diff options
author | Chris Lattner <sabre@nondot.org> | 2005-10-29 04:43:38 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2005-10-29 04:43:38 +0000 |
commit | eb99bd30e98ee78b2829f33290afe30897ae9024 (patch) | |
tree | a9dc9692098169abc95ac64bd04b237a06502bd8 /lib/Analysis | |
parent | 9a83508a27431db86a502a29dd07581b2ea541f0 (diff) | |
download | external_llvm-eb99bd30e98ee78b2829f33290afe30897ae9024.zip external_llvm-eb99bd30e98ee78b2829f33290afe30897ae9024.tar.gz external_llvm-eb99bd30e98ee78b2829f33290afe30897ae9024.tar.bz2 |
remove a dead file
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24085 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis')
-rw-r--r-- | lib/Analysis/Expressions.cpp | 355 |
1 files changed, 0 insertions, 355 deletions
diff --git a/lib/Analysis/Expressions.cpp b/lib/Analysis/Expressions.cpp deleted file mode 100644 index f625b2e..0000000 --- a/lib/Analysis/Expressions.cpp +++ /dev/null @@ -1,355 +0,0 @@ -//===- Expressions.cpp - Expression Analysis Utilities --------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a package of expression analysis utilties: -// -// ClassifyExpression: Analyze an expression to determine the complexity of the -// expression, and which other variables it depends on. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/Expressions.h" -#include "llvm/Constants.h" -#include "llvm/Function.h" -#include "llvm/Type.h" -#include <iostream> - -using namespace llvm; - -ExprType::ExprType(Value *Val) { - if (Val) - if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) { - Offset = CPI; - Var = 0; - ExprTy = Constant; - Scale = 0; - return; - } - - Var = Val; Offset = 0; - ExprTy = Var ? Linear : Constant; - Scale = 0; -} - -ExprType::ExprType(const ConstantInt *scale, Value *var, - const ConstantInt *offset) { - Scale = var ? scale : 0; Var = var; Offset = offset; - ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant); - if (Scale && Scale->isNullValue()) { // Simplify 0*Var + const - Scale = 0; Var = 0; - ExprTy = Constant; - } -} - - -const Type *ExprType::getExprType(const Type *Default) const { - if (Offset) return Offset->getType(); - if (Scale) return Scale->getType(); - return Var ? Var->getType() : Default; -} - - -namespace { - class DefVal { - const ConstantInt * const Val; - const Type * const Ty; - protected: - inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {} - public: - inline const Type *getType() const { return Ty; } - inline const ConstantInt *getVal() const { return Val; } - inline operator const ConstantInt * () const { return Val; } - inline const ConstantInt *operator->() const { return Val; } - }; - - struct DefZero : public DefVal { - inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} - inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {} - }; - - struct DefOne : public DefVal { - inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} - }; -} - - -// getUnsignedConstant - Return a constant value of the specified type. If the -// constant value is not valid for the specified type, return null. This cannot -// happen for values in the range of 0 to 127. -// -static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) { - if (isa<PointerType>(Ty)) Ty = Type::ULongTy; - if (Ty->isSigned()) { - // If this value is not a valid unsigned value for this type, return null! - if (V > 127 && ((int64_t)V < 0 || - !ConstantSInt::isValueValidForType(Ty, (int64_t)V))) - return 0; - return ConstantSInt::get(Ty, V); - } else { - // If this value is not a valid unsigned value for this type, return null! - if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V)) - return 0; - return ConstantUInt::get(Ty, V); - } -} - -// Add - Helper function to make later code simpler. Basically it just adds -// the two constants together, inserts the result into the constant pool, and -// returns it. Of course life is not simple, and this is no exception. Factors -// that complicate matters: -// 1. Either argument may be null. If this is the case, the null argument is -// treated as either 0 (if DefOne = false) or 1 (if DefOne = true) -// 2. Types get in the way. We want to do arithmetic operations without -// regard for the underlying types. It is assumed that the constants are -// integral constants. The new value takes the type of the left argument. -// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne -// is false, a null return value indicates a value of 0. -// -static const ConstantInt *Add(const ConstantInt *Arg1, - const ConstantInt *Arg2, bool DefOne) { - assert(Arg1 && Arg2 && "No null arguments should exist now!"); - assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); - - // Actually perform the computation now! - Constant *Result = ConstantExpr::get(Instruction::Add, (Constant*)Arg1, - (Constant*)Arg2); - ConstantInt *ResultI = cast<ConstantInt>(Result); - - // Check to see if the result is one of the special cases that we want to - // recognize... - if (ResultI->equalsInt(DefOne ? 