aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-05-29 02:49:00 -0700
committerStephen Hines <srhines@google.com>2014-05-29 02:49:00 -0700
commitdce4a407a24b04eebc6a376f8e62b41aaa7b071f (patch)
treedcebc53f2b182f145a2e659393bf9a0472cedf23 /lib/Analysis
parent220b921aed042f9e520c26cffd8282a94c66c3d5 (diff)
downloadexternal_llvm-dce4a407a24b04eebc6a376f8e62b41aaa7b071f.zip
external_llvm-dce4a407a24b04eebc6a376f8e62b41aaa7b071f.tar.gz
external_llvm-dce4a407a24b04eebc6a376f8e62b41aaa7b071f.tar.bz2
Update LLVM for 3.5 rebase (r209712).
Change-Id: I149556c940fb7dc92d075273c87ff584f400941f
Diffstat (limited to 'lib/Analysis')
-rw-r--r--lib/Analysis/AliasAnalysis.cpp2
-rw-r--r--lib/Analysis/AliasAnalysisCounter.cpp4
-rw-r--r--lib/Analysis/AliasSetTracker.cpp18
-rw-r--r--lib/Analysis/Analysis.cpp5
-rw-r--r--lib/Analysis/Android.mk1
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp43
-rw-r--r--lib/Analysis/BlockFrequencyInfo.cpp13
-rw-r--r--lib/Analysis/BlockFrequencyInfoImpl.cpp995
-rw-r--r--lib/Analysis/BranchProbabilityInfo.cpp18
-rw-r--r--lib/Analysis/CFG.cpp8
-rw-r--r--lib/Analysis/CFGPrinter.cpp13
-rw-r--r--lib/Analysis/CGSCCPassManager.cpp167
-rw-r--r--lib/Analysis/CMakeLists.txt2
-rw-r--r--lib/Analysis/ConstantFolding.cpp160
-rw-r--r--lib/Analysis/CostModel.cpp40
-rw-r--r--lib/Analysis/Delinearization.cpp32
-rw-r--r--lib/Analysis/DependenceAnalysis.cpp164
-rw-r--r--lib/Analysis/DominanceFrontier.cpp4
-rw-r--r--lib/Analysis/IPA/CallGraph.cpp12
-rw-r--r--lib/Analysis/IPA/CallGraphSCCPass.cpp27
-rw-r--r--lib/Analysis/IPA/GlobalsModRef.cpp21
-rw-r--r--lib/Analysis/IPA/InlineCost.cpp64
-rw-r--r--lib/Analysis/IVUsers.cpp13
-rw-r--r--lib/Analysis/InstCount.cpp5
-rw-r--r--lib/Analysis/InstructionSimplify.cpp203
-rw-r--r--lib/Analysis/IntervalPartition.cpp2
-rw-r--r--lib/Analysis/LazyCallGraph.cpp673
-rw-r--r--lib/Analysis/LazyValueInfo.cpp21
-rw-r--r--lib/Analysis/LibCallAliasAnalysis.cpp2
-rw-r--r--lib/Analysis/LibCallSemantics.cpp4
-rw-r--r--lib/Analysis/Lint.cpp40
-rw-r--r--lib/Analysis/Loads.cpp10
-rw-r--r--lib/Analysis/LoopInfo.cpp30
-rw-r--r--lib/Analysis/LoopPass.cpp9
-rw-r--r--lib/Analysis/MemDepPrinter.cpp14
-rw-r--r--lib/Analysis/MemoryBuiltins.cpp57
-rw-r--r--lib/Analysis/MemoryDependenceAnalysis.cpp31
-rw-r--r--lib/Analysis/NoAliasAnalysis.cpp2
-rw-r--r--lib/Analysis/PHITransAddr.cpp44
-rw-r--r--lib/Analysis/PostDominators.cpp4
-rw-r--r--lib/Analysis/RegionInfo.cpp85
-rw-r--r--lib/Analysis/RegionPass.cpp18
-rw-r--r--lib/Analysis/RegionPrinter.cpp22
-rw-r--r--lib/Analysis/ScalarEvolution.cpp1167
-rw-r--r--lib/Analysis/ScalarEvolutionAliasAnalysis.cpp8
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp51
-rw-r--r--lib/Analysis/ScalarEvolutionNormalization.cpp2
-rw-r--r--lib/Analysis/SparsePropagation.cpp7
-rw-r--r--lib/Analysis/TargetTransformInfo.cpp15
-rw-r--r--lib/Analysis/TypeBasedAliasAnalysis.cpp30
-rw-r--r--lib/Analysis/ValueTracking.cpp264
51 files changed, 3369 insertions, 1277 deletions
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index 9583bbe..57237e5 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -473,7 +473,7 @@ AliasAnalysis::~AliasAnalysis() {}
///
void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
AA = &P->getAnalysis<AliasAnalysis>();
}
diff --git a/lib/Analysis/AliasAnalysisCounter.cpp b/lib/Analysis/AliasAnalysisCounter.cpp
index 2e3bc55..b860914 100644
--- a/lib/Analysis/AliasAnalysisCounter.cpp
+++ b/lib/Analysis/AliasAnalysisCounter.cpp
@@ -126,7 +126,7 @@ AliasAnalysis::AliasResult
AliasAnalysisCounter::alias(const Location &LocA, const Location &LocB) {
AliasResult R = getAnalysis<AliasAnalysis>().alias(LocA, LocB);
- const char *AliasString = 0;
+ const char *AliasString = nullptr;
switch (R) {
case NoAlias: No++; AliasString = "No alias"; break;
case MayAlias: May++; AliasString = "May alias"; break;
@@ -152,7 +152,7 @@ AliasAnalysisCounter::getModRefInfo(ImmutableCallSite CS,
const Location &Loc) {
ModRefResult R = getAnalysis<AliasAnalysis>().getModRefInfo(CS, Loc);
- const char *MRString = 0;
+ const char *MRString = nullptr;
switch (R) {
case NoModRef: NoMR++; MRString = "NoModRef"; break;
case Ref: JustRef++; MRString = "JustRef"; break;
diff --git a/lib/Analysis/AliasSetTracker.cpp b/lib/Analysis/AliasSetTracker.cpp
index ab1005e..a45fe23 100644
--- a/lib/Analysis/AliasSetTracker.cpp
+++ b/lib/Analysis/AliasSetTracker.cpp
@@ -72,16 +72,16 @@ void AliasSet::mergeSetIn(AliasSet &AS, AliasSetTracker &AST) {
AS.PtrList->setPrevInList(PtrListEnd);
PtrListEnd = AS.PtrListEnd;
- AS.PtrList = 0;
+ AS.PtrList = nullptr;
AS.PtrListEnd = &AS.PtrList;
- assert(*AS.PtrListEnd == 0 && "End of list is not null?");
+ assert(*AS.PtrListEnd == nullptr && "End of list is not null?");
}
}
void AliasSetTracker::removeAliasSet(AliasSet *AS) {
if (AliasSet *Fwd = AS->Forward) {
Fwd->dropRef(*this);
- AS->Forward = 0;
+ AS->Forward = nullptr;
}
AliasSets.erase(AS);
}
@@ -115,10 +115,10 @@ void AliasSet::addPointer(AliasSetTracker &AST, PointerRec &Entry,
Entry.updateSizeAndTBAAInfo(Size, TBAAInfo);
// Add it to the end of the list...
- assert(*PtrListEnd == 0 && "End of list is not null?");
+ assert(*PtrListEnd == nullptr && "End of list is not null?");
*PtrListEnd = &Entry;
PtrListEnd = Entry.setPrevInList(PtrListEnd);
- assert(*PtrListEnd == 0 && "End of list is not null?");
+ assert(*PtrListEnd == nullptr && "End of list is not null?");
addRef(); // Entry points to alias set.
}
@@ -217,11 +217,11 @@ void AliasSetTracker::clear() {
AliasSet *AliasSetTracker::findAliasSetForPointer(const Value *Ptr,
uint64_t Size,
const MDNode *TBAAInfo) {
- AliasSet *FoundSet = 0;
+ AliasSet *FoundSet = nullptr;
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I->Forward || !I->aliasesPointer(Ptr, Size, TBAAInfo, AA)) continue;
- if (FoundSet == 0) { // If this is the first alias set ptr can go into.
+ if (!FoundSet) { // If this is the first alias set ptr can go into.
FoundSet = I; // Remember it.
} else { // Otherwise, we must merge the sets.
FoundSet->mergeSetIn(*I, *this); // Merge in contents.
@@ -245,12 +245,12 @@ bool AliasSetTracker::containsPointer(Value *Ptr, uint64_t Size,
AliasSet *AliasSetTracker::findAliasSetForUnknownInst(Instruction *Inst) {
- AliasSet *FoundSet = 0;
+ AliasSet *FoundSet = nullptr;
for (iterator I = begin(), E = end(); I != E; ++I) {
if (I->Forward || !I->aliasesUnknownInst(Inst, AA))
continue;
- if (FoundSet == 0) // If this is the first alias set ptr can go into.
+ if (!FoundSet) // If this is the first alias set ptr can go into.
FoundSet = I; // Remember it.
else if (!I->Forward) // Otherwise, we must merge the sets.
FoundSet->mergeSetIn(*I, *this); // Merge in contents.
diff --git a/lib/Analysis/Analysis.cpp b/lib/Analysis/Analysis.cpp
index c960123..01c1c7e 100644
--- a/lib/Analysis/Analysis.cpp
+++ b/lib/Analysis/Analysis.cpp
@@ -73,7 +73,7 @@ void LLVMInitializeAnalysis(LLVMPassRegistryRef R) {
LLVMBool LLVMVerifyModule(LLVMModuleRef M, LLVMVerifierFailureAction Action,
char **OutMessages) {
- raw_ostream *DebugOS = Action != LLVMReturnStatusAction ? &errs() : 0;
+ raw_ostream *DebugOS = Action != LLVMReturnStatusAction ? &errs() : nullptr;
std::string Messages;
raw_string_ostream MsgsOS(Messages);
@@ -94,7 +94,8 @@ LLVMBool LLVMVerifyModule(LLVMModuleRef M, LLVMVerifierFailureAction Action,
LLVMBool LLVMVerifyFunction(LLVMValueRef Fn, LLVMVerifierFailureAction Action) {
LLVMBool Result = verifyFunction(
- *unwrap<Function>(Fn), Action != LLVMReturnStatusAction ? &errs() : 0);
+ *unwrap<Function>(Fn), Action != LLVMReturnStatusAction ? &errs()
+ : nullptr);
if (Action == LLVMAbortProcessAction && Result)
report_fatal_error("Broken function found, compilation aborted!");
diff --git a/lib/Analysis/Android.mk b/lib/Analysis/Android.mk
index 76eee74..a8fef77 100644
--- a/lib/Analysis/Android.mk
+++ b/lib/Analysis/Android.mk
@@ -9,6 +9,7 @@ analysis_SRC_FILES := \
Analysis.cpp \
BasicAliasAnalysis.cpp \
BlockFrequencyInfo.cpp \
+ BlockFrequencyInfoImpl.cpp \
BranchProbabilityInfo.cpp \
CFG.cpp \
CFGPrinter.cpp \
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index e267374..fe90b84 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -298,7 +298,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
do {
// See if this is a bitcast or GEP.
const Operator *Op = dyn_cast<Operator>(V);
- if (Op == 0) {
+ if (!Op) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->mayBeOverridden()) {
@@ -315,7 +315,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
}
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
- if (GEPOp == 0) {
+ if (!GEPOp) {
// If it's not a GEP, hand it off to SimplifyInstruction to see if it
// can come up with something. This matches what GetUnderlyingObject does.
if (const Instruction *I = dyn_cast<Instruction>(V))
@@ -336,7 +336,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
// If we are lacking DataLayout information, we can't compute the offets of
// elements computed by GEPs. However, we can handle bitcast equivalent
// GEPs.
- if (DL == 0) {
+ if (!DL) {
if (!GEPOp->hasAllZeroIndices())
return V;
V = GEPOp->getOperand(0);
@@ -433,7 +433,7 @@ static const Function *getParent(const Value *V) {
if (const Argument *arg = dyn_cast<Argument>(V))
return arg->getParent();
- return NULL;
+ return nullptr;
}
static bool notDifferentParent(const Value *O1, const Value *O2) {
@@ -753,7 +753,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
// Finally, handle specific knowledge of intrinsics.
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
- if (II != 0)
+ if (II != nullptr)
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::memcpy:
@@ -868,21 +868,6 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
}
-static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1,
- SmallVectorImpl<VariableGEPIndex> &Indices2) {
- unsigned Size1 = Indices1.size();
- unsigned Size2 = Indices2.size();
-
- if (Size1 != Size2)
- return false;
-
- for (unsigned I = 0; I != Size1; ++I)
- if (Indices1[I] != Indices2[I])
- return false;
-
- return true;
-}
-
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
/// against another pointer. We know that V1 is a GEP, but we don't know
/// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
@@ -904,8 +889,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// derived pointer.
if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
// Do the base pointers alias?
- AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
- UnderlyingV2, UnknownSize, 0);
+ AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
+ UnderlyingV2, UnknownSize, nullptr);
// Check for geps of non-aliasing underlying pointers where the offsets are
// identical.
@@ -929,8 +914,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- assert(DL == 0 &&
- "DecomposeGEPExpression and GetUnderlyingObject disagree!");
+ assert(!DL &&
+ "DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
// If the max search depth is reached the result is undefined
@@ -939,7 +924,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// Same offsets.
if (GEP1BaseOffset == GEP2BaseOffset &&
- areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
+ GEP1VariableIndices == GEP2VariableIndices)
return NoAlias;
GEP1VariableIndices.clear();
}
@@ -966,7 +951,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
- assert(DL == 0 &&
+ assert(!DL &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
@@ -988,7 +973,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
if (V1Size == UnknownSize && V2Size == UnknownSize)
return MayAlias;
- AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
+ AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
V2, V2Size, V2TBAAInfo);
if (R != MustAlias)
// If V2 may alias GEP base pointer, conservatively returns MayAlias.
@@ -1005,7 +990,7 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
// DecomposeGEPExpression and GetUnderlyingObject should return the
// same result except when DecomposeGEPExpression has no DataLayout.
if (GEP1BasePtr != UnderlyingV1) {
- assert(DL == 0 &&
+ assert(!DL &&
"DecomposeGEPExpression and GetUnderlyingObject disagree!");
return MayAlias;
}
@@ -1371,7 +1356,7 @@ bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
// Use dominance or loop info if available.
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DominatorTree *DT = DTWP ? &DTWP->getDomTree() : 0;
+ DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
// Make sure that the visited phis cannot reach the Value. This ensures that
diff --git a/lib/Analysis/BlockFrequencyInfo.cpp b/lib/Analysis/BlockFrequencyInfo.cpp
index 63049a5..8ed8e3e 100644
--- a/lib/Analysis/BlockFrequencyInfo.cpp
+++ b/lib/Analysis/BlockFrequencyInfo.cpp
@@ -1,4 +1,4 @@
-//=======-------- BlockFrequencyInfo.cpp - Block Frequency Analysis -------===//
+//===- BlockFrequencyInfo.cpp - Block Frequency Analysis ------------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -12,7 +12,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BlockFrequencyInfo.h"
-#include "llvm/Analysis/BlockFrequencyImpl.h"
+#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
@@ -24,6 +24,8 @@
using namespace llvm;
+#define DEBUG_TYPE "block-freq"
+
#ifndef NDEBUG
enum GVDAGType {
GVDT_None,
@@ -106,6 +108,7 @@ struct DOTGraphTraits<BlockFrequencyInfo*> : public DefaultDOTGraphTraits {
INITIALIZE_PASS_BEGIN(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
@@ -120,14 +123,16 @@ BlockFrequencyInfo::~BlockFrequencyInfo() {}
void BlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<BranchProbabilityInfo>();
+ AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool BlockFrequencyInfo::runOnFunction(Function &F) {
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
+ LoopInfo &LI = getAnalysis<LoopInfo>();
if (!BFI)
BFI.reset(new ImplType);
- BFI->doFunction(&F, &BPI);
+ BFI->doFunction(&F, &BPI, &LI);
#ifndef NDEBUG
if (ViewBlockFreqPropagationDAG != GVDT_None)
view();
@@ -158,7 +163,7 @@ void BlockFrequencyInfo::view() const {
}
const Function *BlockFrequencyInfo::getFunction() const {
- return BFI ? BFI->Fn : nullptr;
+ return BFI ? BFI->getFunction() : nullptr;
}
raw_ostream &BlockFrequencyInfo::
diff --git a/lib/Analysis/BlockFrequencyInfoImpl.cpp b/lib/Analysis/BlockFrequencyInfoImpl.cpp
new file mode 100644
index 0000000..87d93a4
--- /dev/null
+++ b/lib/Analysis/BlockFrequencyInfoImpl.cpp
@@ -0,0 +1,995 @@
+//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Loops should be simplified before this analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/Support/raw_ostream.h"
+#include <deque>
+
+using namespace llvm;
+using namespace llvm::bfi_detail;
+
+#define DEBUG_TYPE "block-freq"
+
+//===----------------------------------------------------------------------===//
+//
+// UnsignedFloat implementation.
+//
+//===----------------------------------------------------------------------===//
+#ifndef _MSC_VER
+const int32_t UnsignedFloatBase::MaxExponent;
+const int32_t UnsignedFloatBase::MinExponent;
+#endif
+
+static void appendDigit(std::string &Str, unsigned D) {
+ assert(D < 10);
+ Str += '0' + D % 10;
+}
+
+static void appendNumber(std::string &Str, uint64_t N) {
+ while (N) {
+ appendDigit(Str, N % 10);
+ N /= 10;
+ }
+}
+
+static bool doesRoundUp(char Digit) {
+ switch (Digit) {
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ return true;
+ default:
+ return false;
+ }
+}
+
+static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
+ assert(E >= UnsignedFloatBase::MinExponent);
+ assert(E <= UnsignedFloatBase::MaxExponent);
+
+ // Find a new E, but don't let it increase past MaxExponent.
+ int LeadingZeros = UnsignedFloatBase::countLeadingZeros64(D);
+ int NewE = std::min(UnsignedFloatBase::MaxExponent, E + 63 - LeadingZeros);
+ int Shift = 63 - (NewE - E);
+ assert(Shift <= LeadingZeros);
+ assert(Shift == LeadingZeros || NewE == UnsignedFloatBase::MaxExponent);
+ D <<= Shift;
+ E = NewE;
+
+ // Check for a denormal.
+ unsigned AdjustedE = E + 16383;
+ if (!(D >> 63)) {
+ assert(E == UnsignedFloatBase::MaxExponent);
+ AdjustedE = 0;
+ }
+
+ // Build the float and print it.
+ uint64_t RawBits[2] = {D, AdjustedE};
+ APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
+ SmallVector<char, 24> Chars;
+ Float.toString(Chars, Precision, 0);
+ return std::string(Chars.begin(), Chars.end());
+}
+
+static std::string stripTrailingZeros(const std::string &Float) {
+ size_t NonZero = Float.find_last_not_of('0');
+ assert(NonZero != std::string::npos && "no . in floating point string");
+
+ if (Float[NonZero] == '.')
+ ++NonZero;
+
+ return Float.substr(0, NonZero + 1);
+}
+
+std::string UnsignedFloatBase::toString(uint64_t D, int16_t E, int Width,
+ unsigned Precision) {
+ if (!D)
+ return "0.0";
+
+ // Canonicalize exponent and digits.
+ uint64_t Above0 = 0;
+ uint64_t Below0 = 0;
+ uint64_t Extra = 0;
+ int ExtraShift = 0;
+ if (E == 0) {
+ Above0 = D;
+ } else if (E > 0) {
+ if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
+ D <<= Shift;
+ E -= Shift;
+
+ if (!E)
+ Above0 = D;
+ }
+ } else if (E > -64) {
+ Above0 = D >> -E;
+ Below0 = D << (64 + E);
+ } else if (E > -120) {
+ Below0 = D >> (-E - 64);
+ Extra = D << (128 + E);
+ ExtraShift = -64 - E;
+ }
+
+ // Fall back on APFloat for very small and very large numbers.
+ if (!Above0 && !Below0)
+ return toStringAPFloat(D, E, Precision);
+
+ // Append the digits before the decimal.
+ std::string Str;
+ size_t DigitsOut = 0;
+ if (Above0) {
+ appendNumber(Str, Above0);
+ DigitsOut = Str.size();
+ } else
+ appendDigit(Str, 0);
+ std::reverse(Str.begin(), Str.end());
+
+ // Return early if there's nothing after the decimal.
+ if (!Below0)
+ return Str + ".0";
+
+ // Append the decimal and beyond.
+ Str += '.';
+ uint64_t Error = UINT64_C(1) << (64 - Width);
+
+ // We need to shift Below0 to the right to make space for calculating
+ // digits. Save the precision we're losing in Extra.
+ Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
+ Below0 >>= 4;
+ size_t SinceDot = 0;
+ size_t AfterDot = Str.size();
+ do {
+ if (ExtraShift) {
+ --ExtraShift;
+ Error *= 5;
+ } else
+ Error *= 10;
+
+ Below0 *= 10;
+ Extra *= 10;
+ Below0 += (Extra >> 60);
+ Extra = Extra & (UINT64_MAX >> 4);
+ appendDigit(Str, Below0 >> 60);
+ Below0 = Below0 & (UINT64_MAX >> 4);
+ if (DigitsOut || Str.back() != '0')
+ ++DigitsOut;
+ ++SinceDot;
+ } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
+ (!Precision || DigitsOut <= Precision || SinceDot < 2));
+
+ // Return early for maximum precision.
+ if (!Precision || DigitsOut <= Precision)
+ return stripTrailingZeros(Str);
+
+ // Find where to truncate.
+ size_t Truncate =
+ std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
+
+ // Check if there's anything to truncate.
+ if (Truncate >= Str.size())
+ return stripTrailingZeros(Str);
+
+ bool Carry = doesRoundUp(Str[Truncate]);
+ if (!Carry)
+ return stripTrailingZeros(Str.substr(0, Truncate));
+
+ // Round with the first truncated digit.
+ for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
+ I != E; ++I) {
+ if (*I == '.')
+ continue;
+ if (*I == '9') {
+ *I = '0';
+ continue;
+ }
+
+ ++*I;
+ Carry = false;
+ break;
+ }
+
+ // Add "1" in front if we still need to carry.
+ return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
+}
+
+raw_ostream &UnsignedFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
+ int Width, unsigned Precision) {
+ return OS << toString(D, E, Width, Precision);
+}
+
+void UnsignedFloatBase::dump(uint64_t D, int16_t E, int Width) {
+ print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
+ << "]";
+}
+
+static std::pair<uint64_t, int16_t>
+getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
+ if (ShouldRound)
+ if (!++N)
+ // Rounding caused an overflow.
+ return std::make_pair(UINT64_C(1), Shift + 64);
+ return std::make_pair(N, Shift);
+}
+
+std::pair<uint64_t, int16_t> UnsignedFloatBase::divide64(uint64_t Dividend,
+ uint64_t Divisor) {
+ // Input should be sanitized.
+ assert(Divisor);
+ assert(Dividend);
+
+ // Minimize size of divisor.
+ int16_t Shift = 0;
+ if (int Zeros = countTrailingZeros(Divisor)) {
+ Shift -= Zeros;
+ Divisor >>= Zeros;
+ }
+
+ // Check for powers of two.
+ if (Divisor == 1)
+ return std::make_pair(Dividend, Shift);
+
+ // Maximize size of dividend.
+ if (int Zeros = countLeadingZeros64(Dividend)) {
+ Shift -= Zeros;
+ Dividend <<= Zeros;
+ }
+
+ // Start with the result of a divide.
+ uint64_t Quotient = Dividend / Divisor;
+ Dividend %= Divisor;
+
+ // Continue building the quotient with long division.
+ //
+ // TODO: continue with largers digits.
+ while (!(Quotient >> 63) && Dividend) {
+ // Shift Dividend, and check for overflow.
+ bool IsOverflow = Dividend >> 63;
+ Dividend <<= 1;
+ --Shift;
+
+ // Divide.
+ bool DoesDivide = IsOverflow || Divisor <= Dividend;
+ Quotient = (Quotient << 1) | uint64_t(DoesDivide);
+ Dividend -= DoesDivide ? Divisor : 0;
+ }
+
+ // Round.
+ if (Dividend >= getHalf(Divisor))
+ if (!++Quotient)
+ // Rounding caused an overflow in Quotient.
+ return std::make_pair(UINT64_C(1), Shift + 64);
+
+ return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
+}
+
+std::pair<uint64_t, int16_t> UnsignedFloatBase::multiply64(uint64_t L,
+ uint64_t R) {
+ // Separate into two 32-bit digits (U.L).
+ uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
+
+ // Compute cross products.
+ uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
+
+ // Sum into two 64-bit digits.
+ uint64_t Upper = P1, Lower = P4;
+ auto addWithCarry = [&](uint64_t N) {
+ uint64_t NewLower = Lower + (N << 32);
+ Upper += (N >> 32) + (NewLower < Lower);
+ Lower = NewLower;
+ };
+ addWithCarry(P2);
+ addWithCarry(P3);
+
+ // Check whether the upper digit is empty.
+ if (!Upper)
+ return std::make_pair(Lower, 0);
+
+ // Shift as little as possible to maximize precision.
+ unsigned LeadingZeros = countLeadingZeros64(Upper);
+ int16_t Shift = 64 - LeadingZeros;
+ if (LeadingZeros)
+ Upper = Upper << LeadingZeros | Lower >> Shift;
+ bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
+ return getRoundedFloat(Upper, ShouldRound, Shift);
+}
+
+//===----------------------------------------------------------------------===//
+//
+// BlockMass implementation.
+//
+//===----------------------------------------------------------------------===//
+UnsignedFloat<uint64_t> BlockMass::toFloat() const {
+ if (isFull())
+ return UnsignedFloat<uint64_t>(1, 0);
+ return UnsignedFloat<uint64_t>(getMass() + 1, -64);
+}
+
+void BlockMass::dump() const { print(dbgs()); }
+
+static char getHexDigit(int N) {
+ assert(N < 16);
+ if (N < 10)
+ return '0' + N;
+ return 'a' + N - 10;
+}
+raw_ostream &BlockMass::print(raw_ostream &OS) const {
+ for (int Digits = 0; Digits < 16; ++Digits)
+ OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
+ return OS;
+}
+
+//===----------------------------------------------------------------------===//
+//
+// BlockFrequencyInfoImpl implementation.
+//
+//===----------------------------------------------------------------------===//
+namespace {
+
+typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
+typedef BlockFrequencyInfoImplBase::Distribution Distribution;
+typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
+typedef BlockFrequencyInfoImplBase::Float Float;
+typedef BlockFrequencyInfoImplBase::LoopData LoopData;
+typedef BlockFrequencyInfoImplBase::Weight Weight;
+typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
+
+/// \brief Dithering mass distributer.
+///
+/// This class splits up a single mass into portions by weight, dithering to
+/// spread out error. No mass is lost. The dithering precision depends on the
+/// precision of the product of \a BlockMass and \a BranchProbability.
+///
+/// The distribution algorithm follows.
+///
+/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
+/// mass to distribute in \a RemMass.
+///
+/// 2. For each portion:
+///
+/// 1. Construct a branch probability, P, as the portion's weight divided
+/// by the current value of \a RemWeight.
+/// 2. Calculate the portion's mass as \a RemMass times P.
+/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
+/// the current portion's weight and mass.
+struct DitheringDistributer {
+ uint32_t RemWeight;
+ BlockMass RemMass;
+
+ DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
+
+ BlockMass takeMass(uint32_t Weight);
+};
+}
+
+DitheringDistributer::DitheringDistributer(Distribution &Dist,
+ const BlockMass &Mass) {
+ Dist.normalize();
+ RemWeight = Dist.Total;
+ RemMass = Mass;
+}
+
+BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
+ assert(Weight && "invalid weight");
+ assert(Weight <= RemWeight);
+ BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
+
+ // Decrement totals (dither).
+ RemWeight -= Weight;
+ RemMass -= Mass;
+ return Mass;
+}
+
+void Distribution::add(const BlockNode &Node, uint64_t Amount,
+ Weight::DistType Type) {
+ assert(Amount && "invalid weight of 0");
+ uint64_t NewTotal = Total + Amount;
+
+ // Check for overflow. It should be impossible to overflow twice.
+ bool IsOverflow = NewTotal < Total;
+ assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
+ DidOverflow |= IsOverflow;
+
+ // Update the total.
+ Total = NewTotal;
+
+ // Save the weight.
+ Weight W;
+ W.TargetNode = Node;
+ W.Amount = Amount;
+ W.Type = Type;
+ Weights.push_back(W);
+}
+
+static void combineWeight(Weight &W, const Weight &OtherW) {
+ assert(OtherW.TargetNode.isValid());
+ if (!W.Amount) {
+ W = OtherW;
+ return;
+ }
+ assert(W.Type == OtherW.Type);
+ assert(W.TargetNode == OtherW.TargetNode);
+ assert(W.Amount < W.Amount + OtherW.Amount && "Unexpected overflow");
+ W.Amount += OtherW.Amount;
+}
+static void combineWeightsBySorting(WeightList &Weights) {
+ // Sort so edges to the same node are adjacent.
+ std::sort(Weights.begin(), Weights.end(),
+ [](const Weight &L,
+ const Weight &R) { return L.TargetNode < R.TargetNode; });
+
+ // Combine adjacent edges.
+ WeightList::iterator O = Weights.begin();
+ for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
+ ++O, (I = L)) {
+ *O = *I;
+
+ // Find the adjacent weights to the same node.
+ for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
+ combineWeight(*O, *L);
+ }
+
+ // Erase extra entries.
+ Weights.erase(O, Weights.end());
+ return;
+}
+static void combineWeightsByHashing(WeightList &Weights) {
+ // Collect weights into a DenseMap.
+ typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
+ HashTable Combined(NextPowerOf2(2 * Weights.size()));
+ for (const Weight &W : Weights)
+ combineWeight(Combined[W.TargetNode.Index], W);
+
+ // Check whether anything changed.
+ if (Weights.size() == Combined.size())
+ return;
+
+ // Fill in the new weights.
+ Weights.clear();
+ Weights.reserve(Combined.size());
+ for (const auto &I : Combined)
+ Weights.push_back(I.second);
+}
+static void combineWeights(WeightList &Weights) {
+ // Use a hash table for many successors to keep this linear.
+ if (Weights.size() > 128) {
+ combineWeightsByHashing(Weights);
+ return;
+ }
+
+ combineWeightsBySorting(Weights);
+}
+static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
+ assert(Shift >= 0);
+ assert(Shift < 64);
+ if (!Shift)
+ return N;
+ return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
+}
+void Distribution::normalize() {
+ // Early exit for termination nodes.
+ if (Weights.empty())
+ return;
+
+ // Only bother if there are multiple successors.
+ if (Weights.size() > 1)
+ combineWeights(Weights);
+
+ // Early exit when combined into a single successor.
+ if (Weights.size() == 1) {
+ Total = 1;
+ Weights.front().Amount = 1;
+ return;
+ }
+
+ // Determine how much to shift right so that the total fits into 32-bits.
+ //
+ // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
+ // for each weight can cause a 32-bit overflow.
+ int Shift = 0;
+ if (DidOverflow)
+ Shift = 33;
+ else if (Total > UINT32_MAX)
+ Shift = 33 - countLeadingZeros(Total);
+
+ // Early exit if nothing needs to be scaled.
+ if (!Shift)
+ return;
+
+ // Recompute the total through accumulation (rather than shifting it) so that
+ // it's accurate after shifting.
+ Total = 0;
+
+ // Sum the weights to each node and shift right if necessary.
+ for (Weight &W : Weights) {
+ // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
+ // can round here without concern about overflow.
+ assert(W.TargetNode.isValid());
+ W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
+ assert(W.Amount <= UINT32_MAX);
+
+ // Update the total.
+ Total += W.Amount;
+ }
+ assert(Total <= UINT32_MAX);
+}
+
+void BlockFrequencyInfoImplBase::clear() {
+ // Swap with a default-constructed std::vector, since std::vector<>::clear()
+ // does not actually clear heap storage.
+ std::vector<FrequencyData>().swap(Freqs);
+ std::vector<WorkingData>().swap(Working);
+ Loops.clear();
+}
+
+/// \brief Clear all memory not needed downstream.
+///
+/// Releases all memory not used downstream. In particular, saves Freqs.
