aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-07-21 00:45:20 -0700
committerStephen Hines <srhines@google.com>2014-07-21 00:45:20 -0700
commitc6a4f5e819217e1e12c458aed8e7b122e23a3a58 (patch)
tree81b7dd2bb4370a392f31d332a566c903b5744764 /lib/Analysis
parent19c6fbb3e8aaf74093afa08013134b61fa08f245 (diff)
downloadexternal_llvm-c6a4f5e819217e1e12c458aed8e7b122e23a3a58.zip
external_llvm-c6a4f5e819217e1e12c458aed8e7b122e23a3a58.tar.gz
external_llvm-c6a4f5e819217e1e12c458aed8e7b122e23a3a58.tar.bz2
Update LLVM for rebase to r212749.
Includes a cherry-pick of: r212948 - fixes a small issue with atomic calls Change-Id: Ib97bd980b59f18142a69506400911a6009d9df18
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/AliasAnalysis.cpp40
-rw-r--r--lib/Analysis/Analysis.cpp1
-rw-r--r--lib/Analysis/Android.mk1
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp220
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp337
-rw-r--r--lib/Analysis/CMakeLists.txt1
-rw-r--r--lib/Analysis/ConstantFolding.cpp43
-rw-r--r--lib/Analysis/CostModel.cpp37
-rw-r--r--lib/Analysis/IPA/CallGraphSCCPass.cpp8
-rw-r--r--lib/Analysis/IPA/InlineCost.cpp19
-rw-r--r--lib/Analysis/IVUsers.cpp5
-rw-r--r--lib/Analysis/InstructionSimplify.cpp170
-rw-r--r--lib/Analysis/JumpInstrTableInfo.cpp40
-rw-r--r--lib/Analysis/LoopPass.cpp5
-rw-r--r--lib/Analysis/NoAliasAnalysis.cpp8
-rw-r--r--lib/Analysis/RegionPass.cpp8
-rw-r--r--lib/Analysis/ScalarEvolution.cpp13
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp3
-rw-r--r--lib/Analysis/ScalarEvolutionNormalization.cpp2
-rw-r--r--lib/Analysis/ValueTracking.cpp23
20 files changed, 403 insertions, 581 deletions
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index 57237e5..5cde979 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -60,6 +60,13 @@ bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
return AA->pointsToConstantMemory(Loc, OrLocal);
}
+AliasAnalysis::Location
+AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
+ AliasAnalysis::ModRefResult &Mask) {
+ assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
+ return AA->getArgLocation(CS, ArgIdx, Mask);
+}
+
void AliasAnalysis::deleteValue(Value *V) {
assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
AA->deleteValue(V);
@@ -91,22 +98,26 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
if (onlyAccessesArgPointees(MRB)) {
bool doesAlias = false;
+ ModRefResult AllArgsMask = NoModRef;
if (doesAccessArgPointees(MRB)) {
- MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
AI != AE; ++AI) {
const Value *Arg = *AI;
if (!Arg->getType()->isPointerTy())
continue;
- Location CSLoc(Arg, UnknownSize, CSTag);
+ ModRefResult ArgMask;
+ Location CSLoc =
+ getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
+ ArgMask);
if (!isNoAlias(CSLoc, Loc)) {
doesAlias = true;
- break;
+ AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
}
}
}
if (!doesAlias)
return NoModRef;
+ Mask = ModRefResult(Mask & AllArgsMask);
}
// If Loc is a constant memory location, the call definitely could not
@@ -150,14 +161,23 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
if (onlyAccessesArgPointees(CS2B)) {
AliasAnalysis::ModRefResult R = NoModRef;
if (doesAccessArgPointees(CS2B)) {
- MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
for (ImmutableCallSite::arg_iterator
I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
const Value *Arg = *I;
if (!Arg->getType()->isPointerTy())
continue;
- Location CS2Loc(Arg, UnknownSize, CS2Tag);
- R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
+ ModRefResult ArgMask;
+ Location CS2Loc =
+ getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
+ ArgMask);
+ // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
+ // CS1 on that location is the inverse.
+ if (ArgMask == Mod)
+ ArgMask = ModRef;
+ else if (ArgMask == Ref)
+ ArgMask = Mod;
+
+ R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
if (R == Mask)
break;
}
@@ -170,14 +190,16 @@ AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
if (onlyAccessesArgPointees(CS1B)) {
AliasAnalysis::ModRefResult R = NoModRef;
if (doesAccessArgPointees(CS1B)) {
- MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
for (ImmutableCallSite::arg_iterator
I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
const Value *Arg = *I;
if (!Arg->getType()->isPointerTy())
continue;
- Location CS1Loc(Arg, UnknownSize, CS1Tag);
- if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
+ ModRefResult ArgMask;
+ Location CS1Loc =
+ getArgLocation(CS1, (unsigned) std::distance(CS1.arg_begin(), I),
+ ArgMask);
+ if ((getModRefInfo(CS2, CS1Loc) & ArgMask) != NoModRef) {
R = Mask;
break;
}
diff --git a/lib/Analysis/Analysis.cpp b/lib/Analysis/Analysis.cpp
index 01c1c7e..ade940a 100644
--- a/lib/Analysis/Analysis.cpp
+++ b/lib/Analysis/Analysis.cpp
@@ -48,6 +48,7 @@ void llvm::initializeAnalysis(PassRegistry &Registry) {
initializeIVUsersPass(Registry);
initializeInstCountPass(Registry);
initializeIntervalPartitionPass(Registry);
+ initializeJumpInstrTableInfoPass(Registry);
initializeLazyValueInfoPass(Registry);
initializeLibCallAliasAnalysisPass(Registry);
initializeLintPass(Registry);
diff --git a/lib/Analysis/Android.mk b/lib/Analysis/Android.mk
index bca673e..4e435a1 100644
--- a/lib/Analysis/Android.mk
+++ b/lib/Analysis/Android.mk
@@ -27,6 +27,7 @@ analysis_SRC_FILES := \
InstructionSimplify.cpp \
Interval.cpp \
IntervalPartition.cpp \
+ JumpInstrTableInfo.cpp \
LazyCallGraph.cpp \
LazyValueInfo.cpp \
LibCallAliasAnalysis.cpp \
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index fe90b84..c50dd4a 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -490,6 +490,10 @@ namespace {
/// global) or not.
bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
+ /// Get the location associated with a pointer argument of a callsite.
+ Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
+ ModRefResult &Mask) override;
+
/// getModRefBehavior - Return the behavior when calling the given
/// call site.
ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
@@ -653,6 +657,21 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
return Worklist.empty();
}
+static bool isMemsetPattern16(const Function *MS,
+ const TargetLibraryInfo &TLI) {
+ if (TLI.has(LibFunc::memset_pattern16) &&
+ MS->getName() == "memset_pattern16") {
+ FunctionType *MemsetType = MS->getFunctionType();
+ if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
+ isa<PointerType>(MemsetType->getParamType(0)) &&
+ isa<PointerType>(MemsetType->getParamType(1)) &&
+ isa<IntegerType>(MemsetType->getParamType(2)))
+ return true;
+ }
+
+ return false;
+}
+
/// getModRefBehavior - Return the behavior when calling the given call site.
AliasAnalysis::ModRefBehavior
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
@@ -692,10 +711,93 @@ BasicAliasAnalysis::getModRefBehavior(const Function *F) {
if (F->onlyReadsMemory())
Min = OnlyReadsMemory;
+ const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
+ if (isMemsetPattern16(F, TLI))
+ Min = OnlyAccessesArgumentPointees;
+
// Otherwise be conservative.
return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
}
+AliasAnalysis::Location
+BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
+ ModRefResult &Mask) {
+ Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
+ const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
+ if (II != nullptr)
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::memset:
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ assert((ArgIdx == 0 || ArgIdx == 1) &&
+ "Invalid argument index for memory intrinsic");
+ if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
+ Loc.Size = LenCI->getZExtValue();
+ assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
+ "Memory intrinsic location pointer not argument?");
+ Mask = ArgIdx ? Ref : Mod;
+ break;
+ }
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start: {
+ assert(ArgIdx == 1 && "Invalid argument index");
+ assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
+ "Intrinsic location pointer not argument?");
+ Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
+ break;
+ }
+ case Intrinsic::invariant_end: {
+ assert(ArgIdx == 2 && "Invalid argument index");
+ assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
+ "Intrinsic location pointer not argument?");
+ Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
+ break;
+ }
+ case Intrinsic::arm_neon_vld1: {
+ assert(ArgIdx == 0 && "Invalid argument index");
+ assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
+ "Intrinsic location pointer not argument?");
+ // LLVM's vld1 and vst1 intrinsics currently only support a single
+ // vector register.
+ if (DL)
+ Loc.Size = DL->getTypeStoreSize(II->getType());
+ break;
+ }
+ case Intrinsic::arm_neon_vst1: {
+ assert(ArgIdx == 0 && "Invalid argument index");
+ assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
+ "Intrinsic location pointer not argument?");
+ if (DL)
+ Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
+ break;
+ }
+ }
+
+ // We can bound the aliasing properties of memset_pattern16 just as we can
+ // for memcpy/memset. This is particularly important because the
+ // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
+ // whenever possible.
+ else if (CS.getCalledFunction() &&
+ isMemsetPattern16(CS.getCalledFunction(), TLI)) {
+ assert((ArgIdx == 0 || ArgIdx == 1) &&
+ "Invalid argument index for memset_pattern16");
+ if (ArgIdx == 1)
+ Loc.Size = 16;
+ else if (const ConstantInt *LenCI =
+ dyn_cast<ConstantInt>(CS.getArgument(2)))
+ Loc.Size = LenCI->getZExtValue();
+ assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
+ "memset_pattern16 location pointer not argument?");
+ Mask = ArgIdx ? Ref : Mod;
+ }
+ // FIXME: Handle memset_pattern4 and memset_pattern8 also.
+
+ return Loc;
+}
+
/// getModRefInfo - Check to see if the specified callsite can clobber the
/// specified memory object. Since we only look at local properties of this
/// function, we really can't say much about this query. We do, however, use
@@ -748,124 +850,8 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
return NoModRef;
}
- const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
- ModRefResult Min = ModRef;
-
- // Finally, handle specific knowledge of intrinsics.
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
- if (II != nullptr)
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::memcpy:
- case Intrinsic::memmove: {
- uint64_t Len = UnknownSize;
- if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
- Len = LenCI->getZExtValue();
- Value *Dest = II->getArgOperand(0);
- Value *Src = II->getArgOperand(1);
- // If it can't overlap the source dest, then it doesn't modref the loc.
- if (isNoAlias(Location(Dest, Len), Loc)) {
- if (isNoAlias(Location(Src, Len), Loc))
- return NoModRef;
- // If it can't overlap the dest, then worst case it reads the loc.
- Min = Ref;
- } else if (isNoAlias(Location(Src, Len), Loc)) {
- // If it can't overlap the source, then worst case it mutates the loc.
- Min = Mod;
- }
- break;
- }
- case Intrinsic::memset:
- // Since memset is 'accesses arguments' only, the AliasAnalysis base class
- // will handle it for the variable length case.
- if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
- uint64_t Len = LenCI->getZExtValue();
- Value *Dest = II->getArgOperand(0);
- if (isNoAlias(Location(Dest, Len), Loc))
- return NoModRef;
- }
- // We know that memset doesn't load anything.
- Min = Mod;
- break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start: {
- uint64_t PtrSize =
- cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
- if (isNoAlias(Location(II->getArgOperand(1),
- PtrSize,
- II->getMetadata(LLVMContext::MD_tbaa)),
- Loc))
- return NoModRef;
- break;
- }
- case Intrinsic::invariant_end: {
- uint64_t PtrSize =
- cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
- if (isNoAlias(Location(II->getArgOperand(2),
- PtrSize,
- II->getMetadata(LLVMContext::MD_tbaa)),
- Loc))
- return NoModRef;
- break;
- }
- case Intrinsic::arm_neon_vld1: {
- // LLVM's vld1 and vst1 intrinsics currently only support a single
- // vector register.
