aboutsummaryrefslogtreecommitdiffstats
path: root/lib/AsmParser/llvmAsmParser.y
diff options
context:
space:
mode:
authorDan Gohman <djg@cray.com>2007-07-18 16:29:46 +0000
committerDan Gohman <djg@cray.com>2007-07-18 16:29:46 +0000
commitf17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch)
treeebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/AsmParser/llvmAsmParser.y
downloadexternal_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip
external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz
external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/AsmParser/llvmAsmParser.y')
-rw-r--r--lib/AsmParser/llvmAsmParser.y3146
1 files changed, 3146 insertions, 0 deletions
diff --git a/lib/AsmParser/llvmAsmParser.y b/lib/AsmParser/llvmAsmParser.y
new file mode 100644
index 0000000..c879081
--- /dev/null
+++ b/lib/AsmParser/llvmAsmParser.y
@@ -0,0 +1,3146 @@
+//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the bison parser for LLVM assembly languages files.
+//
+//===----------------------------------------------------------------------===//
+
+%{
+#include "ParserInternals.h"
+#include "llvm/CallingConv.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+#include <algorithm>
+#include <list>
+#include <map>
+#include <utility>
+#ifndef NDEBUG
+#define YYDEBUG 1
+#endif
+
+// The following is a gross hack. In order to rid the libAsmParser library of
+// exceptions, we have to have a way of getting the yyparse function to go into
+// an error situation. So, whenever we want an error to occur, the GenerateError
+// function (see bottom of file) sets TriggerError. Then, at the end of each
+// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
+// (a goto) to put YACC in error state. Furthermore, several calls to
+// GenerateError are made from inside productions and they must simulate the
+// previous exception behavior by exiting the production immediately. We have
+// replaced these with the GEN_ERROR macro which calls GeneratError and then
+// immediately invokes YYERROR. This would be so much cleaner if it was a
+// recursive descent parser.
+static bool TriggerError = false;
+#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
+#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
+
+int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
+int yylex(); // declaration" of xxx warnings.
+int yyparse();
+
+namespace llvm {
+ std::string CurFilename;
+#if YYDEBUG
+static cl::opt<bool>
+Debug("debug-yacc", cl::desc("Print yacc debug state changes"),
+ cl::Hidden, cl::init(false));
+#endif
+}
+using namespace llvm;
+
+static Module *ParserResult;
+
+// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
+// relating to upreferences in the input stream.
+//
+//#define DEBUG_UPREFS 1
+#ifdef DEBUG_UPREFS
+#define UR_OUT(X) cerr << X
+#else
+#define UR_OUT(X)
+#endif
+
+#define YYERROR_VERBOSE 1
+
+static GlobalVariable *CurGV;
+
+
+// This contains info used when building the body of a function. It is
+// destroyed when the function is completed.
+//
+typedef std::vector<Value *> ValueList; // Numbered defs
+
+static void
+ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
+
+static struct PerModuleInfo {
+ Module *CurrentModule;
+ ValueList Values; // Module level numbered definitions
+ ValueList LateResolveValues;
+ std::vector<PATypeHolder> Types;
+ std::map<ValID, PATypeHolder> LateResolveTypes;
+
+ /// PlaceHolderInfo - When temporary placeholder objects are created, remember
+ /// how they were referenced and on which line of the input they came from so
+ /// that we can resolve them later and print error messages as appropriate.
+ std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
+
+ // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
+ // references to global values. Global values may be referenced before they
+ // are defined, and if so, the temporary object that they represent is held
+ // here. This is used for forward references of GlobalValues.
+ //
+ typedef std::map<std::pair<const PointerType *,
+ ValID>, GlobalValue*> GlobalRefsType;
+ GlobalRefsType GlobalRefs;
+
+ void ModuleDone() {
+ // If we could not resolve some functions at function compilation time
+ // (calls to functions before they are defined), resolve them now... Types
+ // are resolved when the constant pool has been completely parsed.
+ //
+ ResolveDefinitions(LateResolveValues);
+ if (TriggerError)
+ return;
+
+ // Check to make sure that all global value forward references have been
+ // resolved!
+ //
+ if (!GlobalRefs.empty()) {
+ std::string UndefinedReferences = "Unresolved global references exist:\n";
+
+ for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
+ I != E; ++I) {
+ UndefinedReferences += " " + I->first.first->getDescription() + " " +
+ I->first.second.getName() + "\n";
+ }
+ GenerateError(UndefinedReferences);
+ return;
+ }
+
+ Values.clear(); // Clear out function local definitions
+ Types.clear();
+ CurrentModule = 0;
+ }
+
+ // GetForwardRefForGlobal - Check to see if there is a forward reference
+ // for this global. If so, remove it from the GlobalRefs map and return it.
+ // If not, just return null.
+ GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
+ // Check to see if there is a forward reference to this global variable...
+ // if there is, eliminate it and patch the reference to use the new def'n.
+ GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
+ GlobalValue *Ret = 0;
+ if (I != GlobalRefs.end()) {
+ Ret = I->second;
+ GlobalRefs.erase(I);
+ }
+ return Ret;
+ }
+
+ bool TypeIsUnresolved(PATypeHolder* PATy) {
+ // If it isn't abstract, its resolved
+ const Type* Ty = PATy->get();
+ if (!Ty->isAbstract())
+ return false;
+ // Traverse the type looking for abstract types. If it isn't abstract then
+ // we don't need to traverse that leg of the type.
+ std::vector<const Type*> WorkList, SeenList;
+ WorkList.push_back(Ty);
+ while (!WorkList.empty()) {
+ const Type* Ty = WorkList.back();
+ SeenList.push_back(Ty);
+ WorkList.pop_back();
+ if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
+ // Check to see if this is an unresolved type
+ std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
+ std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
+ for ( ; I != E; ++I) {
+ if (I->second.get() == OpTy)
+ return true;
+ }
+ } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
+ const Type* TheTy = SeqTy->getElementType();
+ if (TheTy->isAbstract() && TheTy != Ty) {
+ std::vector<const Type*>::iterator I = SeenList.begin(),
+ E = SeenList.end();
+ for ( ; I != E; ++I)
+ if (*I == TheTy)
+ break;
+ if (I == E)
+ WorkList.push_back(TheTy);
+ }
+ } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
+ const Type* TheTy = StrTy->getElementType(i);
+ if (TheTy->isAbstract() && TheTy != Ty) {
+ std::vector<const Type*>::iterator I = SeenList.begin(),
+ E = SeenList.end();
+ for ( ; I != E; ++I)
+ if (*I == TheTy)
+ break;
+ if (I == E)
+ WorkList.push_back(TheTy);
+ }
+ }
+ }
+ }
+ return false;
+ }
+} CurModule;
+
+static struct PerFunctionInfo {
+ Function *CurrentFunction; // Pointer to current function being created
+
+ ValueList Values; // Keep track of #'d definitions
+ unsigned NextValNum;
+ ValueList LateResolveValues;
+ bool isDeclare; // Is this function a forward declararation?
+ GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
+ GlobalValue::VisibilityTypes Visibility;
+
+ /// BBForwardRefs - When we see forward references to basic blocks, keep
+ /// track of them here.
+ std::map<ValID, BasicBlock*> BBForwardRefs;
+
+ inline PerFunctionInfo() {
+ CurrentFunction = 0;
+ isDeclare = false;
+ Linkage = GlobalValue::ExternalLinkage;
+ Visibility = GlobalValue::DefaultVisibility;
+ }
+
+ inline void FunctionStart(Function *M) {
+ CurrentFunction = M;
+ NextValNum = 0;
+ }
+
+ void FunctionDone() {
+ // Any forward referenced blocks left?
+ if (!BBForwardRefs.empty()) {
+ GenerateError("Undefined reference to label " +
+ BBForwardRefs.begin()->second->getName());
+ return;
+ }
+
+ // Resolve all forward references now.
+ ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
+
+ Values.clear(); // Clear out function local definitions
+ BBForwardRefs.clear();
+ CurrentFunction = 0;
+ isDeclare = false;
+ Linkage = GlobalValue::ExternalLinkage;
+ Visibility = GlobalValue::DefaultVisibility;
+ }
+} CurFun; // Info for the current function...
+
+static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
+
+
+//===----------------------------------------------------------------------===//
+// Code to handle definitions of all the types
+//===----------------------------------------------------------------------===//
+
+static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
+ // Things that have names or are void typed don't get slot numbers
+ if (V->hasName() || (V->getType() == Type::VoidTy))
+ return;
+
+ // In the case of function values, we have to allow for the forward reference
+ // of basic blocks, which are included in the numbering. Consequently, we keep
+ // track of the next insertion location with NextValNum. When a BB gets
+ // inserted, it could change the size of the CurFun.Values vector.
+ if (&ValueTab == &CurFun.Values) {
+ if (ValueTab.size() <= CurFun.NextValNum)
+ ValueTab.resize(CurFun.NextValNum+1);
+ ValueTab[CurFun.NextValNum++] = V;
+ return;
+ }
+ // For all other lists, its okay to just tack it on the back of the vector.
+ ValueTab.push_back(V);
+}
+
+static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
+ switch (D.Type) {
+ case ValID::LocalID: // Is it a numbered definition?
+ // Module constants occupy the lowest numbered slots...
+ if (D.Num < CurModule.Types.size())
+ return CurModule.Types[D.Num];
+ break;
+ case ValID::LocalName: // Is it a named definition?
+ if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
+ D.destroy(); // Free old strdup'd memory...
+ return N;
+ }
+ break;
+ default:
+ GenerateError("Internal parser error: Invalid symbol type reference");
+ return 0;
+ }
+
+ // If we reached here, we referenced either a symbol that we don't know about
+ // or an id number that hasn't been read yet. We may be referencing something
+ // forward, so just create an entry to be resolved later and get to it...
+ //
+ if (DoNotImprovise) return 0; // Do we just want a null to be returned?
+
+
+ if (inFunctionScope()) {
+ if (D.Type == ValID::LocalName) {
+ GenerateError("Reference to an undefined type: '" + D.getName() + "'");
+ return 0;
+ } else {
+ GenerateError("Reference to an undefined type: #" + utostr(D.Num));
+ return 0;
+ }
+ }
+
+ std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
+ if (I != CurModule.LateResolveTypes.end())
+ return I->second;
+
+ Type *Typ = OpaqueType::get();
+ CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
+ return Typ;
+ }
+
+// getExistingVal - Look up the value specified by the provided type and
+// the provided ValID. If the value exists and has already been defined, return
+// it. Otherwise return null.
+//
+static Value *getExistingVal(const Type *Ty, const ValID &D) {
+ if (isa<FunctionType>(Ty)) {
+ GenerateError("Functions are not values and "
+ "must be referenced as pointers");
+ return 0;
+ }
+
+ switch (D.Type) {
+ case ValID::LocalID: { // Is it a numbered definition?
+ // Check that the number is within bounds.
+ if (D.Num >= CurFun.Values.size())
+ return 0;
+ Value *Result = CurFun.Values[D.Num];
+ if (Ty != Result->getType()) {
+ GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
+ Result->getType()->getDescription() + "' does not match "
+ "expected type, '" + Ty->getDescription() + "'");
+ return 0;
+ }
+ return Result;
+ }
+ case ValID::GlobalID: { // Is it a numbered definition?
+ if (D.Num >= CurModule.Values.size())
+ return 0;
+ Value *Result = CurModule.Values[D.Num];
+ if (Ty != Result->getType()) {
+ GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
+ Result->getType()->getDescription() + "' does not match "
+ "expected type, '" + Ty->getDescription() + "'");
+ return 0;
+ }
+ return Result;
+ }
+
+ case ValID::LocalName: { // Is it a named definition?
+ if (!inFunctionScope())
+ return 0;
+ ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
+ Value *N = SymTab.lookup(D.getName());
+ if (N == 0)
+ return 0;
+ if (N->getType() != Ty)
+ return 0;
+
+ D.destroy(); // Free old strdup'd memory...
+ return N;
+ }
+ case ValID::GlobalName: { // Is it a named definition?
+ ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
+ Value *N = SymTab.lookup(D.getName());
+ if (N == 0)
+ return 0;
+ if (N->getType() != Ty)
+ return 0;
+
+ D.destroy(); // Free old strdup'd memory...
+ return N;
+ }
+
+ // Check to make sure that "Ty" is an integral type, and that our
+ // value will fit into the specified type...
+ case ValID::ConstSIntVal: // Is it a constant pool reference??
+ if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
+ GenerateError("Signed integral constant '" +
+ itostr(D.ConstPool64) + "' is invalid for type '" +
+ Ty->getDescription() + "'");
+ return 0;
+ }
+ return ConstantInt::get(Ty, D.ConstPool64, true);
+
+ case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
+ if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
+ if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
+ GenerateError("Integral constant '" + utostr(D.UConstPool64) +
+ "' is invalid or out of range");
+ return 0;
+ } else { // This is really a signed reference. Transmogrify.
+ return ConstantInt::get(Ty, D.ConstPool64, true);
+ }
+ } else {
+ return ConstantInt::get(Ty, D.UConstPool64);
+ }
+
+ case ValID::ConstFPVal: // Is it a floating point const pool reference?
