aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2013-03-05 23:27:24 -0800
committerStephen Hines <srhines@google.com>2013-03-05 23:27:24 -0800
commit5adb136be579e8fff3734461580cb34d1d2983b8 (patch)
treebff1a422e9c9789df563aaf9a7e91e63e8ec0384 /lib/Analysis
parent227a4a4ade38716ba9eb3205f48b52910f3b955e (diff)
parentb3201c5cf1e183d840f7c99ff779d57f1549d8e5 (diff)
downloadexternal_llvm-5adb136be579e8fff3734461580cb34d1d2983b8.zip
external_llvm-5adb136be579e8fff3734461580cb34d1d2983b8.tar.gz
external_llvm-5adb136be579e8fff3734461580cb34d1d2983b8.tar.bz2
Merge commit 'b3201c5cf1e183d840f7c99ff779d57f1549d8e5' into merge_20130226
Conflicts: include/llvm/Support/ELF.h lib/Support/DeltaAlgorithm.cpp Change-Id: I24a4fbce62eb39d924efee3c687b55e1e17b30cd
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/AliasAnalysis.cpp16
-rw-r--r--lib/Analysis/CMakeLists.txt1
-rw-r--r--lib/Analysis/CodeMetrics.cpp128
-rw-r--r--lib/Analysis/ConstantFolding.cpp220
-rw-r--r--lib/Analysis/CostModel.cpp23
-rw-r--r--lib/Analysis/IPA/CMakeLists.txt2
-rw-r--r--lib/Analysis/IPA/CallPrinter.cpp87
-rw-r--r--lib/Analysis/IPA/IPA.cpp2
-rw-r--r--lib/Analysis/IPA/InlineCost.cpp (renamed from lib/Analysis/InlineCost.cpp)74
-rw-r--r--lib/Analysis/InstructionSimplify.cpp260
-rw-r--r--lib/Analysis/LazyValueInfo.cpp1
-rw-r--r--lib/Analysis/Lint.cpp84
-rw-r--r--lib/Analysis/Loads.cpp3
-rw-r--r--lib/Analysis/LoopInfo.cpp50
-rw-r--r--lib/Analysis/MemoryBuiltins.cpp37
-rw-r--r--lib/Analysis/MemoryDependenceAnalysis.cpp12
-rw-r--r--lib/Analysis/ProfileDataLoaderPass.cpp4
-rw-r--r--lib/Analysis/ProfileInfoLoaderPass.cpp17
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp5
-rw-r--r--lib/Analysis/TargetTransformInfo.cpp285
-rw-r--r--lib/Analysis/ValueTracking.cpp26
21 files changed, 934 insertions, 403 deletions
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index f32bd70..210b80a 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -555,19 +555,3 @@ bool llvm::isIdentifiedObject(const Value *V) {
return A->hasNoAliasAttr() || A->hasByValAttr();
return false;
}
-
-/// isKnownNonNull - Return true if we know that the specified value is never
-/// null.
-bool llvm::isKnownNonNull(const Value *V) {
- // Alloca never returns null, malloc might.
- if (isa<AllocaInst>(V)) return true;
-
- // A byval argument is never null.
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
-
- // Global values are not null unless extern weak.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return !GV->hasExternalWeakLinkage();
- return false;
-}
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index 78abe0f..4c64c4a 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -18,7 +18,6 @@ add_llvm_library(LLVMAnalysis
DomPrinter.cpp
DominanceFrontier.cpp
IVUsers.cpp
- InlineCost.cpp
InstCount.cpp
InstructionSimplify.cpp
Interval.cpp
diff --git a/lib/Analysis/CodeMetrics.cpp b/lib/Analysis/CodeMetrics.cpp
index 1dff3d4..8cda01a 100644
--- a/lib/Analysis/CodeMetrics.cpp
+++ b/lib/Analysis/CodeMetrics.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
@@ -19,114 +20,14 @@
using namespace llvm;
-/// callIsSmall - If a call is likely to lower to a single target instruction,
-/// or is otherwise deemed small return true.
-/// TODO: Perhaps calls like memcpy, strcpy, etc?
-bool llvm::callIsSmall(ImmutableCallSite CS) {
- if (isa<IntrinsicInst>(CS.getInstruction()))
- return true;
-
- const Function *F = CS.getCalledFunction();
- if (!F) return false;
-
- if (F->hasLocalLinkage()) return false;
-
- if (!F->hasName()) return false;
-
- StringRef Name = F->getName();
-
- // These will all likely lower to a single selection DAG node.
- if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
- Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
- Name == "sin" || Name == "sinf" || Name == "sinl" ||
- Name == "cos" || Name == "cosf" || Name == "cosl" ||
- Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
- return true;
-
- // These are all likely to be optimized into something smaller.
- if (Name == "pow" || Name == "powf" || Name == "powl" ||
- Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
- Name == "floor" || Name == "floorf" || Name == "ceil" ||
- Name == "round" || Name == "ffs" || Name == "ffsl" ||
- Name == "abs" || Name == "labs" || Name == "llabs")
- return true;
-
- return false;
-}
-
-bool llvm::isInstructionFree(const Instruction *I, const DataLayout *TD) {
- if (isa<PHINode>(I))
- return true;
-
- // If a GEP has all constant indices, it will probably be folded with
- // a load/store.
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
- return GEP->hasAllConstantIndices();
-
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- return false;
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::objectsize:
- case Intrinsic::ptr_annotation:
- case Intrinsic::var_annotation:
- // These intrinsics don't count as size.
- return true;
- }
- }
-
- if (const CastInst *CI = dyn_cast<CastInst>(I)) {
- // Noop casts, including ptr <-> int, don't count.
- if (CI->isLosslessCast())
- return true;
-
- Value *Op = CI->getOperand(0);
- // An inttoptr cast is free so long as the input is a legal integer type
- // which doesn't contain values outside the range of a pointer.
- if (isa<IntToPtrInst>(CI) && TD &&
- TD->isLegalInteger(Op->getType()->getScalarSizeInBits()) &&
- Op->getType()->getScalarSizeInBits() <= TD->getPointerSizeInBits())
- return true;
-
- // A ptrtoint cast is free so long as the result is large enough to store
- // the pointer, and a legal integer type.
- if (isa<PtrToIntInst>(CI) && TD &&
- TD->isLegalInteger(Op->getType()->getScalarSizeInBits()) &&
- Op->getType()->getScalarSizeInBits() >= TD->getPointerSizeInBits())
- return true;
-
- // trunc to a native type is free (assuming the target has compare and
- // shift-right of the same width).
- if (TD && isa<TruncInst>(CI) &&
- TD->isLegalInteger(TD->getTypeSizeInBits(CI->getType())))
- return true;
- // Result of a cmp instruction is often extended (to be used by other
- // cmp instructions, logical or return instructions). These are usually
- // nop on most sane targets.
- if (isa<CmpInst>(CI->getOperand(0)))
- return true;
- }
-
- return false;
-}
-
/// analyzeBasicBlock - Fill in the current structure with information gleaned
/// from the specified block.
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
- const DataLayout *TD) {
+ const TargetTransformInfo &TTI) {
++NumBlocks;
unsigned NumInstsBeforeThisBB = NumInsts;
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
II != E; ++II) {
- if (isInstructionFree(II, TD))
- continue;
-
// Special handling for calls.
if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
ImmutableCallSite CS(cast<Instruction>(II));
@@ -144,12 +45,10 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
// for that case.
if (F == BB->getParent())
isRecursive = true;
- }
-
- if (!callIsSmall(CS)) {
- // Each argument to a call takes on average one instruction to set up.
- NumInsts += CS.arg_size();
+ if (TTI.isLoweredToCall(F))
+ ++NumCalls;
+ } else {
// We don't want inline asm to count as a call - that would prevent loop
// unrolling. The argument setup cost is still real, though.
if (!isa<InlineAsm>(CS.getCalledValue()))
@@ -173,7 +72,7 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
if (InvI->hasFnAttr(Attribute::NoDuplicate))
notDuplicatable = true;
- ++NumInsts;
+ NumInsts += TTI.getUserCost(&*II);
}
if (isa<ReturnInst>(BB->getTerminator()))
@@ -195,18 +94,3 @@ void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
// Remember NumInsts for this BB.
NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
}
-
-void CodeMetrics::analyzeFunction(Function *F, const DataLayout *TD) {
- // If this function contains a call that "returns twice" (e.g., setjmp or
- // _setjmp) and it isn't marked with "returns twice" itself, never inline it.
- // This is a hack because we depend on the user marking their local variables
- // as volatile if they are live across a setjmp call, and they probably
- // won't do this in callers.
- exposesReturnsTwice = F->callsFunctionThatReturnsTwice() &&
- !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::ReturnsTwice);
-
- // Look at the size of the callee.
- for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
- analyzeBasicBlock(&*BB, TD);
-}
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 2b7d3bd..09d7608 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -54,13 +54,12 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
// Handle a vector->integer cast.
if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
- ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
- if (CDV == 0)
+ VectorType *VTy = dyn_cast<VectorType>(C->getType());
+ if (VTy == 0)
return ConstantExpr::getBitCast(C, DestTy);
- unsigned NumSrcElts = CDV->getType()->getNumElements();
-
- Type *SrcEltTy = CDV->getType()->getElementType();
+ unsigned NumSrcElts = VTy->getNumElements();
+ Type *SrcEltTy = VTy->getElementType();
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
@@ -70,9 +69,12 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
- CDV = cast<ConstantDataVector>(C);
}
+ ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+ if (CDV == 0)
+ return ConstantExpr::getBitCast(C, DestTy);
+
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
@@ -218,10 +220,10 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
/// from a global, return the global and the constant. Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- int64_t &Offset, const DataLayout &TD) {
+ APInt &Offset, const DataLayout &TD) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
- Offset = 0;
+ Offset.clearAllBits();
return true;
}
@@ -235,34 +237,13 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- // Cannot compute this if the element type of the pointer is missing size
- // info.
- if (!cast<PointerType>(CE->getOperand(0)->getType())
- ->getElementType()->isSized())
- return false;
-
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
return false;
// Otherwise, add any offset that our operands provide.
- gep_type_iterator GTI = gep_type_begin(CE);
- for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
- i != e; ++i, ++GTI) {
- ConstantInt *CI = dyn_cast<ConstantInt>(*i);
- if (!CI) return false; // Index isn't a simple constant?
- if (CI->isZero()) continue; // Not adding anything.
-
- if (StructType *ST = dyn_cast<StructType>(*GTI)) {
- // N = N + Offset
- Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
- } else {
- SequentialType *SQT = cast<SequentialType>(*GTI);
- Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
- }
- }
- return true;
+ return GEP->accumulateConstantOffset(TD, Offset);
}
return false;
@@ -310,6 +291,10 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
}
+ if (CFP->getType()->isHalfTy()){
+ C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), TD);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
+ }
return false;
}
@@ -402,7 +387,9 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
- if (LoadTy->isFloatTy())
+ if (LoadTy->isHalfTy())
+ MapTy = Type::getInt16PtrTy(C->getContext());
+ else if (LoadTy->isFloatTy())
MapTy = Type::getInt32PtrTy(C->getContext());
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64PtrTy(C->getContext());
@@ -423,7 +410,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
GlobalValue *GVal;
- int64_t Offset;
+ APInt Offset(TD.getPointerSizeInBits(), 0);
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
@@ -434,14 +421,15 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
- if (Offset < 0) return 0;
+ if (Offset.isNegative()) return 0;
// If we're not accessing anything in this constant, the result is undefined.
- if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
+ if (Offset.getZExtValue() >=
+ TD.getTypeAllocSize(GV->getInitializer()->getType()))
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
- if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
+ if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
BytesLoaded, TD))
return 0;
@@ -550,10 +538,10 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
-/// these together. If target data info is available, it is provided as TD,
-/// otherwise TD is null.
+/// these together. If target data info is available, it is provided as DL,
+/// otherwise DL is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
- Constant *Op1, const DataLayout *TD){
+ Constant *Op1, const DataLayout *DL){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
@@ -561,17 +549,44 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
// bits.
+ if (Opc == Instruction::And && DL) {
+ unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType());
+ APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
+ APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
+ ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
+ ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
+ if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
+ // All the bits of Op0 that the 'and' could be masking are already zero.
+ return Op0;
+ }
+ if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
+ // All the bits of Op1 that the 'and' could be masking are already zero.
+ return Op1;
+ }
+
+ APInt KnownZero = KnownZero0 | KnownZero1;
+ APInt KnownOne = KnownOne0 & KnownOne1;
+ if ((KnownZero | KnownOne).isAllOnesValue()) {
+ return ConstantInt::get(Op0->getType(), KnownOne);
+ }
+ }
+
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
- if (Opc == Instruction::Sub && TD) {
+ if (Opc == Instruction::Sub && DL) {
GlobalValue *GV1, *GV2;
- int64_t Offs1, Offs2;
+ unsigned PtrSize = DL->getPointerSizeInBits();
+ unsigned OpSize = DL->getTypeSizeInBits(Op0->getType());
+ APInt Offs1(PtrSize, 0), Offs2(PtrSize, 0);
- if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
- if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
+ if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *DL))
+ if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *DL) &&
GV1 == GV2) {
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
- return ConstantInt::get(Op0->getType(), Offs1-Offs2);
+ // PtrToInt may change the bitwidth so we have convert to the right size
+ // first.
+ return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
+ Offs2.zextOrTrunc(OpSize));
}
}
@@ -1104,6 +1119,13 @@ Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
bool
llvm::canConstantFoldCallTo(const Function *F) {
switch (F->getIntrinsicID()) {
+ case Intrinsic::fabs:
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::floor:
case Intrinsic::sqrt:
case Intrinsic::pow:
case Intrinsic::powi:
@@ -1142,8 +1164,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
switch (Name[0]) {
default: return false;
case 'a':
- return Name == "acos" || Name == "asin" ||
- Name == "atan" || Name == "atan2";
+ return Name == "acos" || Name == "asin" || Name == "atan" || Name =="atan2";
case 'c':
return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
case 'e':
@@ -1171,11 +1192,17 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
return 0;
}
+ if (Ty->isHalfTy()) {
+ APFloat APF(V);
+ bool unused;
+ APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
+ return ConstantFP::get(Ty->getContext(), APF);
+ }
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold float/double");
+ llvm_unreachable("Can only constant fold half/float/double");
}
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
@@ -1187,11 +1214,17 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
return 0;
}
+ if (Ty->isHalfTy()) {
+ APFloat APF(V);
+ bool unused;
+ APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
+ return ConstantFP::get(Ty->getContext(), APF);
+ }
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold float/double");
+ llvm_unreachable("Can only constant fold half/float/double");
}
/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
@@ -1243,7 +1276,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (!TLI)
return 0;
- if (!Ty->isFloatTy() && !Ty->isDoubleTy())
+ if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
/// We only fold functions with finite arguments. Folding NaN and inf is
@@ -1256,8 +1289,46 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
- double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
- Op->getValueAPF().convertToDouble();
+ double V;
+ if (Ty->isFloatTy())
+ V = Op->getValueAPF().convertToFloat();
+ else if (Ty->isDoubleTy())
+ V = Op->getValueAPF().convertToDouble();
+ else {
+ bool unused;
+ APFloat APF = Op->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ V = APF.convertToDouble();
+ }
+
+ switch (F->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::fabs:
+ return ConstantFoldFP(fabs, V, Ty);
+#if HAVE_LOG2
+ case Intrinsic::log2:
+ return ConstantFoldFP(log2, V, Ty);
+#endif
+#if HAVE_LOG
+ case Intrinsic::log:
+ return ConstantFoldFP(log, V, Ty);
+#endif
+#if HAVE_LOG10
+ case Intrinsic::log10:
+ return ConstantFoldFP(log10, V, Ty);
+#endif
+#if HAVE_EXP
+ case Intrinsic::exp:
+ return ConstantFoldFP(exp, V, Ty);
+#endif
+#if HAVE_EXP2
+ case Intrinsic::exp2:
+ return ConstantFoldFP(exp2, V, Ty);
+#endif
+ case Intrinsic::floor:
+ return ConstantFoldFP(floor, V, Ty);
+ }
+
switch (Name[0]) {
case 'a':
if (Name == "acos" && TLI->has(LibFunc::acos))
@@ -1299,7 +1370,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
return ConstantFoldFP(log10, V, Ty);
else if (F->getIntrinsicID() == Intrinsic::sqrt &&
- (Ty->isFloatTy() || Ty->isDoubleTy())) {
+ (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
else // Undefined
@@ -1337,7 +1408,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::convert_from_fp16: {
- APFloat Val(Op->getValue());
+ APFloat Val(APFloat::IEEEhalf, Op->getValue());
bool lost = false;
APFloat::opStatus status =
@@ -1391,18 +1462,35 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (Operands.size() == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (!Ty->isFloatTy() && !Ty->isDoubleTy())
+ if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
- double Op1V = Ty->isFloatTy() ?
