diff options
author | Dan Gohman <gohman@apple.com> | 2009-08-18 16:46:41 +0000 |
---|---|---|
committer | Dan Gohman <gohman@apple.com> | 2009-08-18 16:46:41 +0000 |
commit | c40f17b08774c2dcc5787fd83241e3c64ba82974 (patch) | |
tree | ae3c3455972b1fca1b2c67e7381205bba7dc2843 /lib/Analysis | |
parent | 4d35fce60c5ac108d24428829e51a97eeca7836c (diff) | |
download | external_llvm-c40f17b08774c2dcc5787fd83241e3c64ba82974.zip external_llvm-c40f17b08774c2dcc5787fd83241e3c64ba82974.tar.gz external_llvm-c40f17b08774c2dcc5787fd83241e3c64ba82974.tar.bz2 |
Generalize ScalarEvolution to be able to analyze GEPs when
TargetData is not present. It still uses TargetData when available.
This generalization also fixed some limitations in the TargetData
case; the attached testcase covers this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79344 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis')
-rw-r--r-- | lib/Analysis/ScalarEvolution.cpp | 200 | ||||
-rw-r--r-- | lib/Analysis/ScalarEvolutionExpander.cpp | 313 |
2 files changed, 394 insertions, 119 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 8ce812c..11feee7 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -307,6 +307,15 @@ void SCEVAddRecExpr::print(raw_ostream &OS) const { OS << "}<" << L->getHeader()->getName() + ">"; } +void SCEVFieldOffsetExpr::print(raw_ostream &OS) const { + // LLVM struct fields don't have names, so just print the field number. + OS << "offsetof(" << *STy << ", " << FieldNo << ")"; +} + +void SCEVAllocSizeExpr::print(raw_ostream &OS) const { + OS << "sizeof(" << *AllocTy << ")"; +} + bool SCEVUnknown::isLoopInvariant(const Loop *L) const { // All non-instruction values are loop invariant. All instructions are loop // invariant if they are not contained in the specified loop. @@ -335,6 +344,41 @@ void SCEVUnknown::print(raw_ostream &OS) const { // SCEV Utilities //===----------------------------------------------------------------------===// +static bool CompareTypes(const Type *A, const Type *B) { + if (A->getTypeID() != B->getTypeID()) + return A->getTypeID() < B->getTypeID(); + if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { + const IntegerType *BI = cast<IntegerType>(B); + return AI->getBitWidth() < BI->getBitWidth(); + } + if (const PointerType *AI = dyn_cast<PointerType>(A)) { + const PointerType *BI = cast<PointerType>(B); + return CompareTypes(AI->getElementType(), BI->getElementType()); + } + if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { + const ArrayType *BI = cast<ArrayType>(B); + if (AI->getNumElements() != BI->getNumElements()) + return AI->getNumElements() < BI->getNumElements(); + return CompareTypes(AI->getElementType(), BI->getElementType()); + } + if (const VectorType *AI = dyn_cast<VectorType>(A)) { + const VectorType *BI = cast<VectorType>(B); + if (AI->getNumElements() != BI->getNumElements()) + return AI->getNumElements() < BI->getNumElements(); + return CompareTypes(AI->getElementType(), BI->getElementType()); + } + if (const StructType *AI = dyn_cast<StructType>(A)) { + const StructType *BI = cast<StructType>(B); + if (AI->getNumElements() != BI->getNumElements()) + return AI->getNumElements() < BI->getNumElements(); + for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) + if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || + CompareTypes(BI->getElementType(i), AI->getElementType(i))) + return CompareTypes(AI->getElementType(i), BI->getElementType(i)); + } + return false; +} + namespace { /// SCEVComplexityCompare - Return true if the complexity of the LHS is less /// than the complexity of the RHS. This comparator is used to canonicalize @@ -447,6 +491,21 @@ namespace { return operator()(LC->getOperand(), RC->getOperand()); } + // Compare offsetof expressions. + if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) { + const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS); + if (CompareTypes(LA->getStructType(), RA->getStructType()) || + CompareTypes(RA->getStructType(), LA->getStructType())) + return CompareTypes(LA->getStructType(), RA->getStructType()); + return LA->getFieldNo() < RA->getFieldNo(); + } + + // Compare sizeof expressions by the allocation type. + if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) { + const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS); + return CompareTypes(LA->getAllocType(), RA->getAllocType()); + } + llvm_unreachable("Unknown SCEV kind!"); return false; } @@ -976,7 +1035,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, /// unspecified bits out to the given type. /// const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, - const Type *Ty) { + const Type *Ty) { assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"); assert(isSCEVable(Ty) && @@ -2001,6 +2060,76 @@ const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); } +const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy, + unsigned