfo::runOnFunction(Function &F) {
if (PImpl)
getCache(PImpl).clear();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
TLI = &getAnalysis<TargetLibraryInfo>();
// Fully lazy.
@@ -1073,7 +1074,7 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
// If we know the value is a constant, evaluate the conditional.
Constant *Res = 0;
if (Result.isConstant()) {
- Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD,
+ Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
TLI);
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
return ResCI->isZero() ? False : True;
@@ -1115,14 +1116,14 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
- Result.getNotConstant(), C, TD,
+ Result.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
- Result.getNotConstant(), C, TD,
+ Result.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return True;
diff --git a/lib/Analysis/Lint.cpp b/lib/Analysis/Lint.cpp
index ec17f47..b2182b1 100644
--- a/lib/Analysis/Lint.cpp
+++ b/lib/Analysis/Lint.cpp
@@ -16,7 +16,7 @@
// those aren't comprehensive either. Second, many conditions cannot be
// checked statically. This pass does no dynamic instrumentation, so it
// can't check for all possible problems.
-//
+//
// Another limitation is that it assumes all code will be executed. A store
// through a null pointer in a basic block which is never reached is harmless,
// but this pass will warn about it anyway. This is the main reason why most
@@ -26,31 +26,30 @@
// less obvious. If an optimization pass appears to be introducing a warning,
// it may be that the optimization pass is merely exposing an existing
// condition in the code.
-//
+//
// This code may be run before instcombine. In many cases, instcombine checks
// for the same kinds of things and turns instructions with undefined behavior
// into unreachable (or equivalent). Because of this, this pass makes some
// effort to look through bitcasts and so on.
-//
+//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Lint.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
+#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/InstVisitor.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
-#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
@@ -103,7 +102,7 @@ namespace {
Module *Mod;
AliasAnalysis *AA;
DominatorTree *DT;
- DataLayout *TD;
+ const DataLayout *DL;
TargetLibraryInfo *TLI;
std::string Messages;
@@ -114,22 +113,22 @@ namespace {
initializeLintPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F);
+ bool runOnFunction(Function &F) override;
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetLibraryInfo>();
- AU.addRequired<DominatorTree>();
+ AU.addRequired<DominatorTreeWrapperPass>();
}
- virtual void print(raw_ostream &O, const Module *M) const {}
+ void print(raw_ostream &O, const Module *M) const override {}
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
MessagesStr << *V << '\n';
} else {
- WriteAsOperand(MessagesStr, V, true, Mod);
+ V->printAsOperand(MessagesStr, true, Mod);
MessagesStr << '\n';
}
}
@@ -153,7 +152,7 @@ char Lint::ID = 0;
INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
false, true)
@@ -176,8 +175,9 @@ INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
bool Lint::runOnFunction(Function &F) {
Mod = F.getParent();
AA = &getAnalysis<AliasAnalysis>();
- DT = &getAnalysis<DominatorTree>();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
TLI = &getAnalysis<TargetLibraryInfo>();
visit(F);
dbgs() << MessagesStr.str();
@@ -248,7 +248,7 @@ void Lint::visitCallSite(CallSite CS) {
Type *Ty =
cast<PointerType>(Formal->getType())->getElementType();
visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
- TD ? TD->getABITypeAlignment(Ty) : 0,
+ DL ? DL->getABITypeAlignment(Ty) : 0,
Ty, MemRef::Read | MemRef::Write);
}
}
@@ -415,7 +415,7 @@ void Lint::visitMemoryReference(Instruction &I,
// Only handles memory references that read/write something simple like an
// alloca instruction or a global variable.
int64_t Offset = 0;
- if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
+ if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
// OK, so the access is to a constant offset from Ptr. Check that Ptr is
// something we can handle and if so extract the size of this base object
// along with its alignment.
@@ -424,21 +424,21 @@ void Lint::visitMemoryReference(Instruction &I,
if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
Type *ATy = AI->getAllocatedType();
- if (TD && !AI->isArrayAllocation() && ATy->isSized())
- BaseSize = TD->getTypeAllocSize(ATy);
+ if (DL && !AI->isArrayAllocation() && ATy->isSized())
+ BaseSize = DL->getTypeAllocSize(ATy);
BaseAlign = AI->getAlignment();
- if (TD && BaseAlign == 0 && ATy->isSized())
- BaseAlign = TD->getABITypeAlignment(ATy);
+ if (DL && BaseAlign == 0 && ATy->isSized())
+ BaseAlign = DL->getABITypeAlignment(ATy);
} else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
// If the global may be defined differently in another compilation unit
// then don't warn about funky memory accesses.
if (GV->hasDefinitiveInitializer()) {
Type *GTy = GV->getType()->getElementType();
- if (TD && GTy->isSized())
- BaseSize = TD->getTypeAllocSize(GTy);
+ if (DL && GTy->isSized())
+ BaseSize = DL->getTypeAllocSize(GTy);
BaseAlign = GV->getAlignment();
- if (TD && BaseAlign == 0 && GTy->isSized())
- BaseAlign = TD->getABITypeAlignment(GTy);
+ if (DL && BaseAlign == 0 && GTy->isSized())
+ BaseAlign = DL->getABITypeAlignment(GTy);
}
}
@@ -451,8 +451,8 @@ void Lint::visitMemoryReference(Instruction &I,
// Accesses that say that the memory is more aligned than it is are not
// defined.
- if (TD && Align == 0 && Ty && Ty->isSized())
- Align = TD->getABITypeAlignment(Ty);
+ if (DL && Align == 0 && Ty && Ty->isSized())
+ Align = DL->getABITypeAlignment(Ty);
Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
"Undefined behavior: Memory reference address is misaligned", &I);
}
@@ -504,7 +504,7 @@ void Lint::visitShl(BinaryOperator &I) {
"Undefined result: Shift count out of range", &I);
}
-static bool isZero(Value *V, DataLayout *DL) {
+static bool isZero(Value *V, const DataLayout *DL) {
// Assume undef could be zero.
if (isa<UndefValue>(V))
return true;
@@ -543,22 +543,22 @@ static bool isZero(Value *V, DataLayout *DL) {
}
void Lint::visitSDiv(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), TD),
+ Assert1(!isZero(I.getOperand(1), DL),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitUDiv(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), TD),
+ Assert1(!isZero(I.getOperand(1), DL),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitSRem(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), TD),
+ Assert1(!isZero(I.getOperand(1), DL),
"Undefined behavior: Division by zero", &I);
}
void Lint::visitURem(BinaryOperator &I) {
- Assert1(!isZero(I.getOperand(1), TD),
+ Assert1(!isZero(I.getOperand(1), DL),
"Undefined behavior: Division by zero", &I);
}
@@ -603,7 +603,7 @@ void Lint::visitInsertElementInst(InsertElementInst &I) {
void Lint::visitUnreachableInst(UnreachableInst &I) {
// This isn't undefined behavior, it's merely suspicious.
Assert1(&I == I.getParent()->begin() ||
- prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
+ std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
"Unusual: unreachable immediately preceded by instruction without "
"side effects", &I);
}
@@ -632,7 +632,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
// TODO: Look through eliminable cast pairs.
// TODO: Look through calls with unique return values.
// TODO: Look through vector insert/extract/shuffle.
- V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
+ V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
if (LoadInst *L = dyn_cast<LoadInst>(V)) {
BasicBlock::iterator BBI = L;
BasicBlock *BB = L->getParent();
@@ -652,8 +652,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
if (W != V)
return findValueImpl(W, OffsetOk, Visited);
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
- if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
- Type::getInt64Ty(V->getContext())))
+ if (CI->isNoopCast(DL))
return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
} else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
@@ -666,7 +665,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
CE->getOperand(0)->getType(),
CE->getType(),
- TD ? TD->getIntPtrType(V->getContext()) :
+ DL ? DL->getIntPtrType(V->getType()) :
Type::getInt64Ty(V->getContext())))
return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
} else if (CE->getOpcode() == Instruction::ExtractValue) {
@@ -679,10 +678,10 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
// As a last resort, try SimplifyInstruction or constant folding.
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
- if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
+ if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT))
return findValueImpl(W, OffsetOk, Visited);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
+ if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
if (W != V)
return findValueImpl(W, OffsetOk, Visited);
}
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index e369633..b38672e 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -17,15 +17,14 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfoImpl.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
-#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
@@ -47,7 +46,7 @@ VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
char LoopInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
// Loop identifier metadata name.
@@ -180,12 +179,11 @@ bool Loop::isLCSSAForm(DominatorTree &DT) const {
for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
BasicBlock *BB = *BI;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
- ++UI) {
- User *U = *UI;
- BasicBlock *UserBB = cast<Instruction>(U)->getParent();
- if (PHINode *P = dyn_cast<PHINode>(U))
- UserBB = P->getIncomingBlock(UI);
+ for (Use &U : I->uses()) {
+ Instruction *UI = cast<Instruction>(U.getUser());
+ BasicBlock *UserBB = UI->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(UI))
+ UserBB = P->getIncomingBlock(U);
// Check the current block, as a fast-path, before checking whether
// the use is anywhere in the loop. Most values are used in the same
@@ -220,12 +218,12 @@ bool Loop::isSafeToClone() const {
return false;
if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
- if (II->hasFnAttr(Attribute::NoDuplicate))
+ if (II->cannotDuplicate())
return false;
for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
- if (CI->hasFnAttr(Attribute::NoDuplicate))
+ if (CI->cannotDuplicate())
return false;
}
}
@@ -528,8 +526,8 @@ void UnloopUpdater::removeBlocksFromAncestors() {
/// nested within unloop.
void UnloopUpdater::updateSubloopParents() {
while (!Unloop->empty()) {
- Loop *Subloop = *llvm::prior(Unloop->end());
- Unloop->removeChildLoop(llvm::prior(Unloop->end()));
+ Loop *Subloop = *std::prev(Unloop->end());
+ Unloop->removeChildLoop(std::prev(Unloop->end()));
assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
if (Loop *Parent = SubloopParents[Subloop])
@@ -614,7 +612,7 @@ Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
//
bool LoopInfo::runOnFunction(Function &) {
releaseMemory();
- LI.Analyze(getAnalysis<DominatorTree>().getBase());
+ LI.Analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
return false;
}
@@ -653,7 +651,7 @@ void LoopInfo::updateUnloop(Loop *Unloop) {
// Move all of the subloops to the top-level.
while (!Unloop->empty())
- LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
+ LI.addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
return;
}
@@ -705,7 +703,7 @@ void LoopInfo::verifyAnalysis() const {
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
- AU.addRequired<DominatorTree>();
+ AU.addRequired<DominatorTreeWrapperPass>();
}
void LoopInfo::print(raw_ostream &OS, const Module*) const {
diff --git a/lib/Analysis/LoopPass.cpp b/lib/Analysis/LoopPass.cpp
index acf2ba6..38e753f 100644
--- a/lib/Analysis/LoopPass.cpp
+++ b/lib/Analysis/LoopPass.cpp
@@ -14,7 +14,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Assembly/PrintModulePass.h"
+#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
@@ -33,11 +33,11 @@ public:
PrintLoopPass(const std::string &B, raw_ostream &o)
: LoopPass(ID), Banner(B), Out(o) {}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
- bool runOnLoop(Loop *L, LPPassManager &) {
+ bool runOnLoop(Loop *L, LPPassManager &) override {
Out << Banner;
for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
b != be;
@@ -365,3 +365,17 @@ void LoopPass::assignPassManager(PMStack &PMS,
LPPM->add(this);
}
+
+// Containing function has Attribute::OptimizeNone and transformation
+// passes should skip it.