- (double)Op1->getValueAPF().convertToFloat() :
- Op1->getValueAPF().convertToDouble();
+ double Op1V;
+ if (Ty->isFloatTy())
+ Op1V = Op1->getValueAPF().convertToFloat();
+ else if (Ty->isDoubleTy())
+ Op1V = Op1->getValueAPF().convertToDouble();
+ else {
+ bool unused;
+ APFloat APF = Op1->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ Op1V = APF.convertToDouble();
+ }
+
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return 0;
- double Op2V = Ty->isFloatTy() ?
- (double)Op2->getValueAPF().convertToFloat():
- Op2->getValueAPF().convertToDouble();
+ double Op2V;
+ if (Ty->isFloatTy())
+ Op2V = Op2->getValueAPF().convertToFloat();
+ else if (Ty->isDoubleTy())
+ Op2V = Op2->getValueAPF().convertToDouble();
+ else {
+ bool unused;
+ APFloat APF = Op2->getValueAPF();
+ APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
+ Op2V = APF.convertToDouble();
+ }
if (F->getIntrinsicID() == Intrinsic::pow) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
@@ -1416,6 +1504,10 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (Name == "atan2" && TLI->has(LibFunc::atan2))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
+ if (F->getIntrinsicID() == Intrinsic::powi && Ty->isHalfTy())
+ return ConstantFP::get(F->getContext(),
+ APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(F->getContext(),
APFloat((float)std::pow((float)Op1V,
@@ -1468,12 +1560,12 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
}
case Intrinsic::cttz:
- // FIXME: This should check for Op2 == 1, and become unreachable if
- // Op1 == 0.
+ if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
+ return UndefValue::get(Ty);
return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
case Intrinsic::ctlz:
- // FIXME: This should check for Op2 == 1, and become unreachable if
- // Op1 == 0.
+ if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
+ return UndefValue::get(Ty);
return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
}
}
diff --git a/lib/Analysis/CostModel.cpp b/lib/Analysis/CostModel.cpp
index 1784512..44684a9 100644
--- a/lib/Analysis/CostModel.cpp
+++ b/lib/Analysis/CostModel.cpp
@@ -80,11 +80,23 @@ CostModelAnalysis::runOnFunction(Function &F) {
return false;
}
+static bool isReverseVectorMask(SmallVector<int, 16> &Mask) {
+ for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
+ if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
+ return false;
+ return true;
+}
+
unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
if (!TTI)
return -1;
switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:{
+ Type *ValTy = I->getOperand(0)->getType()->getPointerElementType();
+ return TTI->getAddressComputationCost(ValTy);
+ }
+
case Instruction::Ret:
case Instruction::PHI:
case Instruction::Br: {
@@ -166,6 +178,17 @@ unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
return TTI->getVectorInstrCost(I->getOpcode(),
IE->getType(), Idx);
}
+ case Instruction::ShuffleVector: {
+ const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
+ Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
+ unsigned NumVecElems = VecTypOp0->getVectorNumElements();
+ SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
+
+ if (NumVecElems == Mask.size() && isReverseVectorMask(Mask))
+ return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 0,
+ 0);
+ return -1;
+ }
default:
// We don't have any information on this instruction.
return -1;
diff --git a/lib/Analysis/IPA/CMakeLists.txt b/lib/Analysis/IPA/CMakeLists.txt
index 34d6d1b..67b4135 100644
--- a/lib/Analysis/IPA/CMakeLists.txt
+++ b/lib/Analysis/IPA/CMakeLists.txt
@@ -1,9 +1,11 @@
add_llvm_library(LLVMipa
CallGraph.cpp
CallGraphSCCPass.cpp
+ CallPrinter.cpp
FindUsedTypes.cpp
GlobalsModRef.cpp
IPA.cpp
+ InlineCost.cpp
)
add_dependencies(LLVMipa intrinsics_gen)
diff --git a/lib/Analysis/IPA/CallPrinter.cpp b/lib/Analysis/IPA/CallPrinter.cpp
new file mode 100644
index 0000000..306ae7a
--- /dev/null
+++ b/lib/Analysis/IPA/CallPrinter.cpp
@@ -0,0 +1,87 @@
+//===- CallPrinter.cpp - DOT printer for call graph -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines '-dot-callgraph', which emit a callgraph.<fnname>.dot
+// containing the call graph of a module.
+//
+// There is also a pass available to directly call dotty ('-view-callgraph').
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallPrinter.h"
+#include "llvm/Analysis/DOTGraphTraitsPass.h"
+
+using namespace llvm;
+
+namespace llvm {
+
+template<>
+struct DOTGraphTraits<CallGraph*> : public DefaultDOTGraphTraits {
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getGraphName(CallGraph *Graph) {
+ return "Call graph";
+ }
+
+ std::string getNodeLabel(CallGraphNode *Node, CallGraph *Graph) {
+ if (Function *Func = Node->getFunction())
+ return Func->getName();
+
+ return "external node";
+ }
+};
+
+} // end llvm namespace
+
+namespace {
+
+struct CallGraphViewer
+ : public DOTGraphTraitsModuleViewer<CallGraph, true> {
+ static char ID;
+
+ CallGraphViewer()
+ : DOTGraphTraitsModuleViewer<CallGraph, true>("callgraph", ID) {
+ initializeCallGraphViewerPass(*PassRegistry::getPassRegistry());
+ }
+};
+
+struct CallGraphPrinter
+ : public DOTGraphTraitsModulePrinter<CallGraph, true> {
+ static char ID;
+
+ CallGraphPrinter()
+ : DOTGraphTraitsModulePrinter<CallGraph, true>("callgraph", ID) {
+ initializeCallGraphPrinterPass(*PassRegistry::getPassRegistry());
+ }
+};
+
+} // end anonymous namespace
+
+char CallGraphViewer::ID = 0;
+INITIALIZE_PASS(CallGraphViewer, "view-callgraph",
+ "View call graph",
+ false, false)
+
+char CallGraphPrinter::ID = 0;
+INITIALIZE_PASS(CallGraphPrinter, "dot-callgraph",
+ "Print call graph to 'dot' file",
+ false, false)
+
+// Create methods available outside of this file, to use them
+// "include/llvm/LinkAllPasses.h". Otherwise the pass would be deleted by
+// the link time optimization.
+
+ModulePass *llvm::createCallGraphViewerPass() {
+ return new CallGraphViewer();
+}
+
+ModulePass *llvm::createCallGraphPrinterPass() {
+ return new CallGraphPrinter();
+}
diff --git a/lib/Analysis/IPA/IPA.cpp b/lib/Analysis/IPA/IPA.cpp
index 0ba2e04..aa5164e 100644
--- a/lib/Analysis/IPA/IPA.cpp
+++ b/lib/Analysis/IPA/IPA.cpp
@@ -20,6 +20,8 @@ using namespace llvm;
void llvm::initializeIPA(PassRegistry &Registry) {
initializeBasicCallGraphPass(Registry);
initializeCallGraphAnalysisGroup(Registry);
+ initializeCallGraphPrinterPass(Registry);
+ initializeCallGraphViewerPass(Registry);
initializeFindUsedTypesPass(Registry);
initializeGlobalsModRefPass(Registry);
}
diff --git a/lib/Analysis/InlineCost.cpp b/lib/Analysis/IPA/InlineCost.cpp
index 6e5c035..3292e00 100644
--- a/lib/Analysis/InlineCost.cpp
+++ b/lib/Analysis/IPA/InlineCost.cpp
@@ -20,6 +20,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
@@ -44,6 +45,9 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
// DataLayout if available, or null.
const DataLayout *const TD;
+ /// The TargetTransformInfo available for this compilation.