+static void cleanup(BlockFrequencyInfoImplBase &BFI) {
+ std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
+ BFI.clear();
+ BFI.Freqs = std::move(SavedFreqs);
+}
+
+bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
+ const LoopData *OuterLoop,
+ const BlockNode &Pred,
+ const BlockNode &Succ,
+ uint64_t Weight) {
+ if (!Weight)
+ Weight = 1;
+
+ auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
+ return OuterLoop && OuterLoop->isHeader(Node);
+ };
+
+ BlockNode Resolved = Working[Succ.Index].getResolvedNode();
+
+#ifndef NDEBUG
+ auto debugSuccessor = [&](const char *Type) {
+ dbgs() << " =>"
+ << " [" << Type << "] weight = " << Weight;
+ if (!isLoopHeader(Resolved))
+ dbgs() << ", succ = " << getBlockName(Succ);
+ if (Resolved != Succ)
+ dbgs() << ", resolved = " << getBlockName(Resolved);
+ dbgs() << "\n";
+ };
+ (void)debugSuccessor;
+#endif
+
+ if (isLoopHeader(Resolved)) {
+ DEBUG(debugSuccessor("backedge"));
+ Dist.addBackedge(OuterLoop->getHeader(), Weight);
+ return true;
+ }
+
+ if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
+ DEBUG(debugSuccessor(" exit "));
+ Dist.addExit(Resolved, Weight);
+ return true;
+ }
+
+ if (Resolved < Pred) {
+ if (!isLoopHeader(Pred)) {
+ // If OuterLoop is an irreducible loop, we can't actually handle this.
+ assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
+ "unhandled irreducible control flow");
+
+ // Irreducible backedge. Abort.
+ DEBUG(debugSuccessor("abort!!!"));
+ return false;
+ }
+
+ // If "Pred" is a loop header, then this isn't really a backedge; rather,
+ // OuterLoop must be irreducible. These false backedges can come only from
+ // secondary loop headers.
+ assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
+ "unhandled irreducible control flow");
+ }
+
+ DEBUG(debugSuccessor(" local "));
+ Dist.addLocal(Resolved, Weight);
+ return true;
+}
+
+bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
+ const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
+ // Copy the exit map into Dist.
+ for (const auto &I : Loop.Exits)
+ if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
+ I.second.getMass()))
+ // Irreducible backedge.
+ return false;
+
+ return true;
+}
+
+/// \brief Get the maximum allowed loop scale.
+///
+/// Gives the maximum number of estimated iterations allowed for a loop. Very
+/// large numbers cause problems downstream (even within 64-bits).
+static Float getMaxLoopScale() { return Float(1, 12); }
+
+/// \brief Compute the loop scale for a loop.
+void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
+ // Compute loop scale.
+ DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
+
+ // LoopScale == 1 / ExitMass
+ // ExitMass == HeadMass - BackedgeMass
+ BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass;
+
+ // Block scale stores the inverse of the scale.
+ Loop.Scale = ExitMass.toFloat().inverse();
+
+ DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
+ << " - " << Loop.BackedgeMass << ")\n"
+ << " - scale = " << Loop.Scale << "\n");
+
+ if (Loop.Scale > getMaxLoopScale()) {
+ Loop.Scale = getMaxLoopScale();
+ DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
+ }
+}
+
+/// \brief Package up a loop.
+void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
+ DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
+
+ // Clear the subloop exits to prevent quadratic memory usage.
+ for (const BlockNode &M : Loop.Nodes) {
+ if (auto *Loop = Working[M.Index].getPackagedLoop())
+ Loop->Exits.clear();
+ DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
+ }
+ Loop.IsPackaged = true;
+}
+
+void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
+ LoopData *OuterLoop,
+ Distribution &Dist) {
+ BlockMass Mass = Working[Source.Index].getMass();
+ DEBUG(dbgs() << " => mass: " << Mass << "\n");
+
+ // Distribute mass to successors as laid out in Dist.
+ DitheringDistributer D(Dist, Mass);
+
+#ifndef NDEBUG
+ auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
+ const char *Desc) {
+ dbgs() << " => assign " << M << " (" << D.RemMass << ")";
+ if (Desc)
+ dbgs() << " [" << Desc << "]";
+ if (T.isValid())
+ dbgs() << " to " << getBlockName(T);
+ dbgs() << "\n";
+ };
+ (void)debugAssign;
+#endif
+
+ for (const Weight &W : Dist.Weights) {
+ // Check for a local edge (non-backedge and non-exit).
+ BlockMass Taken = D.takeMass(W.Amount);
+ if (W.Type == Weight::Local) {
+ Working[W.TargetNode.Index].getMass() += Taken;
+ DEBUG(debugAssign(W.TargetNode, Taken, nullptr));
+ continue;
+ }
+
+ // Backedges and exits only make sense if we're processing a loop.
+ assert(OuterLoop && "backedge or exit outside of loop");
+
+ // Check for a backedge.
+ if (W.Type == Weight::Backedge) {
+ OuterLoop->BackedgeMass += Taken;
+ DEBUG(debugAssign(BlockNode(), Taken, "back"));
+ continue;
+ }
+
+ // This must be an exit.
+ assert(W.Type == Weight::Exit);
+ OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
+ DEBUG(debugAssign(W.TargetNode, Taken, "exit"));
+ }
+}
+
+static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
+ const Float &Min, const Float &Max) {
+ // Scale the Factor to a size that creates integers. Ideally, integers would
+ // be scaled so that Max == UINT64_MAX so that they can be best
+ // differentiated. However, the register allocator currently deals poorly
+ // with large numbers. Instead, push Min up a little from 1 to give some
+ // room to differentiate small, unequal numbers.
+ //
+ // TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
+ Float ScalingFactor = Min.inverse();
+ if ((Max / Min).lg() < 60)
+ ScalingFactor <<= 3;
+
+ // Translate the floats to integers.
+ DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
+ << ", factor = " << ScalingFactor << "\n");
+ for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
+ Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
+ BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
+ DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
+ << BFI.Freqs[Index].Floating << ", scaled = " << Scaled
+ << ", int = " << BFI.Freqs[Index].Integer << "\n");
+ }
+}
+
+/// \brief Unwrap a loop package.
+///
+/// Visits all the members of a loop, adjusting their BlockData according to
+/// the loop's pseudo-node.
+static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
+ DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
+ << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
+ << "\n");
+ Loop.Scale *= Loop.Mass.toFloat();
+ Loop.IsPackaged = false;
+ DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
+
+ // Propagate the head scale through the loop. Since members are visited in
+ // RPO, the head scale will be updated by the loop scale first, and then the
+ // final head scale will be used for updated the rest of the members.
+ for (const BlockNode &N : Loop.Nodes) {
+ const auto &Working = BFI.Working[N.Index];
+ Float &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
+ : BFI.Freqs[N.Index].Floating;
+ Float New = Loop.Scale * F;
+ DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
+ << "\n");
+ F = New;
+ }
+}
+
+void BlockFrequencyInfoImplBase::unwrapLoops() {
+ // Set initial frequencies from loop-local masses.
+ for (size_t Index = 0; Index < Working.size(); ++Index)
+ Freqs[Index].Floating = Working[Index].Mass.toFloat();
+
+ for (LoopData &Loop : Loops)
+ unwrapLoop(*this, Loop);
+}
+
+void BlockFrequencyInfoImplBase::finalizeMetrics() {
+ // Unwrap loop packages in reverse post-order, tracking min and max
+ // frequencies.
+ auto Min = Float::getLargest();
+ auto Max = Float::getZero();
+ for (size_t Index = 0; Index < Working.size(); ++Index) {
+ // Update min/max scale.
+ Min = std::min(Min, Freqs[Index].Floating);
+ Max = std::max(Max, Freqs[Index].Floating);
+ }
+
+ // Convert to integers.
+ convertFloatingToInteger(*this, Min, Max);
+
+ // Clean up data structures.
+ cleanup(*this);
+
+ // Print out the final stats.
+ DEBUG(dump());
+}
+
+BlockFrequency
+BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
+ if (!Node.isValid())
+ return 0;
+ return Freqs[Node.Index].Integer;
+}
+Float
+BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
+ if (!Node.isValid())
+ return Float::getZero();
+ return Freqs[Node.Index].Floating;
+}
+
+std::string
+BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
+ return std::string();
+}
+std::string
+BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
+ return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
+}
+
+raw_ostream &
+BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
+ const BlockNode &Node) const {
+ return OS << getFloatingBlockFreq(Node);
+}
+
+raw_ostream &
+BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
+ const BlockFrequency &Freq) const {
+ Float Block(Freq.getFrequency(), 0);
+ Float Entry(getEntryFreq(), 0);
+
+ return OS << Block / Entry;
+}
+
+void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
+ Start = OuterLoop.getHeader();
+ Nodes.reserve(OuterLoop.Nodes.size());
+ for (auto N : OuterLoop.Nodes)
+ addNode(N);
+ indexNodes();
+}
+void IrreducibleGraph::addNodesInFunction() {
+ Start = 0;
+ for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
+ if (!BFI.Working[Index].isPackaged())
+ addNode(Index);
+ indexNodes();
+}
+void IrreducibleGraph::indexNodes() {
+ for (auto &I : Nodes)
+ Lookup[I.Node.Index] = &I;
+}
+void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
+ const BFIBase::LoopData *OuterLoop) {
+ if (OuterLoop && OuterLoop->isHeader(Succ))
+ return;
+ auto L = Lookup.find(Succ.Index);
+ if (L == Lookup.end())
+ return;
+ IrrNode &SuccIrr = *L->second;
+ Irr.Edges.push_back(&SuccIrr);
+ SuccIrr.Edges.push_front(&Irr);
+ ++SuccIrr.NumIn;
+}
+
+namespace llvm {
+template <> struct GraphTraits<IrreducibleGraph> {
+ typedef bfi_detail::IrreducibleGraph GraphT;
+
+ typedef const GraphT::IrrNode NodeType;
+ typedef GraphT::IrrNode::iterator ChildIteratorType;
+
+ static const NodeType *getEntryNode(const GraphT &G) {
+ return G.StartIrr;
+ }
+ static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
+ static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
+};
+}
+
+/// \brief Find extra irreducible headers.
+///
+/// Find entry blocks and other blocks with backedges, which exist when \c G
+/// contains irreducible sub-SCCs.
+static void findIrreducibleHeaders(
+ const BlockFrequencyInfoImplBase &BFI,
+ const IrreducibleGraph &G,
+ const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
+ LoopData::NodeList &Headers, LoopData::NodeList &Others) {
+ // Map from nodes in the SCC to whether it's an entry block.
+ SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
+
+ // InSCC also acts the set of nodes in the graph. Seed it.
+ for (const auto *I : SCC)
+ InSCC[I] = false;
+
+ for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
+ auto &Irr = *I->first;
+ for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
+ if (InSCC.count(P))
+ continue;
+
+ // This is an entry block.
+ I->second = true;
+ Headers.push_back(Irr.Node);
+ DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) << "\n");
+ break;
+ }
+ }
+ assert(Headers.size() >= 2 && "Should be irreducible");
+ if (Headers.size() == InSCC.size()) {
+ // Every block is a header.
+ std::sort(Headers.begin(), Headers.end());
+ return;
+ }
+
+ // Look for extra headers from irreducible sub-SCCs.
+ for (const auto &I : InSCC) {
+ // Entry blocks are already headers.
+ if (I.second)
+ continue;
+
+ auto &Irr = *I.first;
+ for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
+ // Skip forward edges.
+ if (P->Node < Irr.Node)
+ continue;
+
+ // Skip predecessors from entry blocks. These can have inverted
+ // ordering.
+ if (InSCC.lookup(P))
+ continue;
+
+ // Store the extra header.
+ Headers.push_back(Irr.Node);
+ DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) << "\n");
+ break;
+ }
+ if (Headers.back() == Irr.Node)
+ // Added this as a header.
+ continue;
+
+ // This is not a header.
+ Others.push_back(Irr.Node);
+ DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
+ }
+ std::sort(Headers.begin(), Headers.end());
+ std::sort(Others.begin(), Others.end());
+}
+
+static void createIrreducibleLoop(
+ BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
+ LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
+ const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
+ // Translate the SCC into RPO.
+ DEBUG(dbgs() << " - found-scc\n");
+
+ LoopData::NodeList Headers;
+ LoopData::NodeList Others;
+ findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
+
+ auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
+ Headers.end(), Others.begin(), Others.end());
+
+ // Update loop hierarchy.
+ for (const auto &N : Loop->Nodes)
+ if (BFI.Working[N.Index].isLoopHeader())
+ BFI.Working[N.Index].Loop->Parent = &*Loop;
+ else
+ BFI.Working[N.Index].Loop = &*Loop;
+}
+
+iterator_range<std::list<LoopData>::iterator>
+BlockFrequencyInfoImplBase::analyzeIrreducible(
+ const IrreducibleGraph &G, LoopData *OuterLoop,
+ std::list<LoopData>::iterator Insert) {
+ assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
+ auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
+
+ for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
+ if (I->size() < 2)
+ continue;
+
+ // Translate the SCC into RPO.
+ createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
+ }
+
+ if (OuterLoop)
+ return make_range(std::next(Prev), Insert);
+ return make_range(Loops.begin(), Insert);
+}
+
+void
+BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
+ OuterLoop.Exits.clear();
+ OuterLoop.BackedgeMass = BlockMass::getEmpty();
+ auto O = OuterLoop.Nodes.begin() + 1;
+ for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
+ if (!Working[I->Index].isPackaged())
+ *O++ = *I;
+ OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
+}
diff --git a/lib/Analysis/BranchProbabilityInfo.cpp b/lib/Analysis/BranchProbabilityInfo.cpp
index b901c54..bbd8750 100644
--- a/lib/Analysis/BranchProbabilityInfo.cpp
+++ b/lib/Analysis/BranchProbabilityInfo.cpp
@@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "branch-prob"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/LoopInfo.h"
@@ -25,6 +24,8 @@
using namespace llvm;
+#define DEBUG_TYPE "branch-prob"
+
INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
"Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
@@ -322,6 +323,9 @@ bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
InEdges.push_back(I.getSuccessorIndex());
}
+ if (BackEdges.empty() && ExitingEdges.empty())
+ return false;
+
if (uint32_t numBackEdges = BackEdges.size()) {
uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
if (backWeight < NORMAL_WEIGHT)
@@ -557,7 +561,7 @@ isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
uint32_t Sum = 0;
uint32_t MaxWeight = 0;
- BasicBlock *MaxSucc = 0;
+ BasicBlock *MaxSucc = nullptr;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
@@ -577,7 +581,7 @@ BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5))
return MaxSucc;
- return 0;
+ return nullptr;
}
/// Get the raw edge weight for the edge. If can't find it, return
@@ -594,11 +598,9 @@ getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
return DEFAULT_WEIGHT;
}
-uint32_t
-BranchProbabilityInfo::
-getEdgeWeight(const BasicBlock *Src, succ_const_iterator Dst) const {
- size_t index = std::distance(succ_begin(Src), Dst);
- return getEdgeWeight(Src, index);
+uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src,
+ succ_const_iterator Dst) const {
+ return getEdgeWeight(Src, Dst.getSuccessorIndex());
}
/// Get the raw edge weight calculated for the block pair. This returns the sum
diff --git a/lib/Analysis/CFG.cpp b/lib/Analysis/CFG.cpp
index 6963760..8ef5302 100644
--- a/lib/Analysis/CFG.cpp
+++ b/lib/Analysis/CFG.cpp
@@ -123,7 +123,7 @@ static bool loopContainsBoth(const LoopInfo *LI,
const BasicBlock *BB1, const BasicBlock *BB2) {
const Loop *L1 = getOutermostLoop(LI, BB1);
const Loop *L2 = getOutermostLoop(LI, BB2);
- return L1 != NULL && L1 == L2;
+ return L1 != nullptr && L1 == L2;
}
static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
@@ -133,7 +133,7 @@ static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
// When the stop block is unreachable, it's dominated from everywhere,
// regardless of whether there's a path between the two blocks.
if (DT && !DT->isReachableFromEntry(StopBB))
- DT = 0;
+ DT = nullptr;
// Limit the number of blocks we visit. The goal is to avoid run-away compile
// times on large CFGs without hampering sensible code. Arbitrarily chosen.
@@ -156,7 +156,7 @@ static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
return true;
}
- if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) {
+ if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
// All blocks in a single loop are reachable from all other blocks. From
// any of these blocks, we can skip directly to the exits of the loop,
// ignoring any other blocks inside the loop body.
@@ -200,7 +200,7 @@ bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
// If the block is in a loop then we can reach any instruction in the block
// from any other instruction in the block by going around a backedge.
- if (LI && LI->getLoopFor(BB) != 0)
+ if (LI && LI->getLoopFor(BB) != nullptr)
return true;
// Linear scan, start at 'A', see whether we hit 'B' or the end first.
diff --git a/lib/Analysis/CFGPrinter.cpp b/lib/Analysis/CFGPrinter.cpp
index 537d6d1..c2c19d6 100644
--- a/lib/Analysis/CFGPrinter.cpp
+++ b/lib/Analysis/CFGPrinter.cpp
@@ -19,6 +19,7 @@
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Pass.h"
+#include "llvm/Support/FileSystem.h"
using namespace llvm;
namespace {
@@ -33,7 +34,7 @@ namespace {
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const override {}
+ void print(raw_ostream &OS, const Module* = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
@@ -56,7 +57,7 @@ namespace {
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const override {}
+ void print(raw_ostream &OS, const Module* = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
@@ -90,7 +91,7 @@ namespace {
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const override {}
+ void print(raw_ostream &OS, const Module* = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
@@ -123,7 +124,7 @@ namespace {
errs() << "\n";
return false;
}
- void print(raw_ostream &OS, const Module* = 0) const override {}
+ void print(raw_ostream &OS, const Module* = nullptr) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
@@ -147,8 +148,8 @@ void Function::viewCFG() const {
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
-/// into the nodes, just the label. If you are only interested in the CFG t
-/// his can make the graph smaller.
+/// into the nodes, just the label. If you are only interested in the CFG
+/// this can make the graph smaller.
///
void Function::viewCFGOnly() const {
ViewGraph(this, "cfg" + getName(), true);
diff --git a/lib/Analysis/CGSCCPassManager.cpp b/lib/Analysis/CGSCCPassManager.cpp
new file mode 100644
index 0000000..5d1d8a9
--- /dev/null
+++ b/lib/Analysis/CGSCCPassManager.cpp
@@ -0,0 +1,167 @@
+//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/CGSCCPassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+DebugPM("debug-cgscc-pass-manager", cl::Hidden,
+ cl::desc("Print CGSCC pass management debugging information"));
+
+PreservedAnalyses CGSCCPassManager::run(LazyCallGraph::SCC *C,
+ CGSCCAnalysisManager *AM) {
+ PreservedAnalyses PA = PreservedAnalyses::all();
+
+ if (DebugPM)
+ dbgs() << "Starting CGSCC pass manager run.\n";
+
+ for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
+ if (DebugPM)
+ dbgs() << "Running CGSCC pass: " << Passes[Idx]->name() << "\n";
+
+ PreservedAnalyses PassPA = Passes[Idx]->run(C, AM);
+ if (AM)
+ AM->invalidate(C, PassPA);
+ PA.intersect(std::move(PassPA));
+ }
+
+ if (DebugPM)
+ dbgs() << "Finished CGSCC pass manager run.\n";
+
+ return PA;
+}
+
+bool CGSCCAnalysisManager::empty() const {
+ assert(CGSCCAnalysisResults.empty() == CGSCCAnalysisResultLists.empty() &&
+ "The storage and index of analysis results disagree on how many there "
+ "are!");
+ return CGSCCAnalysisResults.empty();
+}
+
+void CGSCCAnalysisManager::clear() {
+ CGSCCAnalysisResults.clear();
+ CGSCCAnalysisResultLists.clear();
+}
+
+CGSCCAnalysisManager::ResultConceptT &
+CGSCCAnalysisManager::getResultImpl(void *PassID, LazyCallGraph::SCC *C) {
+ CGSCCAnalysisResultMapT::iterator RI;
+ bool Inserted;
+ std::tie(RI, Inserted) = CGSCCAnalysisResults.insert(std::make_pair(
+ std::make_pair(PassID, C), CGSCCAnalysisResultListT::iterator()));
+
+ // If we don't have a cached result for this function, look up the pass and
+ // run it to produce a result, which we then add to the cache.
+ if (Inserted) {
+ CGSCCAnalysisResultListT &ResultList = CGSCCAnalysisResultLists[C];
+ ResultList.emplace_back(PassID, lookupPass(PassID).run(C, this));
+ RI->second = std::prev(ResultList.end());
+ }
+
+ return *RI->second->second;
+}
+
+CGSCCAnalysisManager::ResultConceptT *
+CGSCCAnalysisManager::getCachedResultImpl(void *PassID,
+ LazyCallGraph::SCC *C) const {
+ CGSCCAnalysisResultMapT::const_iterator RI =
+ CGSCCAnalysisResults.find(std::make_pair(PassID, C));
+ return RI == CGSCCAnalysisResults.end() ? nullptr : &*RI->second->second;
+}
+
+void CGSCCAnalysisManager::invalidateImpl(void *PassID, LazyCallGraph::SCC *C) {
+ CGSCCAnalysisResultMapT::iterator RI =
+ CGSCCAnalysisResults.find(std::make_pair(PassID, C));
+ if (RI == CGSCCAnalysisResults.end())
+ return;
+
+ CGSCCAnalysisResultLists[C].erase(RI->second);
+}
+
+void CGSCCAnalysisManager::invalidateImpl(LazyCallGraph::SCC *C,
+ const PreservedAnalyses &PA) {
+ // Clear all the invalidated results associated specifically with this
+ // function.
+ SmallVector<void *, 8> InvalidatedPassIDs;
+ CGSCCAnalysisResultListT &ResultsList = CGSCCAnalysisResultLists[C];
+ for (CGSCCAnalysisResultListT::iterator I = ResultsList.begin(),
+ E = ResultsList.end();
+ I != E;)
+ if (I->second->invalidate(C, PA)) {
+ InvalidatedPassIDs.push_back(I->first);
+ I = ResultsList.erase(I);
+ } else {
+ ++I;
+ }
+ while (!InvalidatedPassIDs.empty())
+ CGSCCAnalysisResults.erase(
+ std::make_pair(InvalidatedPassIDs.pop_back_val(), C));
+ CGSCCAnalysisResultLists.erase(C);
+}
+
+char CGSCCAnalysisManagerModuleProxy::PassID;
+
+CGSCCAnalysisManagerModuleProxy::Result
+CGSCCAnalysisManagerModuleProxy::run(Module *M) {
+ assert(CGAM->empty() && "CGSCC analyses ran prior to the module proxy!");
+ return Result(*CGAM);
+}
+
+CGSCCAnalysisManagerModuleProxy::Result::~Result() {
+ // Clear out the analysis manager if we're being destroyed -- it means we
+ // didn't even see an invalidate call when we got invalidated.
+ CGAM->clear();
+}
+
+bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
+ Module *M, const PreservedAnalyses &PA) {
+ // If this proxy isn't marked as preserved, then we can't even invalidate
+ // individual CGSCC analyses, there may be an invalid set of SCC objects in
+ // the cache making it impossible to incrementally preserve them.
+ // Just clear the entire manager.
+ if (!PA.preserved(ID()))
+ CGAM->clear();
+
+ // Return false to indicate that this result is still a valid proxy.
+ return false;
+}
+
+char ModuleAnalysisManagerCGSCCProxy::PassID;
+
+char FunctionAnalysisManagerCGSCCProxy::PassID;
+
+FunctionAnalysisManagerCGSCCProxy::Result
+FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC *C) {
+ assert(FAM->empty() && "Function analyses ran prior to the CGSCC proxy!");
+ return Result(*FAM);
+}
+
+FunctionAnalysisManagerCGSCCProxy::Result::~Result() {
+ // Clear out the analysis manager if we're being destroyed -- it means we
+ // didn't even see an invalidate call when we got invalidated.
+ FAM->clear();
+}
+
+bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
+ LazyCallGraph::SCC *C, const PreservedAnalyses &PA) {
+ // If this proxy isn't marked as preserved, then we can't even invalidate
+ // individual function analyses, there may be an invalid set of Function
+ // objects in the cache making it impossible to incrementally preserve them.
+ // Just clear the entire manager.
+ if (!PA.preserved(ID()))
+ FAM->clear();
+
+ // Return false to indicate that this result is still a valid proxy.
+ return false;
+}
+
+char CGSCCAnalysisManagerFunctionProxy::PassID;
diff --git a/lib/Analysis/CMakeLists.txt b/lib/Analysis/CMakeLists.txt
index c6d4573..b546789 100644
--- a/lib/Analysis/CMakeLists.txt
+++ b/lib/Analysis/CMakeLists.txt
@@ -7,9 +7,11 @@ add_llvm_library(LLVMAnalysis
Analysis.cpp
BasicAliasAnalysis.cpp
BlockFrequencyInfo.cpp
+ BlockFrequencyInfoImpl.cpp
BranchProbabilityInfo.cpp
CFG.cpp
CFGPrinter.cpp
+ CGSCCPassManager.cpp
CaptureTracking.cpp
CostModel.cpp
CodeMetrics.cpp
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 782acfa..0ac1cb5 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -56,7 +56,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
// Handle a vector->integer cast.
if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
VectorType *VTy = dyn_cast<VectorType>(C->getType());
- if (VTy == 0)
+ if (!VTy)
return ConstantExpr::getBitCast(C, DestTy);
unsigned NumSrcElts = VTy->getNumElements();
@@ -73,7 +73,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
}
ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
- if (CDV == 0)
+ if (!CDV)
return ConstantExpr::getBitCast(C, DestTy);
// Now that we know that the input value is a vector of integers, just shift
@@ -93,7 +93,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
// The code below only handles casts to vectors currently.
VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
- if (DestVTy == 0)
+ if (!DestVTy)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
@@ -411,32 +411,32 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
TD.getTypeAllocSizeInBits(LoadTy),
AS);
} else
- return 0;
+ return nullptr;
C = FoldBitCast(C, MapTy, TD);
if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
return FoldBitCast(Res, LoadTy, TD);
- return 0;
+ return nullptr;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0)
- return 0;
+ return nullptr;
GlobalValue *GVal;
APInt Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
- return 0;
+ return nullptr;
GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
- return 0;
+ return nullptr;
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
if (Offset.isNegative())
- return 0;
+ return nullptr;
// If we're not accessing anything in this constant, the result is undefined.
if (Offset.getZExtValue() >=
@@ -446,7 +446,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
unsigned char RawBytes[32] = {0};
if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
BytesLoaded, TD))
- return 0;
+ return nullptr;
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
if (TD.isLittleEndian()) {
@@ -466,6 +466,52 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
return ConstantInt::get(IntType->getContext(), ResultVal);
}
+static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
+ const DataLayout *DL) {
+ if (!DL)
+ return nullptr;
+ auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
+ if (!DestPtrTy)
+ return nullptr;
+ Type *DestTy = DestPtrTy->getElementType();
+
+ Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
+ if (!C)
+ return nullptr;
+
+ do {
+ Type *SrcTy = C->getType();
+
+ // If the type sizes are the same and a cast is legal, just directly
+ // cast the constant.
+ if (DL->getTypeSizeInBits(DestTy) == DL->getTypeSizeInBits(SrcTy)) {
+ Instruction::CastOps Cast = Instruction::BitCast;
+ // If we are going from a pointer to int or vice versa, we spell the cast
+ // differently.
+ if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
+ Cast = Instruction::IntToPtr;
+ else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
+ Cast = Instruction::PtrToInt;
+
+ if (CastInst::castIsValid(Cast, C, DestTy))
+ return ConstantExpr::getCast(Cast, C, DestTy);
+ }
+
+ // If this isn't an aggregate type, there is nothing we can do to drill down
+ // and find a bitcastable constant.
+ if (!SrcTy->isAggregateType())
+ return nullptr;
+
+ // We're simulating a load through a pointer that was bitcast to point to
+ // a different type, so we can try to walk down through the initial
+ // elements of an aggregate to see if some part of th e aggregate is
+ // castable to implement the "load" semantic model.
+ C = C->getAggregateElement(0u);
+ } while (C);
+
+ return nullptr;
+}
+
/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
/// produce if it is constant and determinable. If this is not determinable,
/// return null.
@@ -479,7 +525,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE)
- return 0;
+ return nullptr;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
@@ -491,6 +537,10 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
}
}
+ if (CE->getOpcode() == Instruction::BitCast)
+ if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, TD))
+ return LoadedC;
+
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
StringRef Str;
@@ -542,16 +592,16 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// Try hard to fold loads from bitcasted strange and non-type-safe things.
if (TD)
return FoldReinterpretLoadFromConstPtr(CE, *TD);
- return 0;
+ return nullptr;
}
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
- if (LI->isVolatile()) return 0;
+ if (LI->isVolatile()) return nullptr;
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, TD);
- return 0;
+ return nullptr;
}
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
@@ -571,8 +621,8 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
unsigned BitWidth = DL->getTypeSizeInBits(Op0->getType()->getScalarType());
APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
- ComputeMaskedBits(Op0, KnownZero0, KnownOne0, DL);
- ComputeMaskedBits(Op1, KnownZero1, KnownOne1, DL);
+ computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
+ computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
// All the bits of Op0 that the 'and' could be masking are already zero.
return Op0;
@@ -608,7 +658,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
}
}
- return 0;
+ return nullptr;
}
/// CastGEPIndices - If array indices are not pointer-sized integers,
@@ -618,7 +668,7 @@ static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TD)
- return 0;
+ return nullptr;
Type *IntPtrTy = TD->getIntPtrType(ResultTy);
@@ -641,7 +691,7 @@ static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
}
if (!Any)
- return 0;
+ return nullptr;
Constant *C = ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
@@ -676,7 +726,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
Constant *Ptr = Ops[0];
if (!TD || !Ptr->getType()->getPointerElementType()->isSized() ||
!Ptr->getType()->isPointerTy())
- return 0;
+ return nullptr;
Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
Type *ResultElementTy = ResultTy->getPointerElementType();
@@ -690,7 +740,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
- assert((CE == 0 || CE->getType() == IntPtrTy) &&
+ assert((!CE || CE->getType() == IntPtrTy) &&
"CastGEPIndices didn't canonicalize index types!");
if (CE && CE->getOpcode() == Instruction::Sub &&
CE->getOperand(0)->isNullValue()) {
@@ -702,7 +752,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
return Res;
}
}
- return 0;
+ return nullptr;
}
unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
@@ -765,7 +815,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Only handle pointers to sized types, not pointers to functions.
if (!ATy->getElementType()->isSized())
- return 0;
+ return nullptr;
}
// Determine which element of the array the offset points into.
@@ -810,7 +860,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// type, then the offset is pointing into the middle of an indivisible
// member, so we can't simplify it.
if (Offset != 0)
- return 0;
+ return nullptr;
// Create a GEP.
Constant *C = ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
@@ -841,7 +891,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (PHINode *PN = dyn_cast<PHINode>(I)) {
- Constant *CommonValue = 0;
+ Constant *CommonValue = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PN->getIncomingValue(i);
@@ -854,14 +904,14 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
// If the incoming value is not a constant, then give up.
Constant *C = dyn_cast<Constant>(Incoming);
if (!C)
- return 0;
+ return nullptr;
// Fold the PHI's operands.
if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
C = ConstantFoldConstantExpression(NewC, TD, TLI);
// If the incoming value is a different constant to
// the one we saw previously, then give up.
if (CommonValue && C != CommonValue)
- return 0;
+ return nullptr;
CommonValue = C;
}
@@ -876,7 +926,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
Constant *Op = dyn_cast<Constant>(*i);
if (!Op)
- return 0; // All operands not constant!
+ return nullptr; // All operands not constant!
// Fold the Instruction's operands.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
@@ -966,14 +1016,14 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
}
switch (Opcode) {
- default: return 0;
+ default: return nullptr;
case Instruction::ICmp:
case Instruction::FCmp: llvm_unreachable("Invalid for compares");
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops.back()))
if (canConstantFoldCallTo(F))
return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
- return 0;
+ return nullptr;
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
@@ -1142,14 +1192,14 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (!CE->getOperand(1)->isNullValue())
- return 0; // Do not allow stepping over the value!
+ return nullptr; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing.
for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
C = C->getAggregateElement(CE->getOperand(i));
- if (C == 0)
- return 0;
+ if (!C)
+ return nullptr;
}
return C;
}
@@ -1164,8 +1214,8 @@ Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
// addressing.