+bool LoopPass::skipOptnoneFunction(const Loop *L) const {
+ const Function *F = L->getHeader()->getParent();
+ if (F && F->hasFnAttribute(Attribute::OptimizeNone)) {
+ // FIXME: Report this to dbgs() only once per function.
+ DEBUG(dbgs() << "Skipping pass '" << getPassName()
+ << "' in function " << F->getName() << "\n");
+ // FIXME: Delete loop from pass manager's queue?
+ return true;
+ }
+ return false;
+}
diff --git a/lib/Analysis/MemDepPrinter.cpp b/lib/Analysis/MemDepPrinter.cpp
index d26aaf1..bc1dc69 100644
--- a/lib/Analysis/MemDepPrinter.cpp
+++ b/lib/Analysis/MemDepPrinter.cpp
@@ -13,11 +13,10 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
-#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -45,17 +44,17 @@ namespace {
initializeMemDepPrinterPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnFunction(Function &F);
+ bool runOnFunction(Function &F) override;
- void print(raw_ostream &OS, const Module * = 0) const;
+ void print(raw_ostream &OS, const Module * = 0) const override;
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<MemoryDependenceAnalysis>();
AU.setPreservesAll();
}
- virtual void releaseMemory() {
+ void releaseMemory() override {
Deps.clear();
F = 0;
}
@@ -68,7 +67,7 @@ namespace {
return InstTypePair(dep.getInst(), Def);
if (dep.isNonFuncLocal())
return InstTypePair(dep.getInst(), NonFuncLocal);
- assert(dep.isUnknown() && "unexptected dependence type");
+ assert(dep.isUnknown() && "unexpected dependence type");
return InstTypePair(dep.getInst(), Unknown);
}
static InstTypePair getInstTypePair(const Instruction* inst, DepType type) {
@@ -177,7 +176,7 @@ void MemDepPrinter::print(raw_ostream &OS, const Module *M) const {
OS << DepTypeStr[type];
if (DepBB) {
OS << " in block ";
- WriteAsOperand(OS, DepBB, /*PrintType=*/false, M);
+ DepBB->printAsOperand(OS, /*PrintType=*/false, M);
}
if (DepInst) {
OS << " from: ";
diff --git a/lib/Analysis/MemoryBuiltins.cpp b/lib/Analysis/MemoryBuiltins.cpp
index 1db0f63..1dba323 100644
--- a/lib/Analysis/MemoryBuiltins.cpp
+++ b/lib/Analysis/MemoryBuiltins.cpp
@@ -261,8 +261,8 @@ PointerType *llvm::getMallocType(const CallInst *CI,
unsigned NumOfBitCastUses = 0;
// Determine if CallInst has a bitcast use.
- for (Value::const_use_iterator UI = CI->use_begin(), E = CI->use_end();
- UI != E; )
+ for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
+ UI != E;)
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
MallocType = cast<PointerType>(BCI->getDestTy());
NumOfBitCastUses++;
@@ -399,12 +399,14 @@ ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *DL,
LLVMContext &Context,
bool RoundToAlign)
: DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) {
- IntegerType *IntTy = DL->getIntPtrType(Context);
- IntTyBits = IntTy->getBitWidth();
- Zero = APInt::getNullValue(IntTyBits);
+ // Pointer size must be rechecked for each object visited since it could have
+ // a different address space.
}
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
+ IntTyBits = DL->getPointerTypeSizeInBits(V->getType());
+ Zero = APInt::getNullValue(IntTyBits);
+
V = V->stripPointerCasts();
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If we have already seen this instruction, bail out. Cycles can happen in
@@ -456,7 +458,7 @@ SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
// no interprocedural analysis is done at the moment
- if (!A.hasByValAttr()) {
+ if (!A.hasByValOrInAllocaAttr()) {
++ObjectVisitorArgument;
return unknown();
}
@@ -592,11 +594,15 @@ ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *DL,
bool RoundToAlign)
: DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
RoundToAlign(RoundToAlign) {
- IntTy = DL->getIntPtrType(Context);
- Zero = ConstantInt::get(IntTy, 0);
+ // IntTy and Zero must be set for each compute() since the address space may
+ // be different for later objects.
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
+ // XXX - Are vectors of pointers possible here?
+ IntTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
+ Zero = ConstantInt::get(IntTy, 0);
+
SizeOffsetEvalType Result = compute_(V);
if (!bothKnown(Result)) {
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp
index 84ff2ee..015ded1 100644
--- a/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -19,18 +19,18 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/PredIteratorCache.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Support/PredIteratorCache.h"
using namespace llvm;
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
@@ -59,7 +59,7 @@ INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
"Memory Dependence Analysis", false, true)
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
-: FunctionPass(ID), PredCache(0) {
+ : FunctionPass(ID), PredCache() {
initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
}
MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
@@ -87,8 +87,11 @@ void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
- TD = getAnalysisIfAvailable<DataLayout>();
- DT = getAnalysisIfAvailable<DominatorTree>();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
+ DominatorTreeWrapperPass *DTWP =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DT = DTWP ? &DTWP->getDomTree() : 0;
if (!PredCache)
PredCache.reset(new PredIteratorCache());
return false;
@@ -256,17 +259,17 @@ isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
const Value *&MemLocBase,
int64_t &MemLocOffs,
const LoadInst *LI,
- const DataLayout *TD) {
+ const DataLayout *DL) {
// If we have no target data, we can't do this.
- if (TD == 0) return false;
+ if (DL == 0) return false;
// If we haven't already computed the base/offset of MemLoc, do so now.
if (MemLocBase == 0)
- MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
+ MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
unsigned Size = MemoryDependenceAnalysis::
getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
- LI, *TD);
+ LI, *DL);
return Size != 0;
}
@@ -280,7 +283,7 @@ isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
unsigned MemoryDependenceAnalysis::
getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
unsigned MemLocSize, const LoadInst *LI,
- const DataLayout &TD) {
+ const DataLayout &DL) {
// We can only extend simple integer loads.
if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
@@ -293,7 +296,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
// Get the base of this load.
int64_t LIOffs = 0;
const Value *LIBase =
- GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD);
+ GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL);
// If the two pointers are not based on the same pointer, we can't tell that
// they are related.
@@ -329,7 +332,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
// If this load size is bigger than our known alignment or would not fit
// into a native integer register, then we fail.
if (NewLoadByteSize > LoadAlign ||
- !TD.fitsInLegalInteger(NewLoadByteSize*8))
+ !DL.fitsInLegalInteger(NewLoadByteSize*8))
return 0;
if (LIOffs+NewLoadByteSize > MemLocEnd &&
@@ -422,7 +425,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
- MemLocOffset, LI, TD))
+ MemLocOffset, LI, DL))
return MemDepResult::getClobber(Inst);
continue;
@@ -498,7 +501,7 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
// need to continue scanning until the malloc call.
const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
- const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
+ const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
return MemDepResult::getDef(Inst);
@@ -690,7 +693,7 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
NonLocalDepEntry(DirtyBB));
- if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
+ if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
--Entry;
NonLocalDepEntry *ExistingResult = 0;
@@ -771,7 +774,7 @@ getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
"Can't get pointer deps of a non-pointer!");
Result.clear();
- PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
+ PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL);
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
diff --git a/lib/Analysis/ModuleDebugInfoPrinter.cpp b/lib/Analysis/ModuleDebugInfoPrinter.cpp
index 0341537..f645558 100644
--- a/lib/Analysis/ModuleDebugInfoPrinter.cpp
+++ b/lib/Analysis/ModuleDebugInfoPrinter.cpp
@@ -17,8 +17,7 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/DebugInfo.h"
+#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
@@ -34,12 +33,12 @@ namespace {
initializeModuleDebugInfoPrinterPass(*PassRegistry::getPassRegistry());
}
- virtual bool runOnModule(Module &M);
+ bool runOnModule(Module &M) override;
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
- virtual void print(raw_ostream &O, const Module *M) const;
+ void print(raw_ostream &O, const Module *M) const override;
};
}
@@ -57,31 +56,27 @@ bool ModuleDebugInfoPrinter::runOnModule(Module &M) {
}
void ModuleDebugInfoPrinter::print(raw_ostream &O, const Module *M) const {
- for (DebugInfoFinder::iterator I = Finder.compile_unit_begin(),
- E = Finder.compile_unit_end(); I != E; ++I) {
+ for (DICompileUnit CU : Finder.compile_units()) {
O << "Compile Unit: ";
- DICompileUnit(*I).print(O);
+ CU.print(O);
O << '\n';
}
- for (DebugInfoFinder::iterator I = Finder.subprogram_begin(),
- E = Finder.subprogram_end(); I != E; ++I) {
+ for (DISubprogram S : Finder.subprograms()) {
O << "Subprogram: ";
- DISubprogram(*I).print(O);
+ S.print(O);
O << '\n';
}
- for (DebugInfoFinder::iterator I = Finder.global_variable_begin(),
- E = Finder.global_variable_end(); I != E; ++I) {
+ for (DIGlobalVariable GV : Finder.global_variables()) {
O << "GlobalVariable: ";
- DIGlobalVariable(*I).print(O);
+ GV.print(O);
O << '\n';
}
- for (DebugInfoFinder::iterator I = Finder.type_begin(),
- E = Finder.type_end(); I != E; ++I) {
+ for (DIType T : Finder.types()) {
O << "Type: ";
- DIType(*I).print(O);
+ T.print(O);
O << '\n';
}
}
diff --git a/lib/Analysis/NOTICE b/lib/Analysis/NOTICE
deleted file mode 100644
index 1b1047c..0000000
--- a/lib/Analysis/NOTICE
+++ /dev/null
@@ -1,69 +0,0 @@
-==============================================================================
-LLVM Release License
-==============================================================================
-University of Illinois/NCSA
-Open Source License
-
-Copyright (c) 2003-2011 University of Illinois at Urbana-Champaign.
-All rights reserved.
-
-Developed by:
-
- LLVM Team
-
- University of Illinois at Urbana-Champaign
-
- http://llvm.org
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of
-this software and associated documentation files (the "Software"), to deal with
-the Software without restriction, including without limitation the rights to
-use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
-of the Software, and to permit persons to whom the Software is furnished to do
-so, subject to the following conditions:
-
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimers.
-
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimers in the
- documentation and/or other materials provided with the distribution.
-
- * Neither the names of the LLVM Team, University of Illinois at
- Urbana-Champaign, nor the names of its contributors may be used to
- endorse or promote products derived from this Software without specific
- prior written permission.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
-FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
-SOFTWARE.
-
-==============================================================================
-Copyrights and Licenses for Third Party Software Distributed with LLVM:
-==============================================================================
-The LLVM software contains code written by third parties. Such software will
-have its own individual LICENSE.TXT file in the directory in which it appears.
-This file will describe the copyrights, license, and restrictions which apply
-to that code.
-
-The disclaimer of warranty in the University of Illinois Open Source License
-applies to all code in the LLVM Distribution, and nothing in any of the
-other licenses gives permission to use the names of the LLVM Team or the
-University of Illinois to endorse or promote products derived from this
-Software.