+ const TargetTransformInfo &TTI;
+
// The called function.
Function &F;
@@ -130,16 +134,17 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
bool visitCallSite(CallSite CS);
public:
- CallAnalyzer(const DataLayout *TD, Function &Callee, int Threshold)
- : TD(TD), F(Callee), Threshold(Threshold), Cost(0),
- IsCallerRecursive(false), IsRecursiveCall(false),
- ExposesReturnsTwice(false), HasDynamicAlloca(false), ContainsNoDuplicateCall(false),
- AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0),
- FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0),
- NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0),
- NumConstantPtrCmps(0), NumConstantPtrDiffs(0),
- NumInstructionsSimplified(0), SROACostSavings(0), SROACostSavingsLost(0) {
- }
+ CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
+ Function &Callee, int Threshold)
+ : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
+ IsCallerRecursive(false), IsRecursiveCall(false),
+ ExposesReturnsTwice(false), HasDynamicAlloca(false),
+ ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
+ NumVectorInstructions(0), FiftyPercentVectorBonus(0),
+ TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
+ NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
+ NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
+ SROACostSavings(0), SROACostSavingsLost(0) {}
bool analyzeCall(CallSite CS);
@@ -417,7 +422,7 @@ bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
SROAArgValues[&I] = SROAArg;
- return isInstructionFree(&I, TD);
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
}
bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
@@ -447,7 +452,7 @@ bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
SROAArgValues[&I] = SROAArg;
- return isInstructionFree(&I, TD);
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
}
bool CallAnalyzer::visitCastInst(CastInst &I) {
@@ -464,7 +469,7 @@ bool CallAnalyzer::visitCastInst(CastInst &I) {
// Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
disableSROA(I.getOperand(0));
- return isInstructionFree(&I, TD);
+ return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
}
bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
@@ -731,7 +736,7 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
return false;
}
- if (!callIsSmall(CS)) {
+ if (TTI.isLoweredToCall(F)) {
// We account for the average 1 instruction per call argument setup
// here.
Cost += CS.arg_size() * InlineConstants::InstrCost;
@@ -764,7 +769,7 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
// during devirtualization and so we want to give it a hefty bonus for
// inlining, but cap that bonus in the event that inlining wouldn't pan
// out. Pretend to inline the function, with a custom threshold.
- CallAnalyzer CA(TD, *F, InlineConstants::IndirectCallThreshold);
+ CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
if (CA.analyzeCall(CS)) {
// We were able to inline the indirect call! Subtract the cost from the
// bonus we want to apply, but don't go below zero.
@@ -777,7 +782,7 @@ bool CallAnalyzer::visitCallSite(CallSite CS) {
bool CallAnalyzer::visitInstruction(Instruction &I) {
// Some instructions are free. All of the free intrinsics can also be
// handled by SROA, etc.
- if (isInstructionFree(&I, TD))
+ if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
return true;
// We found something we don't understand or can't handle. Mark any SROA-able
@@ -1132,11 +1137,35 @@ void CallAnalyzer::dump() {
}
#endif
-InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, int Threshold) {
+INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
+ true, true)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
+INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
+ true, true)
+
+char InlineCostAnalysis::ID = 0;
+
+InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
+
+InlineCostAnalysis::~InlineCostAnalysis() {}
+
+void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<TargetTransformInfo>();
+ CallGraphSCCPass::getAnalysisUsage(AU);
+}
+
+bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
+ TD = getAnalysisIfAvailable<DataLayout>();
+ TTI = &getAnalysis<TargetTransformInfo>();
+ return false;
+}
+
+InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
return getInlineCost(CS, CS.getCalledFunction(), Threshold);
}
-InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee,
+InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
int Threshold) {
// Cannot inline indirect calls.
if (!Callee)
@@ -1163,7 +1192,7 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee,
DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
<< "...\n");
- CallAnalyzer CA(TD, *Callee, Threshold);
+ CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
bool ShouldInline = CA.analyzeCall(CS);
DEBUG(CA.dump());
@@ -1177,9 +1206,10 @@ InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee,
return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
}
-bool InlineCostAnalyzer::isInlineViable(Function &F) {
- bool ReturnsTwice =F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::ReturnsTwice);
+bool InlineCostAnalysis::isInlineViable(Function &F) {
+ bool ReturnsTwice =
+ F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::ReturnsTwice);
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
// Disallow inlining of functions which contain an indirect branch.
if (isa<IndirectBrInst>(BI->getTerminator()))
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp
index d97e226..4a3c74e 100644
--- a/lib/Analysis/InstructionSimplify.cpp
+++ b/lib/Analysis/InstructionSimplify.cpp
@@ -21,10 +21,10 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/Operator.h"
@@ -663,12 +663,20 @@ Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
-static Constant *stripAndComputeConstantOffsets(const DataLayout &TD,
+///
+/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
+/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
+/// folding.
+static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
Value *&V) {
- if (!V->getType()->isPointerTy())
- return 0;
+ assert(V->getType()->getScalarType()->isPointerTy());
+
+ // Without DataLayout, just be conservative for now. Theoretically, more could
+ // be done in this case.
+ if (!TD)
+ return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
- unsigned IntPtrWidth = TD.getPointerSizeInBits();
+ unsigned IntPtrWidth = TD->getPointerSizeInBits();
APInt Offset = APInt::getNullValue(IntPtrWidth);
// Even though we don't look through PHI nodes, we could be called on an
@@ -677,7 +685,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout &TD,
Visited.insert(V);
do {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(TD, Offset))
+ if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
break;
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
@@ -689,23 +697,24 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout &TD,
} else {
break;
}
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ assert(V->getType()->getScalarType()->isPointerTy() &&
+ "Unexpected operand type!");
} while (Visited.insert(V));
- Type *IntPtrTy = TD.getIntPtrType(V->getContext());
- return ConstantInt::get(IntPtrTy, Offset);
+ Type *IntPtrTy = TD->getIntPtrType(V->getContext());
+ Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
+ if (V->getType()->isVectorTy())
+ return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
+ OffsetIntPtr);
+ return OffsetIntPtr;
}
/// \brief Compute the constant difference between two pointer values.
/// If the difference is not a constant, returns zero.
-static Constant *computePointerDifference(const DataLayout &TD,
+static Constant *computePointerDifference(const DataLayout *TD,
Value *LHS, Value *RHS) {
Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
- if (!LHSOffset)
- return 0;
Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
- if (!RHSOffset)
- return 0;
// If LHS and RHS are not related via constant offsets to the same base
// value, there is nothing we can do here.
@@ -819,9 +828,9 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
return W;
// Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
- if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
+ if (match(Op0, m_PtrToInt(m_Value(X))) &&
match(Op1, m_PtrToInt(m_Value(Y))))
- if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
+ if (Constant *Result = computePointerDifference(Q.TD, X, Y))
return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
// Mul distributes over Sub. Try some generic simplifications based on this.
@@ -1684,9 +1693,48 @@ static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
return 0;
}
-static Constant *computePointerICmp(const DataLayout &TD,
+// A significant optimization not implemented here is assuming that alloca
+// addresses are not equal to incoming argument values. They don't *alias*,
+// as we say, but that doesn't mean they aren't equal, so we take a
+// conservative approach.
+//
+// This is inspired in part by C++11 5.10p1:
+// "Two pointers of the same type compare equal if and only if they are both
+// null, both point to the same function, or both represent the same
+// address."
+//
+// This is pretty permissive.
+//
+// It's also partly due to C11 6.5.9p6:
+// "Two pointers compare equal if and only if both are null pointers, both are
+// pointers to the same object (including a pointer to an object and a
+// subobject at its beginning) or function, both are pointers to one past the
+// last element of the same array object, or one is a pointer to one past the
+// end of one array object and the other is a pointer to the start of a
+// different array object that happens to immediately follow the first array
+// object in the address space.)