FieldNo) { + // If we have TargetData we can determine the constant offset. + if (TD) { + const Type *IntPtrTy = TD->getIntPtrType(getContext()); + const StructLayout &SL = *TD->getStructLayout(STy); + uint64_t Offset = SL.getElementOffset(FieldNo); + return getIntegerSCEV(Offset, IntPtrTy); + } + + // Field 0 is always at offset 0. + if (FieldNo == 0) { + const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); + return getIntegerSCEV(0, Ty); + } + + // Okay, it looks like we really DO need an offsetof expr. Check to see if we + // already have one, otherwise create a new one. + FoldingSetNodeID ID; + ID.AddInteger(scFieldOffset); + ID.AddPointer(STy); + ID.AddInteger(FieldNo); + void *IP = 0; + if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; + SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>(); + const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); + new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo); + UniqueSCEVs.InsertNode(S, IP); + return S; +} + +const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) { + // If we have TargetData we can determine the constant size. + if (TD && AllocTy->isSized()) { + const Type *IntPtrTy = TD->getIntPtrType(getContext()); + return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy); + } + + // Expand an array size into the element size times the number + // of elements. + if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) { + const SCEV *E = getAllocSizeExpr(ATy->getElementType()); + return getMulExpr( + E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), + ATy->getNumElements()))); + } + + // Expand a vector size into the element size times the number + // of elements. + if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) { + const SCEV *E = getAllocSizeExpr(VTy->getElementType()); + return getMulExpr( + E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), + VTy->getNumElements()))); + } + + // Okay, it looks like we really DO need a sizeof expr. Check to see if we + // already have one, otherwise create a new one. + FoldingSetNodeID ID; + ID.AddInteger(scAllocSize); + ID.AddPointer(AllocTy); + void *IP = 0; + if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; + SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>(); + const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); + new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy); + UniqueSCEVs.InsertNode(S, IP); + return S; +} + const SCEV *ScalarEvolution::getUnknown(Value *V) { // Don't attempt to do anything other than create a SCEVUnknown object // here. createSCEV only calls getUnknown after checking for all other @@ -2027,17 +2156,8 @@ const SCEV *ScalarEvolution::getUnknown(Value *V) { /// can optionally include pointer types if the ScalarEvolution class /// has access to target-specific information. bool ScalarEvolution::isSCEVable(const Type *Ty) const { - // Integers are always SCEVable. - if (Ty->isInteger()) - return true; - - // Pointers are SCEVable if TargetData information is available - // to provide pointer size information. - if (isa<PointerType>(Ty)) - return TD != NULL; - - // Otherwise it's not SCEVable. - return false; + // Integers and pointers are always SCEVable. + return Ty->isInteger() || isa<PointerType>(Ty); } /// getTypeSizeInBits - Return the size in bits of the specified type, @@ -2049,9 +2169,14 @@ uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { if (TD) return TD->getTypeSizeInBits(Ty); - // Otherwise, we support only integer types. - assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); - return Ty->getPrimitiveSizeInBits(); + // Integer types have fixed sizes. + if (Ty->isInteger()) + return Ty->getPrimitiveSizeInBits(); + + // The only other support type is pointer. Without TargetData, conservatively + // assume pointers are 64-bit. + assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!"); + return 64; } /// getEffectiveSCEVType - Return a type with the same bitwidth as @@ -2064,8 +2189,12 @@ const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { if (Ty->isInteger()) return Ty; + // The only other support type is pointer. assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); - return TD->getIntPtrType(getContext()); + if (TD) return TD->getIntPtrType(getContext()); + + // Without TargetData, conservatively assume pointers are 64-bit. + return Type::getInt64Ty(getContext()); } const SCEV *ScalarEvolution::getCouldNotCompute() { @@ -2132,8 +2261,8 @@ const SCEV * ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) { const Type *SrcTy = V->getType(); - assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && - (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && + (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot truncate or zero extend with non-integer arguments!