1 : 0)) - return 0; // Yes it is, simply return null. - - return ResultI; -} - -static inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) { - if (L == 0) return R; - if (R == 0) return L; - return Add(L, R, false); -} - -static inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) { - if (L == 0) { - if (R == 0) - return getUnsignedConstant(2, L.getType()); - else - return Add(getUnsignedConstant(1, L.getType()), R, true); - } else if (R == 0) { - return Add(L, getUnsignedConstant(1, L.getType()), true); - } - return Add(L, R, true); -} - - -// Mul - Helper function to make later code simpler. Basically it just -// multiplies the two constants together, inserts the result into the constant -// pool, and returns it. Of course life is not simple, and this is no -// exception. Factors that complicate matters: -// 1. Either argument may be null. If this is the case, the null argument is -// treated as either 0 (if DefOne = false) or 1 (if DefOne = true) -// 2. Types get in the way. We want to do arithmetic operations without -// regard for the underlying types. It is assumed that the constants are -// integral constants. -// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne -// is false, a null return value indicates a value of 0. -// -static inline const ConstantInt *Mul(const ConstantInt *Arg1, - const ConstantInt *Arg2, bool DefOne) { - assert(Arg1 && Arg2 && "No null arguments should exist now!"); - assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); - - // Actually perform the computation now! - Constant *Result = ConstantExpr::get(Instruction::Mul, (Constant*)Arg1, - (Constant*)Arg2); - assert(Result && Result->getType() == Arg1->getType() && - "Couldn't perform multiplication!"); - ConstantInt *ResultI = cast<ConstantInt>(Result); - - // Check to see if the result is one of the special cases that we want to - // recognize... - if (ResultI->equalsInt(DefOne ? 1 : 0)) - return 0; // Yes it is, simply return null. - - return ResultI; -} - -namespace { - inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) { - if (L == 0 || R == 0) return 0; - return Mul(L, R, false); - } - inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) { - if (R == 0) return getUnsignedConstant(0, L.getType()); - if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); - return Mul(L, R, true); - } - inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) { - if (L == 0 || R == 0) return L.getVal(); - return Mul(R, L, false); - } -} - -// handleAddition - Add two expressions together, creating a new expression that -// represents the composite of the two... -// -static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) { - const Type *Ty = V->getType(); - if (Left.ExprTy > Right.ExprTy) - std::swap(Left, Right); // Make left be simpler than right - - switch (Left.ExprTy) { - case ExprType::Constant: - return ExprType(Right.Scale, Right.Var, - DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty)); - case ExprType::Linear: // RHS side must be linear or scaled - case ExprType::ScaledLinear: // RHS must be scaled - if (Left.Var != Right.Var) // Are they the same variables? - return V; // if not, we don't know anything! - - return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty), - Right.Var, - DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty)); - default: - assert(0 && "Dont' know how to handle this case!"); - return ExprType(); - } -} - -// negate - Negate the value of the specified expression... -// -static inline ExprType negate(const ExprType &E, Value *V) { - const Type *Ty = V->getType(); - ConstantInt *Zero = getUnsignedConstant(0, Ty); - ConstantInt *One = getUnsignedConstant(1, Ty); - ConstantInt *NegOne = cast<ConstantInt>(ConstantExpr::get(Instruction::Sub, - Zero, One)); - if (NegOne == 0) return V; // Couldn't