+ if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
+ GenerateError("FP constant invalid for type");
+ return 0;
+ }
+ return ConstantFP::get(Ty, D.ConstPoolFP);
+
+ case ValID::ConstNullVal: // Is it a null value?
+ if (!isa<PointerType>(Ty)) {
+ GenerateError("Cannot create a a non pointer null");
+ return 0;
+ }
+ return ConstantPointerNull::get(cast<PointerType>(Ty));
+
+ case ValID::ConstUndefVal: // Is it an undef value?
+ return UndefValue::get(Ty);
+
+ case ValID::ConstZeroVal: // Is it a zero value?
+ return Constant::getNullValue(Ty);
+
+ case ValID::ConstantVal: // Fully resolved constant?
+ if (D.ConstantValue->getType() != Ty) {
+ GenerateError("Constant expression type different from required type");
+ return 0;
+ }
+ return D.ConstantValue;
+
+ case ValID::InlineAsmVal: { // Inline asm expression
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ const FunctionType *FTy =
+ PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
+ if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
+ GenerateError("Invalid type for asm constraint string");
+ return 0;
+ }
+ InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
+ D.IAD->HasSideEffects);
+ D.destroy(); // Free InlineAsmDescriptor.
+ return IA;
+ }
+ default:
+ assert(0 && "Unhandled case!");
+ return 0;
+ } // End of switch
+
+ assert(0 && "Unhandled case!");
+ return 0;
+}
+
+// getVal - This function is identical to getExistingVal, except that if a
+// value is not already defined, it "improvises" by creating a placeholder var
+// that looks and acts just like the requested variable. When the value is
+// defined later, all uses of the placeholder variable are replaced with the
+// real thing.
+//
+static Value *getVal(const Type *Ty, const ValID &ID) {
+ if (Ty == Type::LabelTy) {
+ GenerateError("Cannot use a basic block here");
+ return 0;
+ }
+
+ // See if the value has already been defined.
+ Value *V = getExistingVal(Ty, ID);
+ if (V) return V;
+ if (TriggerError) return 0;
+
+ if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
+ GenerateError("Invalid use of a composite type");
+ return 0;
+ }
+
+ // If we reached here, we referenced either a symbol that we don't know about
+ // or an id number that hasn't been read yet. We may be referencing something
+ // forward, so just create an entry to be resolved later and get to it...
+ //
+ switch (ID.Type) {
+ case ValID::GlobalName:
+ case ValID::GlobalID: {
+ const PointerType *PTy = dyn_cast<PointerType>(Ty);
+ if (!PTy) {
+ GenerateError("Invalid type for reference to global" );
+ return 0;
+ }
+ const Type* ElTy = PTy->getElementType();
+ if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
+ V = new Function(FTy, GlobalValue::ExternalLinkage);
+ else
+ V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
+ break;
+ }
+ default:
+ V = new Argument(Ty);
+ }
+
+ // Remember where this forward reference came from. FIXME, shouldn't we try
+ // to recycle these things??
+ CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
+ llvmAsmlineno)));
+
+ if (inFunctionScope())
+ InsertValue(V, CurFun.LateResolveValues);
+ else
+ InsertValue(V, CurModule.LateResolveValues);
+ return V;
+}
+
+/// defineBBVal - This is a definition of a new basic block with the specified
+/// identifier which must be the same as CurFun.NextValNum, if its numeric.
+static BasicBlock *defineBBVal(const ValID &ID) {
+ assert(inFunctionScope() && "Can't get basic block at global scope!");
+
+ BasicBlock *BB = 0;
+
+ // First, see if this was forward referenced
+
+ std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
+ if (BBI != CurFun.BBForwardRefs.end()) {
+ BB = BBI->second;
+ // The forward declaration could have been inserted anywhere in the
+ // function: insert it into the correct place now.
+ CurFun.CurrentFunction->getBasicBlockList().remove(BB);
+ CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
+
+ // We're about to erase the entry, save the key so we can clean it up.
+ ValID Tmp = BBI->first;
+
+ // Erase the forward ref from the map as its no longer "forward"
+ CurFun.BBForwardRefs.erase(ID);
+
+ // The key has been removed from the map but so we don't want to leave
+ // strdup'd memory around so destroy it too.
+ Tmp.destroy();
+
+ // If its a numbered definition, bump the number and set the BB value.
+ if (ID.Type == ValID::LocalID) {
+ assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
+ InsertValue(BB);
+ }
+
+ ID.destroy();
+ return BB;
+ }
+
+ // We haven't seen this BB before and its first mention is a definition.
+ // Just create it and return it.
+ std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
+ BB = new BasicBlock(Name, CurFun.CurrentFunction);
+ if (ID.Type == ValID::LocalID) {
+ assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
+ InsertValue(BB);
+ }
+
+ ID.destroy(); // Free strdup'd memory
+ return BB;
+}
+
+/// getBBVal - get an existing BB value or create a forward reference for it.
+///
+static BasicBlock *getBBVal(const ValID &ID) {
+ assert(inFunctionScope() && "Can't get basic block at global scope!");
+
+ BasicBlock *BB = 0;
+
+ std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
+ if (BBI != CurFun.BBForwardRefs.end()) {
+ BB = BBI->second;
+ } if (ID.Type == ValID::LocalName) {
+ std::string Name = ID.getName();
+ Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
+ if (N)
+ if (N->getType()->getTypeID() == Type::LabelTyID)
+ BB = cast<BasicBlock>(N);
+ else
+ GenerateError("Reference to label '" + Name + "' is actually of type '"+
+ N->getType()->getDescription() + "'");
+ } else if (ID.Type == ValID::LocalID) {
+ if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
+ if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
+ BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
+ else
+ GenerateError("Reference to label '%" + utostr(ID.Num) +
+ "' is actually of type '"+
+ CurFun.Values[ID.Num]->getType()->getDescription() + "'");
+ }
+ } else {
+ GenerateError("Illegal label reference " + ID.getName());
+ return 0;
+ }
+
+ // If its already been defined, return it now.
+ if (BB) {
+ ID.destroy(); // Free strdup'd memory.
+ return BB;
+ }
+
+ // Otherwise, this block has not been seen before, create it.
+ std::string Name;
+ if (ID.Type == ValID::LocalName)
+ Name = ID.getName();
+ BB = new BasicBlock(Name, CurFun.CurrentFunction);
+
+ // Insert it in the forward refs map.
+ CurFun.BBForwardRefs[ID] = BB;
+
+ return BB;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Code to handle forward references in instructions
+//===----------------------------------------------------------------------===//
+//
+// This code handles the late binding needed with statements that reference
+// values not defined yet... for example, a forward branch, or the PHI node for
+// a loop body.