- uint64_t Size =
- DL ? DL->getTypeStoreSize(II->getType()) : UnknownSize;
- if (isNoAlias(Location(II->getArgOperand(0), Size,
- II->getMetadata(LLVMContext::MD_tbaa)),
- Loc))
- return NoModRef;
- break;
- }
- case Intrinsic::arm_neon_vst1: {
- uint64_t Size =
- DL ? DL->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
- if (isNoAlias(Location(II->getArgOperand(0), Size,
- II->getMetadata(LLVMContext::MD_tbaa)),
- Loc))
- return NoModRef;
- break;
- }
- }
-
- // We can bound the aliasing properties of memset_pattern16 just as we can
- // for memcpy/memset. This is particularly important because the
- // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
- // whenever possible.
- else if (TLI.has(LibFunc::memset_pattern16) &&
- CS.getCalledFunction() &&
- CS.getCalledFunction()->getName() == "memset_pattern16") {
- const Function *MS = CS.getCalledFunction();
- FunctionType *MemsetType = MS->getFunctionType();
- if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
- isa<PointerType>(MemsetType->getParamType(0)) &&
- isa<PointerType>(MemsetType->getParamType(1)) &&
- isa<IntegerType>(MemsetType->getParamType(2))) {
- uint64_t Len = UnknownSize;
- if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
- Len = LenCI->getZExtValue();
- const Value *Dest = CS.getArgument(0);
- const Value *Src = CS.getArgument(1);
- // If it can't overlap the source dest, then it doesn't modref the loc.
- if (isNoAlias(Location(Dest, Len), Loc)) {
- // Always reads 16 bytes of the source.
- if (isNoAlias(Location(Src, 16), Loc))
- return NoModRef;
- // If it can't overlap the dest, then worst case it reads the loc.
- Min = Ref;
- // Always reads 16 bytes of the source.
- } else if (isNoAlias(Location(Src, 16), Loc)) {
- // If it can't overlap the source, then worst case it mutates the loc.
- Min = Mod;
- }
- }
- }
-
// The AliasAnalysis base class has some smarts, lets use them.
- return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
+ return AliasAnalysis::getModRefInfo(CS, Loc);
}
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
index 87d93a4..4fd2c11 100644
--- a/lib/Analysis/BlockFrequencyInfoImpl.cpp
+++ b/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -12,7 +12,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
-#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
@@ -24,298 +23,13 @@ using namespace llvm::bfi_detail;
//===----------------------------------------------------------------------===//
//
-// UnsignedFloat implementation.
-//
-//===----------------------------------------------------------------------===//
-#ifndef _MSC_VER
-const int32_t UnsignedFloatBase::MaxExponent;
-const int32_t UnsignedFloatBase::MinExponent;
-#endif
-
-static void appendDigit(std::string &Str, unsigned D) {
- assert(D < 10);
- Str += '0' + D % 10;
-}
-
-static void appendNumber(std::string &Str, uint64_t N) {
- while (N) {
- appendDigit(Str, N % 10);
- N /= 10;
- }
-}
-
-static bool doesRoundUp(char Digit) {
- switch (Digit) {
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- return true;
- default:
- return false;
- }
-}
-
-static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
- assert(E >= UnsignedFloatBase::MinExponent);
- assert(E <= UnsignedFloatBase::MaxExponent);
-
- // Find a new E, but don't let it increase past MaxExponent.
- int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D);
- int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros);
- int Shift = 63 - (NewE - E);
- assert(Shift <= LeadingZeros);
- assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent);
- D <<= Shift;
- E = NewE;
-
- // Check for a denormal.
- unsigned AdjustedE = E + 16383;
- if (!(D >> 63)) {
- assert(E == UnsignedFloatBase::MaxExponent);
- AdjustedE = 0;
- }
-
- // Build the float and print it.
- uint64_t RawBits[2] = {D, AdjustedE};
- APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
- SmallVector<char, 24> Chars;
- Float.toString(Chars, Precision, 0);
- return std::string(Chars.begin(), Chars.end());
-}
-
-static std::string stripTrailingZeros(const std::string &Float) {
- size_t NonZero = Float.find_last_not_of('0');
- assert(NonZero != std::string::npos && "no . in floating point string");
-
- if (Float[NonZero] == '.')
- ++NonZero;
-
- return Float.substr(0, NonZero + 1);
-}
-
-std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width,
- unsigned Precision) {
- if (!D)
- return "0.0";
-
- // Canonicalize exponent and digits.
- uint64_t Above0 = 0;
- uint64_t Below0 = 0;
- uint64_t Extra = 0;
- int ExtraShift = 0;
- if (E == 0) {
- Above0 = D;
- } else if (E > 0) {
- if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
- D <<= Shift;
- E -= Shift;
-
- if (!E)
- Above0 = D;
- }
- } else if (E > -64) {
- Above0 = D >> -E;
- Below0 = D << (64 + E);
- } else if (E > -120) {
- Below0 = D >> (-E - 64);
- Extra = D << (128 + E);
- ExtraShift = -64 - E;
- }
-
- // Fall back on APFloat for very small and very large numbers.
- if (!Above0 && !Below0)
- return toStringAPFloat(D, E, Precision);
-
- // Append the digits before the decimal.
- std::string Str;
- size_t DigitsOut = 0;
- if (Above0) {
- appendNumber(Str, Above0);
- DigitsOut = Str.size();
- } else
- appendDigit(Str, 0);
- std::reverse(Str.begin(), Str.end());
-
- // Return early if there's nothing after the decimal.
- if (!Below0)
- return Str + ".0";
-
- // Append the decimal and beyond.
- Str += '.';
- uint64_t Error = UINT64_C(1) << (64 - Width);
-
- // We need to shift Below0 to the right to make space for calculating
- // digits. Save the precision we're losing in Extra.
- Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
- Below0 >>= 4;
- size_t SinceDot = 0;
- size_t AfterDot = Str.size();
- do {
- if (ExtraShift) {
- --ExtraShift;
- Error *= 5;
- } else
- Error *= 10;
-
- Below0 *= 10;
- Extra *= 10;
- Below0 += (Extra >> 60);
- Extra = Extra & (UINT64_MAX >> 4);
- appendDigit(Str, Below0 >> 60);
- Below0 = Below0 & (UINT64_MAX >> 4);
- if (DigitsOut || Str.back() != '0')
- ++DigitsOut;
- ++SinceDot;
- } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
- (!Precision || DigitsOut <= Precision || SinceDot < 2));
-
- // Return early for maximum precision.
- if (!Precision || DigitsOut <= Precision)
- return stripTrailingZeros(Str);
-
- // Find where to truncate.
- size_t Truncate =
- std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
-
- // Check if there's anything to truncate.
- if (Truncate >= Str.size())
- return stripTrailingZeros(Str);
-
- bool Carry = doesRoundUp(Str[Truncate]);
- if (!Carry)
- return stripTrailingZeros(Str.substr(0, Truncate));
-
- // Round with the first truncated digit.
- for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
- I != E; ++I) {
- if (*I == '.')
- continue;
- if (*I == '9') {
- *I = '0';
- continue;
- }
-
- ++*I;
- Carry = false;
- break;
- }
-
- // Add "1" in front if we still need to carry.
- return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
-}
-
-raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
- int Width, unsigned Precision) {
- return OS << toString(D, E, Width, Precision);
-}
-
-void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
- print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
- << "]";
-}
-
-static std::pair<uint64_t, int16_t>
-getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
- if (ShouldRound)
- if (!++N)
- // Rounding caused an overflow.
- return std::make_pair(UINT64_C(1), Shift + 64);
- return std::make_pair(N, Shift);
-}
-
-std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
- uint64_t Divisor) {
- // Input should be sanitized.
- assert(Divisor);
- assert(Dividend);
-
- // Minimize size of divisor.
- int16_t Shift = 0;
- if (int Zeros = countTrailingZeros(Divisor)) {
- Shift -= Zeros;
- Divisor >>= Zeros;
- }
-
- // Check for powers of two.
- if (Divisor == 1)
- return std::make_pair(Dividend, Shift);
-
- // Maximize size of dividend.
- if (int Zeros = countLeadingZeros64(Dividend)) {
- Shift -= Zeros;
- Dividend <<= Zeros;
- }
-
- // Start with the result of a divide.
- uint64_t Quotient = Dividend / Divisor;
- Dividend %= Divisor;
-
- // Continue building the quotient with long division.
- //
- // TODO: continue with largers digits.
- while (!(Quotient >> 63) && Dividend) {
- // Shift Dividend, and check for overflow.
- bool IsOverflow = Dividend >> 63;
- Dividend <<= 1;
- --Shift;
-
- // Divide.
- bool DoesDivide = IsOverflow || Divisor <= Dividend;
- Quotient = (Quotient << 1) | uint64_t(DoesDivide);
- Dividend -= DoesDivide ? Divisor : 0;
- }
-
- // Round.
- if (Dividend >= getHalf(Divisor))
- if (!++Quotient)
- // Rounding caused an overflow in Quotient.
- return std::make_pair(UINT64_C(1), Shift + 64);
-
- return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
-}
-
-std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
- uint64_t R) {
- // Separate into two 32-bit digits (U.L).
- uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
-
- // Compute cross products.
- uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
-
- // Sum into two 64-bit digits.
- uint64_t Upper = P1, Lower = P4;
- auto addWithCarry = [&](uint64_t N) {
- uint64_t NewLower = Lower + (N << 32);
- Upper += (N >> 32) + (NewLower < Lower);
- Lower = NewLower;
- };
- addWithCarry(P2);
- addWithCarry(P3);
-
- // Check whether the upper digit is empty.
- if (!Upper)
- return std::make_pair(Lower, 0);
-
- // Shift as little as possible to maximize precision.
- unsigned LeadingZeros = countLeadingZeros64(Upper);
- int16_t Shift = 64 - LeadingZeros;
- if (LeadingZeros)
- Upper = Upper << LeadingZeros | Lower >> Shift;
- bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
- return getRoundedFloat(Upper, ShouldRound, Shift);
-}
-
-//===----------------------------------------------------------------------===//
-//
// BlockMass implementation.
//
//===----------------------------------------------------------------------===//
-UnsignedFloat<uint64_t> BlockMass::toFloat() const {
+ScaledNumber<uint64_t> BlockMass::toScaled() const {
if (isFull())
- return UnsignedFloat<uint64_t>(1, 0);
- return UnsignedFloat<uint64_t>(getMass() + 1, -64);
+ return ScaledNumber<uint64_t>(1, 0);
+ return ScaledNumber<uint64_t>(getMass() + 1, -64);
}
void BlockMass::dump() const { print(dbgs()); }
@@ -342,7 +56,7 @@ namespace {
typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
typedef BlockFrequencyInfoImplBase::Distribution Distribution;
typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
-typedef BlockFrequencyInfoImplBase::Float Float;
+typedef BlockFrequencyInfoImplBase::Scaled64 Scaled64;
typedef BlockFrequencyInfoImplBase::LoopData LoopData;
typedef BlockFrequencyInfoImplBase::Weight Weight;
typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
@@ -622,7 +336,7 @@ bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
///
/// Gives the maximum number of estimated iterations allowed for a loop. Very
/// large numbers cause problems downstream (even within 64-bits).
-static Float getMaxLoopScale() { return Float(1, 12); }
+static Scaled64 getMaxLoopScale() { return Scaled64(1, 12); }
/// \brief Compute the loop scale for a loop.
void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
@@ -634,7 +348,7 @@ void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass;
// Block scale stores the inverse of the scale.
- Loop.Scale = ExitMass.toFloat().inverse();
+ Loop.Scale = ExitMass.toScaled().inverse();
DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
<< " - " << Loop.BackedgeMass << ")\n"
@@ -708,15 +422,16 @@ void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
}
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
- const Float &Min, const Float &Max) {
+ const Scaled64 &Min, const Scaled64 &Max) {
// Scale the Factor to a size that creates integers. Ideally, integers would
// be scaled so that Max == UINT64_MAX so that they can be best
// differentiated. However, the register allocator currently deals poorly
// with large numbers. Instead, push Min up a little from 1 to give some
// room to differentiate small, unequal numbers.