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
C = C->getAggregateElement(Indices[i]);
- if (C == 0)
- return 0;
+ if (!C)
+ return nullptr;
}
return C;
}
@@ -1270,7 +1320,7 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
V = NativeFP(V);
if (sys::llvm_fenv_testexcept()) {
sys::llvm_fenv_clearexcept();
- return 0;
+ return nullptr;
}
return GetConstantFoldFPValue(V, Ty);
@@ -1282,7 +1332,7 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
V = NativeFP(V, W);
if (sys::llvm_fenv_testexcept()) {
sys::llvm_fenv_clearexcept();
- return 0;
+ return nullptr;
}
return GetConstantFoldFPValue(V, Ty);
@@ -1311,7 +1361,7 @@ static Constant *ConstantFoldConvertToInt(const APFloat &Val,
/*isSigned=*/true, mode,
&isExact);
if (status != APFloat::opOK && status != APFloat::opInexact)
- return 0;
+ return nullptr;
return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
}
@@ -1345,7 +1395,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return 0;
+ return nullptr;
if (IntrinsicID == Intrinsic::round) {
APFloat V = Op->getValueAPF();
@@ -1357,7 +1407,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
- return 0;
+ return nullptr;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
@@ -1396,7 +1446,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
}
if (!TLI)
- return 0;
+ return nullptr;
switch (Name[0]) {
case 'a':
@@ -1467,7 +1517,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
default:
break;
}
- return 0;
+ return nullptr;
}
if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
@@ -1491,7 +1541,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
return ConstantFP::get(Ty->getContext(), Val);
}
default:
- return 0;
+ return nullptr;
}
}
@@ -1523,21 +1573,21 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
if (isa<UndefValue>(Operands[0])) {
if (IntrinsicID == Intrinsic::bswap)
return Operands[0];
- return 0;
+ return nullptr;
}
- return 0;
+ return nullptr;
}
if (Operands.size() == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return 0;
+ return nullptr;
double Op1V = getValueAsDouble(Op1);
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
- return 0;
+ return nullptr;
double Op2V = getValueAsDouble(Op2);
if (IntrinsicID == Intrinsic::pow) {
@@ -1550,7 +1600,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
return ConstantFP::get(Ty->getContext(), V1);
}
if (!TLI)
- return 0;
+ return nullptr;
if (Name == "pow" && TLI->has(LibFunc::pow))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
if (Name == "fmod" && TLI->has(LibFunc::fmod))
@@ -1571,7 +1621,7 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
- return 0;
+ return nullptr;
}
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
@@ -1624,13 +1674,13 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
}
}
- return 0;
+ return nullptr;
}
- return 0;
+ return nullptr;
}
if (Operands.size() != 3)
- return 0;
+ return nullptr;
if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
@@ -1646,14 +1696,14 @@ static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
if (s != APFloat::opInvalidOp)
return ConstantFP::get(Ty->getContext(), V);
- return 0;
+ return nullptr;
}
}
}
}
}
- return 0;
+ return nullptr;
}
static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
@@ -1690,7 +1740,7 @@ Constant *
llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (!F->hasName())
- return 0;
+ return nullptr;
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
diff --git a/lib/Analysis/CostModel.cpp b/lib/Analysis/CostModel.cpp
index b49211d..780b1aa 100644
--- a/lib/Analysis/CostModel.cpp
+++ b/lib/Analysis/CostModel.cpp
@@ -17,8 +17,6 @@
//
//===----------------------------------------------------------------------===//
-#define CM_NAME "cost-model"
-#define DEBUG_TYPE CM_NAME
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
@@ -32,6 +30,9 @@
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+#define CM_NAME "cost-model"
+#define DEBUG_TYPE CM_NAME
+
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
cl::Hidden,
cl::desc("Recognize reduction patterns."));
@@ -41,7 +42,7 @@ namespace {
public:
static char ID; // Class identification, replacement for typeinfo
- CostModelAnalysis() : FunctionPass(ID), F(0), TTI(0) {
+ CostModelAnalysis() : FunctionPass(ID), F(nullptr), TTI(nullptr) {
initializeCostModelAnalysisPass(
*PassRegistry::getPassRegistry());
}
@@ -101,24 +102,13 @@ static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
// Check for a splat of a constant or for a non uniform vector of constants.
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
- if (cast<Constant>(V)->getSplatValue() != NULL)
+ if (cast<Constant>(V)->getSplatValue() != nullptr)
OpInfo = TargetTransformInfo::OK_UniformConstantValue;
}
return OpInfo;
}
-static bool matchMask(SmallVectorImpl<int> &M1, SmallVectorImpl<int> &M2) {
- if (M1.size() != M2.size())
- return false;
-
- for (unsigned i = 0, e = M1.size(); i != e; ++i)
- if (M1[i] != M2[i])
- return false;
-
- return true;
-}
-
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
unsigned Level) {
// We don't need a shuffle if we just want to have element 0 in position 0 of
@@ -136,7 +126,7 @@ static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
Mask[i] = val;
SmallVector<int, 16> ActualMask = SI->getShuffleMask();
- if (!matchMask(Mask, ActualMask))
+ if (Mask != ActualMask)
return false;
return true;
@@ -150,7 +140,7 @@ static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
- if (BinOp == 0)
+ if (BinOp == nullptr)
return false;
assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
@@ -171,9 +161,9 @@ static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
return false;
// Shuffle inputs must match.
- Value *NextLevelOpL = LS ? LS->getOperand(0) : 0;
- Value *NextLevelOpR = RS ? RS->getOperand(0) : 0;
- Value *NextLevelOp = 0;
+ Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
+ Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
+ Value *NextLevelOp = nullptr;
if (NextLevelOpR && NextLevelOpL) {
// If we have two shuffles their operands must match.
if (NextLevelOpL != NextLevelOpR)
@@ -198,7 +188,7 @@ static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
// Check that the next levels binary operation exists and matches with the
// current one.
- BinaryOperator *NextLevelBinOp = 0;
+ BinaryOperator *NextLevelBinOp = nullptr;
if (Level + 1 != NumLevels) {
if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
return false;
@@ -277,7 +267,7 @@ getShuffleAndOtherOprd(BinaryOperator *B) {
Value *L = B->getOperand(0);
Value *R = B->getOperand(1);
- ShuffleVectorInst *S = 0;
+ ShuffleVectorInst *S = nullptr;
if ((S = dyn_cast<ShuffleVectorInst>(L)))
return std::make_pair(R, S);
@@ -337,7 +327,7 @@ static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
// Check the current reduction operation and the shuffle use the same value.
- if (Shuffle == 0)
+ if (Shuffle == nullptr)
return false;
if (Shuffle->getOperand(0) != NextRdxOp)
return false;
@@ -349,7 +339,7 @@ static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
- if (!matchMask(ShuffleMask, Mask))
+ if (ShuffleMask != Mask)
return false;
RdxOp = NextRdxOp;
@@ -478,7 +468,7 @@ unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
if (NumVecElems == Mask.size() && isReverseVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0, 0,
- 0);
+ nullptr);
return -1;
}
case Instruction::Call:
diff --git a/lib/Analysis/Delinearization.cpp b/lib/Analysis/Delinearization.cpp
index fd4a2f0..9334ceb 100644
--- a/lib/Analysis/Delinearization.cpp
+++ b/lib/Analysis/Delinearization.cpp
@@ -14,8 +14,6 @@
//
//===----------------------------------------------------------------------===//
-#define DL_NAME "delinearize"
-#define DEBUG_TYPE DL_NAME
#include "llvm/IR/Constants.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
@@ -34,6 +32,9 @@
using namespace llvm;
+#define DL_NAME "delinearize"
+#define DEBUG_TYPE DL_NAME
+
namespace {
class Delinearization : public FunctionPass {
@@ -51,7 +52,7 @@ public:
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
- void print(raw_ostream &O, const Module *M = 0) const override;
+ void print(raw_ostream &O, const Module *M = nullptr) const override;
};
} // end anonymous namespace
@@ -76,7 +77,7 @@ static Value *getPointerOperand(Instruction &Inst) {
return Store->getPointerOperand();
else if (GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(&Inst))
return Gep->getPointerOperand();
- return NULL;
+ return nullptr;
}
void Delinearization::print(raw_ostream &O, const Module *) const {
@@ -92,25 +93,38 @@ void Delinearization::print(raw_ostream &O, const Module *) const {
const BasicBlock *BB = Inst->getParent();
// Delinearize the memory access as analyzed in all the surrounding loops.
// Do not analyze memory accesses outside loops.
- for (Loop *L = LI->getLoopFor(BB); L != NULL; L = L->getParentLoop()) {
+ for (Loop *L = LI->getLoopFor(BB); L != nullptr; L = L->getParentLoop()) {
const SCEV *AccessFn = SE->getSCEVAtScope(getPointerOperand(*Inst), L);
+
+ const SCEVUnknown *BasePointer =
+ dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFn));
+ // Do not delinearize if we cannot find the base pointer.
+ if (!BasePointer)
+ break;
+ AccessFn = SE->getMinusSCEV(AccessFn, BasePointer);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(AccessFn);
// Do not try to delinearize memory accesses that are not AddRecs.
if (!AR)
break;
+
+ O << "\n";
+ O << "Inst:" << *Inst << "\n";
+ O << "In Loop with Header: " << L->getHeader()->getName() << "\n";
O << "AddRec: " << *AR << "\n";
SmallVector<const SCEV *, 3> Subscripts, Sizes;
- const SCEV *Res = AR->delinearize(*SE, Subscripts, Sizes);
- int Size = Subscripts.size();
- if (Res == AR || Size == 0) {
+ AR->delinearize(*SE, Subscripts, Sizes, SE->getElementSize(Inst));
+ if (Subscripts.size() == 0 || Sizes.size() == 0 ||
+ Subscripts.size() != Sizes.size()) {
O << "failed to delinearize\n";
continue;
}
- O << "Base offset: " << *Res << "\n";
+
+ O << "Base offset: " << *BasePointer << "\n";
O << "ArrayDecl[UnknownSize]";
+ int Size = Subscripts.size();
for (int i = 0; i < Size - 1; i++)
O << "[" << *Sizes[i] << "]";
O << " with elements of " << *Sizes[Size - 1] << " bytes.\n";
diff --git a/lib/Analysis/DependenceAnalysis.cpp b/lib/Analysis/DependenceAnalysis.cpp
index ff98611..d0784f1 100644
--- a/lib/Analysis/DependenceAnalysis.cpp
+++ b/lib/Analysis/DependenceAnalysis.cpp
@@ -51,8 +51,6 @@
// //
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "da"
-
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
@@ -69,6 +67,8 @@
using namespace llvm;
+#define DEBUG_TYPE "da"
+
//===----------------------------------------------------------------------===//
// statistics
@@ -234,7 +234,7 @@ FullDependence::FullDependence(Instruction *Source,
Levels(CommonLevels),
LoopIndependent(PossiblyLoopIndependent) {
Consistent = true;
- DV = CommonLevels ? new DVEntry[CommonLevels] : NULL;
+ DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
}
// The rest are simple getters that hide the implementation.
@@ -658,7 +658,7 @@ Value *getPointerOperand(Instruction *I) {
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
llvm_unreachable("Value is not load or store instruction");
- return 0;
+ return nullptr;
}
@@ -932,7 +932,7 @@ const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
const SCEV *UB = SE->getBackedgeTakenCount(L);
return SE->getNoopOrZeroExtend(UB, T);
}
- return NULL;
+ return nullptr;
}
@@ -943,7 +943,7 @@ const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
) const {
if (const SCEV *UB = collectUpperBound(L, T))
return dyn_cast<SCEVConstant>(UB);
- return NULL;
+ return nullptr;
}
@@ -2194,7 +2194,7 @@ const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
return Constant;
}
- return NULL;
+ return nullptr;
}
@@ -2646,8 +2646,8 @@ void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
Bound[K].Lower[Dependence::DVEntry::ALL] =
SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
@@ -2687,8 +2687,8 @@ void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
const SCEV *NegativePart = getNegativePart(Delta);
@@ -2729,8 +2729,8 @@ void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
const SCEV *Iter_1 =
SE->getMinusSCEV(Bound[K].Iterations,
@@ -2776,8 +2776,8 @@ void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
CoefficientInfo *B,
BoundInfo *Bound,
unsigned K) const {
- Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity.
- Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity.
+ Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
+ Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
if (Bound[K].Iterations) {
const SCEV *Iter_1 =
SE->getMinusSCEV(Bound[K].Iterations,
@@ -2829,7 +2829,7 @@ DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
CI[K].Coeff = Zero;
CI[K].PosPart = Zero;
CI[K].NegPart = Zero;
- CI[K].Iterations = NULL;
+ CI[K].Iterations = nullptr;
}
while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
const Loop *L = AddRec->getLoop();
@@ -2872,7 +2872,7 @@ const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
if (Bound[K].Lower[Bound[K].Direction])
Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
else
- Sum = NULL;
+ Sum = nullptr;
}
return Sum;
}
@@ -2888,7 +2888,7 @@ const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
if (Bound[K].Upper[Bound[K].Direction])
Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
else
- Sum = NULL;
+ Sum = nullptr;
}
return Sum;
}
@@ -3148,12 +3148,12 @@ void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
}
else if (CurConstraint.isLine()) {
Level.Scalar = false;
- Level.Distance = NULL;
+ Level.Distance = nullptr;
// direction should be accurate
}
else if (CurConstraint.isPoint()) {
Level.Scalar = false;
- Level.Distance = NULL;
+ Level.Distance = nullptr;
unsigned NewDirection = Dependence::DVEntry::NONE;
if (!isKnownPredicate(CmpInst::ICMP_NE,
CurConstraint.getY(),
@@ -3180,59 +3180,55 @@ void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
/// source and destination array references are recurrences on a nested loop,
/// this function flattens the nested recurrences into separate recurrences
/// for each loop level.
-bool
-DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
- SmallVectorImpl<Subscript> &Pair) const {
+bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
+ const SCEV *DstSCEV,
+ SmallVectorImpl<Subscript> &Pair,
+ const SCEV *ElementSize) const {
+ const SCEVUnknown *SrcBase =
+ dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
+ const SCEVUnknown *DstBase =
+ dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
+
+ if (!SrcBase || !DstBase || SrcBase != DstBase)
+ return false;
+
+ SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
+ DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
+
const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
return false;
- SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts, SrcSizes, DstSizes;
- const SCEV *RemainderS = SrcAR->delinearize(*SE, SrcSubscripts, SrcSizes);
- const SCEV *RemainderD = DstAR->delinearize(*SE, DstSubscripts, DstSizes);
+ // First step: collect parametric terms in both array references.
+ SmallVector<const SCEV *, 4> Terms;
+ SrcAR->collectParametricTerms(*SE, Terms);
+ DstAR->collectParametricTerms(*SE, Terms);
- int size = SrcSubscripts.size();
- // Fail when there is only a subscript: that's a linearized access function.
- if (size < 2)
- return false;
-
- int dstSize = DstSubscripts.size();
- // Fail when the number of subscripts in Src and Dst differ.
- if (size != dstSize)
- return false;
+ // Second step: find subscript sizes.
+ SmallVector<const SCEV *, 4> Sizes;
+ SE->findArrayDimensions(Terms, Sizes, ElementSize);
- // Fail when the size of any of the subscripts in Src and Dst differs: the
- // dependence analysis assumes that elements in the same array have same size.
- // SCEV delinearization does not have a context based on which it would decide
- // globally the size of subscripts that would best fit all the array accesses.
- for (int i = 0; i < size; ++i)
- if (SrcSizes[i] != DstSizes[i])
- return false;
+ // Third step: compute the access functions for each subscript.
+ SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
+ SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes);
+ DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes);
- // When the difference in remainders is different than a constant it might be
- // that the base address of the arrays is not the same.
- const SCEV *DiffRemainders = SE->getMinusSCEV(RemainderS, RemainderD);
- if (!isa<SCEVConstant>(DiffRemainders))
+ // Fail when there is only a subscript: that's a linearized access function.
+ if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
+ SrcSubscripts.size() != DstSubscripts.size())
return false;
- // Normalize the last dimension: integrate the size of the "scalar dimension"
- // and the remainder of the delinearization.
- DstSubscripts[size-1] = SE->getMulExpr(DstSubscripts[size-1],
- DstSizes[size-1]);
- SrcSubscripts[size-1] = SE->getMulExpr(SrcSubscripts[size-1],
- SrcSizes[size-1]);
- SrcSubscripts[size-1] = SE->getAddExpr(SrcSubscripts[size-1], RemainderS);
- DstSubscripts[size-1] = SE->getAddExpr(DstSubscripts[size-1], RemainderD);
+ int size = SrcSubscripts.size();
-#ifndef NDEBUG
- DEBUG(errs() << "\nSrcSubscripts: ");
- for (int i = 0; i < size; i++)
- DEBUG(errs() << *SrcSubscripts[i]);
- DEBUG(errs() << "\nDstSubscripts: ");
- for (int i = 0; i < size; i++)
- DEBUG(errs() << *DstSubscripts[i]);
-#endif
+ DEBUG({
+ dbgs() << "\nSrcSubscripts: ";
+ for (int i = 0; i < size; i++)
+ dbgs() << *SrcSubscripts[i];
+ dbgs() << "\nDstSubscripts: ";
+ for (int i = 0; i < size; i++)
+ dbgs() << *DstSubscripts[i];
+ });
// The delinearization transforms a single-subscript MIV dependence test into
// a multi-subscript SIV dependence test that is easier to compute. So we
@@ -3290,7 +3286,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
(!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
// if both instructions don't reference memory, there's no dependence
- return NULL;
+ return nullptr;
if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
// can only analyze simple loads and stores, i.e., no calls, invokes, etc.
@@ -3310,7 +3306,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
case AliasAnalysis::NoAlias:
// If the objects noalias, they are distinct, accesses are independent.
DEBUG(dbgs() << "no alias\n");
- return NULL;
+ return nullptr;
case AliasAnalysis::MustAlias:
break; // The underlying objects alias; test accesses for dependence.
}
@@ -3363,7 +3359,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
}
if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
- tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair)) {
+ tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
DEBUG(dbgs() << " delinerized GEP\n");
Pairs = Pair.size();
}
@@ -3505,26 +3501,26 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
case Subscript::ZIV:
DEBUG(dbgs() << ", ZIV\n");
if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
- return NULL;
+ return nullptr;
break;
case Subscript::SIV: {
DEBUG(dbgs() << ", SIV\n");
unsigned Level;
- const SCEV *SplitIter = NULL;
+ const SCEV *SplitIter = nullptr;
if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
Result, NewConstraint, SplitIter))
- return NULL;
+ return nullptr;
break;
}
case Subscript::RDIV:
DEBUG(dbgs() << ", RDIV\n");
if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
- return NULL;
+ return nullptr;
break;
case Subscript::MIV:
DEBUG(dbgs() << ", MIV\n");
if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
- return NULL;
+ return nullptr;
break;
default:
llvm_unreachable("subscript has unexpected classification");
@@ -3558,16 +3554,16 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
// SJ is an SIV subscript that's part of the current coupled group
unsigned Level;
- const SCEV *SplitIter = NULL;
+ const SCEV *SplitIter = nullptr;
DEBUG(dbgs() << "SIV\n");
if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
Result, NewConstraint, SplitIter))
- return NULL;
+ return nullptr;
ConstrainedLevels.set(Level);
if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
if (Constraints[Level].isEmpty()) {
++DeltaIndependence;
- return NULL;
+ return nullptr;
}
Changed = true;
}
@@ -3593,7 +3589,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
case Subscript::ZIV:
DEBUG(dbgs() << "ZIV\n");
if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
- return NULL;
+ return nullptr;
Mivs.reset(SJ);
break;
case Subscript::SIV:
@@ -3616,7 +3612,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
if (Pair[SJ].Classification == Subscript::RDIV) {
DEBUG(dbgs() << "RDIV test\n");
if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
- return NULL;
+ return nullptr;
// I don't yet understand how to propagate RDIV results
Mivs.reset(SJ);
}
@@ -3629,7 +3625,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
if (Pair[SJ].Classification == Subscript::MIV) {
DEBUG(dbgs() << "MIV test\n");
if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
- return NULL;
+ return nullptr;
}
else
llvm_unreachable("expected only MIV subscripts at this point");
@@ -3641,7 +3637,7 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
- return NULL;
+ return nullptr;
}
}
}
@@ -3676,11 +3672,11 @@ Dependence *DependenceAnalysis::depends(Instruction *Src,
}
}
if (AllEqual)
- return NULL;
+ return nullptr;
}
FullDependence *Final = new FullDependence(Result);
- Result.DV = NULL;
+ Result.DV = nullptr;
return Final;
}
@@ -3787,7 +3783,7 @@ const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
}
if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
- tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair)) {
+ tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
DEBUG(dbgs() << " delinerized GEP\n");
Pairs = Pair.size();
}
@@ -3853,11 +3849,11 @@ const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
switch (Pair[SI].Classification) {
case Subscript::SIV: {
unsigned Level;
- const SCEV *SplitIter = NULL;
+ const SCEV *SplitIter = nullptr;
(void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
Result, NewConstraint, SplitIter);
if (Level == SplitLevel) {
- assert(SplitIter != NULL);
+ assert(SplitIter != nullptr);
return SplitIter;
}
break;
@@ -3892,7 +3888,7 @@ const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
// SJ is an SIV subscript that's part of the current coupled group
unsigned Level;
- const SCEV *SplitIter = NULL;
+ const SCEV *SplitIter = nullptr;
(void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
Result, NewConstraint, SplitIter);
if (Level == SplitLevel && SplitIter)
@@ -3933,5 +3929,5 @@ const SCEV *DependenceAnalysis::getSplitIteration(const Dependence *Dep,
}
}
llvm_unreachable("somehow reached end of routine");
- return NULL;
+ return nullptr;
}
diff --git a/lib/Analysis/DominanceFrontier.cpp b/lib/Analysis/DominanceFrontier.cpp
index f0787f1..74594f8 100644
--- a/lib/Analysis/DominanceFrontier.cpp
+++ b/lib/Analysis/DominanceFrontier.cpp
@@ -40,12 +40,12 @@ const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
- DomSetType *Result = NULL;
+ DomSetType *Result = nullptr;
std::vector<DFCalculateWorkObject> workList;
SmallPtrSet<BasicBlock *, 32> visited;
- workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
+ workList.push_back(DFCalculateWorkObject(BB, nullptr, Node, nullptr));
do {
DFCalculateWorkObject *currentW = &workList.back();
assert (currentW && "Missing work object.");
diff --git a/lib/Analysis/IPA/CallGraph.cpp b/lib/Analysis/IPA/CallGraph.cpp
index f43675b..caec253 100644
--- a/lib/Analysis/IPA/CallGraph.cpp
+++ b/lib/Analysis/IPA/CallGraph.cpp
@@ -21,14 +21,14 @@ using namespace llvm;
//
CallGraph::CallGraph(Module &M)
- : M(M), Root(0), ExternalCallingNode(getOrInsertFunction(0)),
- CallsExternalNode(new CallGraphNode(0)) {
+ : M(M), Root(nullptr), ExternalCallingNode(getOrInsertFunction(nullptr)),
+ CallsExternalNode(new CallGraphNode(nullptr)) {
// Add every function to the call graph.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
addToCallGraph(I);
// If we didn't find a main function, use the external call graph node
- if (Root == 0)
+ if (!Root)
Root = ExternalCallingNode;
}
@@ -210,7 +210,7 @@ void CallGraphNode::removeOneAbstractEdgeTo(CallGraphNode *Callee) {
for (CalledFunctionsVector::iterator I = CalledFunctions.begin(); ; ++I) {
assert(I != CalledFunctions.end() && "Cannot find callee to remove!");
CallRecord &CR = *I;
- if (CR.second == Callee && CR.first == 0) {
+ if (CR.second == Callee && CR.first == nullptr) {
Callee->DropRef();
*I = CalledFunctions.back();
CalledFunctions.pop_back();
@@ -267,7 +267,7 @@ INITIALIZE_PASS(CallGraphWrapperPass, "basiccg", "CallGraph Construction",
char CallGraphWrapperPass::ID = 0;
-void CallGraphWrapperPass::releaseMemory() { G.reset(0); }
+void CallGraphWrapperPass::releaseMemory() { G.reset(nullptr); }
void CallGraphWrapperPass::print(raw_ostream &OS, const Module *) const {
if (!G) {
@@ -280,7 +280,7 @@ void CallGraphWrapperPass::print(raw_ostream &OS, const Module *) const {
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void CallGraphWrapperPass::dump() const { print(dbgs(), 0); }
+void CallGraphWrapperPass::dump() const { print(dbgs(), nullptr); }
#endif
// Enuse that users of CallGraph.h also link with this file
diff --git a/lib/Analysis/IPA/CallGraphSCCPass.cpp b/lib/Analysis/IPA/CallGraphSCCPass.cpp
index aafc085..bfab744 100644
--- a/lib/Analysis/IPA/CallGraphSCCPass.cpp
+++ b/lib/Analysis/IPA/CallGraphSCCPass.cpp
@@ -15,7 +15,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "cgscc-passmgr"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
@@ -23,12 +22,15 @@
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManagers.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+#define DEBUG_TYPE "cgscc-passmgr"
+
static cl::opt<unsigned>
MaxIterations("max-cg-scc-iterations", cl::ReallyHidden, cl::init(4));
@@ -112,7 +114,7 @@ bool CGPassManager::RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC,
bool Changed = false;
PMDataManager *PM = P->getAsPMDataManager();
- if (PM == 0) {
+ if (!PM) {
CallGraphSCCPass *CGSP = (CallGraphSCCPass*)P;
if (!CallGraphUpToDate) {
DevirtualizedCall |= RefreshCallGraph(CurSCC, CG, false);
@@ -144,8 +146,11 @@ bool CGPassManager::RunPassOnSCC(Pass *P, CallGraphSCC &CurSCC,
I != E; ++I) {
if (Function *F = (*I)->getFunction()) {
dumpPassInfo(P, EXECUTION_MSG, ON_FUNCTION_MSG, F->getName());
- TimeRegion PassTimer(getPassTimer(FPP));
- Changed |= FPP->runOnFunction(*F);
+ {
+ TimeRegion PassTimer(getPassTimer(FPP));
+ Changed |= FPP->runOnFunction(*F);
+ }
+ F->getContext().yield();
}
}
@@ -190,7 +195,7 @@ bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
SCCIdx != E; ++SCCIdx, ++FunctionNo) {
CallGraphNode *CGN = *SCCIdx;
Function *F = CGN->getFunction();
- if (F == 0 || F->isDeclaration()) continue;
+ if (!F || F->isDeclaration()) continue;
// Walk the function body looking for call sites. Sync up the call sites in
// CGN with those actually in the function.
@@ -203,7 +208,7 @@ bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
for (CallGraphNode::iterator I = CGN->begin(), E = CGN->end(); I != E; ) {
// If this call site is null, then the function pass deleted the call
// entirely and the WeakVH nulled it out.
- if (I->first == 0 ||
+ if (!I->first ||
// If we've already seen this call site, then the FunctionPass RAUW'd
// one call with another, which resulted in two "uses" in the edge
// list of the same call.
@@ -217,7 +222,7 @@ bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
"CallGraphSCCPass did not update the CallGraph correctly!");
// If this was an indirect call site, count it.
- if (I->second->getFunction() == 0)
+ if (!I->second->getFunction())
++NumIndirectRemoved;
else
++NumDirectRemoved;
@@ -273,7 +278,7 @@ bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
// site could be turned direct), don't reject it in checking mode, and
// don't tweak it to be more precise.
if (CheckingMode && CS.getCalledFunction() &&
- ExistingNode->getFunction() == 0)
+ ExistingNode->getFunction() == nullptr)
continue;
assert(!CheckingMode &&
@@ -286,7 +291,7 @@ bool CGPassManager::RefreshCallGraph(CallGraphSCC &CurSCC,
CalleeNode = CG.getOrInsertFunction(Callee);
// Keep track of whether we turned an indirect call into a direct
// one.
- if (ExistingNode->getFunction() == 0) {
+ if (!ExistingNode->getFunction()) {
DevirtualizedCall = true;
DEBUG(dbgs() << " CGSCCPASSMGR: Devirtualized call to '"
<< Callee->getName() << "'\n");
@@ -434,8 +439,8 @@ bool CGPassManager::runOnModule(Module &M) {
while (!CGI.isAtEnd()) {
// Copy the current SCC and increment past it so that the pass can hack
// on the SCC if it wants to without invalidating our iterator.
- std::vector<CallGraphNode*> &NodeVec = *CGI;
- CurSCC.initialize(&NodeVec[0], &NodeVec[0]+NodeVec.size());
+ const std::vector<CallGraphNode *> &NodeVec = *CGI;
+ CurSCC.initialize(NodeVec.data(), NodeVec.data() + NodeVec.size());
++CGI;
// At the top level, we run all the passes in this pass manager on the
diff --git a/lib/Analysis/IPA/GlobalsModRef.cpp b/lib/Analysis/IPA/GlobalsModRef.cpp
index f4097e4..607c068 100644
--- a/lib/Analysis/IPA/GlobalsModRef.cpp
+++ b/lib/Analysis/IPA/GlobalsModRef.cpp
@@ -14,7 +14,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "globalsmodref-aa"
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
@@ -33,6 +32,8 @@
#include <set>
using namespace llvm;
+#define DEBUG_TYPE "globalsmodref-aa"
+
STATISTIC(NumNonAddrTakenGlobalVars,
"Number of global vars without address taken");
STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
@@ -177,14 +178,14 @@ namespace {
FunctionInfo.find(F);
if (I != FunctionInfo.end())
return &I->second;
- return 0;
+ return nullptr;
}
void AnalyzeGlobals(Module &M);
void AnalyzeCallGraph(CallGraph &CG, Module &M);
bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
std::vector<Function*> &Writers,
- GlobalValue *OkayStoreDest = 0);
+ GlobalValue *OkayStoreDest = nullptr);
bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
};
}
@@ -358,7 +359,7 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
// We do a bottom-up SCC traversal of the call graph. In other words, we
// visit all callees before callers (leaf-first).
for (scc_iterator<CallGraph*> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
- std::vector<CallGraphNode *> &SCC = *I;
+ const std::vector<CallGraphNode *> &SCC = *I;
assert(!SCC.empty() && "SCC with no functions?");
if (!SCC[0]->getFunction()) {
@@ -410,10 +411,8 @@ void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
FunctionEffect |= CalleeFR->FunctionEffect;
// Incorporate callee's effects on globals into our info.
- for (std::map<const GlobalValue*, unsigned>::iterator GI =
- CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
- GI != E; ++GI)
- FR.GlobalInfo[GI->first] |= GI->second;
+ for (const auto &G : CalleeFR->GlobalInfo)
+ FR.GlobalInfo[G.first] |= G.second;
FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
} else {
// Can't say anything about it. However, if it is inside our SCC,
@@ -492,8 +491,8 @@ GlobalsModRef::alias(const Location &LocA,
if (GV1 || GV2) {
// If the global's address is taken, pretend we don't know it's a pointer to
// the global.
- if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
- if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
+ if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = nullptr;
+ if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = nullptr;
// If the two pointers are derived from two different non-addr-taken
// globals, or if one is and the other isn't, we know these can't alias.
@@ -507,7 +506,7 @@ GlobalsModRef::alias(const Location &LocA,
// These pointers may be based on the memory owned by an indirect global. If
// so, we may be able to handle this. First check to see if the base pointer
// is a direct load from an indirect global.
- GV1 = GV2 = 0;
+ GV1 = GV2 = nullptr;
if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
if (IndirectGlobals.count(GV))
diff --git a/lib/Analysis/IPA/InlineCost.cpp b/lib/Analysis/IPA/InlineCost.cpp
index 8dafc1c..66f3f8e 100644
--- a/lib/Analysis/IPA/InlineCost.cpp
+++ b/lib/Analysis/IPA/InlineCost.cpp
@@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "inline-cost"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
@@ -34,6 +33,8 @@
using namespace llvm;
+#define DEBUG_TYPE "inline-cost"
+
STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
namespace {
@@ -97,9 +98,6 @@ class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
void disableSROA(Value *V);
void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
int InstructionCost);
- bool handleSROACandidate(bool IsSROAValid,
- DenseMap<Value *, int>::iterator CostIt,
- int InstructionCost);
bool isGEPOffsetConstant(GetElementPtrInst &GEP);
bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
bool simplifyCallSite(Function *F, CallSite CS);
@@ -225,21 +223,6 @@ void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
SROACostSavings += InstructionCost;
}
-/// \brief Helper for the common pattern of handling a SROA candidate.
-/// Either accumulates the cost savings if the SROA remains valid, or disables
-/// SROA for the candidate.
-bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
- DenseMap<Value *, int>::iterator CostIt,
- int InstructionCost) {
- if (IsSROAValid) {
- accumulateSROACost(CostIt, InstructionCost);
- return true;
- }
-
- disableSROA(CostIt);
- return false;
-}
-
/// \brief Check whether a GEP's indices are all constant.
///
/// Respects any simplified values known during the analysis of this callsite.
@@ -287,8 +270,17 @@ bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
}
bool CallAnalyzer::visitAlloca(AllocaInst &I) {
- // FIXME: Check whether inlining will turn a dynamic alloca into a static
+ // Check whether inlining will turn a dynamic alloca into a static
// alloca, and handle that case.
+ if (I.isArrayAllocation()) {
+ if (Constant *Size = SimplifiedValues.lookup(I.getArraySize())) {
+ ConstantInt *AllocSize = dyn_cast<ConstantInt>(Size);
+ assert(AllocSize && "Allocation size not a constant int?");
+ Type *Ty = I.getAllocatedType();
+ AllocatedSize += Ty->getPrimitiveSizeInBits() * AllocSize->getZExtValue();
+ return Base::visitAlloca(I);
+ }
+ }
// Accumulate the allocated size.
if (I.isStaticAlloca()) {
@@ -816,9 +808,29 @@ bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
// We model unconditional switches as free, see the comments on handling
// branches.