+//
+// C11's version is more restrictive, however there's no reason why an argument
+// couldn't be a one-past-the-end value for a stack object in the caller and be
+// equal to the beginning of a stack object in the callee.
+//
+// If the C and C++ standards are ever made sufficiently restrictive in this
+// area, it may be possible to update LLVM's semantics accordingly and reinstate
+// this optimization.
+static Constant *computePointerICmp(const DataLayout *TD,
+ const TargetLibraryInfo *TLI,
CmpInst::Predicate Pred,
Value *LHS, Value *RHS) {
+ // First, skip past any trivial no-ops.
+ LHS = LHS->stripPointerCasts();
+ RHS = RHS->stripPointerCasts();
+
+ // A non-null pointer is not equal to a null pointer.
+ if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
+ (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+
// We can only fold certain predicates on pointer comparisons.
switch (Pred) {
default:
@@ -1709,19 +1757,83 @@ static Constant *computePointerICmp(const DataLayout &TD,
break;
}
+ // Strip off any constant offsets so that we can reason about them.
+ // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
+ // here and compare base addresses like AliasAnalysis does, however there are
+ // numerous hazards. AliasAnalysis and its utilities rely on special rules
+ // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
+ // doesn't need to guarantee pointer inequality when it says NoAlias.
Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
- if (!LHSOffset)
- return 0;
Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
- if (!RHSOffset)
- return 0;
- // If LHS and RHS are not related via constant offsets to the same base
- // value, there is nothing we can do here.
- if (LHS != RHS)
- return 0;
+ // If LHS and RHS are related via constant offsets to the same base
+ // value, we can replace it with an icmp which just compares the offsets.
+ if (LHS == RHS)
+ return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
+
+ // Various optimizations for (in)equality comparisons.
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
+ // Different non-empty allocations that exist at the same time have
+ // different addresses (if the program can tell). Global variables always
+ // exist, so they always exist during the lifetime of each other and all
+ // allocas. Two different allocas usually have different addresses...
+ //
+ // However, if there's an @llvm.stackrestore dynamically in between two
+ // allocas, they may have the same address. It's tempting to reduce the
+ // scope of the problem by only looking at *static* allocas here. That would
+ // cover the majority of allocas while significantly reducing the likelihood
+ // of having an @llvm.stackrestore pop up in the middle. However, it's not
+ // actually impossible for an @llvm.stackrestore to pop up in the middle of
+ // an entry block. Also, if we have a block that's not attached to a
+ // function, we can't tell if it's "static" under the current definition.
+ // Theoretically, this problem could be fixed by creating a new kind of
+ // instruction kind specifically for static allocas. Such a new instruction
+ // could be required to be at the top of the entry block, thus preventing it
+ // from being subject to a @llvm.stackrestore. Instcombine could even
+ // convert regular allocas into these special allocas. It'd be nifty.
+ // However, until then, this problem remains open.
+ //
+ // So, we'll assume that two non-empty allocas have different addresses
+ // for now.
+ //
+ // With all that, if the offsets are within the bounds of their allocations
+ // (and not one-past-the-end! so we can't use inbounds!), and their
+ // allocations aren't the same, the pointers are not equal.
+ //
+ // Note that it's not necessary to check for LHS being a global variable
+ // address, due to canonicalization and constant folding.
+ if (isa<AllocaInst>(LHS) &&
+ (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
+ ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
+ ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
+ uint64_t LHSSize, RHSSize;
+ if (LHSOffsetCI && RHSOffsetCI &&
+ getObjectSize(LHS, LHSSize, TD, TLI) &&
+ getObjectSize(RHS, RHSSize, TD, TLI)) {
+ const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
+ const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
+ if (!LHSOffsetValue.isNegative() &&
+ !RHSOffsetValue.isNegative() &&
+ LHSOffsetValue.ult(LHSSize) &&
+ RHSOffsetValue.ult(RHSSize)) {
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+ }
+ }
+
+ // Repeat the above check but this time without depending on DataLayout
+ // or being able to compute a precise size.
+ if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
+ !cast<PointerType>(RHS->getType())->isEmptyTy() &&
+ LHSOffset->isNullValue() &&
+ RHSOffset->isNullValue())
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
+ }
+ }
- return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
+ // Otherwise, fail.
+ return 0;
}
/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
@@ -1786,62 +1898,6 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
- // icmp <object*>, <object*/null> - Different identified objects have
- // different addresses (unless null), and what's more the address of an
- // identified local is never equal to another argument (again, barring null).
- // Note that generalizing to the case where LHS is a global variable address
- // or null is pointless, since if both LHS and RHS are constants then we
- // already constant folded the compare, and if only one of them is then we
- // moved it to RHS already.
- Value *LHSPtr = LHS->stripPointerCasts();
- Value *RHSPtr = RHS->stripPointerCasts();
- if (LHSPtr == RHSPtr)
- return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
-
- // Be more aggressive about stripping pointer adjustments when checking a
- // comparison of an alloca address to another object. We can rip off all
- // inbounds GEP operations, even if they are variable.
- LHSPtr = LHSPtr->stripInBoundsOffsets();
- if (llvm::isIdentifiedObject(LHSPtr)) {
- RHSPtr = RHSPtr->stripInBoundsOffsets();
- if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
- // If both sides are different identified objects, they aren't equal
- // unless they're null.
- if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
- Pred == CmpInst::ICMP_EQ)
- return ConstantInt::get(ITy, false);
-
- // A local identified object (alloca or noalias call) can't equal any
- // incoming argument, unless they're both null or they belong to
- // different functions. The latter happens during inlining.
- if (Instruction *LHSInst = dyn_cast<Instruction>(LHSPtr))
- if (Argument *RHSArg = dyn_cast<Argument>(RHSPtr))
- if (LHSInst->getParent()->getParent() == RHSArg->getParent() &&
- Pred == CmpInst::ICMP_EQ)
- return ConstantInt::get(ITy, false);
- }
-
- // Assume that the constant null is on the right.
- if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
- if (Pred == CmpInst::ICMP_EQ)
- return ConstantInt::get(ITy, false);
- else if (Pred == CmpInst::ICMP_NE)
- return ConstantInt::get(ITy, true);
- }
- } else if (Argument *LHSArg = dyn_cast<Argument>(LHSPtr)) {
- RHSPtr = RHSPtr->stripInBoundsOffsets();
- // An alloca can't be equal to an argument unless they come from separate
- // functions via inlining.
- if (AllocaInst *RHSInst = dyn_cast<AllocaInst>(RHSPtr)) {
- if (LHSArg->getParent() == RHSInst->getParent()->getParent()) {
- if (Pred == CmpInst::ICMP_EQ)
- return ConstantInt::get(ITy, false);
- else if (Pred == CmpInst::ICMP_NE)
- return ConstantInt::get(ITy, true);
- }
- }
- }
-
// If we are comparing with zero then try hard since this is a common case.
if (match(RHS, m_Zero())) {
bool LHSKnownNonNegative, LHSKnownNegative;
@@ -2468,8 +2524,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
// Simplify comparisons of related pointers using a powerful, recursive
// GEP-walk when we have target data available..