//
- // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
- Float ScalingFactor = Min.inverse();
+ // TODO: fix issues downstream so that ScalingFactor can be
+ // Scaled64(1,64)/Max.
+ Scaled64 ScalingFactor = Min.inverse();
if ((Max / Min).lg() < 60)
ScalingFactor <<= 3;
@@ -724,10 +439,10 @@ static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
<< ", factor = " << ScalingFactor << "\n");
for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
- Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
+ Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
- << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
+ << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
<< ", int = " << BFI.Freqs[Index].Integer << "\n");
}
}
@@ -740,7 +455,7 @@ static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
<< ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
<< "\n");
- Loop.Scale *= Loop.Mass.toFloat();
+ Loop.Scale *= Loop.Mass.toScaled();
Loop.IsPackaged = false;
DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
@@ -749,9 +464,9 @@ static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
// final head scale will be used for updated the rest of the members.
for (const BlockNode &N : Loop.Nodes) {
const auto &Working = BFI.Working[N.Index];
- Float &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
- : BFI.Freqs[N.Index].Floating;
- Float New = Loop.Scale * F;
+ Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
+ : BFI.Freqs[N.Index].Scaled;
+ Scaled64 New = Loop.Scale * F;
DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
<< "\n");
F = New;
@@ -761,7 +476,7 @@ static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
void BlockFrequencyInfoImplBase::unwrapLoops() {
// Set initial frequencies from loop-local masses.
for (size_t Index = 0; Index < Working.size(); ++Index)
- Freqs[Index].Floating = Working[Index].Mass.toFloat();
+ Freqs[Index].Scaled = Working[Index].Mass.toScaled();
for (LoopData &Loop : Loops)
unwrapLoop(*this, Loop);
@@ -770,12 +485,12 @@ void BlockFrequencyInfoImplBase::unwrapLoops() {
void BlockFrequencyInfoImplBase::finalizeMetrics() {
// Unwrap loop packages in reverse post-order, tracking min and max
// frequencies.
- auto Min = Float::getLargest();
- auto Max = Float::getZero();
+ auto Min = Scaled64::getLargest();
+ auto Max = Scaled64::getZero();
for (size_t Index = 0; Index < Working.size(); ++Index) {
// Update min/max scale.
- Min = std::min(Min, Freqs[Index].Floating);
- Max = std::max(Max, Freqs[Index].Floating);
+ Min = std::min(Min, Freqs[Index].Scaled);
+ Max = std::max(Max, Freqs[Index].Scaled);
}
// Convert to integers.
@@ -794,11 +509,11 @@ BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
return 0;
return Freqs[Node.Index].Integer;
}
-Float
+Scaled64
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
if (!Node.isValid())
- return Float::getZero();
- return Freqs[Node.Index].Floating;
+ return Scaled64::getZero();
+ return Freqs[Node.Index].Scaled;
}
std::string
@@ -819,8 +534,8 @@ BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
const BlockFrequency &Freq) const {
- Float Block(Freq.getFrequency(), 0);
- Float Entry(getEntryFreq(), 0);
+ Scaled64 Block(Freq.getFrequency(), 0);
+ Scaled64 Entry(getEntryFreq(), 0);
return OS << Block / Entry;
}
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index b546789..d1632fd 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -25,6 +25,7 @@ add_llvm_library(LLVMAnalysis
InstructionSimplify.cpp
Interval.cpp
IntervalPartition.cpp
+ JumpInstrTableInfo.cpp
LazyCallGraph.cpp
LazyValueInfo.cpp
LibCallAliasAnalysis.cpp
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 0ac1cb5..eb3e2c6 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -21,6 +21,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Config/config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
@@ -31,11 +32,15 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/FEnv.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include <cerrno>
#include <cmath>
+
+#ifdef HAVE_FENV_H
+#include <fenv.h>
+#endif
+
using namespace llvm;
//===----------------------------------------------------------------------===//
@@ -706,7 +711,7 @@ static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
static Constant* StripPtrCastKeepAS(Constant* Ptr) {
assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
- Ptr = cast<Constant>(Ptr->stripPointerCasts());
+ Ptr = Ptr->stripPointerCasts();
PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
// Preserve the address space number of the pointer.
@@ -1314,12 +1319,34 @@ static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
}
+namespace {
+/// llvm_fenv_clearexcept - Clear the floating-point exception state.
+static inline void llvm_fenv_clearexcept() {
+#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
+ feclearexcept(FE_ALL_EXCEPT);
+#endif
+ errno = 0;
+}
+
+/// llvm_fenv_testexcept - Test if a floating-point exception was raised.