- return isa<ConstantInt>(SI.getCondition()) ||
- dyn_cast_or_null<ConstantInt>(
- SimplifiedValues.lookup(SI.getCondition()));
+ if (isa<ConstantInt>(SI.getCondition()))
+ return true;
+ if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
+ if (isa<ConstantInt>(V))
+ return true;
+
+ // Otherwise, we need to accumulate a cost proportional to the number of
+ // distinct successor blocks. This fan-out in the CFG cannot be represented
+ // for free even if we can represent the core switch as a jumptable that
+ // takes a single instruction.
+ //
+ // NB: We convert large switches which are just used to initialize large phi
+ // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
+ // inlining those. It will prevent inlining in cases where the optimization
+ // does not (yet) fire.
+ SmallPtrSet<BasicBlock *, 8> SuccessorBlocks;
+ SuccessorBlocks.insert(SI.getDefaultDest());
+ for (auto I = SI.case_begin(), E = SI.case_end(); I != E; ++I)
+ SuccessorBlocks.insert(I.getCaseSuccessor());
+ // Add cost corresponding to the number of distinct destinations. The first
+ // we model as free because of fallthrough.
+ Cost += (SuccessorBlocks.size() - 1) * InlineConstants::InstrCost;
+ return false;
}
bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
@@ -934,7 +946,7 @@ bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
/// no constant offsets applied.
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
if (!DL || !V->getType()->isPointerTy())
- return 0;
+ return nullptr;
unsigned IntPtrWidth = DL->getPointerSizeInBits();
APInt Offset = APInt::getNullValue(IntPtrWidth);
@@ -946,7 +958,7 @@ ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
do {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
- return 0;
+ return nullptr;
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
V = cast<Operator>(V)->getOperand(0);
@@ -1247,7 +1259,7 @@ InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
// Calls to functions with always-inline attributes should be inlined
// whenever possible.
- if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {
+ if (CS.hasFnAttr(Attribute::AlwaysInline)) {
if (isInlineViable(*Callee))
return llvm::InlineCost::getAlways();
return llvm::InlineCost::getNever();
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index 5317a47..c819bd3 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -12,7 +12,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "iv-users"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopPass.h"
@@ -29,6 +28,8 @@
#include <algorithm>
using namespace llvm;
+#define DEBUG_TYPE "iv-users"
+
char IVUsers::ID = 0;
INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
"Induction Variable Users", false, true)
@@ -84,7 +85,7 @@ static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
const LoopInfo *LI,
SmallPtrSet<Loop*,16> &SimpleLoopNests) {
- Loop *NearestLoop = 0;
+ Loop *NearestLoop = nullptr;
for (DomTreeNode *Rung = DT->getNode(BB);
Rung; Rung = Rung->getIDom()) {
BasicBlock *DomBB = Rung->getBlock();
@@ -253,7 +254,7 @@ bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
@@ -329,16 +330,16 @@ static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
I != E; ++I)
if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
return AR;
- return 0;
+ return nullptr;
}
- return 0;
+ return nullptr;
}
const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
return AR->getStepRecurrence(*SE);
- return 0;
+ return nullptr;
}
void IVStrideUse::transformToPostInc(const Loop *L) {
diff --git a/lib/Analysis/InstCount.cpp b/lib/Analysis/InstCount.cpp
index 3d05556..de2b9c0 100644
--- a/lib/Analysis/InstCount.cpp
+++ b/lib/Analysis/InstCount.cpp
@@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "instcount"
#include "llvm/Analysis/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Function.h"
@@ -22,6 +21,8 @@
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+#define DEBUG_TYPE "instcount"
+
STATISTIC(TotalInsts , "Number of instructions (of all types)");
STATISTIC(TotalBlocks, "Number of basic blocks");
STATISTIC(TotalFuncs , "Number of non-external functions");
@@ -47,7 +48,7 @@ namespace {
void visitInstruction(Instruction &I) {
errs() << "Instruction Count does not know about " << I;
- llvm_unreachable(0);
+ llvm_unreachable(nullptr);
}
public:
static char ID; // Pass identification, replacement for typeid
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp
index d8d8a09..3684fda 100644
--- a/lib/Analysis/InstructionSimplify.cpp
+++ b/lib/Analysis/InstructionSimplify.cpp
@@ -17,7 +17,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "instsimplify"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
@@ -35,6 +34,8 @@
using namespace llvm;
using namespace llvm::PatternMatch;
+#define DEBUG_TYPE "instsimplify"
+
enum { RecursionLimit = 3 };
STATISTIC(NumExpand, "Number of expansions");
@@ -131,7 +132,7 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
// Check whether the expression has the form "(A op' B) op C".
if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
@@ -179,7 +180,7 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
}
}
- return 0;
+ return nullptr;
}
/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
@@ -192,14 +193,14 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
!Op1 || Op1->getOpcode() != OpcodeToExtract)
- return 0;
+ return nullptr;
// The expression has the form "(A op' B) op (C op' D)".
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
@@ -251,7 +252,7 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
}
}
- return 0;
+ return nullptr;
}
/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
@@ -263,7 +264,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
@@ -308,7 +309,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
// The remaining transforms require commutativity as well as associativity.
if (!Instruction::isCommutative(Opcode))
- return 0;
+ return nullptr;
// Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
if (Op0 && Op0->getOpcode() == Opcode) {
@@ -348,7 +349,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
}
}
- return 0;
+ return nullptr;
}
/// ThreadBinOpOverSelect - In the case of a binary operation with a select
@@ -359,7 +360,7 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
SelectInst *SI;
if (isa<SelectInst>(LHS)) {
@@ -420,7 +421,7 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
}
}
- return 0;
+ return nullptr;
}
/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
@@ -432,7 +433,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
// Make sure the select is on the LHS.
if (!isa<SelectInst>(LHS)) {
@@ -456,7 +457,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
// It didn't simplify. However if "cmp TV, RHS" is equal to the select
// condition then we can replace it with 'true'. Otherwise give up.
if (!isSameCompare(Cond, Pred, TV, RHS))
- return 0;
+ return nullptr;
TCmp = getTrue(Cond->getType());
}
@@ -470,7 +471,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
// It didn't simplify. However if "cmp FV, RHS" is equal to the select
// condition then we can replace it with 'false'. Otherwise give up.
if (!isSameCompare(Cond, Pred, FV, RHS))
- return 0;
+ return nullptr;
FCmp = getFalse(Cond->getType());
}
@@ -482,7 +483,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
// The remaining cases only make sense if the select condition has the same
// type as the result of the comparison, so bail out if this is not so.
if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
- return 0;
+ return nullptr;
// If the false value simplified to false, then the result of the compare
// is equal to "Cond && TCmp". This also catches the case when the false
// value simplified to false and the true value to true, returning "Cond".
@@ -502,7 +503,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
@@ -513,24 +514,24 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
PHINode *PI;
if (isa<PHINode>(LHS)) {
PI = cast<PHINode>(LHS);
// Bail out if RHS and the phi may be mutually interdependent due to a loop.
if (!ValueDominatesPHI(RHS, PI, Q.DT))
- return 0;
+ return nullptr;
} else {
assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
PI = cast<PHINode>(RHS);
// Bail out if LHS and the phi may be mutually interdependent due to a loop.
if (!ValueDominatesPHI(LHS, PI, Q.DT))
- return 0;
+ return nullptr;
}
// Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = 0;
+ Value *CommonValue = nullptr;
for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PI->getIncomingValue(i);
// If the incoming value is the phi node itself, it can safely be skipped.
@@ -541,7 +542,7 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
// If the operation failed to simplify, or simplified to a different value
// to previously, then give up.
if (!V || (CommonValue && V != CommonValue))
- return 0;
+ return nullptr;
CommonValue = V;
}
@@ -556,7 +557,7 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
const Query &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
- return 0;
+ return nullptr;
// Make sure the phi is on the LHS.
if (!isa<PHINode>(LHS)) {
@@ -568,10 +569,10 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
// Bail out if RHS and the phi may be mutually interdependent due to a loop.
if (!ValueDominatesPHI(RHS, PI, Q.DT))
- return 0;
+ return nullptr;
// Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = 0;
+ Value *CommonValue = nullptr;
for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PI->getIncomingValue(i);
// If the incoming value is the phi node itself, it can safely be skipped.
@@ -580,7 +581,7 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
// If the operation failed to simplify, or simplified to a different value
// to previously, then give up.
if (!V || (CommonValue && V != CommonValue))
- return 0;
+ return nullptr;
CommonValue = V;
}
@@ -613,7 +614,7 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
// X + (Y - X) -> Y
// (Y - X) + X -> Y
// Eg: X + -X -> 0
- Value *Y = 0;
+ Value *Y = nullptr;
if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
return Y;
@@ -647,7 +648,7 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
// "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
// for threading over phi nodes.
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
@@ -720,7 +721,7 @@ static Constant *computePointerDifference(const DataLayout *DL,
// If LHS and RHS are not related via constant offsets to the same base
// value, there is nothing we can do here.
if (LHS != RHS)
- return 0;
+ return nullptr;
// Otherwise, the difference of LHS - RHS can be computed as:
// LHS - RHS
@@ -755,14 +756,14 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
// (X*2) - X -> X
// (X<<1) - X -> X
- Value *X = 0;
+ Value *X = nullptr;
if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
match(Op0, m_Shl(m_Specific(Op1), m_One())))
return Op1;
// (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
// For example, (X + Y) - Y -> X; (Y + X) - Y -> X
- Value *Y = 0, *Z = Op1;
+ Value *Y = nullptr, *Z = Op1;
if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
// See if "V === Y - Z" simplifies.
if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
@@ -853,7 +854,7 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
// "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
// for threading over phi nodes.
- return 0;
+ return nullptr;
}
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
@@ -890,7 +891,7 @@ static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
// fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
// where nnan and ninf have to occur at least once somewhere in this
// expression
- Value *SubOp = 0;
+ Value *SubOp = nullptr;
if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
SubOp = Op1;
else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
@@ -902,7 +903,7 @@ static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
return Constant::getNullValue(Op0->getType());
}
- return 0;
+ return nullptr;
}
/// Given operands for an FSub, see if we can fold the result. If not, this
@@ -939,7 +940,7 @@ static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
return Constant::getNullValue(Op0->getType());
- return 0;
+ return nullptr;
}
/// Given the operands for an FMul, see if we can fold the result
@@ -966,7 +967,7 @@ static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
return Op1;
- return 0;
+ return nullptr;
}
/// SimplifyMulInst - Given operands for a Mul, see if we can
@@ -997,7 +998,7 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
return Op0;
// (X / Y) * Y -> X if the division is exact.
- Value *X = 0;
+ Value *X = nullptr;
if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
return X;
@@ -1031,7 +1032,7 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
@@ -1098,7 +1099,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
return ConstantInt::get(Op0->getType(), 1);
// (X * Y) / Y -> X if the multiplication does not overflow.
- Value *X = 0, *Y = 0;
+ Value *X = nullptr, *Y = nullptr;
if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
@@ -1129,7 +1130,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
/// SimplifySDivInst - Given operands for an SDiv, see if we can
@@ -1139,7 +1140,7 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1155,7 +1156,7 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1174,7 +1175,7 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
if (match(Op1, m_Undef()))
return Op1;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1234,7 +1235,7 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
/// SimplifySRemInst - Given operands for an SRem, see if we can
@@ -1244,7 +1245,7 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1260,7 +1261,7 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1279,7 +1280,7 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
if (match(Op1, m_Undef()))
return Op1;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1350,7 +1351,7 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
/// SimplifyShlInst - Given operands for an Shl, see if we can
@@ -1368,7 +1369,7 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *X;
if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
return X;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
@@ -1399,7 +1400,7 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
return X;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
@@ -1435,7 +1436,7 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
return X;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
@@ -1483,7 +1484,7 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
return Constant::getNullValue(Op0->getType());
// (A | ?) & A = A
- Value *A = 0, *B = 0;
+ Value *A = nullptr, *B = nullptr;
if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
return Op1;
@@ -1536,7 +1537,7 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1582,7 +1583,7 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
return Constant::getAllOnesValue(Op0->getType());
// (A & ?) | A = A
- Value *A = 0, *B = 0;
+ Value *A = nullptr, *B = nullptr;
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
return Op1;
@@ -1630,7 +1631,7 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1690,7 +1691,7 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
// "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
// for threading over phi nodes.
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
@@ -1710,17 +1711,17 @@ static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
Value *LHS, Value *RHS) {
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI)
- return 0;
+ return nullptr;
CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
if (!Cmp)
- return 0;
+ return nullptr;
Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
return Cmp;
if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
LHS == CmpRHS && RHS == CmpLHS)
return Cmp;
- return 0;
+ return nullptr;
}
// A significant optimization not implemented here is assuming that alloca
@@ -1768,7 +1769,7 @@ static Constant *computePointerICmp(const DataLayout *DL,
// We can only fold certain predicates on pointer comparisons.
switch (Pred) {
default:
- return 0;
+ return nullptr;
// Equality comaprisons are easy to fold.
case CmpInst::ICMP_EQ:
@@ -1874,7 +1875,7 @@ static Constant *computePointerICmp(const DataLayout *DL,
}
// Otherwise, fail.
- return 0;
+ return nullptr;
}
/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
@@ -2000,7 +2001,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
// Many binary operators with constant RHS have easy to compute constant
// range. Use them to check whether the comparison is a tautology.
- uint32_t Width = CI->getBitWidth();
+ unsigned Width = CI->getBitWidth();
APInt Lower = APInt(Width, 0);
APInt Upper = APInt(Width, 0);
ConstantInt *CI2;
@@ -2019,6 +2020,10 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
APInt NegOne = APInt::getAllOnesValue(Width);
if (!CI2->isZero())
Upper = NegOne.udiv(CI2->getValue()) + 1;
+ } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
+ // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
+ Upper = CI2->getValue().abs() + 1;
+ Lower = (-Upper) + 1;
} else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
// 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
APInt IntMin = APInt::getSignedMinValue(Width);
@@ -2033,6 +2038,13 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
APInt NegOne = APInt::getAllOnesValue(Width);
if (CI2->getValue().ult(Width))
Upper = NegOne.lshr(CI2->getValue()) + 1;
+ } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
+ // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
+ unsigned ShiftAmount = Width - 1;
+ if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
+ ShiftAmount = CI2->getValue().countTrailingZeros();
+ Lower = CI2->getValue().lshr(ShiftAmount);
+ Upper = CI2->getValue() + 1;
} else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
// 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
APInt IntMin = APInt::getSignedMinValue(Width);
@@ -2041,6 +2053,19 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Lower = IntMin.ashr(CI2->getValue());
Upper = IntMax.ashr(CI2->getValue()) + 1;
}
+ } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
+ unsigned ShiftAmount = Width - 1;
+ if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
+ ShiftAmount = CI2->getValue().countTrailingZeros();
+ if (CI2->isNegative()) {
+ // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
+ Lower = CI2->getValue();
+ Upper = CI2->getValue().ashr(ShiftAmount) + 1;
+ } else {
+ // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
+ Lower = CI2->getValue().ashr(ShiftAmount);
+ Upper = CI2->getValue() + 1;
+ }
} else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
// 'or x, CI2' produces [CI2, UINT_MAX].
Lower = CI2->getValue();
@@ -2221,7 +2246,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
if (MaxRecurse && (LBO || RBO)) {
// Analyze the case when either LHS or RHS is an add instruction.
- Value *A = 0, *B = 0, *C = 0, *D = 0;
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
// LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
if (LBO && LBO->getOpcode() == Instruction::Add) {
@@ -2279,6 +2304,28 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
+ // 0 - (zext X) pred C
+ if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
+ if (RHSC->getValue().isStrictlyPositive()) {
+ if (Pred == ICmpInst::ICMP_SLT)
+ return ConstantInt::getTrue(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_SGE)
+ return ConstantInt::getFalse(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(RHSC->getContext());
+ }
+ if (RHSC->getValue().isNonNegative()) {
+ if (Pred == ICmpInst::ICMP_SLE)
+ return ConstantInt::getTrue(RHSC->getContext());
+ if (Pred == ICmpInst::ICMP_SGT)
+ return ConstantInt::getFalse(RHSC->getContext());
+ }
+ }
+ }
+
// icmp pred (urem X, Y), Y
if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
bool KnownNonNegative, KnownNegative;
@@ -2605,7 +2652,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
@@ -2702,7 +2749,7 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
@@ -2741,7 +2788,7 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
return TrueVal;
- return 0;
+ return nullptr;
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
@@ -2786,7 +2833,7 @@ static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
// Check to see if this is constant foldable.
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (!isa<Constant>(Ops[i]))
- return 0;
+ return nullptr;
return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
}
@@ -2823,7 +2870,7 @@ static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
return Agg;
}
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
@@ -2839,7 +2886,7 @@ Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
// If all of the PHI's incoming values are the same then replace the PHI node
// with the common value.
- Value *CommonValue = 0;
+ Value *CommonValue = nullptr;
bool HasUndefInput = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PN->getIncomingValue(i);
@@ -2851,7 +2898,7 @@ static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
continue;
}
if (CommonValue && Incoming != CommonValue)
- return 0; // Not the same, bail out.
+ return nullptr; // Not the same, bail out.
CommonValue = Incoming;
}
@@ -2864,7 +2911,7 @@ static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
// instruction, we cannot return X as the result of the PHI node unless it
// dominates the PHI block.
if (HasUndefInput)
- return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
+ return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
return CommonValue;
}
@@ -2873,7 +2920,7 @@ static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
if (Constant *C = dyn_cast<Constant>(Op))
return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
- return 0;
+ return nullptr;
}
Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
@@ -2945,7 +2992,7 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
return V;
- return 0;
+ return nullptr;
}
}
@@ -2992,7 +3039,7 @@ static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEn
const Query &Q, unsigned MaxRecurse) {
// Perform idempotent optimizations
if (!IsIdempotent(IID))
- return 0;
+ return nullptr;
// Unary Ops
if (std::distance(ArgBegin, ArgEnd) == 1)
@@ -3000,7 +3047,7 @@ static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEn
if (II->getIntrinsicID() == IID)
return II;
- return 0;
+ return nullptr;
}
template <typename IterTy>
@@ -3017,7 +3064,7 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Function *F = dyn_cast<Function>(V);
if (!F)
- return 0;
+ return nullptr;
if (unsigned IID = F->getIntrinsicID())
if (Value *Ret =
@@ -3025,14 +3072,14 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
return Ret;
if (!canConstantFoldCallTo(F))
- return 0;
+ return nullptr;
SmallVector<Constant *, 4> ConstantArgs;
ConstantArgs.reserve(ArgEnd - ArgBegin);
for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
Constant *C = dyn_cast<Constant>(*I);
if (!C)
- return 0;
+ return nullptr;
ConstantArgs.push_back(C);
}
@@ -3247,7 +3294,7 @@ bool llvm::recursivelySimplifyInstruction(Instruction *I,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT) {
- return replaceAndRecursivelySimplifyImpl(I, 0, DL, TLI, DT);
+ return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT);
}
bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
diff --git a/lib/Analysis/IntervalPartition.cpp b/lib/Analysis/IntervalPartition.cpp
index 2e259b1..a0583e8 100644
--- a/lib/Analysis/IntervalPartition.cpp
+++ b/lib/Analysis/IntervalPartition.cpp
@@ -29,7 +29,7 @@ void IntervalPartition::releaseMemory() {
delete Intervals[i];
IntervalMap.clear();
Intervals.clear();
- RootInterval = 0;
+ RootInterval = nullptr;
}
void IntervalPartition::print(raw_ostream &O, const Module*) const {
diff --git a/lib/Analysis/LazyCallGraph.cpp b/lib/Analysis/LazyCallGraph.cpp
index ea213f2..e073616 100644
--- a/lib/Analysis/LazyCallGraph.cpp
+++ b/lib/Analysis/LazyCallGraph.cpp
@@ -8,19 +8,22 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LazyCallGraph.h"
-#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
+#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+#define DEBUG_TYPE "lcg"
+
static void findCallees(
SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
- SmallPtrSetImpl<Function *> &CalleeSet) {
+ DenseMap<Function *, size_t> &CalleeIndexMap) {
while (!Worklist.empty()) {
Constant *C = Worklist.pop_back_val();
@@ -35,8 +38,12 @@ static void findCallees(
// alias. Then a test of the address of the weak function against the new
// strong definition's address would be an effective way to determine the
// safety of optimizing a direct call edge.
- if (!F->isDeclaration() && CalleeSet.insert(F))
+ if (!F->isDeclaration() &&
+ CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
+ DEBUG(dbgs() << " Added callable function: " << F->getName()
+ << "\n");
Callees.push_back(F);
+ }
continue;
}
@@ -46,7 +53,11 @@ static void findCallees(
}
}
-LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(G), F(F) {
+LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
+ : G(&G), F(F), DFSNumber(0), LowLink(0) {
+ DEBUG(dbgs() << " Adding functions called by '" << F.getName()
+ << "' to the graph.\n");
+
SmallVector<Constant *, 16> Worklist;
SmallPtrSet<Constant *, 16> Visited;
// Find all the potential callees in this function. First walk the
@@ -61,36 +72,41 @@ LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(G), F(F) {
// We've collected all the constant (and thus potentially function or
// function containing) operands to all of the instructions in the function.
// Process them (recursively) collecting every function found.
- findCallees(Worklist, Visited, Callees, CalleeSet);
+ findCallees(Worklist, Visited, Callees, CalleeIndexMap);
}
-LazyCallGraph::Node::Node(LazyCallGraph &G, const Node &OtherN)
- : G(G), F(OtherN.F), CalleeSet(OtherN.CalleeSet) {
- // Loop over the other node's callees, adding the Function*s to our list
- // directly, and recursing to add the Node*s.
- Callees.reserve(OtherN.Callees.size());
- for (const auto &OtherCallee : OtherN.Callees)
- if (Function *Callee = OtherCallee.dyn_cast<Function *>())
- Callees.push_back(Callee);
- else
- Callees.push_back(G.copyInto(*OtherCallee.get<Node *>()));
+void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
+ if (Node *N = G->lookup(Callee))
+ return insertEdgeInternal(*N);
+
+ CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
+ Callees.push_back(&Callee);
}
-LazyCallGraph::Node::Node(LazyCallGraph &G, Node &&OtherN)
- : G(G), F(OtherN.F), Callees(std::move(OtherN.Callees)),
- CalleeSet(std::move(OtherN.CalleeSet)) {
- // Loop over our Callees. They've been moved from another node, but we need
- // to move the Node*s to live under our bump ptr allocator.
- for (auto &Callee : Callees)
- if (Node *ChildN = Callee.dyn_cast<Node *>())
- Callee = G.moveInto(std::move(*ChildN));
+void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
+ CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
+ Callees.push_back(&CalleeN);
}
-LazyCallGraph::LazyCallGraph(Module &M) : M(M) {
+void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
+ auto IndexMapI = CalleeIndexMap.find(&Callee);
+ assert(IndexMapI != CalleeIndexMap.end() &&
+ "Callee not in the callee set for this caller?");
+
+ Callees[IndexMapI->second] = nullptr;
+ CalleeIndexMap.erase(IndexMapI);
+}
+
+LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
+ DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
+ << "\n");
for (Function &F : M)
if (!F.isDeclaration() && !F.hasLocalLinkage())
- if (EntryNodeSet.insert(&F))
+ if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
+ DEBUG(dbgs() << " Adding '" << F.getName()
+ << "' to entry set of the graph.\n");
EntryNodes.push_back(&F);
+ }
// Now add entry nodes for functions reachable via initializers to globals.
SmallVector<Constant *, 16> Worklist;
@@ -100,51 +116,568 @@ LazyCallGraph::LazyCallGraph(Module &M) : M(M) {
if (Visited.insert(GV.getInitializer()))
Worklist.push_back(GV.getInitializer());
- findCallees(Worklist, Visited, EntryNodes, EntryNodeSet);
-}
+ DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
+ "entry set.\n");
+ findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
-LazyCallGraph::LazyCallGraph(const LazyCallGraph &G)
- : M(G.M), EntryNodeSet(G.EntryNodeSet) {
- EntryNodes.reserve(G.EntryNodes.size());
- for (const auto &EntryNode : G.EntryNodes)
- if (Function *Callee = EntryNode.dyn_cast<Function *>())
- EntryNodes.push_back(Callee);
+ for (auto &Entry : EntryNodes) {
+ assert(!Entry.isNull() &&
+ "We can't have removed edges before we finish the constructor!");
+ if (Function *F = Entry.dyn_cast<Function *>())
+ SCCEntryNodes.push_back(F);
else
- EntryNodes.push_back(copyInto(*EntryNode.get<Node *>()));
+ SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
+ }
}
-// FIXME: This would be crazy simpler if BumpPtrAllocator were movable without
-// invalidating any of the allocated memory. We should make that be the case at
-// some point and delete this.
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
- : M(G.M), EntryNodes(std::move(G.EntryNodes)),
- EntryNodeSet(std::move(G.EntryNodeSet)) {
- // Loop over our EntryNodes. They've been moved from another graph, so we
- // need to move the Node*s to live under our bump ptr allocator. We can just
- // do this in-place.
- for (auto &Entry : EntryNodes)
- if (Node *EntryN = Entry.dyn_cast<Node *>())
- Entry = moveInto(std::move(*EntryN));
+ : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
+ EntryNodes(std::move(G.EntryNodes)),
+ EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
+ SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
+ DFSStack(std::move(G.DFSStack)),
+ SCCEntryNodes(std::move(G.SCCEntryNodes)),
+ NextDFSNumber(G.NextDFSNumber) {
+ updateGraphPtrs();
+}
+
+LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
+ BPA = std::move(G.BPA);
+ NodeMap = std::move(G.NodeMap);
+ EntryNodes = std::move(G.EntryNodes);
+ EntryIndexMap = std::move(G.EntryIndexMap);
+ SCCBPA = std::move(G.SCCBPA);
+ SCCMap = std::move(G.SCCMap);
+ LeafSCCs = std::move(G.LeafSCCs);
+ DFSStack = std::move(G.DFSStack);
+ SCCEntryNodes = std::move(G.SCCEntryNodes);
+ NextDFSNumber = G.NextDFSNumber;
+ updateGraphPtrs();
+ return *this;
}
-LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
- return new (MappedN = BPA.Allocate()) Node(*this, F);
+void LazyCallGraph::SCC::insert(Node &N) {
+ N.DFSNumber = N.LowLink = -1;
+ Nodes.push_back(&N);
+ G->SCCMap[&N] = this;
}
-LazyCallGraph::Node *LazyCallGraph::copyInto(const Node &OtherN) {
- Node *&N = NodeMap[&OtherN.F];
- if (N)
- return N;
+bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
+ // Walk up the parents of this SCC and verify that we eventually find C.
+ SmallVector<const SCC *, 4> AncestorWorklist;
+ AncestorWorklist.push_back(this);
+ do {
+ const SCC *AncestorC = AncestorWorklist.pop_back_val();
+ if (AncestorC->isChildOf(C))
+ return true;
+ for (const SCC *ParentC : AncestorC->ParentSCCs)
+ AncestorWorklist.push_back(ParentC);
+ } while (!AncestorWorklist.empty());
- return new (N = BPA.Allocate()) Node(*this, OtherN);
+ return false;
}
-LazyCallGraph::Node *LazyCallGraph::moveInto(Node &&OtherN) {
- Node *&N = NodeMap[&OtherN.F];
- if (N)
- return N;
+void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
+ // First insert it into the caller.
+ CallerN.insertEdgeInternal(CalleeN);
+
+ assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
+ assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
- return new (N = BPA.Allocate()) Node(*this, std::move(OtherN));
+ // Nothing changes about this SCC or any other.
+}
+
+void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
+ // First insert it into the caller.
+ CallerN.insertEdgeInternal(CalleeN);
+
+ assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
+
+ SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
+ assert(&CalleeC != this && "Callee must not be in this SCC.");
+ assert(CalleeC.isDescendantOf(*this) &&
+ "Callee must be a descendant of the Caller.");
+
+ // The only change required is to add this SCC to the parent set of the callee.
+ CalleeC.ParentSCCs.insert(this);
+}
+
+SmallVector<LazyCallGraph::SCC *, 1>
+LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
+ // First insert it into the caller.
+ CallerN.insertEdgeInternal(CalleeN);
+
+ assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
+
+ SCC &CallerC = *G->SCCMap.lookup(&CallerN);
+ assert(&CallerC != this && "Caller must not be in this SCC.");
+ assert(CallerC.isDescendantOf(*this) &&
+ "Caller must be a descendant of the Callee.");
+
+ // The algorithm we use for merging SCCs based on the cycle introduced here
+ // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
+ // graph has the same cycle properties as the actual DAG of the SCCs, and
+ // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
+ // many cases which should prune the search space.
+ //
+ // FIXME: We can get this pruning behavior even after the incremental SCC
+ // formation by leaving behind (conservative) DFS numberings in the nodes,
+ // and pruning the search with them. These would need to be cleverly updated
+ // during the removal of intra-SCC edges, but could be preserved
+ // conservatively.
+
+ // The set of SCCs that are connected to the caller, and thus will
+ // participate in the merged connected component.
+ SmallPtrSet<SCC *, 8> ConnectedSCCs;
+ ConnectedSCCs.insert(this);
+ ConnectedSCCs.insert(&CallerC);
+
+ // We build up a DFS stack of the parents chains.
+ SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
+ SmallPtrSet<SCC *, 8> VisitedSCCs;
+ int ConnectedDepth = -1;
+ SCC *C = this;
+ parent_iterator I = parent_begin(), E = parent_end();
+ for (;;) {
+ while (I != E) {
+ SCC &ParentSCC = *I++;
+
+ // If we have already processed this parent SCC, skip it, and remember
+ // whether it was connected so we don't have to check the rest of the
+ // stack. This also handles when we reach a child of the 'this' SCC (the
+ // callee) which terminates the search.
+ if (ConnectedSCCs.count(&ParentSCC)) {
+ ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
+ continue;
+ }
+ if (VisitedSCCs.count(&ParentSCC))
+ continue;
+
+ // We fully explore the depth-first space, adding nodes to the connected
+ // set only as we pop them off, so "recurse" by rotating to the parent.
+ DFSSCCs.push_back(std::make_pair(C, I));
+ C = &ParentSCC;
+ I = ParentSCC.parent_begin();
+ E = ParentSCC.parent_end();
+ }
+
+ // If we've found a connection anywhere below this point on the stack (and
+ // thus up the parent graph from the caller), the current node needs to be
+ // added to the connected set now that we've processed all of its parents.
+ if ((int)DFSSCCs.size() == ConnectedDepth) {
+ --ConnectedDepth; // We're finished with this connection.
+ ConnectedSCCs.insert(C);
+ } else {
+ // Otherwise remember that its parents don't ever connect.
+ assert(ConnectedDepth < (int)DFSSCCs.size() &&
+ "Cannot have a connected depth greater than the DFS depth!");
+ VisitedSCCs.insert(C);
+ }
+
+ if (DFSSCCs.empty())
+ break; // We've walked all the parents of the caller transitively.
+
+ // Pop off the prior node and position to unwind the depth first recursion.
+ std::tie(C, I) = DFSSCCs.pop_back_val();
+ E = C->parent_end();
+ }
+
+ // Now that we have identified all of the SCCs which need to be merged into
+ // a connected set with the inserted edge, merge all of them into this SCC.
+ // FIXME: This operation currently creates ordering stability problems
+ // because we don't use stably ordered containers for the parent SCCs or the
+ // connected SCCs.
+ unsigned NewNodeBeginIdx = Nodes.size();
+ for (SCC *C : ConnectedSCCs) {
+ if (C == this)
+ continue;
+ for (SCC *ParentC : C->ParentSCCs)
+ if (!ConnectedSCCs.count(ParentC))
+ ParentSCCs.insert(ParentC);
+ C->ParentSCCs.clear();
+
+ for (Node *N : *C) {
+ for (Node &ChildN : *N) {
+ SCC &ChildC = *G->SCCMap.lookup(&ChildN);
+ if (&ChildC != C)
+ ChildC.ParentSCCs.erase(C);
+ }
+ G->SCCMap[N] = this;
+ Nodes.push_back(N);
+ }
+ C->Nodes.clear();
+ }
+ for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
+ for (Node &ChildN : **I) {
+ SCC &ChildC = *G->SCCMap.lookup(&ChildN);
+ if (&ChildC != this)
+ ChildC.ParentSCCs.insert(this);
+ }
+
+ // We return the list of SCCs which were merged so that callers can
+ // invalidate any data they have associated with those SCCs. Note that these
+ // SCCs are no longer in an interesting state (they are totally empty) but
+ // the pointers will remain stable for the life of the graph itself.
+ return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
+}
+
+void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
+ // First remove it from the node.