+//
+// This keeps a table (CurFun.LateResolveValues) of all such forward references
+// and back patchs after we are done.
+//
+
+// ResolveDefinitions - If we could not resolve some defs at parsing
+// time (forward branches, phi functions for loops, etc...) resolve the
+// defs now...
+//
+static void
+ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
+ // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
+ while (!LateResolvers.empty()) {
+ Value *V = LateResolvers.back();
+ LateResolvers.pop_back();
+
+ std::map<Value*, std::pair<ValID, int> >::iterator PHI =
+ CurModule.PlaceHolderInfo.find(V);
+ assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
+
+ ValID &DID = PHI->second.first;
+
+ Value *TheRealValue = getExistingVal(V->getType(), DID);
+ if (TriggerError)
+ return;
+ if (TheRealValue) {
+ V->replaceAllUsesWith(TheRealValue);
+ delete V;
+ CurModule.PlaceHolderInfo.erase(PHI);
+ } else if (FutureLateResolvers) {
+ // Functions have their unresolved items forwarded to the module late
+ // resolver table
+ InsertValue(V, *FutureLateResolvers);
+ } else {
+ if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
+ GenerateError("Reference to an invalid definition: '" +DID.getName()+
+ "' of type '" + V->getType()->getDescription() + "'",
+ PHI->second.second);
+ return;
+ } else {
+ GenerateError("Reference to an invalid definition: #" +
+ itostr(DID.Num) + " of type '" +
+ V->getType()->getDescription() + "'",
+ PHI->second.second);
+ return;
+ }
+ }
+ }
+ LateResolvers.clear();
+}
+
+// ResolveTypeTo - A brand new type was just declared. This means that (if
+// name is not null) things referencing Name can be resolved. Otherwise, things
+// refering to the number can be resolved. Do this now.
+//
+static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
+ ValID D;
+ if (Name)
+ D = ValID::createLocalName(*Name);
+ else
+ D = ValID::createLocalID(CurModule.Types.size());
+
+ std::map<ValID, PATypeHolder>::iterator I =
+ CurModule.LateResolveTypes.find(D);
+ if (I != CurModule.LateResolveTypes.end()) {
+ ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
+ CurModule.LateResolveTypes.erase(I);
+ }
+}
+
+// setValueName - Set the specified value to the name given. The name may be
+// null potentially, in which case this is a noop. The string passed in is
+// assumed to be a malloc'd string buffer, and is free'd by this function.
+//
+static void setValueName(Value *V, std::string *NameStr) {
+ if (!NameStr) return;
+ std::string Name(*NameStr); // Copy string
+ delete NameStr; // Free old string
+
+ if (V->getType() == Type::VoidTy) {
+ GenerateError("Can't assign name '" + Name+"' to value with void type");
+ return;
+ }
+
+ assert(inFunctionScope() && "Must be in function scope!");
+ ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
+ if (ST.lookup(Name)) {
+ GenerateError("Redefinition of value '" + Name + "' of type '" +
+ V->getType()->getDescription() + "'");
+ return;
+ }
+
+ // Set the name.
+ V->setName(Name);
+}
+
+/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
+/// this is a declaration, otherwise it is a definition.
+static GlobalVariable *
+ParseGlobalVariable(std::string *NameStr,
+ GlobalValue::LinkageTypes Linkage,
+ GlobalValue::VisibilityTypes Visibility,
+ bool isConstantGlobal, const Type *Ty,
+ Constant *Initializer, bool IsThreadLocal) {
+ if (isa<FunctionType>(Ty)) {
+ GenerateError("Cannot declare global vars of function type");
+ return 0;
+ }
+
+ const PointerType *PTy = PointerType::get(Ty);
+
+ std::string Name;
+ if (NameStr) {
+ Name = *NameStr; // Copy string
+ delete NameStr; // Free old string
+ }
+
+ // See if this global value was forward referenced. If so, recycle the
+ // object.
+ ValID ID;
+ if (!Name.empty()) {
+ ID = ValID::createGlobalName(Name);
+ } else {
+ ID = ValID::createGlobalID(CurModule.Values.size());
+ }
+
+ if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
+ // Move the global to the end of the list, from whereever it was
+ // previously inserted.
+ GlobalVariable *GV = cast<GlobalVariable>(FWGV);
+ CurModule.CurrentModule->getGlobalList().remove(GV);
+ CurModule.CurrentModule->getGlobalList().push_back(GV);
+ GV->setInitializer(Initializer);
+ GV->setLinkage(Linkage);
+ GV->setVisibility(Visibility);
+ GV->setConstant(isConstantGlobal);
+ GV->setThreadLocal(IsThreadLocal);
+ InsertValue(GV, CurModule.Values);
+ return GV;
+ }
+
+ // If this global has a name
+ if (!Name.empty()) {
+ // if the global we're parsing has an initializer (is a definition) and
+ // has external linkage.
+ if (Initializer && Linkage != GlobalValue::InternalLinkage)
+ // If there is already a global with external linkage with this name
+ if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
+ // If we allow this GVar to get created, it will be renamed in the
+ // symbol table because it conflicts with an existing GVar. We can't
+ // allow redefinition of GVars whose linking indicates that their name
+ // must stay the same. Issue the error.
+ GenerateError("Redefinition of global variable named '" + Name +
+ "' of type '" + Ty->getDescription() + "'");
+ return 0;
+ }
+ }
+
+ // Otherwise there is no existing GV to use, create one now.
+ GlobalVariable *GV =
+ new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
+ CurModule.CurrentModule, IsThreadLocal);
+ GV->setVisibility(Visibility);
+ InsertValue(GV, CurModule.Values);
+ return GV;
+}
+
+// setTypeName - Set the specified type to the name given. The name may be
+// null potentially, in which case this is a noop. The string passed in is
+// assumed to be a malloc'd string buffer, and is freed by this function.
+//
+// This function returns true if the type has already been defined, but is
+// allowed to be redefined in the specified context. If the name is a new name
+// for the type plane, it is inserted and false is returned.
+static bool setTypeName(const Type *T, std::string *NameStr) {
+ assert(!inFunctionScope() && "Can't give types function-local names!");
+ if (NameStr == 0) return false;
+
+ std::string Name(*NameStr); // Copy string
+ delete NameStr; // Free old string
+
+ // We don't allow assigning names to void type
+ if (T == Type::VoidTy) {
+ GenerateError("Can't assign name '" + Name + "' to the void type");
+ return false;
+ }
+
+ // Set the type name, checking for conflicts as we do so.
+ bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
+
+ if (AlreadyExists) { // Inserting a name that is already defined???