+static inline bool llvm_fenv_testexcept() {
+ int errno_val = errno;
+ if (errno_val == ERANGE || errno_val == EDOM)
+ return true;
+#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
+ if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
+ return true;
+#endif
+ return false;
+}
+} // End namespace
+
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
Type *Ty) {
- sys::llvm_fenv_clearexcept();
+ llvm_fenv_clearexcept();
V = NativeFP(V);
- if (sys::llvm_fenv_testexcept()) {
- sys::llvm_fenv_clearexcept();
+ if (llvm_fenv_testexcept()) {
+ llvm_fenv_clearexcept();
return nullptr;
}
@@ -1328,10 +1355,10 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W, Type *Ty) {
- sys::llvm_fenv_clearexcept();
+ llvm_fenv_clearexcept();
V = NativeFP(V, W);
- if (sys::llvm_fenv_testexcept()) {
- sys::llvm_fenv_clearexcept();
+ if (llvm_fenv_testexcept()) {
+ llvm_fenv_clearexcept();
return nullptr;
}
diff --git a/lib/Analysis/CostModel.cpp b/lib/Analysis/CostModel.cpp
index 780b1aa..1b74f8c 100644
--- a/lib/Analysis/CostModel.cpp
+++ b/lib/Analysis/CostModel.cpp
@@ -95,6 +95,31 @@ static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
return true;
}
+static bool isAlternateVectorMask(SmallVectorImpl<int> &Mask) {
+ bool isAlternate = true;
+ unsigned MaskSize = Mask.size();
+
+ // Example: shufflevector A, B, <0,5,2,7>
+ for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
+ }
+
+ if (isAlternate)
+ return true;
+
+ isAlternate = true;
+ // Example: shufflevector A, B, <4,1,6,3>
+ for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
+ }
+
+ return isAlternate;
+}
+
static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
TargetTransformInfo::OperandValueKind OpInfo =
TargetTransformInfo::OK_AnyValue;
@@ -466,9 +491,15 @@ unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
unsigned NumVecElems = VecTypOp0->getVectorNumElements();
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
- if (NumVecElems == Mask.size() && isReverseVectorMask(Mask))
- return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 0,
- nullptr);
+ if (NumVecElems == Mask.size()) {
+ if (isReverseVectorMask(Mask))
+ return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
+ 0, nullptr);
+ if (isAlternateVectorMask(Mask))
+ return TTI->getShuffleCost(TargetTransformInfo::SK_Alternate,
+ VecTypOp0, 0, nullptr);
+ }
+
return -1;
}
case Instruction::Call:
diff --git a/lib/Analysis/IPA/CallGraphSCCPass.cpp b/lib/Analysis/IPA/CallGraphSCCPass.cpp
index bfab744..c27edbf 100644
--- a/lib/Analysis/IPA/CallGraphSCCPass.cpp
+++ b/lib/Analysis/IPA/CallGraphSCCPass.cpp
@@ -602,8 +602,12 @@ namespace {
bool runOnSCC(CallGraphSCC &SCC) override {
Out << Banner;
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
- (*I)->getFunction()->print(Out);
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ if ((*I)->getFunction())
+ (*I)->getFunction()->print(Out);
+ else
+ Out << "\nPrinting <null> Function\n";
+ }
return false;
}
};
diff --git a/lib/Analysis/IPA/InlineCost.cpp b/lib/Analysis/IPA/InlineCost.cpp
index 66f3f8e..8807529 100644
--- a/lib/Analysis/IPA/InlineCost.cpp
+++ b/lib/Analysis/IPA/InlineCost.cpp
@@ -841,10 +841,7 @@ bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
// original function which is extremely undefined behavior.
// FIXME: This logic isn't really right; we can safely inline functions with
// indirectbr's as long as no other function or global references the
- // blockaddress of a block within the current function. And as a QOI issue,
- // if someone is using a blockaddress without an indirectbr, and that
- // reference somehow ends up in another function or global, we probably don't
- // want to inline this function.
+ // blockaddress of a block within the current function.
HasIndirectBr = true;
return false;
}
@@ -1121,6 +1118,15 @@ bool CallAnalyzer::analyzeCall(CallSite CS) {
if (BB->empty())
continue;
+ // Disallow inlining a blockaddress. A blockaddress only has defined
+ // behavior for an indirect branch in the same function, and we do not
+ // currently support inlining indirect branches. But, the inliner may not
+ // see an indirect branch that ends up being dead code at a particular call
+ // site. If the blockaddress escapes the function, e.g., via a global
+ // variable, inlining may lead to an invalid cross-function reference.
+ if (BB->hasAddressTaken())
+ return false;
+
// Analyze the cost of this block. If we blow through the threshold, this
// returns false, and we can bail on out.
if (!analyzeBlock(BB)) {
@@ -1303,8 +1309,9 @@ bool InlineCostAnalysis::isInlineViable(Function &F) {
F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::ReturnsTwice);
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
- // Disallow inlining of functions which contain an indirect branch.
- if (isa<IndirectBrInst>(BI->getTerminator()))
+ // Disallow inlining of functions which contain indirect branches or
+ // blockaddresses.
+ if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken())
return false;
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index c819bd3..24655aa 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -287,7 +287,10 @@ void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << ")";
}
OS << " in ";
- UI->getUser()->print(OS);
+ if (UI->getUser())
+ UI->getUser()->print(OS);
+ else
+ OS << "Printing <null> User";
OS << '\n';
}
}
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp
index 3684fda..bd42af1 100644
--- a/lib/Analysis/InstructionSimplify.cpp
+++ b/lib/Analysis/InstructionSimplify.cpp
@@ -39,7 +39,6 @@ using namespace llvm::PatternMatch;
enum { RecursionLimit = 3 };
STATISTIC(NumExpand, "Number of expansions");
-STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc, "Number of reassociations");
struct Query {
@@ -183,78 +182,6 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
return nullptr;
}
-/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
-/// using the operation OpCodeToExtract. For example, when Opcode is Add and
-/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
-/// Returns the simplified value, or null if no simplification was performed.
-static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- unsigned OpcToExtract, const Query &Q,
- unsigned MaxRecurse) {
- Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
-
- if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
- !Op1 || Op1->getOpcode() != OpcodeToExtract)
- return nullptr;
-
- // The expression has the form "(A op' B) op (C op' D)".
- Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
- Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
-
- // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
- // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
- // commutative case, "(A op' B) op (C op' A)"?
- if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
- Value *DD = A == C ? D : C;
- // Form "A op' (B op DD)" if it simplifies completely.
- // Does "B op DD" simplify?
- if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
- // It does! Return "A op' V" if it simplifies or is already available.
- // If V equals B then "A op' V" is just the LHS. If V equals DD then
- // "A op' V" is just the RHS.
- if (V == B || V == DD) {
- ++NumFactor;
- return V == B ? LHS : RHS;
- }
- // Otherwise return "A op' V" if it simplifies.
- if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
- ++NumFactor;
- return W;
- }
- }
- }
-
- // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
- // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
- // commutative case, "(A op' B) op (B op' D)"?
- if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
- Value *CC = B == D ? C : D;
- // Form "(A op CC) op' B" if it simplifies completely..
- // Does "A op CC" simplify?
- if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
- // It does! Return "V op' B" if it simplifies or is already available.
- // If V equals A then "V op' B" is just the LHS. If V equals CC then
- // "V op' B" is just the RHS.