-
-The following pieces of software have additional or alternate copyrights,
-licenses, and/or restrictions:
-
-Program Directory
-------- ---------
-Autoconf llvm/autoconf
- llvm/projects/ModuleMaker/autoconf
- llvm/projects/sample/autoconf
-CellSPU backend llvm/lib/Target/CellSPU/README.txt
-Google Test llvm/utils/unittest/googletest
-OpenBSD regex llvm/lib/Support/{reg*, COPYRIGHT.regex}
diff --git a/lib/Analysis/NoAliasAnalysis.cpp b/lib/Analysis/NoAliasAnalysis.cpp
index 907e962..0c119d6 100644
--- a/lib/Analysis/NoAliasAnalysis.cpp
+++ b/lib/Analysis/NoAliasAnalysis.cpp
@@ -30,48 +30,47 @@ namespace {
initializeNoAAPass(*PassRegistry::getPassRegistry());
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {}
- virtual void initializePass() {
+ void initializePass() override {
// Note: NoAA does not call InitializeAliasAnalysis because it's
// special and does not support chaining.
- TD = getAnalysisIfAvailable<DataLayout>();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
}
- virtual AliasResult alias(const Location &LocA, const Location &LocB) {
+ AliasResult alias(const Location &LocA, const Location &LocB) override {
return MayAlias;
}
- virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
+ ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
return UnknownModRefBehavior;
}
- virtual ModRefBehavior getModRefBehavior(const Function *F) {
+ ModRefBehavior getModRefBehavior(const Function *F) override {
return UnknownModRefBehavior;
}
- virtual bool pointsToConstantMemory(const Location &Loc,
- bool OrLocal) {
+ bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override {
return false;
}
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc) {
+ ModRefResult getModRefInfo(ImmutableCallSite CS,
+ const Location &Loc) override {
return ModRef;
}
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2) {
+ ModRefResult getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) override {
return ModRef;
}
- virtual void deleteValue(Value *V) {}
- virtual void copyValue(Value *From, Value *To) {}
- virtual void addEscapingUse(Use &U) {}
-
+ void deleteValue(Value *V) override {}
+ void copyValue(Value *From, Value *To) override {}
+ void addEscapingUse(Use &U) override {}
+
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(const void *ID) {
+ void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
diff --git a/lib/Analysis/PHITransAddr.cpp b/lib/Analysis/PHITransAddr.cpp
index e6af066..ad3685a 100644
--- a/lib/Analysis/PHITransAddr.cpp
+++ b/lib/Analysis/PHITransAddr.cpp
@@ -12,10 +12,10 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/PHITransAddr.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -72,7 +72,7 @@ static bool VerifySubExpr(Value *Expr,
// If it isn't in the InstInputs list it is a subexpr incorporated into the
// address. Sanity check that it is phi translatable.
if (!CanPHITrans(I)) {
- errs() << "Non phi translatable instruction found in PHITransAddr:\n";
+ errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
errs() << *I << '\n';
llvm_unreachable("Either something is missing from InstInputs or "
"CanPHITrans is wrong.");
@@ -202,9 +202,8 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
// Otherwise we have to see if a casted version of the incoming pointer
// is available. If so, we can use it, otherwise we have to fail.
- for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
- UI != E; ++UI) {
- if (CastInst *CastI = dyn_cast<CastInst>(*UI))
+ for (User *U : PHIIn->users()) {
+ if (CastInst *CastI = dyn_cast<CastInst>(U))
if (CastI->getOpcode() == Cast->getOpcode() &&
CastI->getType() == Cast->getType() &&
(!DT || DT->dominates(CastI->getParent(), PredBB)))
@@ -229,7 +228,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
return GEP;
// Simplify the GEP to handle 'gep x, 0' -> x etc.
- if (Value *V = SimplifyGEPInst(GEPOps, TD, TLI, DT)) {
+ if (Value *V = SimplifyGEPInst(GEPOps, DL, TLI, DT)) {
for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
RemoveInstInputs(GEPOps[i], InstInputs);
@@ -238,9 +237,8 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
// Scan to see if we have this GEP available.
Value *APHIOp = GEPOps[0];
- for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
- UI != E; ++UI) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
+ for (User *U : APHIOp->users()) {
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
if (GEPI->getType() == GEP->getType() &&
GEPI->getNumOperands() == GEPOps.size() &&
GEPI->getParent()->getParent() == CurBB->getParent() &&
@@ -285,7 +283,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
}
// See if the add simplifies away.
- if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, TLI, DT)) {
+ if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT)) {
// If we simplified the operands, the LHS is no longer an input, but Res
// is.
RemoveInstInputs(LHS, InstInputs);
@@ -297,9 +295,8 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
return Inst;
// Otherwise, see if we have this add available somewhere.
- for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
- UI != E; ++UI) {
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
+ for (User *U : LHS->users()) {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
if (BO->getOpcode() == Instruction::Add &&
BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
BO->getParent()->getParent() == CurBB->getParent() &&
@@ -372,7 +369,7 @@ InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
SmallVectorImpl<Instruction*> &NewInsts) {
// See if we have a version of this value already available and dominating
// PredBB. If so, there is no need to insert a new instance of it.
- PHITransAddr Tmp(InVal, TD);
+ PHITransAddr Tmp(InVal, DL);
if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
return Tmp.getAddr();
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
index 96804a0..f23833a 100644
--- a/lib/Analysis/PostDominators.cpp
+++ b/lib/Analysis/PostDominators.cpp
@@ -16,11 +16,10 @@
#include "llvm/Analysis/PostDominators.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
-#include "llvm/Analysis/DominatorInternals.h"
-#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/CFG.h"
#include "llvm/IR/Instructions.h"
-#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
diff --git a/lib/Analysis/PtrUseVisitor.cpp b/lib/Analysis/PtrUseVisitor.cpp
index 0a342b2..1b0f359 100644
--- a/lib/Analysis/PtrUseVisitor.cpp
+++ b/lib/Analysis/PtrUseVisitor.cpp
@@ -16,14 +16,13 @@
using namespace llvm;
void detail::PtrUseVisitorBase::enqueueUsers(Instruction &I) {
- for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
- UI != UE; ++UI) {
- if (VisitedUses.insert(&UI.getUse())) {
+ for (Use &U : I.uses()) {
+ if (VisitedUses.insert(&U)) {
UseToVisit NewU = {
- UseToVisit::UseAndIsOffsetKnownPair(&UI.getUse(), IsOffsetKnown),
+ UseToVisit::UseAndIsOffsetKnownPair(&U, IsOffsetKnown),
Offset
};
- Worklist.push_back(llvm_move(NewU));
+ Worklist.push_back(std::move(NewU));
}
}
}
diff --git a/lib/Analysis/RegionInfo.cpp b/lib/Analysis/RegionInfo.cpp
index 5635688..f4da598 100644
--- a/lib/Analysis/RegionInfo.cpp
+++ b/lib/Analysis/RegionInfo.cpp
@@ -15,10 +15,9 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionIterator.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <set>
@@ -215,7 +214,7 @@ std::string Region::getNameStr() const {
if (getEntry()->getName().empty()) {
raw_string_ostream OS(entryName);
- WriteAsOperand(OS, getEntry(), false);
+ getEntry()->printAsOperand(OS, false);
} else
entryName = getEntry()->getName();
@@ -223,7 +222,7 @@ std::string Region::getNameStr() const {
if (getExit()->getName().empty()) {
raw_string_ostream OS(exitName);
- WriteAsOperand(OS, getExit(), false);
+ getExit()->printAsOperand(OS, false);
} else
exitName = getExit()->getName();
} else
@@ -439,8 +438,8 @@ void Region::print(raw_ostream &OS, bool print_tree, unsigned level,
OS.indent(level*2 + 2);
if (Style == PrintBB) {
- for (const_block_iterator I = block_begin(), E = block_end(); I != E; ++I)
- OS << (*I)->getName() << ", "; // TODO: remove the last ","
+ for (const auto &BB : blocks())
+ OS << BB->getName() << ", "; // TODO: remove the last ","
} else if (Style == PrintRN) {
for (const_element_iterator I = element_begin(), E = element_end(); I!=E; ++I)
OS << **I << ", "; // TODO: remove the last ",
@@ -707,7 +706,7 @@ void RegionInfo::Calculate(Function &F) {
bool RegionInfo::runOnFunction(Function &F) {
releaseMemory();
- DT = &getAnalysis<DominatorTree>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
PDT = &getAnalysis<PostDominatorTree>();
DF = &getAnalysis<DominanceFrontier>();
@@ -721,7 +720,7 @@ bool RegionInfo::runOnFunction(Function &F) {
void RegionInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
- AU.addRequiredTransitive<DominatorTree>();
+ AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequired<PostDominatorTree>();
AU.addRequired<DominanceFrontier>();
}
@@ -847,7 +846,7 @@ void RegionInfo::splitBlock(BasicBlock* NewBB, BasicBlock *OldBB)
char RegionInfo::ID = 0;
INITIALIZE_PASS_BEGIN(RegionInfo, "regions",
"Detect single entry single exit regions", true, true)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
INITIALIZE_PASS_END(RegionInfo, "regions",
diff --git a/lib/Analysis/RegionPass.cpp b/lib/Analysis/RegionPass.cpp
index 9208fa2..12d7ca3 100644
--- a/lib/Analysis/RegionPass.cpp
+++ b/lib/Analysis/RegionPass.cpp
@@ -189,15 +189,14 @@ public:
PrintRegionPass(const std::string &B, raw_ostream &o)
: RegionPass(ID), Banner(B), Out(o) {}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
- virtual bool runOnRegion(Region *R, RGPassManager &RGM) {
+ bool runOnRegion(Region *R, RGPassManager &RGM) override {
Out << Banner;
- for (Region::block_iterator I = R->block_begin(), E = R->block_end();
- I != E; ++I)
- (*I)->print(Out);
+ for (const auto &BB : R->blocks())
+ BB->print(Out);
return false;
}
diff --git a/lib/Analysis/RegionPrinter.cpp b/lib/Analysis/RegionPrinter.cpp
index c5f1b92..6467f47 100644
--- a/lib/Analysis/RegionPrinter.cpp
+++ b/lib/Analysis/RegionPrinter.cpp
@@ -121,11 +121,10 @@ struct DOTGraphTraits<RegionInfo*> : public DOTGraphTraits<RegionNode*> {
RegionInfo *RI = R->getRegionInfo();
- for (Region::const_block_iterator BI = R->block_begin(),
- BE = R->block_end(); BI != BE; ++BI)
- if (RI->getRegionFor(*BI) == R)
+ for (const auto &BB : R->blocks())
+ if (RI->getRegionFor(BB) == R)
O.indent(2 * (depth + 1)) << "Node"
- << static_cast<const void*>(RI->getTopLevelRegion()->getBBNode(*BI))
+ << static_cast<const void*>(RI->getTopLevelRegion()->getBBNode(BB))
<< ";\n";
O.indent(2 * depth) << "}\n";
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 0a02f4e..08de621 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -64,26 +64,25 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Assembly/Writer.h"
+#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
@@ -114,7 +113,7 @@ VerifySCEV("verify-scev",
INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
-INITIALIZE_PASS_DEPENDENCY(DominatorTree)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
"Scalar Evolution Analysis", false, true)
@@ -136,9 +135,9 @@ void SCEV::dump() const {
#endif
void SCEV::print(raw_ostream &OS) const {
- switch (getSCEVType()) {
+ switch (static_cast<SCEVTypes>(getSCEVType())) {
case scConstant:
- WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
+ cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
return;
case scTruncate: {
const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
@@ -174,7 +173,7 @@ void SCEV::print(raw_ostream &OS) const {
if (AR->getNoWrapFlags(FlagNW) &&
!AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
OS << "nw><";
- WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
+ AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ">";
return;
}
@@ -194,7 +193,7 @@ void SCEV::print(raw_ostream &OS) const {
for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
I != E; ++I) {
OS << **I;
- if (llvm::next(I) != E)
+ if (std::next(I) != E)
OS << OpStr;
}
OS << ")";
@@ -229,25 +228,24 @@ void SCEV::print(raw_ostream &OS) const {
Constant *FieldNo;
if (U->isOffsetOf(CTy, FieldNo)) {
OS << "offsetof(" << *CTy << ", ";
- WriteAsOperand(OS, FieldNo, false);
+ FieldNo->printAsOperand(OS, false);
OS << ")";
return;
}
// Otherwise just print it normally.