+ const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
+ assert(Existing && "Conflict but no matching type?!");
+
+ // There is only one case where this is allowed: when we are refining an
+ // opaque type. In this case, Existing will be an opaque type.
+ if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
+ // We ARE replacing an opaque type!
+ const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
+ return true;
+ }
+
+ // Otherwise, this is an attempt to redefine a type. That's okay if
+ // the redefinition is identical to the original. This will be so if
+ // Existing and T point to the same Type object. In this one case we
+ // allow the equivalent redefinition.
+ if (Existing == T) return true; // Yes, it's equal.
+
+ // Any other kind of (non-equivalent) redefinition is an error.
+ GenerateError("Redefinition of type named '" + Name + "' of type '" +
+ T->getDescription() + "'");
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Code for handling upreferences in type names...
+//
+
+// TypeContains - Returns true if Ty directly contains E in it.
+//
+static bool TypeContains(const Type *Ty, const Type *E) {
+ return std::find(Ty->subtype_begin(), Ty->subtype_end(),
+ E) != Ty->subtype_end();
+}
+
+namespace {
+ struct UpRefRecord {
+ // NestingLevel - The number of nesting levels that need to be popped before
+ // this type is resolved.
+ unsigned NestingLevel;
+
+ // LastContainedTy - This is the type at the current binding level for the
+ // type. Every time we reduce the nesting level, this gets updated.
+ const Type *LastContainedTy;
+
+ // UpRefTy - This is the actual opaque type that the upreference is
+ // represented with.
+ OpaqueType *UpRefTy;
+
+ UpRefRecord(unsigned NL, OpaqueType *URTy)
+ : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
+ };
+}
+
+// UpRefs - A list of the outstanding upreferences that need to be resolved.
+static std::vector<UpRefRecord> UpRefs;
+
+/// HandleUpRefs - Every time we finish a new layer of types, this function is
+/// called. It loops through the UpRefs vector, which is a list of the
+/// currently active types. For each type, if the up reference is contained in
+/// the newly completed type, we decrement the level count. When the level
+/// count reaches zero, the upreferenced type is the type that is passed in:
+/// thus we can complete the cycle.
+///
+static PATypeHolder HandleUpRefs(const Type *ty) {
+ // If Ty isn't abstract, or if there are no up-references in it, then there is
+ // nothing to resolve here.
+ if (!ty->isAbstract() || UpRefs.empty()) return ty;
+
+ PATypeHolder Ty(ty);
+ UR_OUT("Type '" << Ty->getDescription() <<
+ "' newly formed. Resolving upreferences.\n" <<
+ UpRefs.size() << " upreferences active!\n");
+
+ // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
+ // to zero), we resolve them all together before we resolve them to Ty. At
+ // the end of the loop, if there is anything to resolve to Ty, it will be in
+ // this variable.
+ OpaqueType *TypeToResolve = 0;
+
+ for (unsigned i = 0; i != UpRefs.size(); ++i) {
+ UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
+ << UpRefs[i].second->getDescription() << ") = "
+ << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
+ if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
+ // Decrement level of upreference
+ unsigned Level = --UpRefs[i].NestingLevel;
+ UpRefs[i].LastContainedTy = Ty;
+ UR_OUT(" Uplevel Ref Level = " << Level << "\n");
+ if (Level == 0) { // Upreference should be resolved!
+ if (!TypeToResolve) {
+ TypeToResolve = UpRefs[i].UpRefTy;
+ } else {
+ UR_OUT(" * Resolving upreference for "
+ << UpRefs[i].second->getDescription() << "\n";
+ std::string OldName = UpRefs[i].UpRefTy->getDescription());
+ UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
+ UR_OUT(" * Type '" << OldName << "' refined upreference to: "
+ << (const void*)Ty << ", " << Ty->getDescription() << "\n");
+ }
+ UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
+ --i; // Do not skip the next element...
+ }
+ }
+ }
+
+ if (TypeToResolve) {
+ UR_OUT(" * Resolving upreference for "
+ << UpRefs[i].second->getDescription() << "\n";
+ std::string OldName = TypeToResolve->getDescription());
+ TypeToResolve->refineAbstractTypeTo(Ty);
+ }
+
+ return Ty;
+}
+
+//===----------------------------------------------------------------------===//
+// RunVMAsmParser - Define an interface to this parser
+//===----------------------------------------------------------------------===//
+//
+static Module* RunParser(Module * M);
+
+Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
+ set_scan_file(F);
+
+ CurFilename = Filename;
+ return RunParser(new Module(CurFilename));
+}
+
+Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
+ set_scan_string(AsmString);
+
+ CurFilename = "from_memory";
+ if (M == NULL) {
+ return RunParser(new Module (CurFilename));
+ } else {
+ return RunParser(M);
+ }
+}
+
+%}
+
+%union {
+ llvm::Module *ModuleVal;
+ llvm::Function *FunctionVal;
+ llvm::BasicBlock *BasicBlockVal;
+ llvm::TerminatorInst *TermInstVal;
+ llvm::Instruction *InstVal;
+ llvm::Constant *ConstVal;
+
+ const llvm::Type *PrimType;
+ std::list<llvm::PATypeHolder> *TypeList;
+ llvm::PATypeHolder *TypeVal;
+ llvm::Value *ValueVal;
+ std::vector<llvm::Value*> *ValueList;
+ llvm::ArgListType *ArgList;
+ llvm::TypeWithAttrs TypeWithAttrs;
+ llvm::TypeWithAttrsList *TypeWithAttrsList;
+ llvm::ValueRefList *ValueRefList;
+
+ // Represent the RHS of PHI node
+ std::list<std::pair<llvm::Value*,
+ llvm::BasicBlock*> > *PHIList;
+ std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
+ std::vector<llvm::Constant*> *ConstVector;
+
+ llvm::GlobalValue::LinkageTypes Linkage;
+ llvm::GlobalValue::VisibilityTypes Visibility;
+ uint16_t ParamAttrs;
+ llvm::APInt *APIntVal;
+ int64_t SInt64Val;
+ uint64_t UInt64Val;
+ int SIntVal;
+ unsigned UIntVal;
+ double FPVal;
+ bool BoolVal;
+
+ std::string *StrVal; // This memory must be deleted
+ llvm::ValID ValIDVal;
+
+ llvm::Instruction::BinaryOps BinaryOpVal;
+ llvm::Instruction::TermOps TermOpVal;
+ llvm::Instruction::MemoryOps MemOpVal;
+ llvm::Instruction::CastOps CastOpVal;
+ llvm::Instruction::OtherOps OtherOpVal;
+ llvm::ICmpInst::Predicate IPredicate;
+ llvm::FCmpInst::Predicate FPredicate;
+}
+
+%type <ModuleVal> Module
+%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
+%type <BasicBlockVal> BasicBlock InstructionList
+%type <TermInstVal> BBTerminatorInst
+%type <InstVal> Inst InstVal MemoryInst
+%type <ConstVal> ConstVal ConstExpr AliaseeRef
+%type <ConstVector> ConstVector
+%type <ArgList> ArgList ArgListH
+%type <PHIList> PHIList
+%type <ValueRefList> ValueRefList // For call param lists & GEP indices
+%type <ValueList> IndexList // For GEP indices
+%type <TypeList> TypeListI
+%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
+%type <TypeWithAttrs> ArgType
+%type <JumpTable> JumpTable
+%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
+%type <BoolVal> ThreadLocal // 'thread_local' or not
+%type <BoolVal> OptVolatile // 'volatile' or not
+%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
+%type <BoolVal> OptSideEffect // 'sideeffect' or not.