- if (Q.TD && LHS->getType()->isPointerTy() && RHS->getType()->isPointerTy())
- if (Constant *C = computePointerICmp(*Q.TD, Pred, LHS, RHS))
+ if (LHS->getType()->isPointerTy())
+ if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
return C;
if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
@@ -2869,6 +2925,37 @@ Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
RecursionLimit);
}
+static bool IsIdempotent(Intrinsic::ID ID) {
+ switch (ID) {
+ default: return false;
+
+ // Unary idempotent: f(f(x)) = f(x)
+ case Intrinsic::fabs:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ return true;
+ }
+}
+
+template <typename IterTy>
+static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
+ const Query &Q, unsigned MaxRecurse) {
+ // Perform idempotent optimizations
+ if (!IsIdempotent(IID))
+ return 0;
+
+ // Unary Ops
+ if (std::distance(ArgBegin, ArgEnd) == 1)
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
+ if (II->getIntrinsicID() == IID)
+ return II;
+
+ return 0;
+}
+
template <typename IterTy>
static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
const Query &Q, unsigned MaxRecurse) {
@@ -2885,6 +2972,11 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
if (!F)
return 0;
+ if (unsigned IID = F->getIntrinsicID())
+ if (Value *Ret =
+ SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
+ return Ret;
+
if (!canConstantFoldCallTo(F))
return 0;
diff --git a/lib/Analysis/LazyValueInfo.cpp b/lib/Analysis/LazyValueInfo.cpp
index 1c94d10..66b5e85 100644
--- a/lib/Analysis/LazyValueInfo.cpp
+++ b/lib/Analysis/LazyValueInfo.cpp
@@ -16,7 +16,6 @@
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
-#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
diff --git a/lib/Analysis/Lint.cpp b/lib/Analysis/Lint.cpp
index fd10a6b..9393508 100644
--- a/lib/Analysis/Lint.cpp
+++ b/lib/Analysis/Lint.cpp
@@ -412,51 +412,49 @@ void Lint::visitMemoryReference(Instruction &I,
}
// Check for buffer overflows and misalignment.
- if (TD) {
- // Only handles memory references that read/write something simple like an
- // alloca instruction or a global variable.
- int64_t Offset = 0;
- if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *TD)) {
- // OK, so the access is to a constant offset from Ptr. Check that Ptr is
- // something we can handle and if so extract the size of this base object
- // along with its alignment.
- uint64_t BaseSize = AliasAnalysis::UnknownSize;
- unsigned BaseAlign = 0;
-
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
- Type *ATy = AI->getAllocatedType();
- if (!AI->isArrayAllocation() && ATy->isSized())
- BaseSize = TD->getTypeAllocSize(ATy);
- BaseAlign = AI->getAlignment();
- if (BaseAlign == 0 && ATy->isSized())
- BaseAlign = TD->getABITypeAlignment(ATy);
- } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
- // If the global may be defined differently in another compilation unit
- // then don't warn about funky memory accesses.
- if (GV->hasDefinitiveInitializer()) {
- Type *GTy = GV->getType()->getElementType();
- if (GTy->isSized())
- BaseSize = TD->getTypeAllocSize(GTy);
- BaseAlign = GV->getAlignment();
- if (BaseAlign == 0 && GTy->isSized())
- BaseAlign = TD->getABITypeAlignment(GTy);
- }
+ // Only handles memory references that read/write something simple like an
+ // alloca instruction or a global variable.
+ int64_t Offset = 0;
+ if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
+ // OK, so the access is to a constant offset from Ptr. Check that Ptr is
+ // something we can handle and if so extract the size of this base object
+ // along with its alignment.
+ uint64_t BaseSize = AliasAnalysis::UnknownSize;
+ unsigned BaseAlign = 0;
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
+ Type *ATy = AI->getAllocatedType();
+ if (TD && !AI->isArrayAllocation() && ATy->isSized())
+ BaseSize = TD->getTypeAllocSize(ATy);
+ BaseAlign = AI->getAlignment();
+ if (TD && BaseAlign == 0 && ATy->isSized())
+ BaseAlign = TD->getABITypeAlignment(ATy);
+ } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
+ // If the global may be defined differently in another compilation unit
+ // then don't warn about funky memory accesses.
+ if (GV->hasDefinitiveInitializer()) {
+ Type *GTy = GV->getType()->getElementType();
+ if (TD && GTy->isSized())
+ BaseSize = TD->getTypeAllocSize(GTy);
+ BaseAlign = GV->getAlignment();
+ if (TD && BaseAlign == 0 && GTy->isSized())
+ BaseAlign = TD->getABITypeAlignment(GTy);
}
-
- // Accesses from before the start or after the end of the object are not
- // defined.
- Assert1(Size == AliasAnalysis::UnknownSize ||
- BaseSize == AliasAnalysis::UnknownSize ||
- (Offset >= 0 && Offset + Size <= BaseSize),
- "Undefined behavior: Buffer overflow", &I);
-
- // Accesses that say that the memory is more aligned than it is are not
- // defined.
- if (Align == 0 && Ty && Ty->isSized())
- Align = TD->getABITypeAlignment(Ty);
- Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
- "Undefined behavior: Memory reference address is misaligned", &I);
}
+
+ // Accesses from before the start or after the end of the object are not
+ // defined.
+ Assert1(Size == AliasAnalysis::UnknownSize ||
+ BaseSize == AliasAnalysis::UnknownSize ||
+ (Offset >= 0 && Offset + Size <= BaseSize),
+ "Undefined behavior: Buffer overflow", &I);
+
+ // Accesses that say that the memory is more aligned than it is are not
+ // defined.
+ if (TD && Align == 0 && Ty && Ty->isSized())
+ Align = TD->getABITypeAlignment(Ty);
+ Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
+ "Undefined behavior: Memory reference address is misaligned", &I);
}
}
diff --git a/lib/Analysis/Loads.cpp b/lib/Analysis/Loads.cpp
index 3158873..0902a39 100644
--- a/lib/Analysis/Loads.cpp
+++ b/lib/Analysis/Loads.cpp
@@ -57,8 +57,7 @@ bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
unsigned Align, const DataLayout *TD) {
int64_t ByteOffset = 0;
Value *Base = V;
- if (TD)
- Base = GetPointerBaseWithConstantOffset(V, ByteOffset, *TD);
+ Base = GetPointerBaseWithConstantOffset(V, ByteOffset, TD);
if (ByteOffset < 0) // out of bounds
return false;
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index 4d4c627..f1ad650 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -24,6 +24,7 @@
#include "llvm/Assembly/Writer.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -233,6 +234,55 @@ bool Loop::isSafeToClone() const {
return true;
}
+bool Loop::isAnnotatedParallel() const {
+
+ BasicBlock *latch = getLoopLatch();
+ if (latch == NULL)
+ return false;
+
+ MDNode *desiredLoopIdMetadata =
+ latch->getTerminator()->getMetadata("llvm.loop.parallel");
+
+ if (!desiredLoopIdMetadata)
+ return false;
+
+ // The loop branch contains the parallel loop metadata. In order to ensure
+ // that any parallel-loop-unaware optimization pass hasn't added loop-carried
+ // dependencies (thus converted the loop back to a sequential loop), check
+ // that all the memory instructions in the loop contain parallelism metadata
+ // that point to the same unique "loop id metadata" the loop branch does.
+ for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
+ for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
+ II != EE; II++) {
+
+ if (!II->mayReadOrWriteMemory())
+ continue;
+
+ if (!II->getMetadata("llvm.mem.parallel_loop_access"))
+ return false;
+
+ // The memory instruction can refer to the loop identifier metadata
+ // directly or indirectly through another list metadata (in case of
+ // nested parallel loops). The loop identifier metadata refers to
+ // itself so we can check both cases with the same routine.
+ MDNode *loopIdMD =
+ dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
+ bool loopIdMDFound = false;
+ for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
+ if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
+ loopIdMDFound = true;
+ break;
+ }
+ }
+
+ if (!loopIdMDFound)
+ return false;
+ }
+ }
+ return true;
+}
+
+
/// hasDedicatedExits - Return true if no exit block for the loop
/// has a predecessor that is outside the loop.
bool Loop::hasDedicatedExits() const {
diff --git a/lib/Analysis/MemoryBuiltins.cpp b/lib/Analysis/MemoryBuiltins.cpp
index f88affb..0fc0550 100644
--- a/lib/Analysis/MemoryBuiltins.cpp
+++ b/lib/Analysis/MemoryBuiltins.cpp
@@ -385,21 +385,16 @@ ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *TD,
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
V = V->stripPointerCasts();
-
- if (isa<Instruction>(V) || isa<GEPOperator>(V)) {
- // If we have already seen this instruction, bail out.
- if (!SeenInsts.insert(V))
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If we have already seen this instruction, bail out. Cycles can happen in
+ // unreachable code after constant propagation.