- if (V == A || V == CC) {
- ++NumFactor;
- return V == A ? LHS : RHS;
- }
- // Otherwise return "V op' B" if it simplifies.
- if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
- ++NumFactor;
- return W;
- }
- }
- }
-
- return nullptr;
-}
-
/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
/// operations. Returns the simpler value, or null if none was found.
static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
@@ -634,11 +561,6 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
MaxRecurse))
return V;
- // Mul distributes over Add. Try some generic simplifications based on this.
- if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
- Q, MaxRecurse))
- return V;
-
// Threading Add over selects and phi nodes is pointless, so don't bother.
// Threading over the select in "A + select(cond, B, C)" means evaluating
// "A+B" and "A+C" and seeing if they are equal; but they are equal if and
@@ -754,16 +676,9 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
- // (X*2) - X -> X
- // (X<<1) - X -> X
- Value *X = nullptr;
- if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
- match(Op0, m_Shl(m_Specific(Op1), m_One())))
- return Op1;
-
// (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
// For example, (X + Y) - Y -> X; (Y + X) - Y -> X
- Value *Y = nullptr, *Z = Op1;
+ Value *X = nullptr, *Y = nullptr, *Z = Op1;
if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
// See if "V === Y - Z" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
@@ -835,11 +750,6 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (Constant *Result = computePointerDifference(Q.DL, X, Y))
return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
- // Mul distributes over Sub. Try some generic simplifications based on this.
- if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
- Q, MaxRecurse))
- return V;
-
// i1 sub -> xor.
if (MaxRecurse && Op0->getType()->isIntegerTy(1))
if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
@@ -1518,11 +1428,6 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Q, MaxRecurse))
return V;
- // Or distributes over And. Try some generic simplifications based on this.
- if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
- Q, MaxRecurse))
- return V;
-
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1613,11 +1518,6 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
MaxRecurse))
return V;
- // And distributes over Or. Try some generic simplifications based on this.
- if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
- Q, MaxRecurse))
- return V;
-
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1625,6 +1525,38 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
MaxRecurse))
return V;
+ // (A & C)|(B & D)
+ Value *C = nullptr, *D = nullptr;
+ if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
+ match(Op1, m_And(m_Value(B), m_Value(D)))) {
+ ConstantInt *C1 = dyn_cast<ConstantInt>(C);
+ ConstantInt *C2 = dyn_cast<ConstantInt>(D);
+ if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
+ // (A & C1)|(B & C2)
+ // If we have: ((V + N) & C1) | (V & C2)
+ // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
+ // replace with V+N.
+ Value *V1, *V2;
+ if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
+ match(A, m_Add(m_Value(V1), m_Value(V2)))) {
+ // Add commutes, try both ways.
+ if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
+ return A;
+ if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
+ return A;
+ }
+ // Or commutes, try both ways.
+ if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
+ match(B, m_Add(m_Value(V1), m_Value(V2)))) {
+ // Add commutes, try both ways.
+ if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
+ return B;
+ if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
+ return B;
+ }
+ }
+ }
+
// If the operation is with the result of a phi instruction, check whether
// operating on all incoming values of the phi always yields the same value.
if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
@@ -1677,11 +1609,6 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
MaxRecurse))
return V;
- // And distributes over Xor. Try some generic simplifications based on this.
- if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
- Q, MaxRecurse))
- return V;
-
// Threading Xor over selects and phi nodes is pointless, so don't bother.
// Threading over the select in "A ^ select(cond, B, C)" means evaluating
// "A^B" and "A^C" and seeing if they are equal; but they are equal if and
@@ -2021,9 +1948,15 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
if (!CI2->isZero())
Upper = NegOne.udiv(CI2->getValue()) + 1;
} else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
- // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
- Upper = CI2->getValue().abs() + 1;
- Lower = (-Upper) + 1;
+ if (CI2->isMinSignedValue()) {
+ // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
+ Lower = CI2->getValue();
+ Upper = Lower.lshr(1) + 1;
+ } else {
+ // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
+ Upper = CI2->getValue().abs() + 1;
+ Lower = (-Upper) + 1;
+ }
} else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
// 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
APInt IntMin = APInt::getSignedMinValue(Width);
@@ -2241,6 +2174,25 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
+ // If a bit is known to be zero for A and known to be one for B,
+ // then A and B cannot be equal.
+ if (ICmpInst::isEquality(Pred)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ uint32_t BitWidth = CI->getBitWidth();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
+ if (((LHSKnownOne & RHSKnownZero) != 0) ||
+ ((LHSKnownZero & RHSKnownOne) != 0))
+ return (Pred == ICmpInst::ICMP_EQ)
+ ? ConstantInt::getFalse(CI->getContext())
+ : ConstantInt::getTrue(CI->getContext());
+ }
+ }
+
// Special logic for binary operators.
BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
diff --git a/lib/Analysis/JumpInstrTableInfo.cpp b/lib/Analysis/JumpInstrTableInfo.cpp
new file mode 100644
index 0000000..b5b4265
--- /dev/null
+++ b/lib/Analysis/JumpInstrTableInfo.cpp
@@ -0,0 +1,40 @@
+//===-- JumpInstrTableInfo.cpp: Info for Jump-Instruction Tables ----------===//
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief Information about jump-instruction tables that have been created by
+/// JumpInstrTables pass.