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion @@ -2149,8 +2278,8 @@ const SCEV * ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, const Type *Ty) { const Type *SrcTy = V->getType(); - assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && - (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && + (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot truncate or zero extend with non-integer arguments!"); if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) return V; // No conversion @@ -2165,8 +2294,8 @@ ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, const SCEV * ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { const Type *SrcTy = V->getType(); - assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && - (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && + (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot noop or zero extend with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && "getNoopOrZeroExtend cannot truncate!"); @@ -2181,8 +2310,8 @@ ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { const SCEV * ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { const Type *SrcTy = V->getType(); - assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && - (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && + (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot noop or sign extend with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && "getNoopOrSignExtend cannot truncate!"); @@ -2198,8 +2327,8 @@ ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { const SCEV * ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { const Type *SrcTy = V->getType(); - assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && - (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && + (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot noop or any extend with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && "getNoopOrAnyExtend cannot truncate!"); @@ -2213,8 +2342,8 @@ ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { const SCEV * ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { const Type *SrcTy = V->getType(); - assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && - (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && + assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && + (Ty->isInteger() || isa<PointerType>(Ty)) && "Cannot truncate or noop with non-integer arguments!"); assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && "getTruncateOrNoop cannot extend!"); @@ -2433,7 +2562,7 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { /// const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) { - const Type *IntPtrTy = TD->getIntPtrType(getContext()); + const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); Value *Base = GEP->getOperand(0); // Don't attempt to analyze GEPs over unsized objects. if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) @@ -2447,19 +2576,16 @@ const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) { // Compute the (potentially symbolic) offset in bytes for this index. if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { // For a struct, add the member offset. - const StructLayout &SL = *TD->getStructLayout(STy); unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); - uint64_t Offset = SL.getElementOffset(FieldNo); - TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy)); + TotalOffset = getAddExpr(TotalOffset, + getFieldOffsetExpr(STy, FieldNo)); } else { // For an array, add the element offset, explicitly scaled. const SCEV *LocalOffset = getSCEV(Index); if (!isa<PointerType>(LocalOffset->getType())) // Getelementptr indicies are signed. LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); - LocalOffset = - getMulExpr(LocalOffset, - getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy)); + LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI)); TotalOffset = getAddExpr(TotalOffset, LocalOffset); } } @@ -2952,7 +3078,6 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) { // expressions we handle are GEPs and address literals. case Instruction::GetElementPtr: - if (!TD) break; // Without TD we can't analyze pointers. return createNodeForGEP(U); case Instruction::PHI: @@ -3947,6 +4072,9 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { return getTruncateExpr(Op, Cast->getType()); } + if (isa<SCEVTargetDataConstant>(V)) + return V; + llvm_unreachable("Unknown SCEV type!"); return 0; } diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp index 3ec6fe4..999fd55 100644 --- a/lib/Analysis/ScalarEvolutionExpander.cpp +++ b/lib/Analysis/ScalarEvolutionExpander.cpp @@ -158,53 +158,93 @@ Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, /// check to see if the divide was folded. static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, - const APInt &Factor, - ScalarEvolution &SE) { + const SCEV *Factor, + ScalarEvolution &SE, + const TargetData *TD) { // Everything is divisible by one. - if (Factor == 1) + if (Factor->isOne()) + return true; + + // x/x == 1. + if (S == Factor) { + S = SE.getIntegerSCEV(1, S->getType()); return true; + } // For a Constant, check for a multiple of the given factor. if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { - ConstantInt *CI = - ConstantInt::get(SE.getContext(), C->getValue()->getValue().sdiv(Factor)); - // If the quotient is zero and the remainder is non-zero, reject - // the value at this scale. It will be considered for subsequent - // smaller scales. - if (C->isZero() || !CI->isZero()) { - const SCEV *Div = SE.getConstant(CI); - S = Div; - Remainder = - SE.getAddExpr(Remainder, - SE.getConstant(C->getValue()->getValue().srem(Factor))); + // 0/x == 0. + if (C->isZero()) return true; + // Check for divisibility. + if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { + ConstantInt *CI = + ConstantInt::get(SE.getContext(), + C->getValue()->getValue().sdiv( + FC->getValue()->getValue())); + // If the quotient is zero and the remainder is non-zero, reject + // the value at this scale. It will be considered for subsequent + // smaller scales. + if (!CI->isZero()) { + const SCEV *Div = SE.getConstant(CI); + S = Div; + Remainder = + SE.getAddExpr(Remainder, + SE.getConstant(C->getValue()->getValue().srem( + FC->getValue()->getValue()))); + return true; + } } } // In a Mul, check if there is a constant operand which is a multiple // of the given factor. - if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) - if (!C->getValue()->getValue().srem(Factor)) { - const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); - SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(), - MOperands.end()); - NewMulOps[0] = - SE.getConstant(C->getValue()->getValue().sdiv(Factor)); - S = SE.getMulExpr(NewMulOps); - return true; + if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { + if (TD) { + // With TargetData, the size is known. Check if there is a constant + // operand which is a multiple of the given factor. If so, we can + // factor it. + const SCEVConstant *FC = cast<SCEVConstant>(Factor); + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) + if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) { + const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); + SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(), + MOperands.end()); + NewMulOps[0] = + SE.getConstant(C->getValue()->getValue().sdiv( + FC->getValue()->getValue())); + S = SE.getMulExpr(NewMulOps); + return true; + } + } else { + // Without TargetData, check if Factor can be factored out of any of the + // Mul's operands. If so, we can just remove it. + for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { + const SCEV *SOp = M->getOperand(i); + const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType()); + if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) && + Remainder->isZero()) { + const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); + SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(), + MOperands.end()); + NewMulOps[i] = SOp; + S = SE.getMulExpr(NewMulOps); + return true; + } } + } + } // In an AddRec, check if both start and step are divisible. if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { const SCEV *Step = A->getStepRecurrence(SE); const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType()); - if (!FactorOutConstant(Step, StepRem, Factor, SE)) + if (!FactorOutConstant(Step, StepRem, Factor, SE, TD)) return false; if (!StepRem->isZero()) return false; const SCEV *Start = A->getStart(); - if (!FactorOutConstant(Start, Remainder, Factor, SE)) + if (!FactorOutConstant(Start, Remainder, Factor, SE, TD)) return false; S = SE.getAddRecExpr(Start, Step, A->getLoop()); return true; @@ -213,9 +253,73 @@ static bool FactorOutConstant(const SCEV *&S, return false; } +/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs +/// is the number of SCEVAddRecExprs present, which are kept at the end of +/// the list. +/// +static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, + const Type *Ty, + ScalarEvolution &SE) { + unsigned NumAddRecs = 0; + for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) + ++NumAddRecs; + // Group Ops into non-addrecs and addrecs. + SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); + SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); + // Let ScalarEvolution sort and simplify the non-addrecs list. + const SCEV *Sum = NoAddRecs.empty() ? + SE.getIntegerSCEV(0, Ty) : + SE.getAddExpr(NoAddRecs); + // If it returned an add, use the operands. Otherwise it simplified + // the sum into a single value, so just use that. + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) + Ops = Add->getOperands(); + else { + Ops.clear(); + if (!Sum->isZero()) + Ops.push_back(Sum); + } + // Then append the addrecs. + Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end()); +} + +/// SplitAddRecs - Flatten a list of add operands, moving addrec start values +/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. +/// This helps expose more opportunities for folding parts of the expressions +/// into GEP indices. +/// +static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, + const Type *Ty, + ScalarEvolution &SE) { + // Find the addrecs. + SmallVector<const SCEV *, 8> AddRecs; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { + const SCEV *Start = A->getStart(); + if (Start->isZero()) break; + const SCEV *Zero = SE.getIntegerSCEV(0, Ty); + AddRecs.push_back(SE.getAddRecExpr(Zero, + A->getStepRecurrence(SE), + A->getLoop())); + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { + Ops[i] = Zero; + Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); + e += Add->getNumOperands(); + } else { + Ops[i] = Start; + } + } + if (!AddRecs.empty()) { + // Add the addrecs onto the end of the list. + Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end()); + // Resort the operand list, moving any constants to the front. + SimplifyAddOperands(Ops, Ty, SE); + } +} + /// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP /// instead of using ptrtoint+arithmetic+inttoptr. This helps -/// BasicAliasAnalysis analyze the result. +/// BasicAliasAnalysis and other passes analyze the result. /// /// Design note: This depends on ScalarEvolution not recognizing inttoptr /// and ptrtoint operators, as they may introduce pointer arithmetic @@ -246,52 +350,62 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, SmallVector<const SCEV *, 8> Ops(op_begin, op_end); bool AnyNonZeroIndices = false; + // Split AddRecs up into parts as either of the parts may be usable + // without the other. + SplitAddRecs(Ops, Ty, SE); + // Decend down the pointer's type and attempt to convert the other // operands into GEP indices, at each level. The first index in a GEP // indexes into the array implied by the pointer operand; the rest of // the indices index into the element or field type selected by the // preceding index. for (;;) { - APInt ElSize = APInt(SE.getTypeSizeInBits(Ty), - ElTy->isSized() ? SE.TD->getTypeAllocSize(ElTy) : 0); - SmallVector<const SCEV *, 8> NewOps; + const SCEV *ElSize = SE.getAllocSizeExpr(ElTy); + // If the scale size is not 0, attempt to factor out a scale for + // array indexing. SmallVector<const SCEV *, 8> ScaledOps; - for (unsigned i = 0, e = Ops.size(); i != e; ++i) { - // Split AddRecs up into parts as either of the parts may be usable - // without the other. - if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) - if (!A->getStart()->isZero()) { - const SCEV *Start = A->getStart(); - Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()), - A->getStepRecurrence(SE), - A->getLoop())); - Ops[i] = Start; - ++e; - } - // If the scale size is not 0, attempt to factor out a scale. - if (ElSize != 0) { + if (ElTy->isSized() && !ElSize->isZero()) { + SmallVector<const SCEV *, 8> NewOps; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { const SCEV *Op = Ops[i]; - const SCEV *Remainder = SE.getIntegerSCEV(0, Op->getType()); - if (FactorOutConstant(Op, Remainder, ElSize, SE)) { - ScaledOps.push_back(Op); // Op now has ElSize factored out. - NewOps.push_back(Remainder); - continue; + const SCEV *Remainder = SE.getIntegerSCEV(0, Ty); + if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) { + // Op now has ElSize factored out. + ScaledOps.push_back(Op); + if (!Remainder->isZero()) + NewOps.push_back(Remainder); + AnyNonZeroIndices = true; + } else { + // The operand was not divisible, so add it to the list of operands + // we'll scan next iteration. + NewOps.push_back(Ops[i]); } } - // If the operand was not divisible, add it to the list of operands - // we'll scan next iteration. - NewOps.push_back(Ops[i]); + // If we made any changes, update Ops. + if (!ScaledOps.empty()) { + Ops = NewOps; + SimplifyAddOperands(Ops, Ty, SE); + } } - Ops = NewOps; - AnyNonZeroIndices |= !ScaledOps.empty(); + + // Record the scaled array index for this level of the type. If + // we didn't find any operands that could be factored, tentatively + // assume that element zero was selected (since the zero offset + // would obviously be folded away). Value *Scaled = ScaledOps.empty() ? Constant::getNullValue(Ty) : expandCodeFor(SE.getAddExpr(ScaledOps), Ty); GepIndices.push_back(Scaled); // Collect struct field index operands. - if (!Ops.empty()) - while (const StructType *STy = dyn_cast<StructType>(ElTy)) { + while (const StructType *STy = dyn_cast<StructType>(ElTy)) { + bool FoundFieldNo = false; + // An empty struct has no fields. + if (STy->getNumElements() == 