- WriteAsOperand(OS, U->getValue(), false);
+ U->getValue()->printAsOperand(OS, false);
return;
}
case scCouldNotCompute:
OS << "***COULDNOTCOMPUTE***";
return;
- default: break;
}
llvm_unreachable("Unknown SCEV kind!");
}
Type *SCEV::getType() const {
- switch (getSCEVType()) {
+ switch (static_cast<SCEVTypes>(getSCEVType())) {
case scConstant:
return cast<SCEVConstant>(this)->getType();
case scTruncate:
@@ -267,9 +265,8 @@ Type *SCEV::getType() const {
return cast<SCEVUnknown>(this)->getType();
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default:
- llvm_unreachable("Unknown SCEV kind!");
}
+ llvm_unreachable("Unknown SCEV kind!");
}
bool SCEV::isZero() const {
@@ -322,7 +319,7 @@ const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
return S;
}
-const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
+const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
return getConstant(ConstantInt::get(getContext(), Val));
}
@@ -482,7 +479,7 @@ namespace {
// Aside from the getSCEVType() ordering, the particular ordering
// isn't very important except that it's beneficial to be consistent,
// so that (a + b) and (b + a) don't end up as different expressions.
- switch (LType) {
+ switch (static_cast<SCEVTypes>(LType)) {
case scUnknown: {
const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
@@ -619,9 +616,10 @@ namespace {
return compare(LC->getOperand(), RC->getOperand());
}
- default:
- llvm_unreachable("Unknown SCEV kind!");
+ case scCouldNotCompute:
+ llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
}
+ llvm_unreachable("Unknown SCEV kind!");
}
};
}
@@ -1362,7 +1360,7 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
/// what it does, given a sequence of operands that would form an add
/// expression like this:
///
-/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
+/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
///
/// where A and B are constants, update the map with these values:
///
@@ -2240,6 +2238,77 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
return S;
}
+static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
+ APInt A = C1->getValue()->getValue().abs();
+ APInt B = C2->getValue()->getValue().abs();
+ uint32_t ABW = A.getBitWidth();
+ uint32_t BBW = B.getBitWidth();
+
+ if (ABW > BBW)
+ B = B.zext(ABW);
+ else if (ABW < BBW)
+ A = A.zext(BBW);
+
+ return APIntOps::GreatestCommonDivisor(A, B);
+}
+
+/// getUDivExactExpr - Get a canonical unsigned division expression, or
+/// something simpler if possible. There is no representation for an exact udiv
+/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
+/// We can't do this when it's not exact because the udiv may be clearing bits.
+const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
+ const SCEV *RHS) {
+ // TODO: we could try to find factors in all sorts of things, but for now we
+ // just deal with u/exact (multiply, constant). See SCEVDivision towards the
+ // end of this file for inspiration.
+
+ const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
+ if (!Mul)
+ return getUDivExpr(LHS, RHS);
+
+ if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
+ // If the mulexpr multiplies by a constant, then that constant must be the
+ // first element of the mulexpr.
+ if (const SCEVConstant *LHSCst =
+ dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
+ if (LHSCst == RHSCst) {
+ SmallVector<const SCEV *, 2> Operands;
+ Operands.append(Mul->op_begin() + 1, Mul->op_end());
+ return getMulExpr(Operands);
+ }
+
+ // We can't just assume that LHSCst divides RHSCst cleanly, it could be
+ // that there's a factor provided by one of the other terms. We need to
+ // check.
+ APInt Factor = gcd(LHSCst, RHSCst);
+ if (!Factor.isIntN(1)) {
+ LHSCst = cast<SCEVConstant>(
+ getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
+ RHSCst = cast<SCEVConstant>(
+ getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
+ SmallVector<const SCEV *, 2> Operands;
+ Operands.push_back(LHSCst);
+ Operands.append(Mul->op_begin() + 1, Mul->op_end());
+ LHS = getMulExpr(Operands);
+ RHS = RHSCst;
+ Mul = dyn_cast<SCEVMulExpr>(LHS);
+ if (!Mul)
+ return getUDivExactExpr(LHS, RHS);
+ }
+ }
+ }
+
+ for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
+ if (Mul->getOperand(i) == RHS) {
+ SmallVector<const SCEV *, 2> Operands;
+ Operands.append(Mul->op_begin(), Mul->op_begin() + i);
+ Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
+ return getMulExpr(Operands);
+ }
+ }
+
+ return getUDivExpr(LHS, RHS);
+}
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
/// Simplify the expression as much as possible.
@@ -2594,12 +2663,12 @@ const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
// If we have DataLayout, we can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
- if (TD)
- return getConstant(IntTy, TD->getTypeAllocSize(AllocTy));
+ if (DL)
+ return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Constant *C = ConstantExpr::getSizeOf(AllocTy);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
C = Folded;
Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
assert(Ty == IntTy && "Effective SCEV type doesn't match");
@@ -2612,14 +2681,14 @@ const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
// If we have DataLayout, we can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
- if (TD) {
+ if (DL) {
return getConstant(IntTy,
- TD->getStructLayout(STy)->getElementOffset(FieldNo));
+ DL->getStructLayout(STy)->getElementOffset(FieldNo));
}
Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
+ if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
C = Folded;
Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
@@ -2667,8 +2736,8 @@ uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
assert(isSCEVable(Ty) && "Type is not SCEVable!");
// If we have a DataLayout, use it!
- if (TD)
- return TD->getTypeSizeInBits(Ty);
+ if (DL)
+ return DL->getTypeSizeInBits(Ty);
// Integer types have fixed sizes.
if (Ty->isIntegerTy())
@@ -2694,8 +2763,8 @@ Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
// The only other support type is pointer.
assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
- if (TD)
- return TD->getIntPtrType(Ty);
+ if (DL)
+ return DL->getIntPtrType(Ty);
// Without DataLayout, conservatively assume pointers are 64-bit.
return Type::getInt64Ty(getContext());
@@ -2714,7 +2783,7 @@ namespace {
bool FindOne;
FindInvalidSCEVUnknown() { FindOne = false; }
bool follow(const SCEV *S) {
- switch (S->getSCEVType()) {
+ switch (static_cast<SCEVTypes>(S->getSCEVType())) {
case scConstant:
return false;
case scUnknown:
@@ -2964,9 +3033,8 @@ static void
PushDefUseChildren(Instruction *I,
SmallVectorImpl<Instruction *> &Worklist) {
// Push the def-use children onto the Worklist stack.
- for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
- UI != UE; ++UI)
- Worklist.push_back(cast<Instruction>(*UI));
+ for (User *U : I->users())
+ Worklist.push_back(cast<Instruction>(U));
}
/// ForgetSymbolicValue - This looks up computed SCEV values for all
@@ -3163,7 +3231,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
// PHI's incoming blocks are in a different loop, in which case doing so
// risks breaking LCSSA form. Instcombine would normally zap these, but
// it doesn't have DominatorTree information, so it may miss cases.
- if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
+ if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
if (LI->replacementPreservesLCSSAForm(PN, V))
return getSCEV(V);
@@ -3189,7 +3257,7 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
gep_type_iterator GTI = gep_type_begin(GEP);
- for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
+ for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
E = GEP->op_end();
I != E; ++I) {
Value *Index = *I;
@@ -3434,7 +3502,7 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
+ ComputeMaskedBits(U->getValue(), Zeros, Ones, DL);
if (Ones == ~Zeros + 1)
return setUnsignedRange(U, ConservativeResult);
return setUnsignedRange(U,
@@ -3584,9 +3652,9 @@ ScalarEvolution::getSignedRange(const SCEV *S) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
- if (!U->getValue()->getType()->isIntegerTy() && !TD)
+ if (!U->getValue()->getType()->isIntegerTy() && !DL)
return setSignedRange(U, ConservativeResult);
- unsigned NS = ComputeNumSignBits(U->getValue(), TD);
+ unsigned NS = ComputeNumSignBits(U->getValue(), DL);
if (NS <= 1)
return setSignedRange(U, ConservativeResult);
return setSignedRange(U, ConservativeResult.intersectWith(
@@ -3690,17 +3758,24 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// Use ComputeMaskedBits to compute what ShrinkDemandedConstant
// knew about to reconstruct a low-bits mask value.
unsigned LZ = A.countLeadingZeros();
+ unsigned TZ = A.countTrailingZeros();
unsigned BitWidth = A.getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
-
- APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
-
- if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
- return
- getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
- IntegerType::get(getContext(), BitWidth - LZ)),
- U->getType());
+ ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL);
+
+ APInt EffectiveMask =
+ APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
+ if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
+ const SCEV *MulCount = getConstant(
+ ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
+ return getMulExpr(
+ getZeroExtendExpr(
+ getTruncateExpr(
+ getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
+ IntegerType::get(getContext(), BitWidth - LZ - TZ)),
+ U->getType()),
+ MulCount);
+ }
}
break;
@@ -4338,6 +4413,8 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
// Examine all exits and pick the most conservative values.
const SCEV *MaxBECount = getCouldNotCompute();
bool CouldComputeBECount = true;
+ BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
+ const SCEV *LatchMaxCount = 0;
SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
@@ -4354,13 +4431,17 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
// We cannot take the "min" MaxBECount, because non-unit stride loops may
// skip some loop tests. Taking the max over the exits is sufficiently
// conservative. TODO: We could do better taking into consideration
- // that (1) the loop has unit stride (2) the last loop test is
- // less-than/greater-than (3) any loop test is less-than/greater-than AND
- // falls-through some constant times less then the other tests.
- MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
+ // non-latch exits that dominate the latch.
+ if (EL.MustExit && ExitingBlocks[i] == Latch)
+ LatchMaxCount = EL.Max;
+ else
+ MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
}
}
-
+ // Be more precise in the easy case of a loop latch that must exit.
+ if (LatchMaxCount) {
+ MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount);
+ }
return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
}
@@ -4370,12 +4451,19 @@ ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
// Okay, we've chosen an exiting block. See what condition causes us to
- // exit at this block.
- //
- // FIXME: we should be able to handle switch instructions (with a single exit)
- BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (ExitBr == 0) return getCouldNotCompute();
- assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
+ // exit at this block and remember the exit block and whether all other targets
+ // lead to the loop header.
+ bool MustExecuteLoopHeader = true;
+ BasicBlock *Exit = 0;
+ for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
+ SI != SE; ++SI)
+ if (!L->contains(*SI)) {
+ if (Exit) // Multiple exit successors.
+ return getCouldNotCompute();
+ Exit = *SI;
+ } else if (*SI != L->getHeader()) {
+ MustExecuteLoopHeader = false;
+ }
// At this point, we know we have a conditional branch that determines whether
// the loop is exited. However, we don't know if the branch is executed each
@@ -4394,13 +4482,11 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
//
// More extensive analysis could be done to handle more cases here.