+%type <Linkage> GVInternalLinkage GVExternalLinkage
+%type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
+%type <Linkage> AliasLinkage
+%type <Visibility> GVVisibilityStyle
+
+// ValueRef - Unresolved reference to a definition or BB
+%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
+%type <ValueVal> ResolvedVal // <type> <valref> pair
+// Tokens and types for handling constant integer values
+//
+// ESINT64VAL - A negative number within long long range
+%token <SInt64Val> ESINT64VAL
+
+// EUINT64VAL - A positive number within uns. long long range
+%token <UInt64Val> EUINT64VAL
+
+// ESAPINTVAL - A negative number with arbitrary precision
+%token <APIntVal> ESAPINTVAL
+
+// EUAPINTVAL - A positive number with arbitrary precision
+%token <APIntVal> EUAPINTVAL
+
+%token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
+%token <FPVal> FPVAL // Float or Double constant
+
+// Built in types...
+%type <TypeVal> Types ResultTypes
+%type <PrimType> IntType FPType PrimType // Classifications
+%token <PrimType> VOID INTTYPE
+%token <PrimType> FLOAT DOUBLE LABEL
+%token TYPE
+
+
+%token<StrVal> LOCALVAR GLOBALVAR LABELSTR
+%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
+%type <StrVal> LocalName OptLocalName OptLocalAssign
+%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
+%type <StrVal> OptSection SectionString
+
+%type <UIntVal> OptAlign OptCAlign
+
+%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
+%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
+%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
+%token DLLIMPORT DLLEXPORT EXTERN_WEAK
+%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
+%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
+%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
+%token DATALAYOUT
+%type <UIntVal> OptCallingConv
+%type <ParamAttrs> OptParamAttrs ParamAttr
+%type <ParamAttrs> OptFuncAttrs FuncAttr
+
+// Basic Block Terminating Operators
+%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
+
+// Binary Operators
+%type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
+%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
+%token <BinaryOpVal> SHL LSHR ASHR
+
+%token <OtherOpVal> ICMP FCMP
+%type <IPredicate> IPredicates
+%type <FPredicate> FPredicates
+%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
+%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
+
+// Memory Instructions
+%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
+
+// Cast Operators
+%type <CastOpVal> CastOps
+%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
+%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
+
+// Other Operators
+%token <OtherOpVal> PHI_TOK SELECT VAARG
+%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
+
+// Function Attributes
+%token NORETURN INREG SRET NOUNWIND NOALIAS BYVAL
+
+// Visibility Styles
+%token DEFAULT HIDDEN PROTECTED
+
+%start Module
+%%
+
+
+// Operations that are notably excluded from this list include:
+// RET, BR, & SWITCH because they end basic blocks and are treated specially.
+//
+ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
+LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
+CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
+ UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
+
+IPredicates
+ : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
+ | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
+ | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
+ | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
+ | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
+ ;
+
+FPredicates
+ : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
+ | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
+ | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
+ | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
+ | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
+ | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
+ | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
+ | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
+ | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
+ ;
+
+// These are some types that allow classification if we only want a particular
+// thing... for example, only a signed, unsigned, or integral type.
+IntType : INTTYPE;
+FPType : FLOAT | DOUBLE;
+
+LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
+OptLocalName : LocalName | /*empty*/ { $$ = 0; };
+
+/// OptLocalAssign - Value producing statements have an optional assignment
+/// component.
+OptLocalAssign : LocalName '=' {
+ $$ = $1;
+ CHECK_FOR_ERROR
+ }
+ | /*empty*/ {
+ $$ = 0;
+ CHECK_FOR_ERROR
+ };
+
+GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
+
+OptGlobalAssign : GlobalAssign
+ | /*empty*/ {
+ $$ = 0;
+ CHECK_FOR_ERROR
+ };
+
+GlobalAssign : GlobalName '=' {
+ $$ = $1;
+ CHECK_FOR_ERROR
+ };
+
+GVInternalLinkage
+ : INTERNAL { $$ = GlobalValue::InternalLinkage; }
+ | WEAK { $$ = GlobalValue::WeakLinkage; }
+ | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
+ | APPENDING { $$ = GlobalValue::AppendingLinkage; }
+ | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
+ ;
+
+GVExternalLinkage
+ : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
+ | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
+ | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
+ ;
+
+GVVisibilityStyle
+ : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
+ | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
+ | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
+ | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
+ ;
+
+FunctionDeclareLinkage
+ : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
+ | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
+ | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
+ ;
+
+FunctionDefineLinkage
+ : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
+ | INTERNAL { $$ = GlobalValue::InternalLinkage; }
+ | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
+ | WEAK { $$ = GlobalValue::WeakLinkage; }
+ | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
+ ;
+
+AliasLinkage
+ : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
+ | WEAK { $$ = GlobalValue::WeakLinkage; }
+ | INTERNAL { $$ = GlobalValue::InternalLinkage; }
+ ;
+
+OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
+ CCC_TOK { $$ = CallingConv::C; } |
+ FASTCC_TOK { $$ = CallingConv::Fast; } |
+ COLDCC_TOK { $$ = CallingConv::Cold; } |
+ X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
+ X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
+ CC_TOK EUINT64VAL {
+ if ((unsigned)$2 != $2)
+ GEN_ERROR("Calling conv too large");
+ $$ = $2;
+ CHECK_FOR_ERROR
+ };
+
+ParamAttr : ZEXT { $$ = ParamAttr::ZExt; }
+ | SEXT { $$ = ParamAttr::SExt; }
+ | INREG { $$ = ParamAttr::InReg; }
+ | SRET { $$ = ParamAttr::StructRet; }
+ | NOALIAS { $$ = ParamAttr::NoAlias; }
+ | BYVAL { $$ = ParamAttr::ByVal; }
+ ;
+
+OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
+ | OptParamAttrs ParamAttr {
+ $$ = $1 | $2;
+ }
+ ;
+
+FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
+ | NOUNWIND { $$ = ParamAttr::NoUnwind; }
+ | ParamAttr
+ ;
+
+OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
+ | OptFuncAttrs FuncAttr {
+ $$ = $1 | $2;
+ }
+ ;
+
+// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
+// a comma before it.