+ if (!SeenInsts.insert(I))
return unknown();
- SizeOffsetType Ret;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- Ret = visitGEPOperator(*GEP);
- else
- Ret = visit(cast<Instruction>(*V));
- SeenInsts.erase(V);
- return Ret;
+ return visitGEPOperator(*GEP);
+ return visit(*I);
}
-
if (Argument *A = dyn_cast<Argument>(V))
return visitArgument(*A);
if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
@@ -413,6 +408,8 @@ SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::IntToPtr)
return unknown(); // clueless
+ if (CE->getOpcode() == Instruction::GetElementPtr)
+ return visitGEPOperator(cast<GEPOperator>(*CE));
}
DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
@@ -546,21 +543,9 @@ SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
return unknown();
}
-SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PHI) {
- if (PHI.getNumIncomingValues() == 0)
- return unknown();
-
- SizeOffsetType Ret = compute(PHI.getIncomingValue(0));
- if (!bothKnown(Ret))
- return unknown();
-
- // verify that all PHI incoming pointers have the same size and offset
- for (unsigned i = 1, e = PHI.getNumIncomingValues(); i != e; ++i) {
- SizeOffsetType EdgeData = compute(PHI.getIncomingValue(i));
- if (!bothKnown(EdgeData) || EdgeData != Ret)
- return unknown();
- }
- return Ret;
+SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
+ // too complex to analyze statically.
+ return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp
index eee7607..38bf5dd 100644
--- a/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -262,7 +262,7 @@ isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
// If we haven't already computed the base/offset of MemLoc, do so now.
if (MemLocBase == 0)
- MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
+ MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
unsigned Size = MemoryDependenceAnalysis::
getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
@@ -283,11 +283,17 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
const DataLayout &TD) {
// We can only extend simple integer loads.
if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
+
+ // Load widening is hostile to ThreadSanitizer: it may cause false positives
+ // or make the reports more cryptic (access sizes are wrong).
+ if (LI->getParent()->getParent()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
+ return 0;
// Get the base of this load.
int64_t LIOffs = 0;
const Value *LIBase =
- GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
+ GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD);
// If the two pointers are not based on the same pointer, we can't tell that
// they are related.
@@ -328,7 +334,7 @@ getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
if (LIOffs+NewLoadByteSize > MemLocEnd &&
LI->getParent()->getParent()->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex, Attribute::AddressSafety))
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
// We will be reading past the location accessed by the original program.
// While this is safe in a regular build, Address Safety analysis tools
// may start reporting false warnings. So, don't do widening.
diff --git a/lib/Analysis/ProfileDataLoaderPass.cpp b/lib/Analysis/ProfileDataLoaderPass.cpp
index 51b7f1d..2ee0093 100644
--- a/lib/Analysis/ProfileDataLoaderPass.cpp
+++ b/lib/Analysis/ProfileDataLoaderPass.cpp
@@ -177,8 +177,8 @@ bool ProfileMetadataLoaderPass::runOnModule(Module &M) {
unsigned ReadCount = matchEdges(M, PB, Counters);
if (ReadCount != Counters.size()) {
- M.getContext().emitWarning("profile information is inconsistent "
- "with the current program");
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
}
NumEdgesRead = ReadCount;
diff --git a/lib/Analysis/ProfileInfoLoaderPass.cpp b/lib/Analysis/ProfileInfoLoaderPass.cpp
index 094c107..346f8d6 100644
--- a/lib/Analysis/ProfileInfoLoaderPass.cpp
+++ b/lib/Analysis/ProfileInfoLoaderPass.cpp
@@ -19,7 +19,6 @@
#include "llvm/Analysis/ProfileInfoLoader.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
@@ -171,8 +170,8 @@ bool LoaderPass::runOnModule(Module &M) {
}
}
if (ReadCount != Counters.size()) {
- M.getContext().emitWarning("profile information is inconsistent "
- "with the current program");
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
}
NumEdgesRead = ReadCount;
}
@@ -219,8 +218,8 @@ bool LoaderPass::runOnModule(Module &M) {
}
}
if (ReadCount != Counters.size()) {
- M.getContext().emitWarning("profile information is inconsistent "
- "with the current program");
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
}
NumEdgesRead = ReadCount;
}
@@ -240,8 +239,8 @@ bool LoaderPass::runOnModule(Module &M) {
BlockInformation[F][BB] = (double)Counters[ReadCount++];
}
if (ReadCount != Counters.size()) {
- M.getContext().emitWarning("profile information is inconsistent "
- "with the current program");
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
}
}
@@ -259,8 +258,8 @@ bool LoaderPass::runOnModule(Module &M) {
FunctionInformation[F] = (double)Counters[ReadCount++];
}
if (ReadCount != Counters.size()) {
- M.getContext().emitWarning("profile information is inconsistent "
- "with the current program");
+ errs() << "WARNING: profile information is inconsistent with "
+ << "the current program!\n";
}
}
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index b87ad75..fcd7ce2 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -1523,9 +1523,8 @@ Value *SCEVExpander::expand(const SCEV *S) {
}
// Check to see if we already expanded this here.
- std::map<std::pair<const SCEV *, Instruction *>,
- AssertingVH<Value> >::iterator I =
- InsertedExpressions.find(std::make_pair(S, InsertPt));
+ std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
+ I = InsertedExpressions.find(std::make_pair(S, InsertPt));
if (I != InsertedExpressions.end())
return I->second;
diff --git a/lib/Analysis/TargetTransformInfo.cpp b/lib/Analysis/TargetTransformInfo.cpp
index 63f495a..72421a0 100644
--- a/lib/Analysis/TargetTransformInfo.cpp
+++ b/lib/Analysis/TargetTransformInfo.cpp
@@ -9,6 +9,12 @@
#define DEBUG_TYPE "tti"
#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
@@ -43,6 +49,49 @@ void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfo>();
}
+unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
+ Type *OpTy) const {
+ return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
+}
+
+unsigned TargetTransformInfo::getGEPCost(
+ const Value *Ptr, ArrayRef<const Value *> Operands) const {
+ return PrevTTI->getGEPCost(Ptr, Operands);
+}
+
+unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
+ int NumArgs) const {
+ return PrevTTI->getCallCost(FTy, NumArgs);
+}
+
+unsigned TargetTransformInfo::getCallCost(const Function *F,
+ int NumArgs) const {
+ return PrevTTI->getCallCost(F, NumArgs);
+}
+
+unsigned TargetTransformInfo::getCallCost(
+ const Function *F, ArrayRef<const Value *> Arguments) const {
+ return PrevTTI->getCallCost(F, Arguments);
+}
+
+unsigned TargetTransformInfo::getIntrinsicCost(
+ Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
+ return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
+}
+
+unsigned TargetTransformInfo::getIntrinsicCost(
+ Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
+ return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
+}
+
+unsigned TargetTransformInfo::getUserCost(const User *U) const {
+ return PrevTTI->getUserCost(U);
+}
+
+bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
+ return PrevTTI->isLoweredToCall(F);
+}
+
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return PrevTTI->isLegalAddImmediate(Imm);
}
@@ -92,6 +141,14 @@ unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return PrevTTI->getNumberOfRegisters(Vector);
}
+unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
+ return PrevTTI->getRegisterBitWidth(Vector);
+}
+
+unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
+ return PrevTTI->getMaximumUnrollFactor();
+}
+
unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
Type *Ty) const {
return PrevTTI->getArithmeticInstrCost(Opcode, Ty);
@@ -139,18 +196,25 @@ unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return PrevTTI->getNumberOfParts(Tp);
}
+unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp) const {
+ return PrevTTI->getAddressComputationCost(Tp);
+}
namespace {
struct NoTTI : ImmutablePass, TargetTransformInfo {
- NoTTI() : ImmutablePass(ID) {
+ const DataLayout *DL;
+
+ NoTTI() : ImmutablePass(ID), DL(0) {
initializeNoTTIPass(*PassRegistry::getPassRegistry());
}
virtual void initializePass() {
// Note that this subclass is special, and must *not* call initializeTTI as
// it does not chain.
+ TopTTI = this;
PrevTTI = 0;
+ DL = getAnalysisIfAvailable<DataLayout>();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
@@ -168,6 +232,213 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return this;
}
+ unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const {
+ switch (Opcode) {
+ default:
+ // By default, just classify everything as 'basic'.