//
- if (ExitBr->getSuccessor(0) != L->getHeader() &&
- ExitBr->getSuccessor(1) != L->getHeader() &&
- ExitBr->getParent() != L->getHeader()) {
+ if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
// The simple checks failed, try climbing the unique predecessor chain
// up to the header.
bool Ok = false;
- for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
+ for (BasicBlock *BB = ExitingBlock; BB; ) {
BasicBlock *Pred = BB->getUniquePredecessor();
if (!Pred)
return getCouldNotCompute();
@@ -4424,11 +4510,20 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
return getCouldNotCompute();
}
- // Proceed to the next level to examine the exit condition expression.
- return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
- ExitBr->getSuccessor(0),
- ExitBr->getSuccessor(1),
- /*IsSubExpr=*/false);
+ TerminatorInst *Term = ExitingBlock->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
+ assert(BI->isConditional() && "If unconditional, it can't be in loop!");
+ // Proceed to the next level to examine the exit condition expression.
+ return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
+ BI->getSuccessor(1),
+ /*IsSubExpr=*/false);
+ }
+
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
+ return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
+ /*IsSubExpr=*/false);
+
+ return getCouldNotCompute();
}
/// ComputeExitLimitFromCond - Compute the number of times the
@@ -4456,6 +4551,7 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
IsSubExpr || EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
+ bool MustExit = false;
if (EitherMayExit) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
@@ -4470,6 +4566,7 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
+ MustExit = EL0.MustExit || EL1.MustExit;
} else {
// Both conditions must be true at the same time for the loop to exit.
// For now, be conservative.
@@ -4478,9 +4575,10 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
if (EL0.Exact == EL1.Exact)
BECount = EL0.Exact;
+ MustExit = EL0.MustExit && EL1.MustExit;
}
- return ExitLimit(BECount, MaxBECount);
+ return ExitLimit(BECount, MaxBECount, MustExit);
}
if (BO->getOpcode() == Instruction::Or) {
// Recurse on the operands of the or.
@@ -4491,6 +4589,7 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
IsSubExpr || EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
+ bool MustExit = false;
if (EitherMayExit) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
@@ -4505,6 +4604,7 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
+ MustExit = EL0.MustExit || EL1.MustExit;
} else {
// Both conditions must be false at the same time for the loop to exit.
// For now, be conservative.
@@ -4513,9 +4613,10 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
if (EL0.Exact == EL1.Exact)
BECount = EL0.Exact;
+ MustExit = EL0.MustExit && EL1.MustExit;
}
- return ExitLimit(BECount, MaxBECount);
+ return ExitLimit(BECount, MaxBECount, MustExit);
}
}
@@ -4639,6 +4740,30 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
}
+ScalarEvolution::ExitLimit
+ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
+ SwitchInst *Switch,
+ BasicBlock *ExitingBlock,
+ bool IsSubExpr) {
+ assert(!L->contains(ExitingBlock) && "Not an exiting block!");
+
+ // Give up if the exit is the default dest of a switch.
+ if (Switch->getDefaultDest() == ExitingBlock)
+ return getCouldNotCompute();
+
+ assert(L->contains(Switch->getDefaultDest()) &&
+ "Default case must not exit the loop!");
+ const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
+ const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
+
+ // while (X != Y) --> while (X-Y != 0)
+ ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
+ if (EL.hasAnyInfo())
+ return EL;
+
+ return getCouldNotCompute();
+}
+
static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
ScalarEvolution &SE) {
@@ -4830,7 +4955,7 @@ static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
/// reason, return null.
static Constant *EvaluateExpression(Value *V, const Loop *L,
DenseMap<Instruction *, Constant *> &Vals,
- const DataLayout *TD,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI) {
// Convenient constant check, but redundant for recursive calls.
if (Constant *C = dyn_cast<Constant>(V)) return C;
@@ -4857,7 +4982,7 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
if (!Operands[i]) return 0;
continue;
}
- Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
+ Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Vals[Operand] = C;
if (!C) return 0;
Operands[i] = C;
@@ -4865,12 +4990,12 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
if (CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], TD, TLI);
+ Operands[1], DL, TLI);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(Operands[0], TD);
+ return ConstantFoldLoadFromConstPtr(Operands[0], DL);
}
- return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
TLI);
}
@@ -4926,7 +5051,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
// Compute the value of the PHIs for the next iteration.
// EvaluateExpression adds non-phi values to the CurrentIterVals map.
DenseMap<Instruction *, Constant *> NextIterVals;
- Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
+ Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
TLI);
if (NextPHI == 0)
return 0; // Couldn't evaluate!
@@ -4952,7 +5077,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Constant *&NextPHI = NextIterVals[PHI];
if (!NextPHI) { // Not already computed.
Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
}
if (NextPHI != I->second)
StoppedEvolving = false;
@@ -5008,7 +5133,7 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
ConstantInt *CondVal =
dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
- TD, TLI));
+ DL, TLI));
// Couldn't symbolically evaluate.
if (!CondVal) return getCouldNotCompute();
@@ -5038,7 +5163,7 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
if (NextPHI) continue; // Already computed!
Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
+ NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
}
CurrentIterVals.swap(NextIterVals);
}
@@ -5082,8 +5207,7 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
/// Returns NULL if the SCEV isn't representable as a Constant.
static Constant *BuildConstantFromSCEV(const SCEV *V) {
- switch (V->getSCEVType()) {
- default: // TODO: smax, umax.
+ switch (static_cast<SCEVTypes>(V->getSCEVType())) {
case scCouldNotCompute:
case scAddRecExpr:
break;
@@ -5170,6 +5294,9 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) {
return ConstantExpr::getUDiv(LHS, RHS);
break;
}
+ case scSMaxExpr:
+ case scUMaxExpr:
+ break; // TODO: smax, umax.
}
return 0;
}
@@ -5241,14 +5368,14 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Constant *C = 0;
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
- Operands[0], Operands[1], TD,
+ Operands[0], Operands[1], DL,
TLI);
else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!LI->isVolatile())
- C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
+ C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
} else
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
- Operands, TD, TLI);
+ Operands, DL, TLI);
if (!C) return V;
return getSCEV(C);
}
@@ -5595,7 +5722,7 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
else
MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
: -CR.getUnsignedMin());
- return ExitLimit(Distance, MaxBECount);
+ return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
}
// If the recurrence is known not to wraparound, unsigned divide computes the
@@ -5603,15 +5730,29 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
// that the value will either become zero (and thus the loop terminates), that
// the loop will terminate through some other exit condition first, or that
// the loop has undefined behavior. This means we can't "miss" the exit
- // value, even with nonunit stride.
+ // value, even with nonunit stride, and exit later via the same branch. Note
+ // that we can skip this exit if loop later exits via a different
+ // branch. Hence MustExit=false.
//
// This is only valid for expressions that directly compute the loop exit. It
// is invalid for subexpressions in which the loop may exit through this
// branch even if this subexpression is false. In that case, the trip count
// computed by this udiv could be smaller than the number of well-defined
// iterations.
- if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
- return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
+ if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
+ const SCEV *Exact =
+ getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
+ return ExitLimit(Exact, Exact, /*MustExit=*/false);
+ }
+
+ // If Step is a power of two that evenly divides Start we know that the loop
+ // will always terminate. Start may not be a constant so we just have the
+ // number of trailing zeros available. This is safe even in presence of
+ // overflow as the recurrence will overflow to exactly 0.
+ const APInt &StepV = StepC->getValue()->getValue();
+ if (StepV.isPowerOf2() &&
+ GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
+ return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
// Then, try to solve the above equation provided that Start is constant.
if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
@@ -6024,7 +6165,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
default:
llvm_unreachable("Unexpected ICmpInst::Predicate value!");
case ICmpInst::ICMP_SGT:
- Pred = ICmpInst::ICMP_SLT;
std::swap(LHS, RHS);
case ICmpInst::ICMP_SLT: {
ConstantRange LHSRange = getSignedRange(LHS);
@@ -6036,7 +6176,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
break;
}
case ICmpInst::ICMP_SGE:
- Pred = ICmpInst::ICMP_SLE;
std::swap(LHS, RHS);
case ICmpInst::ICMP_SLE: {
ConstantRange LHSRange = getSignedRange(LHS);
@@ -6048,7 +6187,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
break;
}
case ICmpInst::ICMP_UGT:
- Pred = ICmpInst::ICMP_ULT;
std::swap(LHS, RHS);
case ICmpInst::ICMP_ULT: {
ConstantRange LHSRange = getUnsignedRange(LHS);
@@ -6060,7 +6198,6 @@ ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
break;
}
case ICmpInst::ICMP_UGE:
- Pred = ICmpInst::ICMP_ULE;
std::swap(LHS, RHS);
case ICmpInst::ICMP_ULE: {
ConstantRange LHSRange = getUnsignedRange(LHS);
@@ -6218,7 +6355,7 @@ bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
// LHS' type is checked for above.
if (getTypeSizeInBits(LHS->getType()) >
getTypeSizeInBits(FoundLHS->getType())) {
- if (CmpInst::isSigned(Pred)) {
+ if (CmpInst::isSigned(FoundPred)) {
FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
} else {
@@ -6466,7 +6603,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
: APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
- const SCEV *MaxBECount = getCouldNotCompute();
+ const SCEV *MaxBECount;
if (isa<SCEVConstant>(BECount))
MaxBECount = BECount;
else
@@ -6476,7 +6613,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount);
+ return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
}
ScalarEvolution::ExitLimit
@@ -6548,7 +6685,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
- return ExitLimit(BECount, MaxBECount);
+ return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
}
/// getNumIterationsInRange - Return the number of iterations of this loop that
@@ -6677,20 +6814,6 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
return SE.getCouldNotCompute();
}
-static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
- APInt A = C1->getValue()->getValue().abs();
- APInt B = C2->getValue()->getValue().abs();
- uint32_t ABW = A.getBitWidth();
- uint32_t BBW = B.getBitWidth();
-
- if (ABW > BBW)
- B = B.zext(ABW);
- else if (ABW < BBW)
- A = A.zext(BBW);
-
- return APIntOps::GreatestCommonDivisor(A, B);
-}
-
static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getValue()->getValue();
APInt B = C2->getValue()->getValue();
@@ -6997,7 +7120,6 @@ public:
Operands.push_back(Expr->getOperand(i));
}
} else {
- FoundGCDTerm = false;
const SCEV *PartialGCD = One;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
if (PartialGCD == GCD) {
@@ -7128,7 +7250,7 @@ SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
const SCEV *Start = this->getStart();
const SCEV *Step = this->getStepRecurrence(SE);
- // Build the SCEV representation of the cannonical induction variable in the
+ // Build the SCEV representation of the canonical induction variable in the
// loop of this SCEV.
const SCEV *Zero = SE.getConstant(this->getType(), 0);
const SCEV *One = SE.getConstant(this->getType(), 1);
@@ -7137,50 +7259,41 @@ SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
DEBUG(dbgs() << "(delinearize: " << *this << "\n");
- // Currently we fail to delinearize when the stride of this SCEV is 1. We
- // could decide to not fail in this case: we could just return 1 for the size
- // of the subscript, and this same SCEV for the access function.
- if (Step == One) {
- DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
- return this;
- }
+ // When the stride of this SCEV is 1, do not compute the GCD: the size of this
+ // subscript is 1, and this same SCEV for the access function.