+///
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jiti"
+
+#include "llvm/Analysis/JumpInstrTableInfo.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+
+using namespace llvm;
+
+INITIALIZE_PASS(JumpInstrTableInfo, "jump-instr-table-info",
+ "Jump-Instruction Table Info", true, true)
+char JumpInstrTableInfo::ID = 0;
+
+ImmutablePass *llvm::createJumpInstrTableInfoPass() {
+ return new JumpInstrTableInfo();
+}
+
+JumpInstrTableInfo::JumpInstrTableInfo() : ImmutablePass(ID), Tables() {
+ initializeJumpInstrTableInfoPass(*PassRegistry::getPassRegistry());
+}
+
+JumpInstrTableInfo::~JumpInstrTableInfo() {}
+
+void JumpInstrTableInfo::insertEntry(FunctionType *TableFunTy, Function *Target,
+ Function *Jump) {
+ Tables[TableFunTy].push_back(JumpPair(Target, Jump));
+}
diff --git a/lib/Analysis/LoopPass.cpp b/lib/Analysis/LoopPass.cpp
index 8df18e7..7bd866e 100644
--- a/lib/Analysis/LoopPass.cpp
+++ b/lib/Analysis/LoopPass.cpp
@@ -45,7 +45,10 @@ public:
for (Loop::block_iterator b = L->block_begin(), be = L->block_end();
b != be;
++b) {
- (*b)->print(Out);
+ if (*b)
+ (*b)->print(Out);
+ else
+ Out << "Printing <null> block";
}
return false;
}
diff --git a/lib/Analysis/NoAliasAnalysis.cpp b/lib/Analysis/NoAliasAnalysis.cpp
index 4e11e50..139fa38 100644
--- a/lib/Analysis/NoAliasAnalysis.cpp
+++ b/lib/Analysis/NoAliasAnalysis.cpp
@@ -15,6 +15,7 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Pass.h"
using namespace llvm;
@@ -53,6 +54,13 @@ namespace {
bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override {
return false;
}
+ Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
+ ModRefResult &Mask) override {
+ Mask = ModRef;
+ return Location(CS.getArgument(ArgIdx), UnknownSize,
+ CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa));
+ }
+
ModRefResult getModRefInfo(ImmutableCallSite CS,
const Location &Loc) override {
return ModRef;
diff --git a/lib/Analysis/RegionPass.cpp b/lib/Analysis/RegionPass.cpp
index 3c7798f..71de144 100644
--- a/lib/Analysis/RegionPass.cpp
+++ b/lib/Analysis/RegionPass.cpp
@@ -195,8 +195,12 @@ public:
bool runOnRegion(Region *R, RGPassManager &RGM) override {
Out << Banner;
- for (const auto &BB : R->blocks())
- BB->print(Out);
+ for (const auto &BB : R->blocks()) {
+ if (BB)
+ BB->print(Out);
+ else
+ Out << "Printing <null> Block";
+ }
return false;
}
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 42a7aa2..06dbde5 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -7216,6 +7216,15 @@ public:
cast<SCEVConstant>(Zero)->getValue();
Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+ if (Remainder->isZero()) {
+ // The Quotient is obtained by replacing Denominator by 1 in Numerator.
+ RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
+ cast<SCEVConstant>(One)->getValue();
+ Quotient =
+ SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+ return;
+ }
+
// Quotient is (Numerator - Remainder) divided by Denominator.
const SCEV *Q, *R;
const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
@@ -7356,7 +7365,7 @@ const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
Ty = Store->getValueOperand()->getType();
else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
- Ty = Load->getPointerOperand()->getType();
+ Ty = Load->getType();
else
return nullptr;
@@ -7370,7 +7379,7 @@ void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) const {
- if (Terms.size() < 1)
+ if (Terms.size() < 1 || !ElementSize)
return;
// Early return when Terms do not contain parameters: we do not delinearize
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index b507043..8c75b0d 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -16,6 +16,7 @@
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
@@ -1706,7 +1707,7 @@ unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
// Fold constant phis. They may be congruent to other constant phis and
// would confuse the logic below that expects proper IVs.
- if (Value *V = Phi->hasConstantValue()) {
+ if (Value *V = SimplifyInstruction(Phi, SE.DL, SE.TLI, SE.DT)) {
Phi->replaceAllUsesWith(V);
DeadInsts.push_back(Phi);
++NumElim;
diff --git a/lib/Analysis/ScalarEvolutionNormalization.cpp b/lib/Analysis/ScalarEvolutionNormalization.cpp
index e9db295..3ccefb0 100644
--- a/lib/Analysis/ScalarEvolutionNormalization.cpp
+++ b/lib/Analysis/ScalarEvolutionNormalization.cpp
@@ -241,7 +241,7 @@ TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
}
/// Top level driver for transforming an expression DAG into its requested
-/// post-inc form (either "Normalized" or "Denormalized".
+/// post-inc form (either "Normalized" or "Denormalized").
const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
const SCEV *S,
Instruction *User,
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 4f48753..5264745 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -188,7 +188,8 @@ static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
KnownOne.setBit(BitWidth - 1);
}
-void llvm::computeKnownBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
+void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
+ APInt &KnownZero) {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
@@ -338,7 +339,7 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
default: break;
case Instruction::Load:
if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
- computeKnownBitsLoad(*MD, KnownZero);
+ computeKnownBitsFromRangeMetadata(*MD, KnownZero);
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
@@ -733,6 +734,12 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
}
case Instruction::Call:
+ case Instruction::Invoke:
+ if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, KnownZero);
+ // If a range metadata is attached to this IntrinsicInst, intersect the
+ // explicit range specified by the metadata and the implicit range of
+ // the intrinsic.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
@@ -742,16 +749,16 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
LowBits -= 1;
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
case Intrinsic::ctpop: {
unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
case Intrinsic::x86_sse42_crc32_64_64:
- KnownZero = APInt::getHighBitsSet(64, 32);
+ KnownZero |= APInt::getHighBitsSet(64, 32);
break;
}
}
@@ -1977,7 +1984,7 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
return true;
case Instruction::UDiv:
case Instruction::URem:
- // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
+ // x / y is undefined if y == 0, but calculations like x / 3 are safe.
return isKnownNonZero(Inst->getOperand(1), TD);
case Instruction::SDiv:
case Instruction::SRem: {
@@ -2000,12 +2007,12 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
// Speculative load may create a race that did not exist in the source.
LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
return false;
- return LI->getPointerOperand()->isDereferenceablePointer();
+ return LI->getPointerOperand()->isDereferenceablePointer(TD);
}
case Instruction::Call: {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
- // These synthetic intrinsics have no side-effects, and just mark
+ // These synthetic intrinsics have no side-effects and just mark
// information about their operands.
// FIXME: There are other no-op synthetic instructions that potentially
// should be considered at least *safe* to speculate...