subtract values... - - return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var, - DefZero(E.Offset, Ty) * NegOne); -} - - -// ClassifyExpr: Analyze an expression to determine the complexity of the -// expression, and which other values it depends on. -// -// Note that this analysis cannot get into infinite loops because it treats PHI -// nodes as being an unknown linear expression. -// -ExprType llvm::ClassifyExpr(Value *Expr) { - assert(Expr != 0 && "Can't classify a null expression!"); - if (Expr->getType()->isFloatingPoint()) - return Expr; // FIXME: Can't handle FP expressions - - if (Constant *C = dyn_cast<Constant>(Expr)) { - if (ConstantInt *CPI = dyn_cast<ConstantInt>(cast<Constant>(Expr))) - // It's an integral constant! - return ExprType(CPI->isNullValue() ? 0 : CPI); - return Expr; - } else if (!isa<Instruction>(Expr)) { - return Expr; - } - - - Instruction *I = cast<Instruction>(Expr); - const Type *Ty = I->getType(); - - switch (I->getOpcode()) { // Handle each instruction type separately - case Instruction::Add: { - ExprType Left (ClassifyExpr(I->getOperand(0))); - ExprType Right(ClassifyExpr(I->getOperand(1))); - return handleAddition(Left, Right, I); - } // end case Instruction::Add - - case Instruction::Sub: { - ExprType Left (ClassifyExpr(I->getOperand(0))); - ExprType Right(ClassifyExpr(I->getOperand(1))); - ExprType RightNeg = negate(Right, I); - if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale) - return I; // Could not negate value... - return handleAddition(Left, RightNeg, I); - } // end case Instruction::Sub - - case Instruction::Shl: { - ExprType Right(ClassifyExpr(I->getOperand(1))); - if (Right.ExprTy != ExprType::Constant) break; - ExprType Left(ClassifyExpr(I->getOperand(0))); - if (Right.Offset == 0) return Left; // shl x, 0 = x - assert(Right.Offset->getType() == Type::UByteTy && - "Shift amount must always be a unsigned byte!"); - uint64_t ShiftAmount = cast<ConstantUInt>(Right.Offset)->getValue(); - ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty); - - // We don't know how to classify it if they are shifting by more than what - // is reasonable. In most cases, the result will be zero, but there is one - // class of cases where it is not, so we cannot optimize without checking - // for it. The case is when you are shifting a signed value by 1 less than - // the number of bits in the value. For example: - // %X = shl sbyte %Y, ubyte 7 - // will try to form an sbyte multiplier of 128, which will give a null - // multiplier, even though the result is not 0. Until we can check for this - // case, be conservative. TODO. - // - if (Multiplier == 0) - return Expr; - - return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var, - DefZero(Left.Offset, Ty) * Multiplier); - } // end case Instruction::Shl - - case Instruction::Mul: { - ExprType Left (ClassifyExpr(I->getOperand(0))); - ExprType Right(ClassifyExpr(I->getOperand(1))); - if (Left.ExprTy > Right.ExprTy) - std::swap(Left, Right); // Make left be simpler than right - - if (Left.ExprTy != ExprType::Constant) // RHS must be > constant - return I; // Quadratic eqn! :( - - const ConstantInt *Offs = Left.Offset; - if (Offs == 0) return ExprType(); - return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var, - DefZero(Right.Offset, Ty) * Offs); - } // end case Instruction::Mul - - case Instruction::Cast: { - ExprType Src(ClassifyExpr(I->getOperand(0))); - const Type *DestTy = I->getType(); - if (isa<PointerType>(DestTy)) - DestTy = Type::ULongTy; // Pointer types are represented as ulong - - const Type *SrcValTy = Src.getExprType(0); - if (!SrcValTy) return I; - if (!SrcValTy->isLosslesslyConvertibleTo(DestTy)) { - if (Src.ExprTy != ExprType::Constant) - return I; // Converting cast, and not a constant value... - } - - const ConstantInt *Offset = Src.Offset; - const ConstantInt *Scale = Src.Scale; - if (Offset) { - const Constant *CPV = ConstantExpr::getCast((Constant*)Offset, DestTy); - if (!isa<ConstantInt>(CPV)) return I; - Offset = cast<ConstantInt>(CPV); - } - if (Scale) { - const Constant *CPV = ConstantExpr::getCast((Constant*)Scale, DestTy); - if (!CPV) return I; - Scale = cast<ConstantInt>(CPV); - } - return ExprType(Scale, Src.Var, Offset); - } // end case Instruction::Cast - // TODO: Handle SUB, SHR? - - } // end switch - - // Otherwise, I don't know anything about this value! - return I; -} |