+ const SCEV *Remainder = Zero;
+ const SCEV *GCD = One;
// Find the GCD and Remainder of the Start and Step coefficients of this SCEV.
- const SCEV *Remainder = NULL;
- const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
+ if (Step != One && !Step->isAllOnesValue())
+ GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
DEBUG(dbgs() << "GCD: " << *GCD << "\n");
DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
- // Same remark as above: we currently fail the delinearization, although we
- // can very well handle this special case.
- if (GCD == One) {
- DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
- return this;
- }
+ const SCEV *Quotient = Start;
+ if (GCD != One && !GCD->isAllOnesValue())
+ // As findGCD computed Remainder, GCD divides "Start - Remainder." The
+ // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
+ // Quotient is what will be used in the next subscript delinearization.
+ Quotient = SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
- // As findGCD computed Remainder, GCD divides "Start - Remainder." The
- // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
- // Quotient is what will be used in the next subscript delinearization.
- const SCEV *Quotient =
- SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
- const SCEV *Rem;
+ const SCEV *Rem = Quotient;
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
// Recursively call delinearize on the Quotient until there are no more
// multiples that can be recognized.
Rem = AR->delinearize(SE, Subscripts, Sizes);
- else
- Rem = Quotient;
- // Scale up the cannonical induction variable IV by whatever remains from the
+ // Scale up the canonical induction variable IV by whatever remains from the
// Step after division by the GCD: the GCD is the size of all the sub-array.
- if (Step != GCD) {
+ if (Step != One && !Step->isAllOnesValue() && GCD != One &&
+ !GCD->isAllOnesValue() && Step != GCD) {
Step = SCEVDivision::divide(SE, Step, GCD);
IV = SE.getMulExpr(IV, Step);
}
- // The access function in the current subscript is computed as the cannonical
+ // The access function in the current subscript is computed as the canonical
// induction variable IV (potentially scaled up by the step) and offset by
// Rem, the offset of delinearization in the sub-array.
const SCEV *Index = SE.getAddExpr(IV, Rem);
@@ -7225,11 +7338,8 @@ void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
// so that future queries will recompute the expressions using the new
// value.
Value *Old = getValPtr();
- SmallVector<User *, 16> Worklist;
+ SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
SmallPtrSet<User *, 8> Visited;
- for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
- UI != UE; ++UI)
- Worklist.push_back(*UI);
while (!Worklist.empty()) {
User *U = Worklist.pop_back_val();
// Deleting the Old value will cause this to dangle. Postpone
@@ -7241,9 +7351,7 @@ void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
if (PHINode *PN = dyn_cast<PHINode>(U))
SE->ConstantEvolutionLoopExitValue.erase(PN);
SE->ValueExprMap.erase(U);
- for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
- UI != UE; ++UI)
- Worklist.push_back(*UI);
+ Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
}
// Delete the Old value.
if (PHINode *PN = dyn_cast<PHINode>(Old))
@@ -7267,9 +7375,10 @@ ScalarEvolution::ScalarEvolution()
bool ScalarEvolution::runOnFunction(Function &F) {
this->F = &F;
LI = &getAnalysis<LoopInfo>();
- TD = getAnalysisIfAvailable<DataLayout>();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
TLI = &getAnalysis<TargetLibraryInfo>();
- DT = &getAnalysis<DominatorTree>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return false;
}
@@ -7306,7 +7415,7 @@ void ScalarEvolution::releaseMemory() {
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<LoopInfo>();
- AU.addRequiredTransitive<DominatorTree>();
+ AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfo>();
}
@@ -7321,7 +7430,7 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
PrintLoopInfo(OS, SE, *I);
OS << "Loop ";
- WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+ L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
SmallVector<BasicBlock *, 8> ExitBlocks;
@@ -7337,7 +7446,7 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
OS << "\n"
"Loop ";
- WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
+ L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
OS << ": ";
if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
@@ -7359,7 +7468,7 @@ void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
OS << "Classifying expressions for: ";
- WriteAsOperand(OS, F, /*PrintType=*/false);
+ F->printAsOperand(OS, /*PrintType=*/false);
OS << "\n";
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
@@ -7390,7 +7499,7 @@ void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
}
OS << "Determining loop execution counts for: ";
- WriteAsOperand(OS, F, /*PrintType=*/false);
+ F->printAsOperand(OS, /*PrintType=*/false);
OS << "\n";
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
PrintLoopInfo(OS, &SE, *I);
@@ -7417,7 +7526,7 @@ ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
ScalarEvolution::LoopDisposition
ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
- switch (S->getSCEVType()) {
+ switch (static_cast<SCEVTypes>(S->getSCEVType())) {
case scConstant:
return LoopInvariant;
case scTruncate:
@@ -7490,8 +7599,8 @@ ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
return LoopInvariant;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default: llvm_unreachable("Unknown SCEV kind!");
}
+ llvm_unreachable("Unknown SCEV kind!");
}
bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
@@ -7523,7 +7632,7 @@ ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
ScalarEvolution::BlockDisposition
ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- switch (S->getSCEVType()) {
+ switch (static_cast<SCEVTypes>(S->getSCEVType())) {
case scConstant:
return ProperlyDominatesBlock;
case scTruncate:
@@ -7580,9 +7689,8 @@ ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
return ProperlyDominatesBlock;
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- default:
- llvm_unreachable("Unknown SCEV kind!");
}
+ llvm_unreachable("Unknown SCEV kind!");
}
bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
@@ -7637,7 +7745,7 @@ void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
typedef DenseMap<const Loop *, std::string> VerifyMap;
-/// replaceSubString - Replaces all occurences of From in Str with To.
+/// replaceSubString - Replaces all occurrences of From in Str with To.
static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
size_t Pos = 0;
while ((Pos = Str.find(From, Pos)) != std::string::npos) {
diff --git a/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp b/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
index 79c5f0d..7be6aca 100644
--- a/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
+++ b/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
@@ -43,16 +43,16 @@ namespace {
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
+ void *getAdjustedAnalysisPointer(AnalysisID PI) override {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
}
private:
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual bool runOnFunction(Function &F);
- virtual AliasResult alias(const Location &LocA, const Location &LocB);
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnFunction(Function &F) override;
+ AliasResult alias(const Location &LocA, const Location &LocB) override;
Value *GetBaseValue(const SCEV *S);
};
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index 86a557b..fb3d595 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -14,11 +14,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
@@ -46,9 +47,7 @@ Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
Instruction *Ret = NULL;
// Check to see if there is already a cast!
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- User *U = *UI;
+ for (User *U : V->users())
if (U->getType() == Ty)
if (CastInst *CI = dyn_cast<CastInst>(U))
if (CI->getOpcode() == Op) {
@@ -68,7 +67,6 @@ Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
Ret = CI;
break;
}
- }
// Create a new cast.
if (!Ret)
@@ -209,7 +207,7 @@ static bool FactorOutConstant(const SCEV *&S,
const SCEV *&Remainder,
const SCEV *Factor,
ScalarEvolution &SE,
- const DataLayout *TD) {
+ const DataLayout *DL) {
// Everything is divisible by one.
if (Factor->isOne())
return true;
@@ -249,7 +247,7 @@ static bool FactorOutConstant(const SCEV *&S,
// In a Mul, check if there is a constant operand which is a multiple
// of the given factor.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
- if (TD) {
+ if (DL) {
// With DataLayout, the size is known. Check if there is a constant
// operand which is a multiple of the given factor. If so, we can
// factor it.
@@ -269,7 +267,7 @@ static bool FactorOutConstant(const SCEV *&S,
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
const SCEV *SOp = M->getOperand(i);
const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
- if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
+ if (FactorOutConstant(SOp, Remainder, Factor, SE, DL) &&
Remainder->isZero()) {
SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
NewMulOps[i] = SOp;
@@ -284,12 +282,12 @@ static bool FactorOutConstant(const SCEV *&S,
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
const SCEV *Step = A->getStepRecurrence(SE);
const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
- if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
+ if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
return false;
if (!StepRem->isZero())
return false;
const SCEV *Start = A->getStart();
- if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
+ if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
return false;
S = SE.getAddRecExpr(Start, Step, A->getLoop(),
A->getNoWrapFlags(SCEV::FlagNW));
@@ -403,8 +401,8 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
// without the other.
SplitAddRecs(Ops, Ty, SE);
- Type *IntPtrTy = SE.TD
- ? SE.TD->getIntPtrType(PTy)
+ Type *IntPtrTy = SE.DL
+ ? SE.DL->getIntPtrType(PTy)
: Type::getInt64Ty(PTy->getContext());
// Descend down the pointer's type and attempt to convert the other
@@ -423,7 +421,7 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
const SCEV *Op = Ops[i];
const SCEV *Remainder = SE.getConstant(Ty, 0);
- if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
+ if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.DL)) {
// Op now has ElSize factored out.
ScaledOps.push_back(Op);
if (!Remainder->isZero())
@@ -457,13 +455,13 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
bool FoundFieldNo = false;
// An empty struct has no fields.
if (STy->getNumElements() == 0) break;
- if (SE.TD) {
+ if (SE.DL) {
// With DataLayout, field offsets are known. See if a constant offset
// falls within any of the struct fields.
if (Ops.empty()) break;
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
if (SE.getTypeSizeInBits(C->getType()) <= 64) {
- const StructLayout &SL = *SE.TD->getStructLayout(STy);
+ const StructLayout &SL = *SE.DL->getStructLayout(STy);
uint64_t FullOffset = C->getValue()->getZExtValue();
if (FullOffset < SL.getSizeInBytes()) {
unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
@@ -1016,6 +1014,54 @@ Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
return IncV;
}
+/// \brief Hoist the addrec instruction chain rooted in the loop phi above the
+/// position. This routine assumes that this is possible (has been checked).
+static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
+ Instruction *Pos, PHINode *LoopPhi) {
+ do {
+ if (DT->dominates(InstToHoist, Pos))
+ break;
+ // Make sure the increment is where we want it. But don't move it
+ // down past a potential existing post-inc user.
+ InstToHoist->moveBefore(Pos);
+ Pos = InstToHoist;
+ InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
+ } while (InstToHoist != LoopPhi);
+}
+
+/// \brief Check whether we can cheaply express the requested SCEV in terms of
+/// the available PHI SCEV by truncation and/or invertion of the step.
+static bool canBeCheaplyTransformed(ScalarEvolution &SE,
+ const SCEVAddRecExpr *Phi,
+ const SCEVAddRecExpr *Requested,
+ bool &InvertStep) {
+ Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
+ Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
+
+ if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
+ return false;
+
+ // Try truncate it if necessary.
+ Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
+ if (!Phi)
+ return false;
+
+ // Check whether truncation will help.
+ if (Phi == Requested) {
+ InvertStep = false;
+ return true;
+ }
+
+ // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
+ if (SE.getAddExpr(Requested->getStart(),
+ SE.getNegativeSCEV(Requested)) == Phi) {
+ InvertStep = true;
+ return true;
+ }
+
+ return false;
+}
+
/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
/// the base addrec, which is the addrec without any non-loop-dominating
/// values, and return the PHI.
@@ -1023,49 +1069,87 @@ PHINode *
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
Type *ExpandTy,
- Type *IntTy) {
+ Type *IntTy,
+ Type *&TruncTy,
+ bool &InvertStep) {
assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
// Reuse a previously-inserted PHI, if present.