+ return TCC_Basic;
+
+ case Instruction::GetElementPtr:
+ llvm_unreachable("Use getGEPCost for GEP operations!");
+
+ case Instruction::BitCast:
+ assert(OpTy && "Cast instructions must provide the operand type");
+ if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
+ // Identity and pointer-to-pointer casts are free.
+ return TCC_Free;
+
+ // Otherwise, the default basic cost is used.
+ return TCC_Basic;
+
+ case Instruction::IntToPtr:
+ // An inttoptr cast is free so long as the input is a legal integer type
+ // which doesn't contain values outside the range of a pointer.
+ if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
+ OpTy->getScalarSizeInBits() <= DL->getPointerSizeInBits())
+ return TCC_Free;
+
+ // Otherwise it's not a no-op.
+ return TCC_Basic;
+
+ case Instruction::PtrToInt:
+ // A ptrtoint cast is free so long as the result is large enough to store
+ // the pointer, and a legal integer type.
+ if (DL && DL->isLegalInteger(OpTy->getScalarSizeInBits()) &&
+ OpTy->getScalarSizeInBits() >= DL->getPointerSizeInBits())
+ return TCC_Free;
+
+ // Otherwise it's not a no-op.
+ return TCC_Basic;
+
+ case Instruction::Trunc:
+ // trunc to a native type is free (assuming the target has compare and
+ // shift-right of the same width).
+ if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
+ return TCC_Free;
+
+ return TCC_Basic;
+ }
+ }
+
+ unsigned getGEPCost(const Value *Ptr,
+ ArrayRef<const Value *> Operands) const {
+ // In the basic model, we just assume that all-constant GEPs will be folded
+ // into their uses via addressing modes.
+ for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
+ if (!isa<Constant>(Operands[Idx]))
+ return TCC_Basic;
+
+ return TCC_Free;
+ }
+
+ unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const {
+ assert(FTy && "FunctionType must be provided to this routine.");
+
+ // The target-independent implementation just measures the size of the
+ // function by approximating that each argument will take on average one
+ // instruction to prepare.
+
+ if (NumArgs < 0)
+ // Set the argument number to the number of explicit arguments in the
+ // function.
+ NumArgs = FTy->getNumParams();
+
+ return TCC_Basic * (NumArgs + 1);
+ }
+
+ unsigned getCallCost(const Function *F, int NumArgs = -1) const {
+ assert(F && "A concrete function must be provided to this routine.");
+
+ if (NumArgs < 0)
+ // Set the argument number to the number of explicit arguments in the
+ // function.
+ NumArgs = F->arg_size();
+
+ if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
+ FunctionType *FTy = F->getFunctionType();
+ SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
+ return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
+ }
+
+ if (!TopTTI->isLoweredToCall(F))
+ return TCC_Basic; // Give a basic cost if it will be lowered directly.
+
+ return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
+ }
+
+ unsigned getCallCost(const Function *F,
+ ArrayRef<const Value *> Arguments) const {
+ // Simply delegate to generic handling of the call.
+ // FIXME: We should use instsimplify or something else to catch calls which
+ // will constant fold with these arguments.
+ return TopTTI->getCallCost(F, Arguments.size());
+ }
+
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> ParamTys) const {
+ switch (IID) {
+ default:
+ // Intrinsics rarely (if ever) have normal argument setup constraints.
+ // Model them as having a basic instruction cost.
+ // FIXME: This is wrong for libc intrinsics.
+ return TCC_Basic;
+
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ // These intrinsics don't actually represent code after lowering.
+ return TCC_Free;
+ }
+ }
+
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) const {
+ // Delegate to the generic intrinsic handling code. This mostly provides an
+ // opportunity for targets to (for example) special case the cost of
+ // certain intrinsics based on constants used as arguments.
+ SmallVector<Type *, 8> ParamTys;
+ ParamTys.reserve(Arguments.size());
+ for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
+ ParamTys.push_back(Arguments[Idx]->getType());
+ return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
+ }
+
+ unsigned getUserCost(const User *U) const {
+ if (isa<PHINode>(U))
+ return TCC_Free; // Model all PHI nodes as free.
+
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U))
+ // In the basic model we just assume that all-constant GEPs will be
+ // folded into their uses via addressing modes.
+ return GEP->hasAllConstantIndices() ? TCC_Free : TCC_Basic;
+
+ if (ImmutableCallSite CS = U) {
+ const Function *F = CS.getCalledFunction();
+ if (!F) {
+ // Just use the called value type.
+ Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
+ return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
+ }
+
+ SmallVector<const Value *, 8> Arguments;
+ for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
+ AE = CS.arg_end();
+ AI != AE; ++AI)
+ Arguments.push_back(*AI);
+
+ return TopTTI->getCallCost(F, Arguments);
+ }
+
+ if (const CastInst *CI = dyn_cast<CastInst>(U)) {
+ // Result of a cmp instruction is often extended (to be used by other
+ // cmp instructions, logical or return instructions). These are usually
+ // nop on most sane targets.
+ if (isa<CmpInst>(CI->getOperand(0)))
+ return TCC_Free;
+ }
+
+ // Otherwise delegate to the fully generic implementations.
+ return getOperationCost(Operator::getOpcode(U), U->getType(),
+ U->getNumOperands() == 1 ?
+ U->getOperand(0)->getType() : 0);
+ }
+
+ bool isLoweredToCall(const Function *F) const {
+ // FIXME: These should almost certainly not be handled here, and instead
+ // handled with the help of TLI or the target itself. This was largely
+ // ported from existing analysis heuristics here so that such refactorings
+ // can take place in the future.
+
+ if (F->isIntrinsic())
+ return false;
+
+ if (F->hasLocalLinkage() || !F->hasName())
+ return true;
+
+ StringRef Name = F->getName();
+
+ // These will all likely lower to a single selection DAG node.
+ if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
+ Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
+ Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
+ Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
+ return false;
+
+ // These are all likely to be optimized into something smaller.
+ if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
+ Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
+ "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
+ Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
+ return false;
+
+ return true;
+ }
bool isLegalAddImmediate(int64_t Imm) const {
return false;
@@ -216,6 +487,14 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
return 8;
}
+ unsigned getRegisterBitWidth(bool Vector) const {
+ return 32;
+ }
+
+ unsigned getMaximumUnrollFactor() const {
+ return 1;
+ }
+
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
return 1;
}
@@ -259,6 +538,10 @@ struct NoTTI : ImmutablePass, TargetTransformInfo {
unsigned getNumberOfParts(Type *Tp) const {
return 0;
}
+
+ unsigned getAddressComputationCost(Type *Tp) const {
+ return 0;
+ }
};
} // end anonymous namespace
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index efb9b08..8e3994e 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -1510,7 +1510,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
SmallVector<unsigned, 10> &Idxs,
unsigned IdxSkip,
Instruction *InsertBefore) {
- llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
+ llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
if (STy) {
// Save the original To argument so we can modify it
Value *OrigTo = To;
@@ -1671,8 +1671,10 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
/// it can be expressed as a base pointer plus a constant offset. Return the
/// base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout &TD) {
- unsigned BitWidth = TD.getPointerSizeInBits();
+ const DataLayout *TD) {
+ // Without DataLayout, conservatively assume 64-bit offsets, which is
+ // the widest we support.
+ unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
APInt ByteOffset(BitWidth, 0);
while (1) {
if (Ptr->getType()->isVectorTy())
@@ -1680,7 +1682,7 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
APInt GEPOffset(BitWidth, 0);
- if (!GEP->accumulateConstantOffset(TD, GEPOffset))
+ if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
break;
ByteOffset += GEPOffset;
Ptr = GEP->getPointerOperand();
@@ -2012,3 +2014,19 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
return false; // Misc instructions which have effects
}
}
+
+/// isKnownNonNull - Return true if we know that the specified value is never
+/// null.
+bool llvm::isKnownNonNull(const Value *V) {
+ // Alloca never returns null, malloc might.
+ if (isa<AllocaInst>(V)) return true;
+
+ // A byval argument is never null.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValAttr();
+
+ // Global values are not null unless extern weak.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return !GV->hasExternalWeakLinkage();
+ return false;
+}