+ CallerN.removeEdgeInternal(CalleeN.getFunction());
+
+ assert(G->SCCMap.lookup(&CallerN) == this &&
+ "The caller must be a member of this SCC.");
+
+ SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
+ assert(&CalleeC != this &&
+ "This API only supports the rmoval of inter-SCC edges.");
+
+ assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
+ G->LeafSCCs.end() &&
+ "Cannot have a leaf SCC caller with a different SCC callee.");
+
+ bool HasOtherCallToCalleeC = false;
+ bool HasOtherCallOutsideSCC = false;
+ for (Node *N : *this) {
+ for (Node &OtherCalleeN : *N) {
+ SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
+ if (&OtherCalleeC == &CalleeC) {
+ HasOtherCallToCalleeC = true;
+ break;
+ }
+ if (&OtherCalleeC != this)
+ HasOtherCallOutsideSCC = true;
+ }
+ if (HasOtherCallToCalleeC)
+ break;
+ }
+ // Because the SCCs form a DAG, deleting such an edge cannot change the set
+ // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
+ // the caller no longer a parent of the callee. Walk the other call edges
+ // in the caller to tell.
+ if (!HasOtherCallToCalleeC) {
+ bool Removed = CalleeC.ParentSCCs.erase(this);
+ (void)Removed;
+ assert(Removed &&
+ "Did not find the caller SCC in the callee SCC's parent list!");
+
+ // It may orphan an SCC if it is the last edge reaching it, but that does
+ // not violate any invariants of the graph.
+ if (CalleeC.ParentSCCs.empty())
+ DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
+ << " -> " << CalleeN.getFunction().getName()
+ << " edge orphaned the callee's SCC!\n");
+ }
+
+ // It may make the Caller SCC a leaf SCC.
+ if (!HasOtherCallOutsideSCC)
+ G->LeafSCCs.push_back(this);
+}
+
+void LazyCallGraph::SCC::internalDFS(
+ SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
+ SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
+ SmallVectorImpl<SCC *> &ResultSCCs) {
+ Node::iterator I = N->begin();
+ N->LowLink = N->DFSNumber = 1;
+ int NextDFSNumber = 2;
+ for (;;) {
+ assert(N->DFSNumber != 0 && "We should always assign a DFS number "
+ "before processing a node.");
+
+ // We simulate recursion by popping out of the nested loop and continuing.
+ Node::iterator E = N->end();
+ while (I != E) {
+ Node &ChildN = *I;
+ if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
+ // Check if we have reached a node in the new (known connected) set of
+ // this SCC. If so, the entire stack is necessarily in that set and we
+ // can re-start.
+ if (ChildSCC == this) {
+ insert(*N);
+ while (!PendingSCCStack.empty())
+ insert(*PendingSCCStack.pop_back_val());
+ while (!DFSStack.empty())
+ insert(*DFSStack.pop_back_val().first);
+ return;
+ }
+
+ // If this child isn't currently in this SCC, no need to process it.
+ // However, we do need to remove this SCC from its SCC's parent set.
+ ChildSCC->ParentSCCs.erase(this);
+ ++I;
+ continue;
+ }
+
+ if (ChildN.DFSNumber == 0) {
+ // Mark that we should start at this child when next this node is the
+ // top of the stack. We don't start at the next child to ensure this
+ // child's lowlink is reflected.
+ DFSStack.push_back(std::make_pair(N, I));
+
+ // Continue, resetting to the child node.
+ ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
+ N = &ChildN;
+ I = ChildN.begin();
+ E = ChildN.end();
+ continue;
+ }
+
+ // Track the lowest link of the children, if any are still in the stack.
+ // Any child not on the stack will have a LowLink of -1.
+ assert(ChildN.LowLink != 0 &&
+ "Low-link must not be zero with a non-zero DFS number.");
+ if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
+ N->LowLink = ChildN.LowLink;
+ ++I;
+ }
+
+ if (N->LowLink == N->DFSNumber) {
+ ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
+ if (DFSStack.empty())
+ return;
+ } else {
+ // At this point we know that N cannot ever be an SCC root. Its low-link
+ // is not its dfs-number, and we've processed all of its children. It is
+ // just sitting here waiting until some node further down the stack gets
+ // low-link == dfs-number and pops it off as well. Move it to the pending
+ // stack which is pulled into the next SCC to be formed.
+ PendingSCCStack.push_back(N);
+
+ assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
+ }
+
+ N = DFSStack.back().first;
+ I = DFSStack.back().second;
+ DFSStack.pop_back();
+ }
+}
+
+SmallVector<LazyCallGraph::SCC *, 1>
+LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
+ Node &CalleeN) {
+ // First remove it from the node.
+ CallerN.removeEdgeInternal(CalleeN.getFunction());
+
+ // We return a list of the resulting *new* SCCs in postorder.
+ SmallVector<SCC *, 1> ResultSCCs;
+
+ // Direct recursion doesn't impact the SCC graph at all.
+ if (&CallerN == &CalleeN)
+ return ResultSCCs;
+
+ // The worklist is every node in the original SCC.
+ SmallVector<Node *, 1> Worklist;
+ Worklist.swap(Nodes);
+ for (Node *N : Worklist) {
+ // The nodes formerly in this SCC are no longer in any SCC.
+ N->DFSNumber = 0;
+ N->LowLink = 0;
+ G->SCCMap.erase(N);
+ }
+ assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
+ "edge between them that is within the SCC.");
+
+ // The callee can already reach every node in this SCC (by definition). It is
+ // the only node we know will stay inside this SCC. Everything which
+ // transitively reaches Callee will also remain in the SCC. To model this we
+ // incrementally add any chain of nodes which reaches something in the new
+ // node set to the new node set. This short circuits one side of the Tarjan's
+ // walk.
+ insert(CalleeN);
+
+ // We're going to do a full mini-Tarjan's walk using a local stack here.
+ SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
+ SmallVector<Node *, 4> PendingSCCStack;
+ do {
+ Node *N = Worklist.pop_back_val();
+ if (N->DFSNumber == 0)
+ internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
+
+ assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
+ assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
+ } while (!Worklist.empty());
+
+ // Now we need to reconnect the current SCC to the graph.
+ bool IsLeafSCC = true;
+ for (Node *N : Nodes) {
+ for (Node &ChildN : *N) {
+ SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
+ if (&ChildSCC == this)
+ continue;
+ ChildSCC.ParentSCCs.insert(this);
+ IsLeafSCC = false;
+ }
+ }
+#ifndef NDEBUG
+ if (!ResultSCCs.empty())
+ assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
+ "SCCs by removing this edge.");
+ if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
+ [&](SCC *C) { return C == this; }))
+ assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
+ "SCCs before we removed this edge.");
+#endif
+ // If this SCC stopped being a leaf through this edge removal, remove it from
+ // the leaf SCC list.
+ if (!IsLeafSCC && !ResultSCCs.empty())
+ G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
+ G->LeafSCCs.end());
+
+ // Return the new list of SCCs.
+ return ResultSCCs;
+}
+
+void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
+ assert(SCCMap.empty() && DFSStack.empty() &&
+ "This method cannot be called after SCCs have been formed!");
+
+ return CallerN.insertEdgeInternal(Callee);
+}
+
+void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
+ assert(SCCMap.empty() && DFSStack.empty() &&
+ "This method cannot be called after SCCs have been formed!");
+
+ return CallerN.removeEdgeInternal(Callee);
+}
+
+LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
+ return *new (MappedN = BPA.Allocate()) Node(*this, F);
+}
+
+void LazyCallGraph::updateGraphPtrs() {
+ // Process all nodes updating the graph pointers.
+ {
+ SmallVector<Node *, 16> Worklist;
+ for (auto &Entry : EntryNodes)
+ if (Node *EntryN = Entry.dyn_cast<Node *>())
+ Worklist.push_back(EntryN);
+
+ while (!Worklist.empty()) {
+ Node *N = Worklist.pop_back_val();
+ N->G = this;
+ for (auto &Callee : N->Callees)
+ if (!Callee.isNull())
+ if (Node *CalleeN = Callee.dyn_cast<Node *>())
+ Worklist.push_back(CalleeN);
+ }
+ }
+
+ // Process all SCCs updating the graph pointers.
+ {
+ SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
+
+ while (!Worklist.empty()) {
+ SCC *C = Worklist.pop_back_val();
+ C->G = this;
+ Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
+ C->ParentSCCs.end());
+ }
+ }
+}
+
+LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
+ SmallVectorImpl<Node *> &NodeStack) {
+ // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
+ // into it.
+ SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
+
+ while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
+ assert(NodeStack.back()->LowLink >= RootN->LowLink &&
+ "We cannot have a low link in an SCC lower than its root on the "
+ "stack!");
+ NewSCC->insert(*NodeStack.pop_back_val());
+ }
+ NewSCC->insert(*RootN);
+
+ // A final pass over all edges in the SCC (this remains linear as we only
+ // do this once when we build the SCC) to connect it to the parent sets of
+ // its children.
+ bool IsLeafSCC = true;
+ for (Node *SCCN : NewSCC->Nodes)
+ for (Node &SCCChildN : *SCCN) {
+ SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
+ if (&ChildSCC == NewSCC)
+ continue;
+ ChildSCC.ParentSCCs.insert(NewSCC);
+ IsLeafSCC = false;
+ }
+
+ // For the SCCs where we fine no child SCCs, add them to the leaf list.
+ if (IsLeafSCC)
+ LeafSCCs.push_back(NewSCC);
+
+ return NewSCC;
+}
+
+LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
+ Node *N;
+ Node::iterator I;
+ if (!DFSStack.empty()) {
+ N = DFSStack.back().first;
+ I = DFSStack.back().second;
+ DFSStack.pop_back();
+ } else {
+ // If we've handled all candidate entry nodes to the SCC forest, we're done.
+ do {
+ if (SCCEntryNodes.empty())
+ return nullptr;
+
+ N = &get(*SCCEntryNodes.pop_back_val());
+ } while (N->DFSNumber != 0);
+ I = N->begin();
+ N->LowLink = N->DFSNumber = 1;
+ NextDFSNumber = 2;
+ }
+
+ for (;;) {
+ assert(N->DFSNumber != 0 && "We should always assign a DFS number "
+ "before placing a node onto the stack.");
+
+ Node::iterator E = N->end();
+ while (I != E) {
+ Node &ChildN = *I;
+ if (ChildN.DFSNumber == 0) {
+ // Mark that we should start at this child when next this node is the
+ // top of the stack. We don't start at the next child to ensure this
+ // child's lowlink is reflected.
+ DFSStack.push_back(std::make_pair(N, N->begin()));
+
+ // Recurse onto this node via a tail call.
+ assert(!SCCMap.count(&ChildN) &&
+ "Found a node with 0 DFS number but already in an SCC!");
+ ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
+ N = &ChildN;
+ I = ChildN.begin();
+ E = ChildN.end();
+ continue;
+ }
+
+ // Track the lowest link of the children, if any are still in the stack.
+ assert(ChildN.LowLink != 0 &&
+ "Low-link must not be zero with a non-zero DFS number.");
+ if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
+ N->LowLink = ChildN.LowLink;
+ ++I;
+ }
+
+ if (N->LowLink == N->DFSNumber)
+ // Form the new SCC out of the top of the DFS stack.
+ return formSCC(N, PendingSCCStack);
+
+ // At this point we know that N cannot ever be an SCC root. Its low-link
+ // is not its dfs-number, and we've processed all of its children. It is
+ // just sitting here waiting until some node further down the stack gets
+ // low-link == dfs-number and pops it off as well. Move it to the pending
+ // stack which is pulled into the next SCC to be formed.
+ PendingSCCStack.push_back(N);
+
+ assert(!DFSStack.empty() && "We never found a viable root!");
+ N = DFSStack.back().first;
+ I = DFSStack.back().second;
+ DFSStack.pop_back();
+ }
}
char LazyCallGraphAnalysis::PassID;
@@ -154,9 +687,9 @@ LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
// Recurse depth first through the nodes.
- for (LazyCallGraph::Node *ChildN : N)
- if (Printed.insert(ChildN))
- printNodes(OS, *ChildN, Printed);
+ for (LazyCallGraph::Node &ChildN : N)
+ if (Printed.insert(&ChildN))
+ printNodes(OS, ChildN, Printed);
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
@@ -165,6 +698,16 @@ static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
OS << "\n";
}
+static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
+ ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
+ OS << " SCC with " << SCCSize << " functions:\n";
+
+ for (LazyCallGraph::Node *N : SCC)
+ OS << " " << N->getFunction().getName() << "\n";
+
+ OS << "\n";
+}
+
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
ModuleAnalysisManager *AM) {
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
@@ -173,9 +716,13 @@ PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
<< "\n\n";
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
- for (LazyCallGraph::Node *N : G)
- if (Printed.insert(N))
- printNodes(OS, *N, Printed);
+ for (LazyCallGraph::Node &N : G)
+ if (Printed.insert(&N))
+ printNodes(OS, N, Printed);
+
+ for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
+ printSCC(OS, SCC);
return PreservedAnalyses::all();
+
}
diff --git a/lib/Analysis/LazyValueInfo.cpp b/lib/Analysis/LazyValueInfo.cpp
index 3d6c583..9f919f7 100644
--- a/lib/Analysis/LazyValueInfo.cpp
+++ b/lib/Analysis/LazyValueInfo.cpp
@@ -12,7 +12,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "lazy-value-info"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
@@ -34,6 +33,8 @@
using namespace llvm;
using namespace PatternMatch;
+#define DEBUG_TYPE "lazy-value-info"
+
char LazyValueInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
@@ -82,7 +83,7 @@ class LVILatticeVal {
ConstantRange Range;
public:
- LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
+ LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
static LVILatticeVal get(Constant *C) {
LVILatticeVal Res;
@@ -516,7 +517,7 @@ bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
BBLV.markOverdefined();
Instruction *BBI = dyn_cast<Instruction>(Val);
- if (BBI == 0 || BBI->getParent() != BB) {
+ if (!BBI || BBI->getParent() != BB) {
return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
}
@@ -595,7 +596,7 @@ bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
Value *UnderlyingVal = GetUnderlyingObject(Val);
// If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
// inside InstructionDereferencesPointer either.
- if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, NULL, 1)) {
+ if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, nullptr, 1)) {
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE; ++BI) {
if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
@@ -813,7 +814,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
// Recognize the range checking idiom that InstCombine produces.
// (X-C1) u< C2 --> [C1, C1+C2)
- ConstantInt *NegOffset = 0;
+ ConstantInt *NegOffset = nullptr;
if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
match(ICI->getOperand(0), m_Add(m_Specific(Val),
m_ConstantInt(NegOffset)));
@@ -1014,7 +1015,7 @@ bool LazyValueInfo::runOnFunction(Function &F) {
getCache(PImpl).clear();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfo>();
// Fully lazy.
@@ -1030,7 +1031,7 @@ void LazyValueInfo::releaseMemory() {
// If the cache was allocated, free it.
if (PImpl) {
delete &getCache(PImpl);
- PImpl = 0;
+ PImpl = nullptr;
}
}
@@ -1044,7 +1045,7 @@ Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
- return 0;
+ return nullptr;
}
/// getConstantOnEdge - Determine whether the specified value is known to be a
@@ -1060,7 +1061,7 @@ Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
- return 0;
+ return nullptr;
}
/// getPredicateOnEdge - Determine whether the specified value comparison
@@ -1072,7 +1073,7 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
// If we know the value is a constant, evaluate the conditional.
- Constant *Res = 0;
+ Constant *Res = nullptr;
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
TLI);
diff --git a/lib/Analysis/LibCallAliasAnalysis.cpp b/lib/Analysis/LibCallAliasAnalysis.cpp
index fefa516..016f8c5 100644
--- a/lib/Analysis/LibCallAliasAnalysis.cpp
+++ b/lib/Analysis/LibCallAliasAnalysis.cpp
@@ -54,7 +54,7 @@ LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
// if we have detailed info and if 'P' is any of the locations we know
// about.
const LibCallFunctionInfo::LocationMRInfo *Details = FI->LocationDetails;
- if (Details == 0)
+ if (Details == nullptr)
return MRInfo;
// If the details array is of the 'DoesNot' kind, we only know something if
diff --git a/lib/Analysis/LibCallSemantics.cpp b/lib/Analysis/LibCallSemantics.cpp
index 0592ccb..7d4e254 100644
--- a/lib/Analysis/LibCallSemantics.cpp
+++ b/lib/Analysis/LibCallSemantics.cpp
@@ -46,11 +46,11 @@ LibCallInfo::getFunctionInfo(const Function *F) const {
/// If this is the first time we are querying for this info, lazily construct
/// the StringMap to index it.
- if (Map == 0) {
+ if (!Map) {
Impl = Map = new StringMap<const LibCallFunctionInfo*>();
const LibCallFunctionInfo *Array = getFunctionInfoArray();
- if (Array == 0) return 0;
+ if (!Array) return nullptr;
// We now have the array of entries. Populate the StringMap.
for (unsigned i = 0; Array[i].Name; ++i)
diff --git a/lib/Analysis/Lint.cpp b/lib/Analysis/Lint.cpp
index b2182b1..b14f329 100644
--- a/lib/Analysis/Lint.cpp
+++ b/lib/Analysis/Lint.cpp
@@ -137,8 +137,8 @@ namespace {
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const Twine &Message,
- const Value *V1 = 0, const Value *V2 = 0,
- const Value *V3 = 0, const Value *V4 = 0) {
+ const Value *V1 = nullptr, const Value *V2 = nullptr,
+ const Value *V3 = nullptr, const Value *V4 = nullptr) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
@@ -177,7 +177,7 @@ bool Lint::runOnFunction(Function &F) {
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfo>();
visit(F);
dbgs() << MessagesStr.str();
@@ -199,7 +199,7 @@ void Lint::visitCallSite(CallSite CS) {
Value *Callee = CS.getCalledValue();
visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
- 0, 0, MemRef::Callee);
+ 0, nullptr, MemRef::Callee);
if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
Assert1(CS.getCallingConv() == F->getCallingConv(),
@@ -275,10 +275,10 @@ void Lint::visitCallSite(CallSite CS) {
MemCpyInst *MCI = cast<MemCpyInst>(&I);
// TODO: If the size is known, use it.
visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
- MCI->getAlignment(), 0,
+ MCI->getAlignment(), nullptr,
MemRef::Write);
visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
- MCI->getAlignment(), 0,
+ MCI->getAlignment(), nullptr,
MemRef::Read);
// Check that the memcpy arguments don't overlap. The AliasAnalysis API
@@ -299,10 +299,10 @@ void Lint::visitCallSite(CallSite CS) {
MemMoveInst *MMI = cast<MemMoveInst>(&I);
// TODO: If the size is known, use it.
visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
- MMI->getAlignment(), 0,
+ MMI->getAlignment(), nullptr,
MemRef::Write);
visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
- MMI->getAlignment(), 0,
+ MMI->getAlignment(), nullptr,
MemRef::Read);
break;
}
@@ -310,7 +310,7 @@ void Lint::visitCallSite(CallSite CS) {
MemSetInst *MSI = cast<MemSetInst>(&I);
// TODO: If the size is known, use it.
visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
- MSI->getAlignment(), 0,
+ MSI->getAlignment(), nullptr,
MemRef::Write);
break;
}
@@ -321,17 +321,17 @@ void Lint::visitCallSite(CallSite CS) {
&I);
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
- 0, 0, MemRef::Read | MemRef::Write);
+ 0, nullptr, MemRef::Read | MemRef::Write);
break;
case Intrinsic::vacopy:
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
- 0, 0, MemRef::Write);
+ 0, nullptr, MemRef::Write);
visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
- 0, 0, MemRef::Read);
+ 0, nullptr, MemRef::Read);
break;
case Intrinsic::vaend:
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
- 0, 0, MemRef::Read | MemRef::Write);
+ 0, nullptr, MemRef::Read | MemRef::Write);
break;
case Intrinsic::stackrestore:
@@ -339,7 +339,7 @@ void Lint::visitCallSite(CallSite CS) {
// stack pointer, which the compiler may read from or write to
// at any time, so check it for both readability and writeability.
visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
- 0, 0, MemRef::Read | MemRef::Write);
+ 0, nullptr, MemRef::Read | MemRef::Write);
break;
}
}
@@ -513,7 +513,7 @@ static bool isZero(Value *V, const DataLayout *DL) {
if (!VecTy) {
unsigned BitWidth = V->getType()->getIntegerBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, DL);
+ computeKnownBits(V, KnownZero, KnownOne, DL);
return KnownZero.isAllOnesValue();
}
@@ -534,7 +534,7 @@ static bool isZero(Value *V, const DataLayout *DL) {
return true;
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(Elem, KnownZero, KnownOne, DL);
+ computeKnownBits(Elem, KnownZero, KnownOne, DL);
if (KnownZero.isAllOnesValue())
return true;
}
@@ -572,13 +572,13 @@ void Lint::visitAllocaInst(AllocaInst &I) {
}
void Lint::visitVAArgInst(VAArgInst &I) {
- visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
- MemRef::Read | MemRef::Write);
+ visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
+ nullptr, MemRef::Read | MemRef::Write);
}
void Lint::visitIndirectBrInst(IndirectBrInst &I) {
- visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
- MemRef::Branchee);
+ visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
+ nullptr, MemRef::Branchee);
Assert1(I.getNumDestinations() != 0,
"Undefined behavior: indirectbr with no destinations", &I);
diff --git a/lib/Analysis/Loads.cpp b/lib/Analysis/Loads.cpp
index 0902a39..005d309 100644
--- a/lib/Analysis/Loads.cpp
+++ b/lib/Analysis/Loads.cpp
@@ -62,7 +62,7 @@ bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
if (ByteOffset < 0) // out of bounds
return false;
- Type *BaseType = 0;
+ Type *BaseType = nullptr;
unsigned BaseAlign = 0;
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
// An alloca is safe to load from as load as it is suitably aligned.
@@ -161,7 +161,7 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
ScanFrom++;
// Don't scan huge blocks.
- if (MaxInstsToScan-- == 0) return 0;
+ if (MaxInstsToScan-- == 0) return nullptr;
--ScanFrom;
// If this is a load of Ptr, the loaded value is available.
@@ -198,7 +198,7 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
// Otherwise the store that may or may not alias the pointer, bail out.
++ScanFrom;
- return 0;
+ return nullptr;
}
// If this is some other instruction that may clobber Ptr, bail out.
@@ -211,11 +211,11 @@ Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
// May modify the pointer, bail out.
++ScanFrom;
- return 0;
+ return nullptr;
}
}
// Got to the start of the block, we didn't find it, but are done for this
// block.
- return 0;
+ return nullptr;
}
diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp
index b38672e..46c0eaa 100644
--- a/lib/Analysis/LoopInfo.cpp
+++ b/lib/Analysis/LoopInfo.cpp
@@ -141,21 +141,21 @@ bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
PHINode *Loop::getCanonicalInductionVariable() const {
BasicBlock *H = getHeader();
- BasicBlock *Incoming = 0, *Backedge = 0;
+ BasicBlock *Incoming = nullptr, *Backedge = nullptr;
pred_iterator PI = pred_begin(H);
assert(PI != pred_end(H) &&
"Loop must have at least one backedge!");
Backedge = *PI++;
- if (PI == pred_end(H)) return 0; // dead loop
+ if (PI == pred_end(H)) return nullptr; // dead loop
Incoming = *PI++;
- if (PI != pred_end(H)) return 0; // multiple backedges?
+ if (PI != pred_end(H)) return nullptr; // multiple backedges?
if (contains(Incoming)) {
if (contains(Backedge))
- return 0;
+ return nullptr;
std::swap(Incoming, Backedge);
} else if (!contains(Backedge))
- return 0;
+ return nullptr;
// Loop over all of the PHI nodes, looking for a canonical indvar.
for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
@@ -171,7 +171,7 @@ PHINode *Loop::getCanonicalInductionVariable() const {
if (CI->equalsInt(1))
return PN;
}
- return 0;
+ return nullptr;
}
/// isLCSSAForm - Return true if the Loop is in LCSSA form
@@ -232,7 +232,7 @@ bool Loop::isSafeToClone() const {
}
MDNode *Loop::getLoopID() const {
- MDNode *LoopID = 0;
+ MDNode *LoopID = nullptr;
if (isLoopSimplifyForm()) {
LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
} else {
@@ -241,7 +241,7 @@ MDNode *Loop::getLoopID() const {
BasicBlock *H = getHeader();
for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
TerminatorInst *TI = (*I)->getTerminator();
- MDNode *MD = 0;
+ MDNode *MD = nullptr;
// Check if this terminator branches to the loop header.
for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
@@ -251,17 +251,17 @@ MDNode *Loop::getLoopID() const {
}
}
if (!MD)
- return 0;
+ return nullptr;
if (!LoopID)
LoopID = MD;
else if (MD != LoopID)
- return 0;
+ return nullptr;
}
}
if (!LoopID || LoopID->getNumOperands() == 0 ||
LoopID->getOperand(0) != LoopID)
- return 0;
+ return nullptr;
return LoopID;
}
@@ -402,7 +402,7 @@ BasicBlock *Loop::getUniqueExitBlock() const {
getUniqueExitBlocks(UniqueExitBlocks);
if (UniqueExitBlocks.size() == 1)
return UniqueExitBlocks[0];
- return 0;
+ return nullptr;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
@@ -548,7 +548,7 @@ Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
// is considered uninitialized.
Loop *NearLoop = BBLoop;
- Loop *Subloop = 0;
+ Loop *Subloop = nullptr;
if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
Subloop = NearLoop;
// Find the subloop ancestor that is directly contained within Unloop.
@@ -564,7 +564,7 @@ Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
succ_iterator I = succ_begin(BB), E = succ_end(BB);
if (I == E) {
assert(!Subloop && "subloop blocks must have a successor");
- NearLoop = 0; // unloop blocks may now exit the function.
+ NearLoop = nullptr; // unloop blocks may now exit the function.
}
for (; I != E; ++I) {
if (*I == BB)
@@ -637,7 +637,7 @@ void LoopInfo::updateUnloop(Loop *Unloop) {
// Blocks no longer have a parent but are still referenced by Unloop until
// the Unloop object is deleted.
- LI.changeLoopFor(*I, 0);
+ LI.changeLoopFor(*I, nullptr);
}
// Remove the loop from the top-level LoopInfo object.
diff --git a/lib/Analysis/LoopPass.cpp b/lib/Analysis/LoopPass.cpp
index 38e753f..8df18e7 100644
--- a/lib/Analysis/LoopPass.cpp
+++ b/lib/Analysis/LoopPass.cpp
@@ -15,10 +15,13 @@
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
+#define DEBUG_TYPE "loop-pass-manager"
+
namespace {
/// PrintLoopPass - Print a Function corresponding to a Loop.
@@ -61,8 +64,8 @@ LPPassManager::LPPassManager()
: FunctionPass(ID), PMDataManager() {
skipThisLoop = false;
redoThisLoop = false;
- LI = NULL;
- CurrentLoop = NULL;
+ LI = nullptr;
+ CurrentLoop = nullptr;
}
/// Delete loop from the loop queue and loop hierarchy (LoopInfo).
@@ -251,6 +254,8 @@ bool LPPassManager::runOnFunction(Function &F) {
// Then call the regular verifyAnalysis functions.
verifyPreservedAnalysis(P);
+
+ F.getContext().yield();
}
removeNotPreservedAnalysis(P);
diff --git a/lib/Analysis/MemDepPrinter.cpp b/lib/Analysis/MemDepPrinter.cpp
index bc1dc69..10da3d5 100644
--- a/lib/Analysis/MemDepPrinter.cpp
+++ b/lib/Analysis/MemDepPrinter.cpp
@@ -46,7 +46,7 @@ namespace {
bool runOnFunction(Function &F) override;
- void print(raw_ostream &OS, const Module * = 0) const override;
+ void print(raw_ostream &OS, const Module * = nullptr) const override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredTransitive<AliasAnalysis>();
@@ -56,7 +56,7 @@ namespace {
void releaseMemory() override {
Deps.clear();
- F = 0;
+ F = nullptr;
}
private:
@@ -106,7 +106,7 @@ bool MemDepPrinter::runOnFunction(Function &F) {
MemDepResult Res = MDA.getDependency(Inst);
if (!Res.isNonLocal()) {
Deps[Inst].insert(std::make_pair(getInstTypePair(Res),
- static_cast<BasicBlock *>(0)));
+ static_cast<BasicBlock *>(nullptr)));
} else if (CallSite CS = cast<Value>(Inst)) {
const MemoryDependenceAnalysis::NonLocalDepInfo &NLDI =
MDA.getNonLocalCallDependency(CS);
@@ -122,8 +122,8 @@ bool MemDepPrinter::runOnFunction(Function &F) {
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
if (!LI->isUnordered()) {
// FIXME: Handle atomic/volatile loads.
- Deps[Inst].insert(std::make_pair(getInstTypePair(0, Unknown),
- static_cast<BasicBlock *>(0)));
+ Deps[Inst].insert(std::make_pair(getInstTypePair(nullptr, Unknown),
+ static_cast<BasicBlock *>(nullptr)));
continue;
}
AliasAnalysis::Location Loc = AA.getLocation(LI);
@@ -131,8 +131,8 @@ bool MemDepPrinter::runOnFunction(Function &F) {
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (!SI->isUnordered()) {
// FIXME: Handle atomic/volatile stores.
- Deps[Inst].insert(std::make_pair(getInstTypePair(0, Unknown),
- static_cast<BasicBlock *>(0)));
+ Deps[Inst].insert(std::make_pair(getInstTypePair(nullptr, Unknown),
+ static_cast<BasicBlock *>(nullptr)));
continue;
}
AliasAnalysis::Location Loc = AA.getLocation(SI);
diff --git a/lib/Analysis/MemoryBuiltins.cpp b/lib/Analysis/MemoryBuiltins.cpp
index 1dba323..64d339f 100644
--- a/lib/Analysis/MemoryBuiltins.cpp
+++ b/lib/Analysis/MemoryBuiltins.cpp
@@ -12,7 +12,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "memory-builtins"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
@@ -30,6 +29,8 @@
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
+#define DEBUG_TYPE "memory-builtins"
+
enum AllocType {
OpNewLike = 1<<0, // allocates; never returns null
MallocLike = 1<<1 | OpNewLike, // allocates; may return null
@@ -76,14 +77,14 @@ static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
CallSite CS(const_cast<Value*>(V));
if (!CS.getInstruction())
- return 0;
+ return nullptr;
if (CS.isNoBuiltin())
- return 0;
+ return nullptr;
Function *Callee = CS.getCalledFunction();
if (!Callee || !Callee->isDeclaration())
- return 0;
+ return nullptr;
return Callee;
}
@@ -94,17 +95,17 @@ static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
bool LookThroughBitCast = false) {
// Skip intrinsics
if (isa<IntrinsicInst>(V))
- return 0;
+ return nullptr;
Function *Callee = getCalledFunction(V, LookThroughBitCast);
if (!Callee)
- return 0;
+ return nullptr;
// Make sure that the function is available.
StringRef FnName = Callee->getName();
LibFunc::Func TLIFn;
if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
- return 0;
+ return nullptr;
unsigned i = 0;
bool found = false;
@@ -115,11 +116,11 @@ static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
}
}
if (!found)
- return 0;
+ return nullptr;
const AllocFnsTy *FnData = &AllocationFnData[i];
if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
- return 0;
+ return nullptr;
// Check function prototype.
int FstParam = FnData->FstParam;
@@ -135,7 +136,7 @@ static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
FTy->getParamType(SndParam)->isIntegerTy(32) ||
FTy->getParamType(SndParam)->isIntegerTy(64)))
return FnData;
- return 0;
+ return nullptr;
}
static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
@@ -202,19 +203,19 @@ bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
/// ignore InvokeInst here.
const CallInst *llvm::extractMallocCall(const Value *I,
const TargetLibraryInfo *TLI) {
- return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : 0;
+ return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
}
static Value *computeArraySize(const CallInst *CI, const DataLayout *DL,
const TargetLibraryInfo *TLI,
bool LookThroughSExt = false) {
if (!CI)
- return 0;
+ return nullptr;
// The size of the malloc's result type must be known to determine array size.
Type *T = getMallocAllocatedType(CI, TLI);
if (!T || !T->isSized() || !DL)
- return 0;
+ return nullptr;
unsigned ElementSize = DL->getTypeAllocSize(T);
if (StructType *ST = dyn_cast<StructType>(T))
@@ -223,12 +224,12 @@ static Value *computeArraySize(const CallInst *CI, const DataLayout *DL,
// If malloc call's arg can be determined to be a multiple of ElementSize,
// return the multiple. Otherwise, return NULL.
Value *MallocArg = CI->getArgOperand(0);
- Value *Multiple = 0;
+ Value *Multiple = nullptr;
if (ComputeMultiple(MallocArg, ElementSize, Multiple,
LookThroughSExt))
return Multiple;
- return 0;
+ return nullptr;
}
/// isArrayMalloc - Returns the corresponding CallInst if the instruction
@@ -245,7 +246,7 @@ const CallInst *llvm::isArrayMalloc(const Value *I,
return CI;
// CI is a non-array malloc or we can't figure out that it is an array malloc.
- return 0;
+ return nullptr;
}
/// getMallocType - Returns the PointerType resulting from the malloc call.