BasicBlock *LatchBlock = L->getLoopLatch();
if (LatchBlock) {
+ PHINode *AddRecPhiMatch = 0;
+ Instruction *IncV = 0;
+ TruncTy = 0;
+ InvertStep = false;
+
+ // Only try partially matching scevs that need truncation and/or
+ // step-inversion if we know this loop is outside the current loop.
+ bool TryNonMatchingSCEV = IVIncInsertLoop &&
+ SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
+
for (BasicBlock::iterator I = L->getHeader()->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- if (!SE.isSCEVable(PN->getType()) ||
- (SE.getEffectiveSCEVType(PN->getType()) !=
- SE.getEffectiveSCEVType(Normalized->getType())) ||
- SE.getSCEV(PN) != Normalized)
+ if (!SE.isSCEVable(PN->getType()))
+ continue;
+
+ const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
+ if (!PhiSCEV)
continue;
- Instruction *IncV =
- cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
+ bool IsMatchingSCEV = PhiSCEV == Normalized;
+ // We only handle truncation and inversion of phi recurrences for the
+ // expanded expression if the expanded expression's loop dominates the
+ // loop we insert to. Check now, so we can bail out early.
+ if (!IsMatchingSCEV && !TryNonMatchingSCEV)
+ continue;
+
+ Instruction *TempIncV =
+ cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
+ // Check whether we can reuse this PHI node.
if (LSRMode) {
- if (!isExpandedAddRecExprPHI(PN, IncV, L))
+ if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
continue;
- if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
+ if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
continue;
- }
- else {
- if (!isNormalAddRecExprPHI(PN, IncV, L))
+ } else {
+ if (!isNormalAddRecExprPHI(PN, TempIncV, L))
continue;
- if (L == IVIncInsertLoop)
- do {
- if (SE.DT->dominates(IncV, IVIncInsertPos))
- break;
- // Make sure the increment is where we want it. But don't move it
- // down past a potential existing post-inc user.
- IncV->moveBefore(IVIncInsertPos);
- IVIncInsertPos = IncV;
- IncV = cast<Instruction>(IncV->getOperand(0));
- } while (IncV != PN);
}
+
+ // Stop if we have found an exact match SCEV.
+ if (IsMatchingSCEV) {
+ IncV = TempIncV;
+ TruncTy = 0;
+ InvertStep = false;
+ AddRecPhiMatch = PN;
+ break;
+ }
+
+ // Try whether the phi can be translated into the requested form
+ // (truncated and/or offset by a constant).
+ if ((!TruncTy || InvertStep) &&
+ canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
+ // Record the phi node. But don't stop we might find an exact match
+ // later.
+ AddRecPhiMatch = PN;
+ IncV = TempIncV;
+ TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
+ }
+ }
+
+ if (AddRecPhiMatch) {
+ // Potentially, move the increment. We have made sure in
+ // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
+ if (L == IVIncInsertLoop)
+ hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
+
// Ok, the add recurrence looks usable.
// Remember this PHI, even in post-inc mode.
- InsertedValues.insert(PN);
+ InsertedValues.insert(AddRecPhiMatch);
// Remember the increment.
rememberInstruction(IncV);
- return PN;
+ return AddRecPhiMatch;
}
}
@@ -1190,7 +1274,12 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
// Expand the core addrec. If we need post-loop scaling, force it to
// expand to an integer type to avoid the need for additional casting.
Type *ExpandTy = PostLoopScale ? IntTy : STy;
- PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
+ // In some cases, we decide to reuse an existing phi node but need to truncate
+ // it and/or invert the step.
+ Type *TruncTy = 0;
+ bool InvertStep = false;
+ PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
+ TruncTy, InvertStep);
// Accommodate post-inc mode, if necessary.
Value *Result;
@@ -1231,6 +1320,26 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
}
}
+ // We have decided to reuse an induction variable of a dominating loop. Apply
+ // truncation and/or invertion of the step.
+ if (TruncTy) {
+ Type *ResTy = Result->getType();
+ // Normalize the result type.
+ if (ResTy != SE.getEffectiveSCEVType(ResTy))
+ Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
+ // Truncate the result.
+ if (TruncTy != Result->getType()) {
+ Result = Builder.CreateTrunc(Result, TruncTy);
+ rememberInstruction(Result);
+ }
+ // Invert the result.
+ if (InvertStep) {
+ Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
+ Result);
+ rememberInstruction(Result);
+ }
+ }
+
// Re-apply any non-loop-dominating scale.
if (PostLoopScale) {
assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
@@ -1279,7 +1388,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
S->getNoWrapFlags(SCEV::FlagNW)));
BasicBlock::iterator NewInsertPt =
- llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
+ std::next(BasicBlock::iterator(cast<Instruction>(V)));
BuilderType::InsertPointGuard Guard(Builder);
while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
isa<LandingPadInst>(NewInsertPt))
@@ -1507,7 +1616,7 @@ Value *SCEVExpander::expand(const SCEV *S) {
while (InsertPt != Builder.GetInsertPoint()
&& (isInsertedInstruction(InsertPt)
|| isa<DbgInfoIntrinsic>(InsertPt))) {
- InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
+ InsertPt = std::next(BasicBlock::iterator(InsertPt));
}
break;
}
@@ -1528,7 +1637,7 @@ Value *SCEVExpander::expand(const SCEV *S) {
//
// This is independent of PostIncLoops. The mapped value simply materializes
// the expression at this insertion point. If the mapped value happened to be
- // a postinc expansion, it could be reused by a non postinc user, but only if
+ // a postinc expansion, it could be reused by a non-postinc user, but only if
// its insertion point was already at the head of the loop.
InsertedExpressions[std::make_pair(S, InsertPt)] = V;
return V;
@@ -1562,15 +1671,6 @@ SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
return V;
}
-/// Sort values by integer width for replaceCongruentIVs.
-static bool width_descending(Value *lhs, Value *rhs) {
- // Put pointers at the back and make sure pointer < pointer = false.
- if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
- return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
- return rhs->getType()->getPrimitiveSizeInBits()
- < lhs->getType()->getPrimitiveSizeInBits();
-}
-
/// replaceCongruentIVs - Check for congruent phis in this loop header and
/// replace them with their most canonical representative. Return the number of
/// phis eliminated.
@@ -1587,7 +1687,13 @@ unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
Phis.push_back(Phi);
}
if (TTI)
- std::sort(Phis.begin(), Phis.end(), width_descending);
+ std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
+ // Put pointers at the back and make sure pointer < pointer = false.
+ if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
+ return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
+ return RHS->getType()->getPrimitiveSizeInBits() <
+ LHS->getType()->getPrimitiveSizeInBits();
+ });
unsigned NumElim = 0;
DenseMap<const SCEV *, PHINode *> ExprToIVMap;
diff --git a/lib/Analysis/ScalarEvolutionNormalization.cpp b/lib/Analysis/ScalarEvolutionNormalization.cpp
index f110616..1e4c0bd 100644
--- a/lib/Analysis/ScalarEvolutionNormalization.cpp
+++ b/lib/Analysis/ScalarEvolutionNormalization.cpp
@@ -12,7 +12,7 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Analysis/Dominators.h"
+#include "llvm/IR/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
@@ -131,7 +131,10 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
// expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
if (AR->isAffine() &&
IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
- Result = SE.getMinusSCEV(Result, AR->getStepRecurrence(SE));
+ const SCEV *TransformedStep =
+ TransformSubExpr(AR->getStepRecurrence(SE),
+ User, OperandValToReplace);
+ Result = SE.getMinusSCEV(Result, TransformedStep);
Loops.insert(L);
}
#if 0
@@ -144,6 +147,20 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
#endif
break;
case Normalize:
+ // We want to normalize step expression, because otherwise we might not be
+ // able to denormalize to the original expression.
+ //
+ // Here is an example what will happen if we don't normalize step:
+ // ORIGINAL ISE:
+ // {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
+ // NORMALIZED ISE:
+ // {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
+ // (100 /u {0,+,1}<%bb16>)}<%bb25>
+ // DENORMALIZED BACK ISE:
+ // {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
+ // (100 /u {1,+,1}<%bb16>)}<%bb25>
+ // Note that the initial value changes after normalization +
+ // denormalization, which isn't correct.
if (Loops.count(L)) {
const SCEV *TransformedStep =
TransformSubExpr(AR->getStepRecurrence(SE),
@@ -157,8 +174,14 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
#endif
break;
case Denormalize:
- if (Loops.count(L))
- Result = cast<SCEVAddRecExpr>(Result)->getPostIncExpr(SE);
+ // Here we want to normalize step expressions for the same reasons, as
+ // stated above.
+ if (Loops.count(L)) {
+ const SCEV *TransformedStep =
+ TransformSubExpr(AR->getStepRecurrence(SE),
+ User, OperandValToReplace);
+ Result = SE.getAddExpr(Result, TransformedStep);
+ }
break;
}
return Result;
diff --git a/lib/Analysis/SparsePropagation.cpp b/lib/Analysis/SparsePropagation.cpp
index 15b7872..87a4fa4 100644
--- a/lib/Analysis/SparsePropagation.cpp
+++ b/lib/Analysis/SparsePropagation.cpp
@@ -303,11 +303,10 @@ void SparseSolver::Solve(Function &F) {
// "I" got into the work list because it made a transition. See if any
// users are both live and in need of updating.
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI) {
- Instruction *U = cast<Instruction>(*UI);
- if (BBExecutable.count(U->getParent())) // Inst is executable?
- visitInst(*U);
+ for (User *U : I->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (BBExecutable.count(UI->getParent())) // Inst is executable?
+ visitInst(*UI);
}
}
diff --git a/lib/Analysis/TargetTransformInfo.cpp b/lib/Analysis/TargetTransformInfo.cpp
index 0353295..04d09f1 100644
--- a/lib/Analysis/TargetTransformInfo.cpp
+++ b/lib/Analysis/TargetTransformInfo.cpp
@@ -9,12 +9,12 @@
#define DEBUG_TYPE "tti"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Operator.h"
#include "llvm/IR/Instruction.h"
-#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Instructions.h"
-#include "llvm/Support/CallSite.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -35,16 +35,6 @@ void TargetTransformInfo::pushTTIStack(Pass *P) {
PTTI->TopTTI = this;
}
-void TargetTransformInfo::popTTIStack() {
- TopTTI = 0;
-
- // Walk up the chain and update the top TTI pointer.
- for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
- PTTI->TopTTI = PrevTTI;
-
- PrevTTI = 0;
-}
-
void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfo>();
}
@@ -158,6 +148,16 @@ unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
return PrevTTI->getIntImmCost(Imm, Ty);
}
+unsigned TargetTransformInfo::getIntImmCost(unsigned Opc, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ return PrevTTI->getIntImmCost(Opc, Idx, Imm, Ty);
+}
+
+unsigned TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) const {
+ return PrevTTI->getIntImmCost(IID, Idx, Imm, Ty);
+}
+
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return PrevTTI->getNumberOfRegisters(Vector);
}
@@ -231,22 +231,23 @@ unsigned TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty,
namespace {
-struct NoTTI : ImmutablePass, TargetTransformInfo {
+struct NoTTI final : ImmutablePass, TargetTransformInfo {
const DataLayout *DL;
NoTTI() : ImmutablePass(ID), DL(0) {
initializeNoTTIPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() {
+ virtual void initializePass() override {
// Note that this subclass is special, and must *not* call initializeTTI as
// it does not chain.
TopTTI = this;
PrevTTI = 0;
- DL = getAnalysisIfAvailable<DataLayout>();
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
}
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
// Note that this subclass is special, and must *not* call
// TTI::getAnalysisUsage as it breaks the recursion.