0) break; + if (SE.TD) { + // With TargetData, field offsets are known. See if a constant offset + // falls within any of the struct fields. + if (Ops.empty()) break; if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) if (SE.getTypeSizeInBits(C->getType()) <= 64) { const StructLayout &SL = *SE.TD->getStructLayout(STy); @@ -304,25 +418,52 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, Ops[0] = SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); AnyNonZeroIndices = true; - continue; + FoundFieldNo = true; } } - break; + } else { + // Without TargetData, just check for a SCEVFieldOffsetExpr of the + // appropriate struct type. + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + if (const SCEVFieldOffsetExpr *FO = + dyn_cast<SCEVFieldOffsetExpr>(Ops[i])) + if (FO->getStructType() == STy) { + unsigned FieldNo = FO->getFieldNo(); + GepIndices.push_back( + ConstantInt::get(Type::getInt32Ty(Ty->getContext()), + FieldNo)); + ElTy = STy->getTypeAtIndex(FieldNo); + Ops[i] = SE.getConstant(Ty, 0); + AnyNonZeroIndices = true; + FoundFieldNo = true; + break; + } + } + // If no struct field offsets were found, tentatively assume that + // field zero was selected (since the zero offset would obviously + // be folded away). + if (!FoundFieldNo) { + ElTy = STy->getTypeAtIndex(0u); + GepIndices.push_back( + Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); } + } - if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) { + if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) ElTy = ATy->getElementType(); - continue; - } - break; + else + break; } // If none of the operands were convertable to proper GEP indices, cast // the base to i8* and do an ugly getelementptr with that. It's still // better than ptrtoint+arithmetic+inttoptr at least. if (!AnyNonZeroIndices) { + // Cast the base to i8*. V = InsertNoopCastOfTo(V, Type::getInt8Ty(Ty->getContext())->getPointerTo(PTy->getAddressSpace())); + + // Expand the operands for a plain byte offset. Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); // Fold a GEP with constant operands. @@ -345,7 +486,8 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, } } - Value *GEP = Builder.CreateGEP(V, Idx, "scevgep"); + // Emit a GEP. + Value *GEP = Builder.CreateGEP(V, Idx, "uglygep"); InsertedValues.insert(GEP); return GEP; } @@ -368,11 +510,10 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the // comments on expandAddToGEP for details. - if (SE.TD) - if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) { - const SmallVectorImpl<const SCEV *> &Ops = S->getOperands(); - return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V); - } + if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) { + const SmallVectorImpl<const SCEV *> &Ops = S->getOperands(); + return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V); + } V = InsertNoopCastOfTo(V, Ty); @@ -484,21 +625,19 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the // comments on expandAddToGEP for details. - if (SE.TD) { - const SCEV *Base = S->getStart(); - const SCEV *RestArray[1] = { Rest }; - // Dig into the expression to find the pointer base for a GEP. - ExposePointerBase(Base, RestArray[0], SE); - // If we found a pointer, expand the AddRec with a GEP. - if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { - // Make sure the Base isn't something exotic, such as a multiplied - // or divided pointer value. In those cases, the result type isn't - // actually a pointer type. - if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { - Value *StartV = expand(Base); - assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); - return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); - } + const SCEV *Base = S->getStart(); + const SCEV *RestArray[1] = { Rest }; + // Dig into the expression to find the pointer base for a GEP. + ExposePointerBase(Base, RestArray[0], SE); + // If we found a pointer, expand the AddRec with a GEP. + if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { + // Make sure the Base isn't something exotic, such as a multiplied + // or divided pointer value. In those cases, the result type isn't + // actually a pointer type. + if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { + Value *StartV = expand(Base); + assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); + return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); } } @@ -656,6 +795,14 @@ Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { return LHS; } +Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) { + return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo()); +} + +Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) { + return ConstantExpr::getSizeOf(S->getAllocType()); +} + Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) { // Expand the code for this SCEV. Value *V = expand(SH); |