+OptAlign : /*empty*/ { $$ = 0; } |
+ ALIGN EUINT64VAL {
+ $$ = $2;
+ if ($$ != 0 && !isPowerOf2_32($$))
+ GEN_ERROR("Alignment must be a power of two");
+ CHECK_FOR_ERROR
+};
+OptCAlign : /*empty*/ { $$ = 0; } |
+ ',' ALIGN EUINT64VAL {
+ $$ = $3;
+ if ($$ != 0 && !isPowerOf2_32($$))
+ GEN_ERROR("Alignment must be a power of two");
+ CHECK_FOR_ERROR
+};
+
+
+SectionString : SECTION STRINGCONSTANT {
+ for (unsigned i = 0, e = $2->length(); i != e; ++i)
+ if ((*$2)[i] == '"' || (*$2)[i] == '\\')
+ GEN_ERROR("Invalid character in section name");
+ $$ = $2;
+ CHECK_FOR_ERROR
+};
+
+OptSection : /*empty*/ { $$ = 0; } |
+ SectionString { $$ = $1; };
+
+// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
+// is set to be the global we are processing.
+//
+GlobalVarAttributes : /* empty */ {} |
+ ',' GlobalVarAttribute GlobalVarAttributes {};
+GlobalVarAttribute : SectionString {
+ CurGV->setSection(*$1);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | ALIGN EUINT64VAL {
+ if ($2 != 0 && !isPowerOf2_32($2))
+ GEN_ERROR("Alignment must be a power of two");
+ CurGV->setAlignment($2);
+ CHECK_FOR_ERROR
+ };
+
+//===----------------------------------------------------------------------===//
+// Types includes all predefined types... except void, because it can only be
+// used in specific contexts (function returning void for example).
+
+// Derived types are added later...
+//
+PrimType : INTTYPE | FLOAT | DOUBLE | LABEL ;
+
+Types
+ : OPAQUE {
+ $$ = new PATypeHolder(OpaqueType::get());
+ CHECK_FOR_ERROR
+ }
+ | PrimType {
+ $$ = new PATypeHolder($1);
+ CHECK_FOR_ERROR
+ }
+ | Types '*' { // Pointer type?
+ if (*$1 == Type::LabelTy)
+ GEN_ERROR("Cannot form a pointer to a basic block");
+ $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | SymbolicValueRef { // Named types are also simple types...
+ const Type* tmp = getTypeVal($1);
+ CHECK_FOR_ERROR
+ $$ = new PATypeHolder(tmp);
+ }
+ | '\\' EUINT64VAL { // Type UpReference
+ if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
+ OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
+ UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
+ $$ = new PATypeHolder(OT);
+ UR_OUT("New Upreference!\n");
+ CHECK_FOR_ERROR
+ }
+ | Types '(' ArgTypeListI ')' OptFuncAttrs {
+ std::vector<const Type*> Params;
+ ParamAttrsVector Attrs;
+ if ($5 != ParamAttr::None) {
+ ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
+ Attrs.push_back(X);
+ }
+ unsigned index = 1;
+ TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
+ for (; I != E; ++I, ++index) {
+ const Type *Ty = I->Ty->get();
+ Params.push_back(Ty);
+ if (Ty != Type::VoidTy)
+ if (I->Attrs != ParamAttr::None) {
+ ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
+ Attrs.push_back(X);
+ }
+ }
+ bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
+ if (isVarArg) Params.pop_back();
+
+ ParamAttrsList *ActualAttrs = 0;
+ if (!Attrs.empty())
+ ActualAttrs = ParamAttrsList::get(Attrs);
+ FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
+ delete $3; // Delete the argument list
+ delete $1; // Delete the return type handle
+ $$ = new PATypeHolder(HandleUpRefs(FT));
+ CHECK_FOR_ERROR
+ }
+ | VOID '(' ArgTypeListI ')' OptFuncAttrs {
+ std::vector<const Type*> Params;
+ ParamAttrsVector Attrs;
+ if ($5 != ParamAttr::None) {
+ ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
+ Attrs.push_back(X);
+ }
+ TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
+ unsigned index = 1;
+ for ( ; I != E; ++I, ++index) {
+ const Type* Ty = I->Ty->get();
+ Params.push_back(Ty);
+ if (Ty != Type::VoidTy)
+ if (I->Attrs != ParamAttr::None) {
+ ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
+ Attrs.push_back(X);
+ }
+ }
+ bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
+ if (isVarArg) Params.pop_back();
+
+ ParamAttrsList *ActualAttrs = 0;
+ if (!Attrs.empty())
+ ActualAttrs = ParamAttrsList::get(Attrs);
+
+ FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
+ delete $3; // Delete the argument list
+ $$ = new PATypeHolder(HandleUpRefs(FT));
+ CHECK_FOR_ERROR
+ }
+
+ | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
+ $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
+ delete $4;
+ CHECK_FOR_ERROR
+ }
+ | '<' EUINT64VAL 'x' Types '>' { // Vector type?
+ const llvm::Type* ElemTy = $4->get();
+ if ((unsigned)$2 != $2)
+ GEN_ERROR("Unsigned result not equal to signed result");
+ if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
+ GEN_ERROR("Element type of a VectorType must be primitive");
+ if (!isPowerOf2_32($2))
+ GEN_ERROR("Vector length should be a power of 2");
+ $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
+ delete $4;
+ CHECK_FOR_ERROR
+ }
+ | '{' TypeListI '}' { // Structure type?
+ std::vector<const Type*> Elements;
+ for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
+ E = $2->end(); I != E; ++I)
+ Elements.push_back(*I);
+
+ $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
+ delete $2;
+ CHECK_FOR_ERROR
+ }
+ | '{' '}' { // Empty structure type?
+ $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
+ CHECK_FOR_ERROR
+ }
+ | '<' '{' TypeListI '}' '>' {
+ std::vector<const Type*> Elements;
+ for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
+ E = $3->end(); I != E; ++I)
+ Elements.push_back(*I);
+
+ $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
+ delete $3;
+ CHECK_FOR_ERROR
+ }
+ | '<' '{' '}' '>' { // Empty structure type?