}
@@ -255,13 +256,14 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
- virtual void *getAdjustedAnalysisPointer(const void *ID) {
+ virtual void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
- unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
+ unsigned getOperationCost(unsigned Opcode, Type *Ty,
+ Type *OpTy) const override {
switch (Opcode) {
default:
// By default, just classify everything as 'basic'.
@@ -318,7 +320,7 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
}
unsigned getGEPCost(const Value *Ptr,
- ArrayRef<const Value *> Operands) const {
+ ArrayRef<const Value *> Operands) const override {
// In the basic model, we just assume that all-constant GEPs will be folded
// into their uses via addressing modes.
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
@@ -328,7 +330,8 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return TCC_Free;
}
- unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
+ unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const override
+ {
assert(FTy && "FunctionType must be provided to this routine.");
// The target-independent implementation just measures the size of the
@@ -343,7 +346,8 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return TCC_Basic * (NumArgs + 1);
}
- unsigned getCallCost(const Function *F, int NumArgs = -1) const {
+ unsigned getCallCost(const Function *F, int NumArgs = -1) const override
+ {
assert(F && "A concrete function must be provided to this routine.");
if (NumArgs < 0)
@@ -364,7 +368,7 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
}
unsigned getCallCost(const Function *F,
- ArrayRef<const Value *> Arguments) const {
+ ArrayRef<const Value *> Arguments) const override {
// Simply delegate to generic handling of the call.
// FIXME: We should use instsimplify or something else to catch calls which
// will constant fold with these arguments.
@@ -372,7 +376,7 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
}
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<Type *> ParamTys) const {
+ ArrayRef<Type *> ParamTys) const override {
switch (IID) {
default:
// Intrinsics rarely (if ever) have normal argument setup constraints.
@@ -394,8 +398,9 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
}
}
- unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
- ArrayRef<const Value *> Arguments) const {
+ unsigned
+ getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) const override {
// Delegate to the generic intrinsic handling code. This mostly provides an
// opportunity for targets to (for example) special case the cost of
// certain intrinsics based on constants used as arguments.
@@ -406,14 +411,14 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
}
- unsigned getUserCost(const User *U) const {
+ unsigned getUserCost(const User *U) const override {
if (isa<PHINode>(U))
return TCC_Free; // Model all PHI nodes as free.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
- // In the basic model we just assume that all-constant GEPs will be
- // folded into their uses via addressing modes.
- return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
+ SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
+ return TopTTI->getGEPCost(GEP->getPointerOperand(), Indices);
+ }
if (ImmutableCallSite CS = U) {
const Function *F = CS.getCalledFunction();
@@ -423,12 +428,7 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
}
- SmallVector<const Value *, 8> Arguments;
- for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
- AE = CS.arg_end();
- AI != AE; ++AI)
- Arguments.push_back(*AI);
-
+ SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
return TopTTI->getCallCost(F, Arguments);
}
@@ -446,9 +446,9 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
U->getOperand(0)->getType() : 0);
}
- bool hasBranchDivergence() const { return false; }
+ bool hasBranchDivergence() const override { return false; }
- bool isLoweredToCall(const Function *F) const {
+ bool isLoweredToCall(const Function *F) const override {
// FIXME: These should almost certainly not be handled here, and instead
// handled with the help of TLI or the target itself. This was largely
// ported from existing analysis heuristics here so that such refactorings
@@ -479,126 +479,136 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return true;
}
- void getUnrollingPreferences(Loop *, UnrollingPreferences &) const { }
+ void getUnrollingPreferences(Loop *, UnrollingPreferences &) const override {
+ }
- bool isLegalAddImmediate(int64_t Imm) const {
+ bool isLegalAddImmediate(int64_t Imm) const override {
return false;
}
- bool isLegalICmpImmediate(int64_t Imm) const {
+ bool isLegalICmpImmediate(int64_t Imm) const override {
return false;
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale) const {
+ bool HasBaseReg, int64_t Scale) const override
+ {
// Guess that reg+reg addressing is allowed. This heuristic is taken from
// the implementation of LSR.
return !BaseGV && BaseOffset == 0 && Scale <= 1;
}
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale) const {
+ bool HasBaseReg, int64_t Scale) const override {
// Guess that all legal addressing mode are free.
if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
return 0;
return -1;
}
-
- bool isTruncateFree(Type *Ty1, Type *Ty2) const {
+ bool isTruncateFree(Type *Ty1, Type *Ty2) const override {
return false;
}
- bool isTypeLegal(Type *Ty) const {
+ bool isTypeLegal(Type *Ty) const override {
return false;
}
- unsigned getJumpBufAlignment() const {
+ unsigned getJumpBufAlignment() const override {
return 0;
}
- unsigned getJumpBufSize() const {
+ unsigned getJumpBufSize() const override {
return 0;
}
- bool shouldBuildLookupTables() const {
+ bool shouldBuildLookupTables() const override {
return true;
}
- PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
+ PopcntSupportKind
+ getPopcntSupport(unsigned IntTyWidthInBit) const override {
return PSK_Software;
}
- bool haveFastSqrt(Type *Ty) const {
+ bool haveFastSqrt(Type *Ty) const override {
return false;
}
- unsigned getIntImmCost(const APInt &Imm, Type *Ty) const {
- return 1;
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override {
+ return TCC_Basic;
+ }
+
+ unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override {
+ return TCC_Free;
+ }
+
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) const override {
+ return TCC_Free;
}
- unsigned getNumberOfRegisters(bool Vector) const {
+ unsigned getNumberOfRegisters(bool Vector) const override {
return 8;
}
- unsigned getRegisterBitWidth(bool Vector) const {
+ unsigned getRegisterBitWidth(bool Vector) const override {
return 32;
}
- unsigned getMaximumUnrollFactor() const {
+ unsigned getMaximumUnrollFactor() const override {
return 1;
}
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
- OperandValueKind) const {
+ OperandValueKind) const override {
return 1;
}
- unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
- int Index = 0, Type *SubTp = 0) const {
+ unsigned getShuffleCost(ShuffleKind Kind, Type *Ty,
+ int Index = 0, Type *SubTp = 0) const override {
return 1;
}
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
- Type *Src) const {
+ Type *Src) const override {
return 1;
}
- unsigned getCFInstrCost(unsigned Opcode) const {
+ unsigned getCFInstrCost(unsigned Opcode) const override {
return 1;
}
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy = 0) const {
+ Type *CondTy = 0) const override {
return 1;
}
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index = -1) const {
+ unsigned Index = -1) const override {
return 1;
}
- unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) const {
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) const override {
return 1;
}
- unsigned getIntrinsicInstrCost(Intrinsic::ID ID,
- Type *RetTy,
- ArrayRef<Type*> Tys) const {
+ unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type*> Tys) const override {
return 1;
}
- unsigned getNumberOfParts(Type *Tp) const {
+ unsigned getNumberOfParts(Type *Tp) const override {
return 0;
}
- unsigned getAddressComputationCost(Type *Tp, bool) const {
+ unsigned getAddressComputationCost(Type *Tp, bool) const override {
return 0;
}
- unsigned getReductionCost(unsigned, Type *, bool) const {
+ unsigned getReductionCost(unsigned, Type *, bool) const override {
return 1;
}
};
diff --git a/lib/Analysis/Trace.cpp b/lib/Analysis/Trace.cpp
index 4c68322..5a1acc0 100644
--- a/lib/Analysis/Trace.cpp
+++ b/lib/Analysis/Trace.cpp
@@ -16,7 +16,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Trace.h"
-#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
@@ -37,7 +36,7 @@ void Trace::print(raw_ostream &O) const {
O << "; Trace from function " << F->getName() << ", blocks:\n";
for (const_iterator i = begin(), e = end(); i != e; ++i) {
O << "; ";
- WriteAsOperand(O, *i, true, getModule());
+ (*i)->printAsOperand(O, true, getModule());
O << "\n";
}
O << "; Trace parent function: \n" << *F;
diff --git a/lib/Analysis/TypeBasedAliasAnalysis.cpp b/lib/Analysis/TypeBasedAliasAnalysis.cpp
index 6791d4b..05daf18 100644
--- a/lib/Analysis/TypeBasedAliasAnalysis.cpp
+++ b/lib/Analysis/TypeBasedAliasAnalysis.cpp
@@ -281,7 +281,7 @@ namespace {
initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
}
- virtual void initializePass() {
+ void initializePass() override {
InitializeAliasAnalysis(this);
}
@@ -289,7 +289,7 @@ namespace {
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
- virtual void *getAdjustedAnalysisPointer(const void *PI) {
+ void *getAdjustedAnalysisPointer(const void *PI) override {
if (PI == &AliasAnalysis::ID)
return (AliasAnalysis*)this;
return this;
@@ -299,15 +299,15 @@ namespace {
bool PathAliases(const MDNode *A, const MDNode *B) const;
private:
- virtual void getAnalysisUsage(AnalysisUsage &AU) const;
- virtual AliasResult alias(const Location &LocA, const Location &LocB);
- virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
- virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
- virtual ModRefBehavior getModRefBehavior(const Function *F);
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
- const Location &Loc);
- virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
- ImmutableCallSite CS2);
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ AliasResult alias(const Location &LocA, const Location &LocB) override;
+ bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
+ ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
+ ModRefBehavior getModRefBehavior(const Function *F) override;
+ ModRefResult getModRefInfo(ImmutableCallSite CS,
+ const Location &Loc) override;
+ ModRefResult getModRefInfo(ImmutableCallSite CS1,
+ ImmutableCallSite CS2) override;
};
} // End of anonymous namespace
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index e39ee62..72617a0 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -16,8 +16,10 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
@@ -25,10 +27,8 @@
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
-#include "llvm/Support/ConstantRange.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/PatternMatch.h"
#include <cstring>
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -311,8 +311,9 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (Argument *A = dyn_cast<Argument>(V)) {
unsigned Align = 0;
- if (A->hasByValAttr()) {
- // Get alignment information off byval arguments if specified in the IR.
+ if (A->hasByValOrInAllocaAttr()) {
+ // Get alignment information off byval/inalloca arguments if specified in
+ // the IR.
Align = A->getParamAlignment();
} else if (TD && A->hasStructRetAttr()) {
// An sret parameter has at least the ABI alignment of the return type.
@@ -1959,9 +1960,8 @@ llvm::GetUnderlyingObjects(Value *V,
/// are lifetime markers.
///
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
- for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
- UI != UE; ++UI) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
+ for (const User *U : V->users()) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II) return false;
if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
@@ -2006,7 +2006,9 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(Inst);
- if (!LI->isUnordered())
+ if (!LI->isUnordered() ||
+ // Speculative load may create a race that did not exist in the source.
+ LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
return false;
return LI->getPointerOperand()->isDereferenceablePointer();
}
@@ -2033,6 +2035,12 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
case Intrinsic::umul_with_overflow:
case Intrinsic::usub_with_overflow:
return true;
+ // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
+ // errno like libm sqrt would.
+ case Intrinsic::sqrt:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ return true;
// TODO: some fp intrinsics are marked as having the same error handling
// as libm. They're safe to speculate when they won't error.
// TODO: are convert_{from,to}_fp16 safe?
@@ -2068,9 +2076,9 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V)) return true;
- // A byval argument is never null.
+ // A byval or inalloca argument is never null.
if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
+ return A->hasByValOrInAllocaAttr();
// Global values are not null unless extern weak.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))