@@ -257,7 +258,7 @@ PointerType *llvm::getMallocType(const CallInst *CI,
const TargetLibraryInfo *TLI) {
assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
- PointerType *MallocType = 0;
+ PointerType *MallocType = nullptr;
unsigned NumOfBitCastUses = 0;
// Determine if CallInst has a bitcast use.
@@ -277,7 +278,7 @@ PointerType *llvm::getMallocType(const CallInst *CI,
return cast<PointerType>(CI->getType());
// Type could not be determined.
- return 0;
+ return nullptr;
}
/// getMallocAllocatedType - Returns the Type allocated by malloc call.
@@ -288,7 +289,7 @@ PointerType *llvm::getMallocType(const CallInst *CI,
Type *llvm::getMallocAllocatedType(const CallInst *CI,
const TargetLibraryInfo *TLI) {
PointerType *PT = getMallocType(CI, TLI);
- return PT ? PT->getElementType() : 0;
+ return PT ? PT->getElementType() : nullptr;
}
/// getMallocArraySize - Returns the array size of a malloc call. If the
@@ -308,7 +309,7 @@ Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *DL,
/// is a calloc call.
const CallInst *llvm::extractCallocCall(const Value *I,
const TargetLibraryInfo *TLI) {
- return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : 0;
+ return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
}
@@ -316,15 +317,15 @@ const CallInst *llvm::extractCallocCall(const Value *I,
const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
const CallInst *CI = dyn_cast<CallInst>(I);
if (!CI || isa<IntrinsicInst>(CI))
- return 0;
+ return nullptr;
Function *Callee = CI->getCalledFunction();
- if (Callee == 0 || !Callee->isDeclaration())
- return 0;
+ if (Callee == nullptr || !Callee->isDeclaration())
+ return nullptr;
StringRef FnName = Callee->getName();
LibFunc::Func TLIFn;
if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
- return 0;
+ return nullptr;
unsigned ExpectedNumParams;
if (TLIFn == LibFunc::free ||
@@ -335,18 +336,18 @@ const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow)
ExpectedNumParams = 2;
else
- return 0;
+ return nullptr;
// Check free prototype.
// FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
// attribute will exist.
FunctionType *FTy = Callee->getFunctionType();
if (!FTy->getReturnType()->isVoidTy())
- return 0;
+ return nullptr;
if (FTy->getNumParams() != ExpectedNumParams)
- return 0;
+ return nullptr;
if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
- return 0;
+ return nullptr;
return CI;
}
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp
index 015ded1..9eaf109 100644
--- a/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -14,7 +14,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
@@ -33,6 +32,8 @@
#include "llvm/Support/Debug.h"
using namespace llvm;
+#define DEBUG_TYPE "memdep"
+
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
@@ -88,10 +89,10 @@ void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
AA = &getAnalysis<AliasAnalysis>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
DominatorTreeWrapperPass *DTWP =
getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- DT = DTWP ? &DTWP->getDomTree() : 0;
+ DT = DTWP ? &DTWP->getDomTree() : nullptr;
if (!PredCache)
PredCache.reset(new PredIteratorCache());
return false;
@@ -261,10 +262,10 @@ isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
const LoadInst *LI,
const DataLayout *DL) {
// If we have no target data, we can't do this.
- if (DL == 0) return false;
+ if (!DL) return false;
// If we haven't already computed the base/offset of MemLoc, do so now.
- if (MemLocBase == 0)
+ if (!MemLocBase)
MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
unsigned Size = MemoryDependenceAnalysis::
@@ -362,13 +363,13 @@ getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
BasicBlock::iterator ScanIt, BasicBlock *BB,
Instruction *QueryInst) {
- const Value *MemLocBase = 0;
+ const Value *MemLocBase = nullptr;
int64_t MemLocOffset = 0;
unsigned Limit = BlockScanLimit;
bool isInvariantLoad = false;
if (isLoad && QueryInst) {
LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
- if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0)
+ if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
isInvariantLoad = true;
}
@@ -696,7 +697,7 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
--Entry;
- NonLocalDepEntry *ExistingResult = 0;
+ NonLocalDepEntry *ExistingResult = nullptr;
if (Entry != Cache.begin()+NumSortedEntries &&
Entry->getBB() == DirtyBB) {
// If we already have an entry, and if it isn't already dirty, the block
@@ -807,7 +808,7 @@ GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
--Entry;
- NonLocalDepEntry *ExistingResult = 0;
+ NonLocalDepEntry *ExistingResult = nullptr;
if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
ExistingResult = &*Entry;
@@ -960,7 +961,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
if (CacheInfo->TBAATag != Loc.TBAATag) {
if (CacheInfo->TBAATag) {
CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->TBAATag = 0;
+ CacheInfo->TBAATag = nullptr;
for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
if (Instruction *Inst = DI->getResult().getInst())
@@ -1116,7 +1117,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
NumSortedEntries = Cache->size();
}
- Cache = 0;
+ Cache = nullptr;
PredList.clear();
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
@@ -1126,7 +1127,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
// Get the PHI translated pointer in this predecessor. This can fail if
// not translatable, in which case the getAddr() returns null.
PHITransAddr &PredPointer = PredList.back().second;
- PredPointer.PHITranslateValue(BB, Pred, 0);
+ PredPointer.PHITranslateValue(BB, Pred, nullptr);
Value *PredPtrVal = PredPointer.getAddr();
@@ -1175,7 +1176,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
// predecessor, then we have to assume that the pointer is clobbered in
// that predecessor. We can still do PRE of the load, which would insert
// a computation of the pointer in this predecessor.
- if (PredPtrVal == 0)
+ if (!PredPtrVal)
CanTranslate = false;
// FIXME: it is entirely possible that PHI translating will end up with
@@ -1224,7 +1225,7 @@ getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
// for the given block. It assumes that we haven't modified any of
// our datastructures while processing the current block.
- if (Cache == 0) {
+ if (!Cache) {
// Refresh the CacheInfo/Cache pointer if it got invalidated.
CacheInfo = &NonLocalPointerDeps[CacheKey];
Cache = &CacheInfo->NonLocalDeps;
@@ -1279,7 +1280,7 @@ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
Instruction *Target = PInfo[i].getResult().getInst();
- if (Target == 0) continue; // Ignore non-local dep results.
+ if (!Target) continue; // Ignore non-local dep results.
assert(Target->getParent() == PInfo[i].getBB());
// Eliminating the dirty entry from 'Cache', so update the reverse info.
diff --git a/lib/Analysis/NoAliasAnalysis.cpp b/lib/Analysis/NoAliasAnalysis.cpp
index 0c119d6..4e11e50 100644
--- a/lib/Analysis/NoAliasAnalysis.cpp
+++ b/lib/Analysis/NoAliasAnalysis.cpp
@@ -36,7 +36,7 @@ namespace {
// Note: NoAA does not call InitializeAliasAnalysis because it's
// special and does not support chaining.
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
}
AliasResult alias(const Location &LocA, const Location &LocB) override {
diff --git a/lib/Analysis/PHITransAddr.cpp b/lib/Analysis/PHITransAddr.cpp
index ad3685a..bfe8642 100644
--- a/lib/Analysis/PHITransAddr.cpp
+++ b/lib/Analysis/PHITransAddr.cpp
@@ -43,7 +43,7 @@ static bool CanPHITrans(Instruction *Inst) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void PHITransAddr::dump() const {
- if (Addr == 0) {
+ if (!Addr) {
dbgs() << "PHITransAddr: null\n";
return;
}
@@ -58,7 +58,7 @@ static bool VerifySubExpr(Value *Expr,
SmallVectorImpl<Instruction*> &InstInputs) {
// If this is a non-instruction value, there is nothing to do.
Instruction *I = dyn_cast<Instruction>(Expr);
- if (I == 0) return true;
+ if (!I) return true;
// If it's an instruction, it is either in Tmp or its operands recursively
// are.
@@ -90,7 +90,7 @@ static bool VerifySubExpr(Value *Expr,
/// structure is valid, it returns true. If invalid, it prints errors and
/// returns false.
bool PHITransAddr::Verify() const {
- if (Addr == 0) return true;
+ if (!Addr) return true;
SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
@@ -116,14 +116,14 @@ bool PHITransAddr::IsPotentiallyPHITranslatable() const {
// If the input value is not an instruction, or if it is not defined in CurBB,
// then we don't need to phi translate it.
Instruction *Inst = dyn_cast<Instruction>(Addr);
- return Inst == 0 || CanPHITrans(Inst);
+ return !Inst || CanPHITrans(Inst);
}
static void RemoveInstInputs(Value *V,
SmallVectorImpl<Instruction*> &InstInputs) {
Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return;
+ if (!I) return;
// If the instruction is in the InstInputs list, remove it.
SmallVectorImpl<Instruction*>::iterator Entry =
@@ -147,7 +147,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
const DominatorTree *DT) {
// If this is a non-instruction value, it can't require PHI translation.
Instruction *Inst = dyn_cast<Instruction>(V);
- if (Inst == 0) return V;
+ if (!Inst) return V;
// Determine whether 'Inst' is an input to our PHI translatable expression.
bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
@@ -173,7 +173,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
// If this is a non-phi value, and it is analyzable, we can incorporate it
// into the expression by making all instruction operands be inputs.
if (!CanPHITrans(Inst))
- return 0;
+ return nullptr;
// All instruction operands are now inputs (and of course, they may also be
// defined in this block, so they may need to be phi translated themselves.
@@ -187,9 +187,9 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
// operands need to be phi translated, and if so, reconstruct it.
if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
- if (!isSafeToSpeculativelyExecute(Cast)) return 0;
+ if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
- if (PHIIn == 0) return 0;
+ if (!PHIIn) return nullptr;
if (PHIIn == Cast->getOperand(0))
return Cast;
@@ -209,7 +209,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
(!DT || DT->dominates(CastI->getParent(), PredBB)))
return CastI;
}
- return 0;
+ return nullptr;
}
// Handle getelementptr with at least one PHI translatable operand.
@@ -218,7 +218,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
bool AnyChanged = false;
for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
- if (GEPOp == 0) return 0;
+ if (!GEPOp) return nullptr;
AnyChanged |= GEPOp != GEP->getOperand(i);
GEPOps.push_back(GEPOp);
@@ -253,7 +253,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
return GEPI;
}
}
- return 0;
+ return nullptr;
}
// Handle add with a constant RHS.
@@ -265,7 +265,7 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
- if (LHS == 0) return 0;
+ if (!LHS) return nullptr;
// If the PHI translated LHS is an add of a constant, fold the immediates.
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
@@ -304,11 +304,11 @@ Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
return BO;
}
- return 0;
+ return nullptr;
}
// Otherwise, we failed.
- return 0;
+ return nullptr;
}
@@ -326,10 +326,10 @@ bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
// Make sure the value is live in the predecessor.
if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
if (!DT->dominates(Inst->getParent(), PredBB))
- Addr = 0;
+ Addr = nullptr;
}
- return Addr == 0;
+ return Addr == nullptr;
}
/// PHITranslateWithInsertion - PHI translate this value into the specified
@@ -354,7 +354,7 @@ PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
// If not, destroy any intermediate instructions inserted.
while (NewInsts.size() != NISize)
NewInsts.pop_back_val()->eraseFromParent();
- return 0;
+ return nullptr;
}
@@ -379,10 +379,10 @@ InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
// Handle cast of PHI translatable value.
if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
- if (!isSafeToSpeculativelyExecute(Cast)) return 0;
+ if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
CurBB, PredBB, DT, NewInsts);
- if (OpVal == 0) return 0;
+ if (!OpVal) return nullptr;
// Otherwise insert a cast at the end of PredBB.
CastInst *New = CastInst::Create(Cast->getOpcode(),
@@ -400,7 +400,7 @@ InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
CurBB, PredBB, DT, NewInsts);
- if (OpVal == 0) return 0;
+ if (!OpVal) return nullptr;
GEPOps.push_back(OpVal);
}
@@ -436,5 +436,5 @@ InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
}
#endif
- return 0;
+ return nullptr;
}
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
index f23833a..6d92909 100644
--- a/lib/Analysis/PostDominators.cpp
+++ b/lib/Analysis/PostDominators.cpp
@@ -11,8 +11,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "postdomtree"
-
#include "llvm/Analysis/PostDominators.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
@@ -22,6 +20,8 @@
#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace llvm;
+#define DEBUG_TYPE "postdomtree"
+
//===----------------------------------------------------------------------===//
// PostDominatorTree Implementation
//===----------------------------------------------------------------------===//
diff --git a/lib/Analysis/RegionInfo.cpp b/lib/Analysis/RegionInfo.cpp
index f4da598..7f88ae1 100644
--- a/lib/Analysis/RegionInfo.cpp
+++ b/lib/Analysis/RegionInfo.cpp
@@ -9,7 +9,6 @@
// Detects single entry single exit regions in the control flow graph.
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "region"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
@@ -19,10 +18,13 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
+#include <iterator>
#include <set>
using namespace llvm;
+#define DEBUG_TYPE "region"
+
// Always verify if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyRegionInfo = true;
@@ -62,9 +64,6 @@ Region::~Region() {
// Only clean the cache for this Region. Caches of child Regions will be
// cleaned when the child Regions are deleted.
BBNodeMap.clear();
-
- for (iterator I = begin(), E = end(); I != E; ++I)
- delete *I;
}
void Region::replaceEntry(BasicBlock *BB) {
@@ -88,7 +87,7 @@ void Region::replaceEntryRecursive(BasicBlock *NewEntry) {
R->replaceEntry(NewEntry);
for (Region::const_iterator RI = R->begin(), RE = R->end(); RI != RE; ++RI)
if ((*RI)->getEntry() == OldEntry)
- RegionQueue.push_back(*RI);
+ RegionQueue.push_back(RI->get());
}
}
@@ -104,7 +103,7 @@ void Region::replaceExitRecursive(BasicBlock *NewExit) {
R->replaceExit(NewExit);
for (Region::const_iterator RI = R->begin(), RE = R->end(); RI != RE; ++RI)
if ((*RI)->getExit() == OldExit)
- RegionQueue.push_back(*RI);
+ RegionQueue.push_back(RI->get());
}
}
@@ -128,8 +127,8 @@ bool Region::contains(const Loop *L) const {
// BBs that are not part of any loop are element of the Loop
// described by the NULL pointer. This loop is not part of any region,
// except if the region describes the whole function.
- if (L == 0)
- return getExit() == 0;
+ if (!L)
+ return getExit() == nullptr;
if (!contains(L->getHeader()))
return false;
@@ -147,7 +146,7 @@ bool Region::contains(const Loop *L) const {
Loop *Region::outermostLoopInRegion(Loop *L) const {
if (!contains(L))
- return 0;
+ return nullptr;
while (L && contains(L->getParentLoop())) {
L = L->getParentLoop();
@@ -165,14 +164,14 @@ Loop *Region::outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const {
BasicBlock *Region::getEnteringBlock() const {
BasicBlock *entry = getEntry();
BasicBlock *Pred;
- BasicBlock *enteringBlock = 0;
+ BasicBlock *enteringBlock = nullptr;
for (pred_iterator PI = pred_begin(entry), PE = pred_end(entry); PI != PE;
++PI) {
Pred = *PI;
if (DT->getNode(Pred) && !contains(Pred)) {
if (enteringBlock)
- return 0;
+ return nullptr;
enteringBlock = Pred;
}
@@ -184,17 +183,17 @@ BasicBlock *Region::getEnteringBlock() const {
BasicBlock *Region::getExitingBlock() const {
BasicBlock *exit = getExit();
BasicBlock *Pred;
- BasicBlock *exitingBlock = 0;
+ BasicBlock *exitingBlock = nullptr;
if (!exit)
- return 0;
+ return nullptr;
for (pred_iterator PI = pred_begin(exit), PE = pred_end(exit); PI != PE;
++PI) {
Pred = *PI;
if (contains(Pred)) {
if (exitingBlock)
- return 0;
+ return nullptr;
exitingBlock = Pred;
}
@@ -295,7 +294,7 @@ Region* Region::getSubRegionNode(BasicBlock *BB) const {
Region *R = RI->getRegionFor(BB);
if (!R || R == this)
- return 0;
+ return nullptr;
// If we pass the BB out of this region, that means our code is broken.
assert(contains(R) && "BB not in current region!");
@@ -304,7 +303,7 @@ Region* Region::getSubRegionNode(BasicBlock *BB) const {
R = R->getParent();
if (R->getEntry() != BB)
- return 0;
+ return nullptr;
return R;
}
@@ -333,18 +332,20 @@ RegionNode* Region::getNode(BasicBlock *BB) const {
void Region::transferChildrenTo(Region *To) {
for (iterator I = begin(), E = end(); I != E; ++I) {
(*I)->parent = To;
- To->children.push_back(*I);
+ To->children.push_back(std::move(*I));
}
children.clear();
}
void Region::addSubRegion(Region *SubRegion, bool moveChildren) {
- assert(SubRegion->parent == 0 && "SubRegion already has a parent!");
- assert(std::find(begin(), end(), SubRegion) == children.end()
- && "Subregion already exists!");
+ assert(!SubRegion->parent && "SubRegion already has a parent!");
+ assert(std::find_if(begin(), end(), [&](const std::unique_ptr<Region> &R) {
+ return R.get() == SubRegion;
+ }) == children.end() &&
+ "Subregion already exists!");
SubRegion->parent = this;
- children.push_back(SubRegion);
+ children.push_back(std::unique_ptr<Region>(SubRegion));
if (!moveChildren)
return;
@@ -360,23 +361,27 @@ void Region::addSubRegion(Region *SubRegion, bool moveChildren) {
RI->setRegionFor(BB, SubRegion);
}
- std::vector<Region*> Keep;
+ std::vector<std::unique_ptr<Region>> Keep;
for (iterator I = begin(), E = end(); I != E; ++I)
- if (SubRegion->contains(*I) && *I != SubRegion) {
- SubRegion->children.push_back(*I);
+ if (SubRegion->contains(I->get()) && I->get() != SubRegion) {
(*I)->parent = SubRegion;
+ SubRegion->children.push_back(std::move(*I));
} else
- Keep.push_back(*I);
+ Keep.push_back(std::move(*I));
children.clear();
- children.insert(children.begin(), Keep.begin(), Keep.end());
+ children.insert(children.begin(),
+ std::move_iterator<RegionSet::iterator>(Keep.begin()),
+ std::move_iterator<RegionSet::iterator>(Keep.end()));
}
Region *Region::removeSubRegion(Region *Child) {
assert(Child->parent == this && "Child is not a child of this region!");
- Child->parent = 0;
- RegionSet::iterator I = std::find(children.begin(), children.end(), Child);
+ Child->parent = nullptr;
+ RegionSet::iterator I = std::find_if(
+ children.begin(), children.end(),
+ [&](const std::unique_ptr<Region> &R) { return R.get() == Child; });
assert(I != children.end() && "Region does not exit. Unable to remove.");
children.erase(children.begin()+(I-begin()));
return Child;
@@ -385,7 +390,7 @@ Region *Region::removeSubRegion(Region *Child) {
unsigned Region::getDepth() const {
unsigned Depth = 0;
- for (Region *R = parent; R != 0; R = R->parent)
+ for (Region *R = parent; R != nullptr; R = R->parent)
++Depth;
return Depth;
@@ -395,12 +400,12 @@ Region *Region::getExpandedRegion() const {
unsigned NumSuccessors = exit->getTerminator()->getNumSuccessors();
if (NumSuccessors == 0)
- return NULL;
+ return nullptr;
for (pred_iterator PI = pred_begin(getExit()), PE = pred_end(getExit());
PI != PE; ++PI)
if (!DT->dominates(getEntry(), *PI))
- return NULL;
+ return nullptr;
Region *R = RI->getRegionFor(exit);
@@ -408,7 +413,7 @@ Region *Region::getExpandedRegion() const {
if (exit->getTerminator()->getNumSuccessors() == 1)
return new Region(getEntry(), *succ_begin(exit), RI, DT);
else
- return NULL;
+ return nullptr;
}
while (R->getParent() && R->getParent()->getEntry() == exit)
@@ -418,7 +423,7 @@ Region *Region::getExpandedRegion() const {
for (pred_iterator PI = pred_begin(getExit()), PE = pred_end(getExit());
PI != PE; ++PI)
if (!DT->dominates(R->getExit(), *PI))
- return NULL;
+ return nullptr;
return new Region(getEntry(), R->getExit(), RI, DT);
}
@@ -577,7 +582,7 @@ Region *RegionInfo::createRegion(BasicBlock *entry, BasicBlock *exit) {
assert(entry && exit && "entry and exit must not be null!");
if (isTrivialRegion(entry, exit))
- return 0;
+ return nullptr;
Region *region = new Region(entry, exit, this, DT);
BBtoRegion.insert(std::make_pair(entry, region));
@@ -600,7 +605,7 @@ void RegionInfo::findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut) {
if (!N)
return;
- Region *lastRegion= 0;
+ Region *lastRegion= nullptr;
BasicBlock *lastExit = entry;
// As only a BasicBlock that postdominates entry can finish a region, walk the
@@ -680,12 +685,12 @@ void RegionInfo::releaseMemory() {
BBtoRegion.clear();
if (TopLevelRegion)
delete TopLevelRegion;
- TopLevelRegion = 0;
+ TopLevelRegion = nullptr;
}
RegionInfo::RegionInfo() : FunctionPass(ID) {
initializeRegionInfoPass(*PassRegistry::getPassRegistry());
- TopLevelRegion = 0;
+ TopLevelRegion = nullptr;
}
RegionInfo::~RegionInfo() {
@@ -710,7 +715,7 @@ bool RegionInfo::runOnFunction(Function &F) {
PDT = &getAnalysis<PostDominatorTree>();
DF = &getAnalysis<DominanceFrontier>();
- TopLevelRegion = new Region(&F.getEntryBlock(), 0, this, DT, 0);
+ TopLevelRegion = new Region(&F.getEntryBlock(), nullptr, this, DT, nullptr);
updateStatistics(TopLevelRegion);
Calculate(F);
@@ -744,7 +749,7 @@ void RegionInfo::verifyAnalysis() const {
Region *RegionInfo::getRegionFor(BasicBlock *BB) const {
BBtoRegionMap::const_iterator I=
BBtoRegion.find(BB);
- return I != BBtoRegion.end() ? I->second : 0;
+ return I != BBtoRegion.end() ? I->second : nullptr;
}
void RegionInfo::setRegionFor(BasicBlock *BB, Region *R) {
@@ -756,7 +761,7 @@ Region *RegionInfo::operator[](BasicBlock *BB) const {
}
BasicBlock *RegionInfo::getMaxRegionExit(BasicBlock *BB) const {
- BasicBlock *Exit = NULL;
+ BasicBlock *Exit = nullptr;
while (true) {
// Get largest region that starts at BB.
diff --git a/lib/Analysis/RegionPass.cpp b/lib/Analysis/RegionPass.cpp
index 12d7ca3..3c7798f 100644
--- a/lib/Analysis/RegionPass.cpp
+++ b/lib/Analysis/RegionPass.cpp
@@ -17,10 +17,11 @@
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Support/Timer.h"
-#define DEBUG_TYPE "regionpassmgr"
#include "llvm/Support/Debug.h"
using namespace llvm;
+#define DEBUG_TYPE "regionpassmgr"
+
//===----------------------------------------------------------------------===//
// RGPassManager
//
@@ -31,15 +32,15 @@ RGPassManager::RGPassManager()
: FunctionPass(ID), PMDataManager() {
skipThisRegion = false;
redoThisRegion = false;
- RI = NULL;
- CurrentRegion = NULL;
+ RI = nullptr;
+ CurrentRegion = nullptr;
}
// Recurse through all subregions and all regions into RQ.
-static void addRegionIntoQueue(Region *R, std::deque<Region *> &RQ) {
- RQ.push_back(R);
- for (Region::iterator I = R->begin(), E = R->end(); I != E; ++I)
- addRegionIntoQueue(*I, RQ);
+static void addRegionIntoQueue(Region &R, std::deque<Region *> &RQ) {
+ RQ.push_back(&R);
+ for (const auto &E : R)
+ addRegionIntoQueue(*E, RQ);
}
/// Pass Manager itself does not invalidate any analysis info.
@@ -57,7 +58,7 @@ bool RGPassManager::runOnFunction(Function &F) {
// Collect inherited analysis from Module level pass manager.
populateInheritedAnalysis(TPM->activeStack);
- addRegionIntoQueue(RI->getTopLevelRegion(), RQ);
+ addRegionIntoQueue(*RI->getTopLevelRegion(), RQ);
if (RQ.empty()) // No regions, skip calling finalizers
return false;
@@ -185,7 +186,6 @@ private:
public:
static char ID;
- PrintRegionPass() : RegionPass(ID), Out(dbgs()) {}
PrintRegionPass(const std::string &B, raw_ostream &o)
: RegionPass(ID), Banner(B), Out(o) {}
diff --git a/lib/Analysis/RegionPrinter.cpp b/lib/Analysis/RegionPrinter.cpp
index 6467f47..893210a 100644
--- a/lib/Analysis/RegionPrinter.cpp
+++ b/lib/Analysis/RegionPrinter.cpp
@@ -98,31 +98,31 @@ struct DOTGraphTraits<RegionInfo*> : public DOTGraphTraits<RegionNode*> {
// Print the cluster of the subregions. This groups the single basic blocks
// and adds a different background color for each group.
- static void printRegionCluster(const Region *R, GraphWriter<RegionInfo*> &GW,
+ static void printRegionCluster(const Region &R, GraphWriter<RegionInfo*> &GW,
unsigned depth = 0) {
raw_ostream &O = GW.getOStream();
- O.indent(2 * depth) << "subgraph cluster_" << static_cast<const void*>(R)
+ O.indent(2 * depth) << "subgraph cluster_" << static_cast<const void*>(&R)
<< " {\n";
O.indent(2 * (depth + 1)) << "label = \"\";\n";
- if (!onlySimpleRegions || R->isSimple()) {
+ if (!onlySimpleRegions || R.isSimple()) {
O.indent(2 * (depth + 1)) << "style = filled;\n";
O.indent(2 * (depth + 1)) << "color = "
- << ((R->getDepth() * 2 % 12) + 1) << "\n";
+ << ((R.getDepth() * 2 % 12) + 1) << "\n";
} else {
O.indent(2 * (depth + 1)) << "style = solid;\n";
O.indent(2 * (depth + 1)) << "color = "
- << ((R->getDepth() * 2 % 12) + 2) << "\n";
+ << ((R.getDepth() * 2 % 12) + 2) << "\n";
}
- for (Region::const_iterator RI = R->begin(), RE = R->end(); RI != RE; ++RI)
- printRegionCluster(*RI, GW, depth + 1);
+ for (Region::const_iterator RI = R.begin(), RE = R.end(); RI != RE; ++RI)
+ printRegionCluster(**RI, GW, depth + 1);
- RegionInfo *RI = R->getRegionInfo();
+ RegionInfo *RI = R.getRegionInfo();
- for (const auto &BB : R->blocks())
- if (RI->getRegionFor(BB) == R)
+ for (const auto &BB : R.blocks())
+ if (RI->getRegionFor(BB) == &R)
O.indent(2 * (depth + 1)) << "Node"
<< static_cast<const void*>(RI->getTopLevelRegion()->getBBNode(BB))
<< ";\n";
@@ -134,7 +134,7 @@ struct DOTGraphTraits<RegionInfo*> : public DOTGraphTraits<RegionNode*> {
GraphWriter<RegionInfo*> &GW) {
raw_ostream &O = GW.getOStream();
O << "\tcolorscheme = \"paired12\"\n";
- printRegionCluster(RI->getTopLevelRegion(), GW, 4);
+ printRegionCluster(*RI->getTopLevelRegion(), GW, 4);
}
};
} //end namespace llvm
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 08de621..42a7aa2 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -58,7 +58,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "scalar-evolution"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -89,6 +88,8 @@
#include <algorithm>
using namespace llvm;
+#define DEBUG_TYPE "scalar-evolution"
+
STATISTIC(NumArrayLenItCounts,
"Number of trip counts computed with array length");
STATISTIC(NumTripCountsComputed,
@@ -182,7 +183,7 @@ void SCEV::print(raw_ostream &OS) const {
case scUMaxExpr:
case scSMaxExpr: {
const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
- const char *OpStr = 0;
+ const char *OpStr = nullptr;
switch (NAry->getSCEVType()) {
case scAddExpr: OpStr = " + "; break;
case scMulExpr: OpStr = " * "; break;
@@ -312,7 +313,7 @@ const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
FoldingSetNodeID ID;
ID.AddInteger(scConstant);
ID.AddPointer(V);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
UniqueSCEVs.InsertNode(S, IP);
@@ -365,7 +366,7 @@ void SCEVUnknown::deleted() {
SE->UniqueSCEVs.RemoveNode(this);
// Release the value.
- setValPtr(0);
+ setValPtr(nullptr);
}
void SCEVUnknown::allUsesReplacedWith(Value *New) {
@@ -829,7 +830,7 @@ const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
ID.AddInteger(scTruncate);
ID.AddPointer(Op);
ID.AddPointer(Ty);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// Fold if the operand is constant.
@@ -919,7 +920,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
ID.AddInteger(scZeroExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// zext(trunc(x)) --> zext(x) or x or trunc(x)
@@ -1072,7 +1073,7 @@ static const SCEV *getOverflowLimitForStep(const SCEV *Step,
return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
SE->getSignedRange(Step).getSignedMin());
}
- return 0;
+ return nullptr;
}
// The recurrence AR has been shown to have no signed wrap. Typically, if we can
@@ -1091,19 +1092,18 @@ static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
// Check for a simple looking step prior to loop entry.
const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
if (!SA)
- return 0;
+ return nullptr;
// Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
// subtraction is expensive. For this purpose, perform a quick and dirty
// difference, by checking for Step in the operand list.
SmallVector<const SCEV *, 4> DiffOps;
- for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
- I != E; ++I) {
- if (*I != Step)
- DiffOps.push_back(*I);
- }
+ for (const SCEV *Op : SA->operands())
+ if (Op != Step)
+ DiffOps.push_back(Op);
+
if (DiffOps.size() == SA->getNumOperands())
- return 0;
+ return nullptr;
// This is a postinc AR. Check for overflow on the preinc recurrence using the
// same three conditions that getSignExtendedExpr checks.
@@ -1139,7 +1139,7 @@ static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
return PreStart;
}
- return 0;
+ return nullptr;
}
// Get the normalized sign-extended expression for this AddRec's Start.
@@ -1181,7 +1181,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
ID.AddInteger(scSignExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// If the input value is provably positive, build a zext instead.
@@ -1201,6 +1201,23 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
return getTruncateOrSignExtend(X, Ty);
}
+ // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
+ if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
+ if (SA->getNumOperands() == 2) {
+ auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
+ auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
+ if (SMul && SC1) {
+ if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
+ const APInt &C1 = SC1->getValue()->getValue();
+ const APInt &C2 = SC2->getValue()->getValue();
+ if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
+ C2.ugt(C1) && C2.isPowerOf2())
+ return getAddExpr(getSignExtendExpr(SC1, Ty),
+ getSignExtendExpr(SMul, Ty));
+ }
+ }
+ }
+ }
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can sign extend all of the
// operands (often constants). This allows analysis of something like
@@ -1292,6 +1309,22 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
L, AR->getNoWrapFlags());
}
}
+ // If Start and Step are constants, check if we can apply this
+ // transformation:
+ // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
+ auto SC1 = dyn_cast<SCEVConstant>(Start);
+ auto SC2 = dyn_cast<SCEVConstant>(Step);
+ if (SC1 && SC2) {
+ const APInt &C1 = SC1->getValue()->getValue();
+ const APInt &C2 = SC2->getValue()->getValue();
+ if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
+ C2.isPowerOf2()) {
+ Start = getSignExtendExpr(Start, Ty);
+ const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
+ L, AR->getNoWrapFlags());
+ return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
+ }
+ }
}
// The cast wasn't folded; create an explicit cast node.
@@ -1340,9 +1373,8 @@ const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
// Force the cast to be folded into the operands of an addrec.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
SmallVector<const SCEV *, 4> Ops;
- for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
- I != E; ++I)
- Ops.push_back(getAnyExtendExpr(*I, Ty));
+ for (const SCEV *Op : AR->operands())
+ Ops.push_back(getAnyExtendExpr(Op, Ty));
return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
}
@@ -1811,7 +1843,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
ID.AddInteger(scAddExpr);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
- void *IP = 0;
+ void *IP = nullptr;
SCEVAddExpr *S =
static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
if (!S) {
@@ -2105,7 +2137,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
ID.AddInteger(scMulExpr);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
- void *IP = 0;
+ void *IP = nullptr;
SCEVMulExpr *S =
static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
if (!S) {
@@ -2230,7 +2262,7 @@ const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
ID.AddInteger(scUDivExpr);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
LHS, RHS);
@@ -2425,7 +2457,7 @@ ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
ID.AddPointer(Operands[i]);
ID.AddPointer(L);
- void *IP = 0;
+ void *IP = nullptr;
SCEVAddRecExpr *S =
static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
if (!S) {
@@ -2533,7 +2565,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
ID.AddInteger(scSMaxExpr);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
std::uninitialized_copy(Ops.begin(), Ops.end(), O);
@@ -2637,7 +2669,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
ID.AddInteger(scUMaxExpr);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
ID.AddPointer(Ops[i]);
- void *IP = 0;
+ void *IP = nullptr;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
std::uninitialized_copy(Ops.begin(), Ops.end(), O);
@@ -2704,7 +2736,7 @@ const SCEV *ScalarEvolution::getUnknown(Value *V) {
FoldingSetNodeID ID;
ID.AddInteger(scUnknown);
ID.AddPointer(V);
- void *IP = 0;
+ void *IP = nullptr;
if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
assert(cast<SCEVUnknown>(S)->getValue() == V &&
"Stale SCEVUnknown in uniquing map!");
@@ -3010,7 +3042,7 @@ const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
return getPointerBase(Cast->getOperand());
}
else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
- const SCEV *PtrOp = 0;
+ const SCEV *PtrOp = nullptr;
for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
I != E; ++I) {
if ((*I)->getType()->isPointerTy()) {
@@ -3090,20 +3122,20 @@ const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
// The loop may have multiple entrances or multiple exits; we can analyze
// this phi as an addrec if it has a unique entry value and a unique
// backedge value.
- Value *BEValueV = 0, *StartValueV = 0;
+ Value *BEValueV = nullptr, *StartValueV = nullptr;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = PN->getIncomingValue(i);
if (L->contains(PN->getIncomingBlock(i))) {
if (!BEValueV) {
BEValueV = V;
} else if (BEValueV != V) {
- BEValueV = 0;
+ BEValueV = nullptr;
break;
}
} else if (!StartValueV) {
StartValueV = V;
} else if (StartValueV != V) {
- StartValueV = 0;
+ StartValueV = nullptr;
break;
}
}
@@ -3363,7 +3395,7 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
// For a SCEVUnknown, ask ValueTracking.
unsigned BitWidth = getTypeSizeInBits(U->getType());
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Zeros, Ones);
+ computeKnownBits(U->getValue(), Zeros, Ones);
return Zeros.countTrailingOnes();
}
@@ -3502,7 +3534,7 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// For a SCEVUnknown, ask ValueTracking.
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
- ComputeMaskedBits(U->getValue(), Zeros, Ones, DL);
+ computeKnownBits(U->getValue(), Zeros, Ones, DL);
if (Ones == ~Zeros + 1)
return setUnsignedRange(U, ConservativeResult);
return setUnsignedRange(U,
@@ -3755,13 +3787,13 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
// Instcombine's ShrinkDemandedConstant may strip bits out of
// constants, obscuring what would otherwise be a low-bits mask.
- // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
+ // Use computeKnownBits to compute what ShrinkDemandedConstant
// knew about to reconstruct a low-bits mask value.
unsigned LZ = A.countLeadingZeros();
unsigned TZ = A.countTrailingZeros();
unsigned BitWidth = A.getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL);
APInt EffectiveMask =
APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
@@ -4316,9 +4348,9 @@ ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
- const SCEV *BECount = 0;
+ const SCEV *BECount = nullptr;
for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != 0; ENT = ENT->getNextExit()) {
+ ENT != nullptr; ENT = ENT->getNextExit()) {
assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
@@ -4336,7 +4368,7 @@ const SCEV *
ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
ScalarEvolution *SE) const {
for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != 0; ENT = ENT->getNextExit()) {
+ ENT != nullptr; ENT = ENT->getNextExit()) {
if (ENT->ExitingBlock == ExitingBlock)
return ENT->ExactNotTaken;
@@ -4359,7 +4391,7 @@ bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
return false;
for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
- ENT != 0; ENT = ENT->getNextExit()) {
+ ENT != nullptr; ENT = ENT->getNextExit()) {
if (ENT->ExactNotTaken != SE->getCouldNotCompute()
&& SE->hasOperand(ENT->ExactNotTaken, S)) {
@@ -4398,8 +4430,8 @@ ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
/// clear - Invalidate this result and free the ExitNotTakenInfo array.
void ScalarEvolution::BackedgeTakenInfo::clear() {
- ExitNotTaken.ExitingBlock = 0;
- ExitNotTaken.ExactNotTaken = 0;
+ ExitNotTaken.ExitingBlock = nullptr;
+ ExitNotTaken.ExactNotTaken = nullptr;
delete[] ExitNotTaken.getNextExit();
}
@@ -4410,38 +4442,63 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
- // Examine all exits and pick the most conservative values.
- const SCEV *MaxBECount = getCouldNotCompute();
+ SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
bool CouldComputeBECount = true;
BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
- const SCEV *LatchMaxCount = 0;
- SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
+ const SCEV *MustExitMaxBECount = nullptr;
+ const SCEV *MayExitMaxBECount = nullptr;
+
+ // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
+ // and compute maxBECount.
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
- ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
+ BasicBlock *ExitBB = ExitingBlocks[i];
+ ExitLimit EL = ComputeExitLimit(L, ExitBB);
+
+ // 1. For each exit that can be computed, add an entry to ExitCounts.
+ // CouldComputeBECount is true only if all exits can be computed.
if (EL.Exact == getCouldNotCompute())
// We couldn't compute an exact value for this exit, so
// we won't be able to compute an exact value for the loop.
CouldComputeBECount = false;
else
- ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
-
- if (MaxBECount == getCouldNotCompute())
- MaxBECount = EL.Max;
- else if (EL.Max != getCouldNotCompute()) {
- // We cannot take the "min" MaxBECount, because non-unit stride loops may
- // skip some loop tests. Taking the max over the exits is sufficiently
- // conservative. TODO: We could do better taking into consideration
- // non-latch exits that dominate the latch.
- if (EL.MustExit && ExitingBlocks[i] == Latch)
- LatchMaxCount = EL.Max;
- else
- MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
+ ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
+
+ // 2. Derive the loop's MaxBECount from each exit's max number of
+ // non-exiting iterations. Partition the loop exits into two kinds:
+ // LoopMustExits and LoopMayExits.
+ //
+ // A LoopMustExit meets two requirements:
+ //
+ // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
+ // test condition cannot be skipped (the tested variable has unit stride or
+ // the test is less-than or greater-than, rather than a strict inequality).
+ //
+ // (b) It must dominate the loop latch, hence must be tested on every loop
+ // iteration.
+ //
+ // If any computable LoopMustExit is found, then MaxBECount is the minimum
+ // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
+ // conservatively the maximum EL.Max, where CouldNotCompute is considered
+ // greater than any computable EL.Max.
+ if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
+ DT->dominates(ExitBB, Latch)) {
+ if (!MustExitMaxBECount)
+ MustExitMaxBECount = EL.Max;
+ else {
+ MustExitMaxBECount =
+ getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
+ }
+ } else if (MayExitMaxBECount != getCouldNotCompute()) {
+ if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
+ MayExitMaxBECount = EL.Max;
+ else {
+ MayExitMaxBECount =
+ getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
+ }
}
}
- // Be more precise in the easy case of a loop latch that must exit.
- if (LatchMaxCount) {
- MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount);
- }
+ const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
+ (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
}
@@ -4454,7 +4511,7 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
// exit at this block and remember the exit block and whether all other targets
// lead to the loop header.
bool MustExecuteLoopHeader = true;
- BasicBlock *Exit = 0;
+ BasicBlock *Exit = nullptr;
for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
SI != SE; ++SI)
if (!L->contains(*SI)) {
@@ -4800,7 +4857,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
return getCouldNotCompute();
// Okay, we allow one non-constant index into the GEP instruction.
- Value *VarIdx = 0;
+ Value *VarIdx = nullptr;
std::vector<Constant*> Indexes;
unsigned VarIdxNum = 0;
for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
@@ -4810,7 +4867,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
VarIdx = GEP->getOperand(i);
VarIdxNum = i-2;
- Indexes.push_back(0);
+ Indexes.push_back(nullptr);
}
// Loop-invariant loads may be a byproduct of loop optimization. Skip them.
@@ -4841,7 +4898,7 @@ ScalarEvolution::ComputeLoadConstantCompareExitLimit(
Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
Indexes);
- if (Result == 0) break; // Cannot compute!
+ if (!Result) break; // Cannot compute!
// Evaluate the condition for this iteration.
Result = ConstantExpr::getICmp(predicate, Result, RHS);
@@ -4902,14 +4959,14 @@ getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
// Otherwise, we can evaluate this instruction if all of its operands are
// constant or derived from a PHI node themselves.
- PHINode *PHI = 0;
+ PHINode *PHI = nullptr;
for (Instruction::op_iterator OpI = UseInst->op_begin(),
OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
if (isa<Constant>(*OpI)) continue;
Instruction *OpInst = dyn_cast<Instruction>(*OpI);
- if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
+ if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
PHINode *P = dyn_cast<PHINode>(OpInst);
if (!P)
@@ -4923,8 +4980,10 @@ getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
PHIMap[OpInst] = P;
}
- if (P == 0) return 0; // Not evolving from PHI
- if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
+ if (!P)
+ return nullptr; // Not evolving from PHI
+ if (PHI && PHI != P)
+ return nullptr; // Evolving from multiple different PHIs.
PHI = P;
}
// This is a expression evolving from a constant PHI!
@@ -4938,7 +4997,7 @@ getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
/// constraints, return null.
static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0 || !canConstantEvolve(I, L)) return 0;
+ if (!I || !canConstantEvolve(I, L)) return nullptr;
if (PHINode *PN = dyn_cast<PHINode>(I)) {
return PN;
@@ -4960,18 +5019,18 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
// Convenient constant check, but redundant for recursive calls.
if (Constant *C = dyn_cast<Constant>(V)) return C;
Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return 0;
+ if (!I) return nullptr;
if (Constant *C = Vals.lookup(I)) return C;
// An instruction inside the loop depends on a value outside the loop that we
// weren't given a mapping for, or a value such as a call inside the loop.
- if (!canConstantEvolve(I, L)) return 0;
+ if (!canConstantEvolve(I, L)) return nullptr;
// An unmapped PHI can be due to a branch or another loop inside this loop,
// or due to this not being the initial iteration through a loop where we
// couldn't compute the evolution of this particular PHI last time.
- if (isa<PHINode>(I)) return 0;
+ if (isa<PHINode>(I)) return nullptr;
std::vector<Constant*> Operands(I->getNumOperands());
@@ -4979,12 +5038,12 @@ static Constant *EvaluateExpression(Value *V, const Loop *L,
Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
if (!Operand) {
Operands[i] = dyn_cast<Constant>(I->getOperand(i));
- if (!Operands[i]) return 0;
+ if (!Operands[i]) return nullptr;
continue;
}
Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Vals[Operand] = C;
- if (!C) return 0;
+ if (!C) return nullptr;
Operands[i] = C;
}
@@ -5013,7 +5072,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
return I->second;
if (BEs.ugt(MaxBruteForceIterations))
- return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
+ return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
@@ -5025,22 +5084,22 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
// entry must be a constant (coming in from outside of the loop), and the
// second must be derived from the same PHI.
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- PHINode *PHI = 0;
+ PHINode *PHI = nullptr;
for (BasicBlock::iterator I = Header->begin();
(PHI = dyn_cast<PHINode>(I)); ++I) {
Constant *StartCST =
dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0) continue;
+ if (!StartCST) continue;
CurrentIterVals[PHI] = StartCST;
}
if (!CurrentIterVals.count(PN))
- return RetVal = 0;
+ return RetVal = nullptr;
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
// Execute the loop symbolically to determine the exit value.
if (BEs.getActiveBits() >= 32)
- return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
+ return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
unsigned NumIterations = BEs.getZExtValue(); // must be in range
unsigned IterationNum = 0;
@@ -5053,8 +5112,8 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
DenseMap<Instruction *, Constant *> NextIterVals;
Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
TLI);
- if (NextPHI == 0)
- return 0; // Couldn't evaluate!
+ if (!NextPHI)
+ return nullptr; // Couldn't evaluate!
NextIterVals[PN] = NextPHI;
bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
@@ -5101,7 +5160,7 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);
- if (PN == 0) return getCouldNotCompute();
+ if (!PN) return getCouldNotCompute();
// If the loop is canonicalized, the PHI will have exactly two entries.
// That's the only form we support here.
@@ -5114,12 +5173,12 @@ const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
// One entry must be a constant (coming in from outside of the loop), and the
// second must be derived from the same PHI.
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
- PHINode *PHI = 0;
+ PHINode *PHI = nullptr;
for (BasicBlock::iterator I = Header->begin();
(PHI = dyn_cast<PHINode>(I)); ++I) {
Constant *StartCST =
dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
- if (StartCST == 0) continue;
+ if (!StartCST) continue;
CurrentIterVals[PHI] = StartCST;
}
if (!CurrentIterVals.count(PN))
@@ -5189,7 +5248,7 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
if (Values[u].first == L)
return Values[u].second ? Values[u].second : V;
}
- Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0)));
+ Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
// Otherwise compute it.
const SCEV *C = computeSCEVAtScope(V, L);
SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
@@ -5243,7 +5302,7 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) {
}
for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
- if (!C2) return 0;
+ if (!C2) return nullptr;
// First pointer!
if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
@@ -5258,7 +5317,7 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) {
// Don't bother trying to sum two pointers. We probably can't
// statically compute a load that results from it anyway.
if (C2->getType()->isPointerTy())
- return 0;
+ return nullptr;
if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
if (PTy->getElementType()->isStructTy())
@@ -5276,10 +5335,10 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) {
const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
// Don't bother with pointers at all.
- if (C->getType()->isPointerTy()) return 0;
+ if (C->getType()->isPointerTy()) return nullptr;
for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
- if (!C2 || C2->getType()->isPointerTy()) return 0;
+ if (!C2 || C2->getType()->isPointerTy()) return nullptr;
C = ConstantExpr::getMul(C, C2);
}
return C;
@@ -5298,7 +5357,7 @@ static Constant *BuildConstantFromSCEV(const SCEV *V) {
case scUMaxExpr:
break; // TODO: smax, umax.
}
- return 0;
+ return nullptr;
}
const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
@@ -5365,7 +5424,7 @@ const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
// Check to see if getSCEVAtScope actually made an improvement.
if (MadeImprovement) {
- Constant *C = 0;
+ Constant *C = nullptr;
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Operands[0], Operands[1], DL,
@@ -5697,7 +5756,7 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
// to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
// We have not yet seen any such cases.
const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
- if (StepC == 0 || StepC->getValue()->equalsInt(0))
+ if (!StepC || StepC->getValue()->equalsInt(0))
return getCouldNotCompute();
// For positive steps (counting up until unsigned overflow):
@@ -6136,18 +6195,30 @@ bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
// If LHS or RHS is an addrec, check to see if the condition is true in
// every iteration of the loop.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
- if (isLoopEntryGuardedByCond(
- AR->getLoop(), Pred, AR->getStart(), RHS) &&
- isLoopBackedgeGuardedByCond(
- AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
- return true;
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
- if (isLoopEntryGuardedByCond(
- AR->getLoop(), Pred, LHS, AR->getStart()) &&
- isLoopBackedgeGuardedByCond(
- AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
- return true;
+ // If LHS and RHS are both addrec, both conditions must be true in
+ // every iteration of the loop.
+ const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
+ const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
+ bool LeftGuarded = false;
+ bool RightGuarded = false;
+ if (LAR) {
+ const Loop *L = LAR->getLoop();
+ if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
+ isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
+ if (!RAR) return true;
+ LeftGuarded = true;
+ }
+ }
+ if (RAR) {
+ const Loop *L = RAR->getLoop();
+ if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
+ isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
+ if (!LAR) return true;
+ RightGuarded = true;
+ }
+ }
+ if (LeftGuarded && RightGuarded)
+ return true;
// Otherwise see what can be done with known constant ranges.
return isKnownPredicateWithRanges(Pred, LHS, RHS);
@@ -6814,6 +6885,105 @@ const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
return SE.getCouldNotCompute();
}
+namespace {
+struct FindUndefs {
+ bool Found;
+ FindUndefs() : Found(false) {}
+
+ bool follow(const SCEV *S) {
+ if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
+ if (isa<UndefValue>(C->getValue()))
+ Found = true;
+ } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
+ if (isa<UndefValue>(C->getValue()))
+ Found = true;
+ }
+
+ // Keep looking if we haven't found it yet.
+ return !Found;
+ }
+ bool isDone() const {
+ // Stop recursion if we have found an undef.
+ return Found;
+ }
+};
+}
+
+// Return true when S contains at least an undef value.
+static inline bool
+containsUndefs(const SCEV *S) {
+ FindUndefs F;
+ SCEVTraversal<FindUndefs> ST(F);
+ ST.visitAll(S);
+
+ return F.Found;
+}
+
+namespace {
+// Collect all steps of SCEV expressions.
+struct SCEVCollectStrides {
+ ScalarEvolution &SE;
+ SmallVectorImpl<const SCEV *> &Strides;
+
+ SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
+ : SE(SE), Strides(S) {}
+
+ bool follow(const SCEV *S) {
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
+ Strides.push_back(AR->getStepRecurrence(SE));
+ return true;
+ }
+ bool isDone() const { return false; }
+};
+
+// Collect all SCEVUnknown and SCEVMulExpr expressions.
+struct SCEVCollectTerms {
+ SmallVectorImpl<const SCEV *> &Terms;
+
+ SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
+ : Terms(T) {}
+
+ bool follow(const SCEV *S) {
+ if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
+ if (!containsUndefs(S))
+ Terms.push_back(S);
+
+ // Stop recursion: once we collected a term, do not walk its operands.
+ return false;
+ }
+
+ // Keep looking.
+ return true;
+ }
+ bool isDone() const { return false; }
+};
+}
+
+/// Find parametric terms in this SCEVAddRecExpr.
+void SCEVAddRecExpr::collectParametricTerms(
+ ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
+ SmallVector<const SCEV *, 4> Strides;
+ SCEVCollectStrides StrideCollector(SE, Strides);
+ visitAll(this, StrideCollector);
+
+ DEBUG({
+ dbgs() << "Strides:\n";
+ for (const SCEV *S : Strides)
+ dbgs() << *S << "\n";
+ });
+
+ for (const SCEV *S : Strides) {
+ SCEVCollectTerms TermCollector(Terms);
+ visitAll(S, TermCollector);
+ }
+
+ DEBUG({
+ dbgs() << "Terms:\n";
+ for (const SCEV *T : Terms)
+ dbgs() << *T << "\n";
+ });
+}
+
static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getValue()->getValue();
APInt B = C2->getValue()->getValue();
@@ -6843,351 +7013,479 @@ static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
}
namespace {
-struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
-public:
- // Pattern match Step into Start. When Step is a multiply expression, find
- // the largest subexpression of Step that appears in Start. When Start is an
- // add expression, try to match Step in the subexpressions of Start, non
- // matching subexpressions are returned under Remainder.
- static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
- const SCEV *Step, const SCEV **Remainder) {
- assert(Remainder && "Remainder should not be NULL");
- SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
- const SCEV *Res = R.visit(Start);
- *Remainder = R.Remainder;
- return Res;
- }
+struct FindSCEVSize {
+ int Size;
+ FindSCEVSize() : Size(0) {}
- SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
- : SE(S), GCD(G), Remainder(R) {
- Zero = SE.getConstant(GCD->getType(), 0);
- One = SE.getConstant(GCD->getType(), 1);
+ bool follow(const SCEV *S) {
+ ++Size;
+ // Keep looking at all operands of S.
+ return true;
}
+ bool isDone() const {
+ return false;
+ }
+};
+}
- const SCEV *visitConstant(const SCEVConstant *Constant) {
- if (GCD == Constant || Constant == Zero)
- return GCD;
+// Returns the size of the SCEV S.
+static inline int sizeOfSCEV(const SCEV *S) {
+ FindSCEVSize F;
+ SCEVTraversal<FindSCEVSize> ST(F);
+ ST.visitAll(S);
+ return F.Size;
+}
- if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
- const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
- if (Res != One)
- return Res;
+namespace {
- Remainder = SE.getConstant(srem(Constant, CGCD));
- Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
- Res = SE.getConstant(gcd(Constant, CGCD));
- return Res;
+struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
+public:
+ // Computes the Quotient and Remainder of the division of Numerator by
+ // Denominator.
+ static void divide(ScalarEvolution &SE, const SCEV *Numerator,
+ const SCEV *Denominator, const SCEV **Quotient,
+ const SCEV **Remainder) {
+ assert(Numerator && Denominator && "Uninitialized SCEV");
+
+ SCEVDivision D(SE, Numerator, Denominator);
+
+ // Check for the trivial case here to avoid having to check for it in the
+ // rest of the code.
+ if (Numerator == Denominator) {
+ *Quotient = D.One;
+ *Remainder = D.Zero;
+ return;
}
- // When GCD is not a constant, it could be that the GCD is an Add, Mul,
- // AddRec, etc., in which case we want to find out how many times the
- // Constant divides the GCD: we then return that as the new GCD.
- const SCEV *Rem = Zero;
- const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
+ if (Numerator->isZero()) {
+ *Quotient = D.Zero;
+ *Remainder = D.Zero;
+ return;
+ }
- if (Res == One || Rem != Zero) {
- Remainder = Constant;
- return One;
+ // Split the Denominator when it is a product.
+ if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
+ const SCEV *Q, *R;
+ *Quotient = Numerator;
+ for (const SCEV *Op : T->operands()) {
+ divide(SE, *Quotient, Op, &Q, &R);
+ *Quotient = Q;
+
+ // Bail out when the Numerator is not divisible by one of the terms of
+ // the Denominator.
+ if (!R->isZero()) {
+ *Quotient = D.Zero;
+ *Remainder = Numerator;
+ return;
+ }
+ }
+ *Remainder = D.Zero;
+ return;
}
- assert(isa<SCEVConstant>(Res) && "Res should be a constant");
- Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
- return Res;
+ D.visit(Numerator);
+ *Quotient = D.Quotient;
+ *Remainder = D.Remainder;
+ }
+
+ SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
+ : SE(S), Denominator(Denominator) {
+ Zero = SE.getConstant(Denominator->getType(), 0);
+ One = SE.getConstant(Denominator->getType(), 1);
+
+ // By default, we don't know how to divide Expr by Denominator.
+ // Providing the default here simplifies the rest of the code.
+ Quotient = Zero;
+ Remainder = Numerator;
+ }
+
+ // Except in the trivial case described above, we do not know how to divide
+ // Expr by Denominator for the following functions with empty implementation.
+ void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
+ void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
+ void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
+ void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
+ void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
+ void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
+ void visitUnknown(const SCEVUnknown *Numerator) {}
+ void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
+
+ void visitConstant(const SCEVConstant *Numerator) {
+ if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
+ Quotient = SE.getConstant(sdiv(Numerator, D));
+ Remainder = SE.getConstant(srem(Numerator, D));
+ return;
+ }
}
- const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
+ void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
+ const SCEV *StartQ, *StartR, *StepQ, *StepR;
+ assert(Numerator->isAffine() && "Numerator should be affine");
+ divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
+ divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
+ Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
+ Numerator->getNoWrapFlags());
+ Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
+ Numerator->getNoWrapFlags());
}
- const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
- }
+ void visitAddExpr(const SCEVAddExpr *Numerator) {
+ SmallVector<const SCEV *, 2> Qs, Rs;
+ Type *Ty = Denominator->getType();
- const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
- }
+ for (const SCEV *Op : Numerator->operands()) {
+ const SCEV *Q, *R;
+ divide(SE, Op, Denominator, &Q, &R);
- const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
- if (GCD == Expr)
- return GCD;
+ // Bail out if types do not match.
+ if (Ty != Q->getType() || Ty != R->getType()) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
- const SCEV *Rem = Zero;
- const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
+ Qs.push_back(Q);
+ Rs.push_back(R);
+ }
- // FIXME: There may be ambiguous situations: for instance,
- // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
- // The order in which the AddExpr is traversed computes a different GCD
- // and Remainder.
- if (Res != One)
- GCD = Res;
- if (Rem != Zero)
- Remainder = SE.getAddExpr(Remainder, Rem);
+ if (Qs.size() == 1) {
+ Quotient = Qs[0];
+ Remainder = Rs[0];
+ return;
}
- return GCD;
+ Quotient = SE.getAddExpr(Qs);
+ Remainder = SE.getAddExpr(Rs);
}
- const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
- if (GCD == Expr)
- return GCD;
+ void visitMulExpr(const SCEVMulExpr *Numerator) {
+ SmallVector<const SCEV *, 2> Qs;
+ Type *Ty = Denominator->getType();
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
- if (Expr->getOperand(i) == GCD)
- return GCD;
- }
+ bool FoundDenominatorTerm = false;
+ for (const SCEV *Op : Numerator->operands()) {
+ // Bail out if types do not match.
+ if (Ty != Op->getType()) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+
+ if (FoundDenominatorTerm) {
+ Qs.push_back(Op);
+ continue;
+ }
- // If we have not returned yet, it means that GCD is not part of Expr.
- const SCEV *PartialGCD = One;
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
- const SCEV *Rem = Zero;
- const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
- if (Rem != Zero)
- // GCD does not divide Expr->getOperand(i).
+ // Check whether Denominator divides one of the product operands.
+ const SCEV *Q, *R;
+ divide(SE, Op, Denominator, &Q, &R);
+ if (!R->isZero()) {
+ Qs.push_back(Op);
continue;
+ }
- if (Res == GCD)
- return GCD;
- PartialGCD = SE.getMulExpr(PartialGCD, Res);
- if (PartialGCD == GCD)
- return GCD;
- }
-
- if (PartialGCD != One)
- return PartialGCD;
-
- Remainder = Expr;
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
- if (!Mul)
- return PartialGCD;
-
- // When the GCD is a multiply expression, try to decompose it:
- // this occurs when Step does not divide the Start expression
- // as in: {(-4 + (3 * %m)),+,(2 * %m)}
- for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
- const SCEV *Rem = Zero;
- const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
- if (Rem == Zero) {
- Remainder = Rem;
- return Res;
+ // Bail out if types do not match.
+ if (Ty != Q->getType()) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
}
+
+ FoundDenominatorTerm = true;
+ Qs.push_back(Q);
}
- return PartialGCD;
- }
+ if (FoundDenominatorTerm) {
+ Remainder = Zero;
+ if (Qs.size() == 1)
+ Quotient = Qs[0];
+ else
+ Quotient = SE.getMulExpr(Qs);
+ return;
+ }
- const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
+ if (!isa<SCEVUnknown>(Denominator)) {
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+
+ // The Remainder is obtained by replacing Denominator by 0 in Numerator.
+ ValueToValueMap RewriteMap;
+ RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
+ cast<SCEVConstant>(Zero)->getValue();
+ Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
+
+ // Quotient is (Numerator - Remainder) divided by Denominator.
+ const SCEV *Q, *R;
+ const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
+ if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
+ // This SCEV does not seem to simplify: fail the division here.
+ Quotient = Zero;
+ Remainder = Numerator;
+ return;
+ }
+ divide(SE, Diff, Denominator, &Q, &R);
+ assert(R == Zero &&
+ "(Numerator - Remainder) should evenly divide Denominator");
+ Quotient = Q;
}
- const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- if (GCD == Expr)
- return GCD;
+private:
+ ScalarEvolution &SE;
+ const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
+};
+}
- if (!Expr->isAffine()) {
- Remainder = Expr;
- return GCD;
- }
+static bool findArrayDimensionsRec(ScalarEvolution &SE,
+ SmallVectorImpl<const SCEV *> &Terms,
+ SmallVectorImpl<const SCEV *> &Sizes) {
+ int Last = Terms.size() - 1;
+ const SCEV *Step = Terms[Last];
- const SCEV *Rem = Zero;
- const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
- if (Rem != Zero)
- Remainder = SE.getAddExpr(Remainder, Rem);
+ // End of recursion.
+ if (Last == 0) {
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
+ SmallVector<const SCEV *, 2> Qs;
+ for (const SCEV *Op : M->operands())
+ if (!isa<SCEVConstant>(Op))
+ Qs.push_back(Op);
- Rem = Zero;
- Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
- if (Rem != Zero) {
- Remainder = Expr;
- return GCD;
+ Step = SE.getMulExpr(Qs);
}
- return Res;
+ Sizes.push_back(Step);
+ return true;
}
- const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
- }
+ for (const SCEV *&Term : Terms) {
+ // Normalize the terms before the next call to findArrayDimensionsRec.
+ const SCEV *Q, *R;
+ SCEVDivision::divide(SE, Term, Step, &Q, &R);
- const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
- }
+ // Bail out when GCD does not evenly divide one of the terms.
+ if (!R->isZero())
+ return false;
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- if (GCD != Expr)
- Remainder = Expr;
- return GCD;
+ Term = Q;
}
- const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
- return One;
- }
+ // Remove all SCEVConstants.
+ Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
+ return isa<SCEVConstant>(E);
+ }),
+ Terms.end());
-private:
- ScalarEvolution &SE;
- const SCEV *GCD, *Remainder, *Zero, *One;
-};
+ if (Terms.size() > 0)
+ if (!findArrayDimensionsRec(SE, Terms, Sizes))
+ return false;
-struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
-public:
- // Remove from Start all multiples of Step.
- static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
- const SCEV *Step) {
- SCEVDivision D(SE, Step);
- const SCEV *Rem = D.Zero;
- (void)Rem;
- // The division is guaranteed to succeed: Step should divide Start with no
- // remainder.
- assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
- "Step should divide Start with no remainder.");
- return D.visit(Start);
- }
+ Sizes.push_back(Step);
+ return true;
+}
+
+namespace {
+struct FindParameter {
+ bool FoundParameter;
+ FindParameter() : FoundParameter(false) {}
- SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
- Zero = SE.getConstant(GCD->getType(), 0);
- One = SE.getConstant(GCD->getType(), 1);
+ bool follow(const SCEV *S) {
+ if (isa<SCEVUnknown>(S)) {
+ FoundParameter = true;
+ // Stop recursion: we found a parameter.
+ return false;
+ }
+ // Keep looking.
+ return true;
}
+ bool isDone() const {
+ // Stop recursion if we have found a parameter.
+ return FoundParameter;
+ }
+};
+}
- const SCEV *visitConstant(const SCEVConstant *Constant) {
- if (GCD == Constant)
- return One;
+// Returns true when S contains at least a SCEVUnknown parameter.
+static inline bool
+containsParameters(const SCEV *S) {
+ FindParameter F;
+ SCEVTraversal<FindParameter> ST(F);
+ ST.visitAll(S);
- if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
- return SE.getConstant(sdiv(Constant, CGCD));
- return Constant;
- }
+ return F.FoundParameter;
+}
- const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
- }
+// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
+static inline bool
+containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
+ for (const SCEV *T : Terms)
+ if (containsParameters(T))
+ return true;
+ return false;
+}
- const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
- }
+// Return the number of product terms in S.
+static inline int numberOfTerms(const SCEV *S) {
+ if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
+ return Expr->getNumOperands();
+ return 1;
+}
- const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
- }
+static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
+ if (isa<SCEVConstant>(T))
+ return nullptr;
- const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
- if (GCD == Expr)
- return One;
+ if (isa<SCEVUnknown>(T))
+ return T;
- SmallVector<const SCEV *, 2> Operands;
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
- Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
+ SmallVector<const SCEV *, 2> Factors;
+ for (const SCEV *Op : M->operands())
+ if (!isa<SCEVConstant>(Op))
+ Factors.push_back(Op);
- if (Operands.size() == 1)
- return Operands[0];
- return SE.getAddExpr(Operands);
+ return SE.getMulExpr(Factors);
}
- const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
- if (GCD == Expr)
- return One;
+ return T;
+}
- bool FoundGCDTerm = false;
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
- if (Expr->getOperand(i) == GCD)
- FoundGCDTerm = true;
+/// Return the size of an element read or written by Inst.
+const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
+ Type *Ty;
+ if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
+ Ty = Store->getValueOperand()->getType();
+ else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
+ Ty = Load->getPointerOperand()->getType();
+ else
+ return nullptr;
- SmallVector<const SCEV *, 2> Operands;
- if (FoundGCDTerm) {
- FoundGCDTerm = false;
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
- if (FoundGCDTerm)
- Operands.push_back(Expr->getOperand(i));
- else if (Expr->getOperand(i) == GCD)
- FoundGCDTerm = true;
- else
- Operands.push_back(Expr->getOperand(i));
- }
- } else {
- const SCEV *PartialGCD = One;
- for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
- if (PartialGCD == GCD) {
- Operands.push_back(Expr->getOperand(i));
- continue;
- }
+ Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
+ return getSizeOfExpr(ETy, Ty);
+}
- const SCEV *Rem = Zero;
- const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
- if (Rem == Zero) {
- PartialGCD = SE.getMulExpr(PartialGCD, Res);
- Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
- } else {
- Operands.push_back(Expr->getOperand(i));
- }
- }
- }
+/// Second step of delinearization: compute the array dimensions Sizes from the
+/// set of Terms extracted from the memory access function of this SCEVAddRec.
+void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
+ SmallVectorImpl<const SCEV *> &Sizes,
+ const SCEV *ElementSize) const {
- if (Operands.size() == 1)
- return Operands[0];
- return SE.getMulExpr(Operands);
- }
+ if (Terms.size() < 1)
+ return;
- const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
- }
+ // Early return when Terms do not contain parameters: we do not delinearize
+ // non parametric SCEVs.
+ if (!containsParameters(Terms))
+ return;
- const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- if (GCD == Expr)
- return One;
+ DEBUG({
+ dbgs() << "Terms:\n";
+ for (const SCEV *T : Terms)
+ dbgs() << *T << "\n";
+ });
- assert(Expr->isAffine() && "Expr should be affine");
+ // Remove duplicates.
+ std::sort(Terms.begin(), Terms.end());
+ Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
- const SCEV *Start = divide(SE, Expr->getStart(), GCD);
- const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
+ // Put larger terms first.
+ std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
+ return numberOfTerms(LHS) > numberOfTerms(RHS);
+ });
- return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
- Expr->getNoWrapFlags());
- }
+ ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
+ // Divide all terms by the element size.
+ for (const SCEV *&Term : Terms) {
+ const SCEV *Q, *R;
+ SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
+ Term = Q;
}
- const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
- }
+ SmallVector<const SCEV *, 4> NewTerms;
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- if (GCD == Expr)
- return One;
- return Expr;
+ // Remove constant factors.
+ for (const SCEV *T : Terms)
+ if (const SCEV *NewT = removeConstantFactors(SE, T))
+ NewTerms.push_back(NewT);
+
+ DEBUG({
+ dbgs() << "Terms after sorting:\n";
+ for (const SCEV *T : NewTerms)
+ dbgs() << *T << "\n";
+ });
+
+ if (NewTerms.empty() ||
+ !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
+ Sizes.clear();
+ return;
}
- const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
- return Expr;
+ // The last element to be pushed into Sizes is the size of an element.
+ Sizes.push_back(ElementSize);
+
+ DEBUG({
+ dbgs() << "Sizes:\n";
+ for (const SCEV *S : Sizes)
+ dbgs() << *S << "\n";
+ });
+}
+
+/// Third step of delinearization: compute the access functions for the
+/// Subscripts based on the dimensions in Sizes.
+void SCEVAddRecExpr::computeAccessFunctions(
+ ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
+ SmallVectorImpl<const SCEV *> &Sizes) const {
+
+ // Early exit in case this SCEV is not an affine multivariate function.
+ if (Sizes.empty() || !this->isAffine())
+ return;
+
+ const SCEV *Res = this;
+ int Last = Sizes.size() - 1;
+ for (int i = Last; i >= 0; i--) {
+ const SCEV *Q, *R;
+ SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
+
+ DEBUG({
+ dbgs() << "Res: " << *Res << "\n";
+ dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
+ dbgs() << "Res divided by Sizes[i]:\n";
+ dbgs() << "Quotient: " << *Q << "\n";
+ dbgs() << "Remainder: " << *R << "\n";
+ });
+
+ Res = Q;
+
+ // Do not record the last subscript corresponding to the size of elements in
+ // the array.
+ if (i == Last) {
+
+ // Bail out if the remainder is too complex.
+ if (isa<SCEVAddRecExpr>(R)) {
+ Subscripts.clear();
+ Sizes.clear();
+ return;
+ }
+
+ continue;
+ }
+
+ // Record the access function for the current subscript.
+ Subscripts.push_back(R);
}
-private:
- ScalarEvolution &SE;
- const SCEV *GCD, *Zero, *One;
-};
+ // Also push in last position the remainder of the last division: it will be
+ // the access function of the innermost dimension.
+ Subscripts.push_back(Res);
+
+ std::reverse(Subscripts.begin(), Subscripts.end());
+
+ DEBUG({
+ dbgs() << "Subscripts:\n";
+ for (const SCEV *S : Subscripts)
+ dbgs() << *S << "\n";
+ });
}
/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
@@ -7239,84 +7537,40 @@ private:
/// asking for the SCEV of the memory access with respect to all enclosing
/// loops, calling SCEV->delinearize on that and printing the results.
-const SCEV *
-SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
- SmallVectorImpl<const SCEV *> &Subscripts,
- SmallVectorImpl<const SCEV *> &Sizes) const {
- // Early exit in case this SCEV is not an affine multivariate function.
- if (!this->isAffine())
- return this;
-
- const SCEV *Start = this->getStart();
- const SCEV *Step = this->getStepRecurrence(SE);
-
- // Build the SCEV representation of the canonical induction variable in the
- // loop of this SCEV.
- const SCEV *Zero = SE.getConstant(this->getType(), 0);
- const SCEV *One = SE.getConstant(this->getType(), 1);
- const SCEV *IV =
- SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
-
- DEBUG(dbgs() << "(delinearize: " << *this << "\n");
-
- // When the stride of this SCEV is 1, do not compute the GCD: the size of this
- // subscript is 1, and this same SCEV for the access function.
- const SCEV *Remainder = Zero;
- const SCEV *GCD = One;
-
- // Find the GCD and Remainder of the Start and Step coefficients of this SCEV.
- if (Step != One && !Step->isAllOnesValue())
- GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
-
- DEBUG(dbgs() << "GCD: " << *GCD << "\n");
- DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
-
- const SCEV *Quotient = Start;
- if (GCD != One && !GCD->isAllOnesValue())
- // As findGCD computed Remainder, GCD divides "Start - Remainder." The
- // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
- // Quotient is what will be used in the next subscript delinearization.
- Quotient = SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
-
- DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
-
- const SCEV *Rem = Quotient;
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
- // Recursively call delinearize on the Quotient until there are no more
- // multiples that can be recognized.
- Rem = AR->delinearize(SE, Subscripts, Sizes);
-
- // Scale up the canonical induction variable IV by whatever remains from the
- // Step after division by the GCD: the GCD is the size of all the sub-array.
- if (Step != One && !Step->isAllOnesValue() && GCD != One &&
- !GCD->isAllOnesValue() && Step != GCD) {
- Step = SCEVDivision::divide(SE, Step, GCD);
- IV = SE.getMulExpr(IV, Step);
- }
- // The access function in the current subscript is computed as the canonical
- // induction variable IV (potentially scaled up by the step) and offset by
- // Rem, the offset of delinearization in the sub-array.
- const SCEV *Index = SE.getAddExpr(IV, Rem);
-
- // Record the access function and the size of the current subscript.
- Subscripts.push_back(Index);
- Sizes.push_back(GCD);
+void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
+ SmallVectorImpl<const SCEV *> &Subscripts,
+ SmallVectorImpl<const SCEV *> &Sizes,
+ const SCEV *ElementSize) const {
+ // First step: collect parametric terms.
+ SmallVector<const SCEV *, 4> Terms;
+ collectParametricTerms(SE, Terms);
-#ifndef NDEBUG
- int Size = Sizes.size();
- DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
- DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
- for (int i = 0; i < Size - 1; i++)
- DEBUG(dbgs() << "[" << *Sizes[i] << "]");
- DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
-
- DEBUG(dbgs() << "ArrayRef");
- for (int i = 0; i < Size; i++)
- DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
- DEBUG(dbgs() << "\n)\n");
-#endif
+ if (Terms.empty())
+ return;
+
+ // Second step: find subscript sizes.
+ SE.findArrayDimensions(Terms, Sizes, ElementSize);
+
+ if (Sizes.empty())
+ return;
+
+ // Third step: compute the access functions for each subscript.
+ computeAccessFunctions(SE, Subscripts, Sizes);
+
+ if (Subscripts.empty())
+ return;
+
+ DEBUG({
+ dbgs() << "succeeded to delinearize " << *this << "\n";
+ dbgs() << "ArrayDecl[UnknownSize]";
+ for (const SCEV *S : Sizes)
+ dbgs() << "[" << *S << "]";
- return Remainder;
+ dbgs() << "\nArrayRef";
+ for (const SCEV *S : Subscripts)
+ dbgs() << "[" << *S << "]";
+ dbgs() << "\n";
+ });
}
//===----------------------------------------------------------------------===//
@@ -7368,7 +7622,8 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
//===----------------------------------------------------------------------===//
ScalarEvolution::ScalarEvolution()
- : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) {
+ : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
+ BlockDispositions(64), FirstUnknown(nullptr) {
initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
}
@@ -7376,7 +7631,7 @@ bool ScalarEvolution::runOnFunction(Function &F) {
this->F = &F;
LI = &getAnalysis<LoopInfo>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return false;
@@ -7387,7 +7642,7 @@ void ScalarEvolution::releaseMemory() {
// destructors, so that they release their references to their values.
for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
U->~SCEVUnknown();
- FirstUnknown = 0;
+ FirstUnknown = nullptr;
ValueExprMap.clear();
diff --git a/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp b/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
index 7be6aca..6933f74 100644
--- a/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
+++ b/lib/Analysis/ScalarEvolutionAliasAnalysis.cpp
@@ -34,7 +34,7 @@ namespace {
public:
static char ID; // Class identification, replacement for typeinfo
- ScalarEvolutionAliasAnalysis() : FunctionPass(ID), SE(0) {
+ ScalarEvolutionAliasAnalysis() : FunctionPass(ID), SE(nullptr) {
initializeScalarEvolutionAliasAnalysisPass(
*PassRegistry::getPassRegistry());
}
@@ -102,7 +102,7 @@ ScalarEvolutionAliasAnalysis::GetBaseValue(const SCEV *S) {
return U->getValue();
}
// No Identified object found.
- return 0;
+ return nullptr;
}
AliasAnalysis::AliasResult
@@ -162,10 +162,10 @@ ScalarEvolutionAliasAnalysis::alias(const Location &LocA,
if ((AO && AO != LocA.Ptr) || (BO && BO != LocB.Ptr))
if (alias(Location(AO ? AO : LocA.Ptr,
AO ? +UnknownSize : LocA.Size,
- AO ? 0 : LocA.TBAATag),
+ AO ? nullptr : LocA.TBAATag),
Location(BO ? BO : LocB.Ptr,
BO ? +UnknownSize : LocB.Size,
- BO ? 0 : LocB.TBAATag)) == NoAlias)
+ BO ? nullptr : LocB.TBAATag)) == NoAlias)
return NoAlias;
// Forward the query to the next analysis.
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index fb3d595..b507043 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -44,7 +44,7 @@ Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
// not allowed to move it.
BasicBlock::iterator BIP = Builder.GetInsertPoint();
- Instruction *Ret = NULL;
+ Instruction *Ret = nullptr;
// Check to see if there is already a cast!
for (User *U : V->users())
@@ -627,21 +627,21 @@ static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
// Test whether we've already computed the most relevant loop for this SCEV.
std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
- RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
+ RelevantLoops.insert(std::make_pair(S, nullptr));
if (!Pair.second)
return Pair.first->second;
if (isa<SCEVConstant>(S))
// A constant has no relevant loops.
- return 0;
+ return nullptr;
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
return Pair.first->second = SE.LI->getLoopFor(I->getParent());
// A non-instruction has no relevant loops.
- return 0;
+ return nullptr;
}
if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
- const Loop *L = 0;
+ const Loop *L = nullptr;
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
L = AR->getLoop();
for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
@@ -716,7 +716,7 @@ Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
// Emit instructions to add all the operands. Hoist as much as possible
// out of loops, and form meaningful getelementptrs where possible.
- Value *Sum = 0;
+ Value *Sum = nullptr;
for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
const Loop *CurLoop = I->first;
@@ -784,7 +784,7 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
// Emit instructions to mul all the operands. Hoist as much as possible
// out of loops.
- Value *Prod = 0;
+ Value *Prod = nullptr;
for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
const SCEV *Op = I->second;
@@ -892,18 +892,18 @@ Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
Instruction *InsertPos,
bool allowScale) {
if (IncV == InsertPos)
- return NULL;
+ return nullptr;
switch (IncV->getOpcode()) {
default:
- return NULL;
+ return nullptr;
// Check for a simple Add/Sub or GEP of a loop invariant step.
case Instruction::Add:
case Instruction::Sub: {
Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
if (!OInst || SE.DT->dominates(OInst, InsertPos))
return dyn_cast<Instruction>(IncV->getOperand(0));
- return NULL;
+ return nullptr;
}
case Instruction::BitCast:
return dyn_cast<Instruction>(IncV->getOperand(0));
@@ -914,7 +914,7 @@ Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
continue;
if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
if (!SE.DT->dominates(OInst, InsertPos))
- return NULL;
+ return nullptr;
}
if (allowScale) {
// allow any kind of GEP as long as it can be hoisted.
@@ -925,11 +925,11 @@ Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
// have 2 operands. i1* is used by the expander to represent an
// address-size element.
if (IncV->getNumOperands() != 2)
- return NULL;
+ return nullptr;
unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
&& IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
- return NULL;
+ return nullptr;
break;
}
return dyn_cast<Instruction>(IncV->getOperand(0));
@@ -1077,9 +1077,9 @@ SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
// Reuse a previously-inserted PHI, if present.
BasicBlock *LatchBlock = L->getLoopLatch();
if (LatchBlock) {
- PHINode *AddRecPhiMatch = 0;
- Instruction *IncV = 0;
- TruncTy = 0;
+ PHINode *AddRecPhiMatch = nullptr;
+ Instruction *IncV = nullptr;
+ TruncTy = nullptr;
InvertStep = false;
// Only try partially matching scevs that need truncation and/or
@@ -1120,7 +1120,7 @@ SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
// Stop if we have found an exact match SCEV.
if (IsMatchingSCEV) {
IncV = TempIncV;
- TruncTy = 0;
+ TruncTy = nullptr;
InvertStep = false;
AddRecPhiMatch = PN;
break;
@@ -1243,13 +1243,13 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
PostIncLoopSet Loops;
Loops.insert(L);
Normalized =
- cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
- Loops, SE, *SE.DT));
+ cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, nullptr,
+ nullptr, Loops, SE, *SE.DT));
}
// Strip off any non-loop-dominating component from the addrec start.
const SCEV *Start = Normalized->getStart();
- const SCEV *PostLoopOffset = 0;
+ const SCEV *PostLoopOffset = nullptr;
if (!SE.properlyDominates(Start, L->getHeader())) {
PostLoopOffset = Start;
Start = SE.getConstant(Normalized->getType(), 0);
@@ -1261,7 +1261,7 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
// Strip off any non-loop-dominating component from the addrec step.
const SCEV *Step = Normalized->getStepRecurrence(SE);
- const SCEV *PostLoopScale = 0;
+ const SCEV *PostLoopScale = nullptr;
if (!SE.dominates(Step, L->getHeader())) {
PostLoopScale = Step;
Step = SE.getConstant(Normalized->getType(), 1);
@@ -1276,7 +1276,7 @@ Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
Type *ExpandTy = PostLoopScale ? IntTy : STy;
// In some cases, we decide to reuse an existing phi node but need to truncate
// it and/or invert the step.
- Type *TruncTy = 0;
+ Type *TruncTy = nullptr;
bool InvertStep = false;
PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
TruncTy, InvertStep);
@@ -1372,7 +1372,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
const Loop *L = S->getLoop();
// First check for an existing canonical IV in a suitable type.
- PHINode *CanonicalIV = 0;
+ PHINode *CanonicalIV = nullptr;
if (PHINode *PN = L->getCanonicalInductionVariable())
if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
CanonicalIV = PN;
@@ -1393,7 +1393,7 @@ Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
isa<LandingPadInst>(NewInsertPt))
++NewInsertPt;
- V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
+ V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
NewInsertPt);
return V;
}
@@ -1666,7 +1666,8 @@ SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
// Emit code for it.
BuilderType::InsertPointGuard Guard(Builder);
- PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
+ PHINode *V = cast<PHINode>(expandCodeFor(H, nullptr,
+ L->getHeader()->begin()));
return V;
}
diff --git a/lib/Analysis/ScalarEvolutionNormalization.cpp b/lib/Analysis/ScalarEvolutionNormalization.cpp
index 1e4c0bd..e9db295 100644
--- a/lib/Analysis/ScalarEvolutionNormalization.cpp
+++ b/lib/Analysis/ScalarEvolutionNormalization.cpp
@@ -113,7 +113,7 @@ TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
// Transform each operand.
for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
I != E; ++I) {
- Operands.push_back(TransformSubExpr(*I, LUser, 0));
+ Operands.push_back(TransformSubExpr(*I, LUser, nullptr));
}
// Conservatively use AnyWrap until/unless we need FlagNW.
const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
diff --git a/lib/Analysis/SparsePropagation.cpp b/lib/Analysis/SparsePropagation.cpp
index 87a4fa4..edd82f5 100644
--- a/lib/Analysis/SparsePropagation.cpp
+++ b/lib/Analysis/SparsePropagation.cpp
@@ -12,7 +12,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "sparseprop"
#include "llvm/Analysis/SparsePropagation.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
@@ -21,6 +20,8 @@
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+#define DEBUG_TYPE "sparseprop"
+
//===----------------------------------------------------------------------===//
// AbstractLatticeFunction Implementation
//===----------------------------------------------------------------------===//
@@ -147,7 +148,7 @@ void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
return;
Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
- if (C == 0 || !isa<ConstantInt>(C)) {
+ if (!C || !isa<ConstantInt>(C)) {
// Non-constant values can go either way.
Succs[0] = Succs[1] = true;
return;
@@ -189,7 +190,7 @@ void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
return;
Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
- if (C == 0 || !isa<ConstantInt>(C)) {
+ if (!C || !isa<ConstantInt>(C)) {
// All destinations are executable!
Succs.assign(TI.getNumSuccessors(), true);
return;
diff --git a/lib/Analysis/TargetTransformInfo.cpp b/lib/Analysis/TargetTransformInfo.cpp
index 04d09f1..cdb0b79 100644
--- a/lib/Analysis/TargetTransformInfo.cpp
+++ b/lib/Analysis/TargetTransformInfo.cpp
@@ -7,7 +7,6 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "tti"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
@@ -19,6 +18,8 @@
using namespace llvm;
+#define DEBUG_TYPE "tti"
+
// Setup the analysis group to manage the TargetTransformInfo passes.
INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
char TargetTransformInfo::ID = 0;
@@ -234,7 +235,7 @@ namespace {
struct NoTTI final : ImmutablePass, TargetTransformInfo {
const DataLayout *DL;
- NoTTI() : ImmutablePass(ID), DL(0) {
+ NoTTI() : ImmutablePass(ID), DL(nullptr) {
initializeNoTTIPass(*PassRegistry::getPassRegistry());
}
@@ -242,9 +243,9 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
// Note that this subclass is special, and must *not* call initializeTTI as
// it does not chain.
TopTTI = this;
- PrevTTI = 0;
+ PrevTTI = nullptr;
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
@@ -443,7 +444,7 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
// Otherwise delegate to the fully generic implementations.
return getOperationCost(Operator::getOpcode(U), U->getType(),
U->getNumOperands() == 1 ?
- U->getOperand(0)->getType() : 0);
+ U->getOperand(0)->getType() : nullptr);
}
bool hasBranchDivergence() const override { return false; }
@@ -567,7 +568,7 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
}
unsigned getShuffleCost(ShuffleKind Kind, Type *Ty,
- int Index = 0, Type *SubTp = 0) const override {
+ int Index = 0, Type *SubTp = nullptr) const override {
return 1;
}
@@ -581,7 +582,7 @@ struct NoTTI final : ImmutablePass, TargetTransformInfo {
}
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy = 0) const override {
+ Type *CondTy = nullptr) const override {
return 1;
}
diff --git a/lib/Analysis/TypeBasedAliasAnalysis.cpp b/lib/Analysis/TypeBasedAliasAnalysis.cpp
index 05daf18..f36f6f8 100644
--- a/lib/Analysis/TypeBasedAliasAnalysis.cpp
+++ b/lib/Analysis/TypeBasedAliasAnalysis.cpp
@@ -144,7 +144,7 @@ namespace {
const MDNode *Node;
public:
- TBAANode() : Node(0) {}
+ TBAANode() : Node(nullptr) {}
explicit TBAANode(const MDNode *N) : Node(N) {}
/// getNode - Get the MDNode for this TBAANode.
@@ -182,7 +182,6 @@ namespace {
const MDNode *Node;
public:
- TBAAStructTagNode() : Node(0) {}
explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTagNode.
@@ -218,7 +217,7 @@ namespace {
const MDNode *Node;
public:
- TBAAStructTypeNode() : Node(0) {}
+ TBAAStructTypeNode() : Node(nullptr) {}
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
/// Get the MDNode for this TBAAStructTypeNode.
@@ -340,7 +339,8 @@ static bool isStructPathTBAA(const MDNode *MD) {
bool
TypeBasedAliasAnalysis::Aliases(const MDNode *A,
const MDNode *B) const {
- if (isStructPathTBAA(A))
+ // Make sure that both MDNodes are struct-path aware.
+ if (isStructPathTBAA(A) && isStructPathTBAA(B))
return PathAliases(A, B);
// Keep track of the root node for A and B.
@@ -386,6 +386,10 @@ TypeBasedAliasAnalysis::Aliases(const MDNode *A,
bool
TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
const MDNode *B) const {
+ // Verify that both input nodes are struct-path aware.
+ assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
+ assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
+
// Keep track of the root node for A and B.
TBAAStructTypeNode RootA, RootB;
TBAAStructTagNode TagA(A), TagB(B);
@@ -555,38 +559,40 @@ bool MDNode::isTBAAVtableAccess() const {
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
if (!A || !B)
- return NULL;
+ return nullptr;
if (A == B)
return A;
// For struct-path aware TBAA, we use the access type of the tag.
- bool StructPath = isStructPathTBAA(A);
+ bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
if (StructPath) {
A = cast_or_null<MDNode>(A->getOperand(1));
- if (!A) return 0;
+ if (!A) return nullptr;
B = cast_or_null<MDNode>(B->getOperand(1));
- if (!B) return 0;
+ if (!B) return nullptr;
}
SmallVector<MDNode *, 4> PathA;
MDNode *T = A;
while (T) {
PathA.push_back(T);
- T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
+ T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
+ : nullptr;
}
SmallVector<MDNode *, 4> PathB;
T = B;
while (T) {
PathB.push_back(T);
- T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
+ T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
+ : nullptr;
}
int IA = PathA.size() - 1;
int IB = PathB.size() - 1;
- MDNode *Ret = 0;
+ MDNode *Ret = nullptr;
while (IA >= 0 && IB >=0) {
if (PathA[IA] == PathB[IB])
Ret = PathA[IA];
@@ -599,7 +605,7 @@ MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
return Ret;
if (!Ret)
- return 0;
+ return nullptr;
// We need to convert from a type node to a tag node.
Type *Int64 = IntegerType::get(A->getContext(), 64);
Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 72617a0..4f48753 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -16,6 +16,7 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -44,10 +45,10 @@ static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
}
-static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth) {
+static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout *TD, unsigned Depth) {
if (!Add) {
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
// We know that the top bits of C-X are clear if X contains less bits
@@ -58,7 +59,7 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
+ llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
@@ -79,13 +80,10 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
// result. For an add, this works with either operand. For a subtract,
// this only works if the known zeros are in the right operand.
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
- assert((LHSKnownZero & LHSKnownOne) == 0 &&
- "Bits known to be one AND zero?");
+ llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
- llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
// Determine which operand has more trailing zeros, and use that
@@ -130,15 +128,13 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
}
}
-static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2,
- const DataLayout *TD, unsigned Depth) {
+static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = KnownZero.getBitWidth();
- ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
@@ -192,7 +188,7 @@ static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
KnownOne.setBit(BitWidth - 1);
}
-void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
+void llvm::computeKnownBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
@@ -211,8 +207,9 @@ void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
}
-/// ComputeMaskedBits - Determine which of the bits are known to be either zero
-/// or one and return them in the KnownZero/KnownOne bit sets.
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the KnownZero/KnownOne bit sets.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
@@ -226,8 +223,8 @@ void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
- const DataLayout *TD, unsigned Depth) {
+void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
+ const DataLayout *TD, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = KnownZero.getBitWidth();
@@ -241,7 +238,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
V->getType()->getScalarSizeInBits() == BitWidth) &&
KnownZero.getBitWidth() == BitWidth &&
KnownOne.getBitWidth() == BitWidth &&
- "V, Mask, KnownOne and KnownZero should have same BitWidth");
+ "V, KnownOne and KnownZero should have same BitWidth");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
@@ -303,7 +300,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
if (GA->mayBeOverridden()) {
KnownZero.clearAllBits(); KnownOne.clearAllBits();
} else {
- ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
}
return;
}
@@ -341,49 +338,43 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
default: break;
case Instruction::Load:
if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
- computeMaskedBitsLoad(*MD, KnownZero);
- return;
+ computeKnownBitsLoad(*MD, KnownZero);
+ break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
- return;
+ break;
}
case Instruction::Or: {
- ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
- return;
+ break;
}
case Instruction::Xor: {
- ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
- return;
+ break;
}
case Instruction::Mul: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
}
@@ -391,42 +382,40 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
- return;
+ break;
}
case Instruction::Select:
- ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
+ computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
- return;
+ break;
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
- return; // Can't work with floating point.
+ break; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// We can't handle these if we don't know the pointer size.
- if (!TD) return;
+ if (!TD) break;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
@@ -439,19 +428,19 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
} else {
SrcBitWidth = SrcTy->getScalarSizeInBits();
- if (!SrcBitWidth) return;
+ if (!SrcBitWidth) break;
}
assert(SrcBitWidth && "SrcBitWidth can't be zero");
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
if (BitWidth > SrcBitWidth)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- return;
+ break;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
@@ -459,8 +448,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- return;
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ break;
}
break;
}
@@ -470,8 +459,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -481,18 +469,17 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
- return;
+ break;
}
case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
- return;
+ break;
}
break;
case Instruction::LShr:
@@ -502,13 +489,12 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
// high bits known zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- return;
+ break;
}
break;
case Instruction::AShr:
@@ -518,8 +504,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -528,19 +513,19 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownZero |= HighBits;
else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
KnownOne |= HighBits;
- return;
+ break;
}
break;
case Instruction::Sub: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Depth);
break;
}
case Instruction::Add: {
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
- ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
Depth);
break;
@@ -550,7 +535,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -574,8 +559,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// remainder is zero.
if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
- Depth+1);
+ computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
+ Depth+1);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
KnownZero.setBit(BitWidth - 1);
@@ -587,9 +572,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
- Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
+ Depth+1);
KnownZero |= ~LowBits;
KnownOne &= LowBits;
break;
@@ -598,8 +582,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
@@ -622,8 +606,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
- Depth+1);
+ computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
+ Depth+1);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -631,8 +615,10 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Value *Index = I->getOperand(i);
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
// Handle struct member offset arithmetic.
- if (!TD)
- return;
+ if (!TD) {
+ TrailZ = 0;
+ break;
+ }
// Handle case when index is vector zeroinitializer
Constant *CIndex = cast<Constant>(Index);
@@ -650,11 +636,14 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
} else {
// Handle array index arithmetic.
Type *IndexedTy = GTI.getIndexedType();
- if (!IndexedTy->isSized()) return;
+ if (!IndexedTy->isSized()) {
+ TrailZ = 0;
+ break;
+ }
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnownZero.countTrailingOnes()));
@@ -696,11 +685,11 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
+ computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
+ computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
@@ -712,7 +701,7 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
// Unreachable blocks may have zero-operand PHI nodes.
if (P->getNumIncomingValues() == 0)
- return;
+ break;
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
@@ -731,8 +720,8 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
- MaxDepth-1);
+ computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
+ MaxDepth-1);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -776,30 +765,32 @@ void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
- ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ computeKnownBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
- ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, KnownZero,
- KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ computeKnownBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
- ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
- false, KnownZero, KnownOne,
- KnownZero2, KnownOne2, TD, Depth);
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
+ false, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, TD, Depth);
break;
}
}
}
}
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
-/// one. Convenience wrapper around ComputeMaskedBits.
+/// one. Convenience wrapper around computeKnownBits.
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = getBitWidth(V->getType(), TD);
@@ -810,7 +801,7 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
+ computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -842,7 +833,7 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
if (Depth++ == MaxDepth)
return false;
- Value *X = 0, *Y = 0;
+ Value *X = nullptr, *Y = nullptr;
// A shift of a power of two is a power of two or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_Shr(m_Value(X), m_Value()))))
@@ -882,10 +873,10 @@ bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
unsigned BitWidth = V->getType()->getScalarSizeInBits();
APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
- ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
+ computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
- ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
+ computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
@@ -1005,7 +996,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
// X | Y != 0 if X != 0 or Y != 0.
- Value *X = 0, *Y = 0;
+ Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
@@ -1023,7 +1014,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
if (KnownOne[0])
return true;
}
@@ -1065,12 +1056,12 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
}
@@ -1100,7 +1091,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
return KnownOne != 0;
}
@@ -1116,8 +1107,7 @@ bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
const DataLayout *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
return (KnownZero & Mask) == Mask;
}
@@ -1142,7 +1132,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
- // Note that ConstantInt is handled by the general ComputeMaskedBits case
+ // Note that ConstantInt is handled by the general computeKnownBits case
// below.
if (Depth == 6)
@@ -1187,7 +1177,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
- // ComputeMaskedBits, and pick whichever answer is better.
+ // computeKnownBits, and pick whichever answer is better.
}
break;
@@ -1207,7 +1197,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
@@ -1232,7 +1222,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
@@ -1278,7 +1268,7 @@ unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
- ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
+ computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -1364,7 +1354,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Op1 = ConstantInt::get(V->getContext(), API);
}
- Value *Mul0 = NULL;
+ Value *Mul0 = nullptr;
if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1))
if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
@@ -1388,7 +1378,7 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
}
}
- Value *Mul1 = NULL;
+ Value *Mul1 = nullptr;
if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
if (Constant *Op0C = dyn_cast<Constant>(Op0))
if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
@@ -1432,7 +1422,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
return 1; // Limit search depth.
const Operator *I = dyn_cast<Operator>(V);
- if (I == 0) return false;
+ if (!I) return false;
// Check if the nsz fast-math flag is set
if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
@@ -1513,7 +1503,7 @@ Value *llvm::isBytewiseValue(Value *V) {
// If the top/bottom halves aren't the same, reject it.
if (Val != Val2)
- return 0;
+ return nullptr;
}
return ConstantInt::get(V->getContext(), Val);
}
@@ -1525,11 +1515,11 @@ Value *llvm::isBytewiseValue(Value *V) {
Value *Elt = CA->getElementAsConstant(0);
Value *Val = isBytewiseValue(Elt);
if (!Val)
- return 0;
+ return nullptr;
for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
if (CA->getElementAsConstant(I) != Elt)
- return 0;
+ return nullptr;
return Val;
}
@@ -1540,7 +1530,7 @@ Value *llvm::isBytewiseValue(Value *V) {
// %c = or i16 %a, %b
// but until there is an example that actually needs this, it doesn't seem
// worth worrying about.
- return 0;
+ return nullptr;
}
@@ -1590,7 +1580,7 @@ static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Value *V = FindInsertedValue(From, Idxs);
if (!V)
- return NULL;
+ return nullptr;
// Insert the value in the new (sub) aggregrate
return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
@@ -1641,7 +1631,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
if (Constant *C = dyn_cast<Constant>(V)) {
C = C->getAggregateElement(idx_range[0]);
- if (C == 0) return 0;
+ if (!C) return nullptr;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
@@ -1654,7 +1644,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
if (req_idx == idx_range.end()) {
// We can't handle this without inserting insertvalues
if (!InsertBefore)
- return 0;
+ return nullptr;
// The requested index identifies a part of a nested aggregate. Handle
// this specially. For example,
@@ -1708,7 +1698,7 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
- return 0;
+ return nullptr;
}
/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
@@ -1769,13 +1759,13 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// Make sure the index-ee is a pointer to array of i8.
PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
- if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
+ if (!AT || !AT->getElementType()->isIntegerTy(8))
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (FirstIdx == 0 || !FirstIdx->isZero())
+ if (!FirstIdx || !FirstIdx->isZero())
return false;
// If the second index isn't a ConstantInt, then this is a variable index
@@ -1807,7 +1797,7 @@ bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
// Must be a Constant Array
const ConstantDataArray *Array =
dyn_cast<ConstantDataArray>(GV->getInitializer());
- if (Array == 0 || !Array->isString())
+ if (!Array || !Array->isString())
return false;
// Get the number of elements in the array
@@ -1913,7 +1903,7 @@ llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and use it.
- if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
+ if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
V = Simplified;
continue;
}
@@ -2001,7 +1991,7 @@ bool llvm::isSafeToSpeculativelyExecute(const Value *V,
return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
+ computeKnownBits(Op, KnownZero, KnownOne, TD);
return !!KnownZero;
}
case Instruction::Load: {
@@ -2076,14 +2066,18 @@ bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V)) return true;
- // A byval or inalloca argument is never null.
+ // A byval, inalloca, or nonnull argument is never null.
if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValOrInAllocaAttr();
+ return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
// Global values are not null unless extern weak.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return !GV->hasExternalWeakLinkage();
+ if (ImmutableCallSite CS = V)
+ if (CS.paramHasAttr(0, Attribute::NonNull))
+ return true;
+
// operator new never returns null.
if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
return true;