+ $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
+ CHECK_FOR_ERROR
+ }
+ ;
+
+ArgType
+ : Types OptParamAttrs {
+ $$.Ty = $1;
+ $$.Attrs = $2;
+ }
+ ;
+
+ResultTypes
+ : Types {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ if (!(*$1)->isFirstClassType())
+ GEN_ERROR("LLVM functions cannot return aggregate types");
+ $$ = $1;
+ }
+ | VOID {
+ $$ = new PATypeHolder(Type::VoidTy);
+ }
+ ;
+
+ArgTypeList : ArgType {
+ $$ = new TypeWithAttrsList();
+ $$->push_back($1);
+ CHECK_FOR_ERROR
+ }
+ | ArgTypeList ',' ArgType {
+ ($$=$1)->push_back($3);
+ CHECK_FOR_ERROR
+ }
+ ;
+
+ArgTypeListI
+ : ArgTypeList
+ | ArgTypeList ',' DOTDOTDOT {
+ $$=$1;
+ TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
+ TWA.Ty = new PATypeHolder(Type::VoidTy);
+ $$->push_back(TWA);
+ CHECK_FOR_ERROR
+ }
+ | DOTDOTDOT {
+ $$ = new TypeWithAttrsList;
+ TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
+ TWA.Ty = new PATypeHolder(Type::VoidTy);
+ $$->push_back(TWA);
+ CHECK_FOR_ERROR
+ }
+ | /*empty*/ {
+ $$ = new TypeWithAttrsList();
+ CHECK_FOR_ERROR
+ };
+
+// TypeList - Used for struct declarations and as a basis for function type
+// declaration type lists
+//
+TypeListI : Types {
+ $$ = new std::list<PATypeHolder>();
+ $$->push_back(*$1);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | TypeListI ',' Types {
+ ($$=$1)->push_back(*$3);
+ delete $3;
+ CHECK_FOR_ERROR
+ };
+
+// ConstVal - The various declarations that go into the constant pool. This
+// production is used ONLY to represent constants that show up AFTER a 'const',
+// 'constant' or 'global' token at global scope. Constants that can be inlined
+// into other expressions (such as integers and constexprs) are handled by the
+// ResolvedVal, ValueRef and ConstValueRef productions.
+//
+ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
+ if (ATy == 0)
+ GEN_ERROR("Cannot make array constant with type: '" +
+ (*$1)->getDescription() + "'");
+ const Type *ETy = ATy->getElementType();
+ int NumElements = ATy->getNumElements();
+
+ // Verify that we have the correct size...
+ if (NumElements != -1 && NumElements != (int)$3->size())
+ GEN_ERROR("Type mismatch: constant sized array initialized with " +
+ utostr($3->size()) + " arguments, but has size of " +
+ itostr(NumElements) + "");
+
+ // Verify all elements are correct type!
+ for (unsigned i = 0; i < $3->size(); i++) {
+ if (ETy != (*$3)[i]->getType())
+ GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
+ ETy->getDescription() +"' as required!\nIt is of type '"+
+ (*$3)[i]->getType()->getDescription() + "'.");
+ }
+
+ $$ = ConstantArray::get(ATy, *$3);
+ delete $1; delete $3;
+ CHECK_FOR_ERROR
+ }
+ | Types '[' ']' {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
+ if (ATy == 0)
+ GEN_ERROR("Cannot make array constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ int NumElements = ATy->getNumElements();
+ if (NumElements != -1 && NumElements != 0)
+ GEN_ERROR("Type mismatch: constant sized array initialized with 0"
+ " arguments, but has size of " + itostr(NumElements) +"");
+ $$ = ConstantArray::get(ATy, std::vector<Constant*>());
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types 'c' STRINGCONSTANT {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
+ if (ATy == 0)
+ GEN_ERROR("Cannot make array constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ int NumElements = ATy->getNumElements();
+ const Type *ETy = ATy->getElementType();
+ if (NumElements != -1 && NumElements != int($3->length()))
+ GEN_ERROR("Can't build string constant of size " +
+ itostr((int)($3->length())) +
+ " when array has size " + itostr(NumElements) + "");
+ std::vector<Constant*> Vals;
+ if (ETy == Type::Int8Ty) {
+ for (unsigned i = 0; i < $3->length(); ++i)
+ Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
+ } else {
+ delete $3;
+ GEN_ERROR("Cannot build string arrays of non byte sized elements");
+ }
+ delete $3;
+ $$ = ConstantArray::get(ATy, Vals);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types '<' ConstVector '>' { // Nonempty unsized arr
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const VectorType *PTy = dyn_cast<VectorType>($1->get());
+ if (PTy == 0)
+ GEN_ERROR("Cannot make packed constant with type: '" +
+ (*$1)->getDescription() + "'");
+ const Type *ETy = PTy->getElementType();
+ int NumElements = PTy->getNumElements();
+
+ // Verify that we have the correct size...
+ if (NumElements != -1 && NumElements != (int)$3->size())
+ GEN_ERROR("Type mismatch: constant sized packed initialized with " +
+ utostr($3->size()) + " arguments, but has size of " +
+ itostr(NumElements) + "");
+
+ // Verify all elements are correct type!
+ for (unsigned i = 0; i < $3->size(); i++) {
+ if (ETy != (*$3)[i]->getType())
+ GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
+ ETy->getDescription() +"' as required!\nIt is of type '"+
+ (*$3)[i]->getType()->getDescription() + "'.");
+ }
+
+ $$ = ConstantVector::get(PTy, *$3);
+ delete $1; delete $3;
+ CHECK_FOR_ERROR
+ }
+ | Types '{' ConstVector '}' {
+ const StructType *STy = dyn_cast<StructType>($1->get());
+ if (STy == 0)
+ GEN_ERROR("Cannot make struct constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ if ($3->size() != STy->getNumContainedTypes())
+ GEN_ERROR("Illegal number of initializers for structure type");
+
+ // Check to ensure that constants are compatible with the type initializer!
+ for (unsigned i = 0, e = $3->size(); i != e; ++i)
+ if ((*$3)[i]->getType() != STy->getElementType(i))
+ GEN_ERROR("Expected type '" +
+ STy->getElementType(i)->getDescription() +
+ "' for element #" + utostr(i) +
+ " of structure initializer");
+
+ // Check to ensure that Type is not packed
+ if (STy->isPacked())
+ GEN_ERROR("Unpacked Initializer to vector type '" +
+ STy->getDescription() + "'");
+
+ $$ = ConstantStruct::get(STy, *$3);
+ delete $1; delete $3;
+ CHECK_FOR_ERROR
+ }
+ | Types '{' '}' {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const StructType *STy = dyn_cast<StructType>($1->get());
+ if (STy == 0)
+ GEN_ERROR("Cannot make struct constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ if (STy->getNumContainedTypes() != 0)
+ GEN_ERROR("Illegal number of initializers for structure type");
+
+ // Check to ensure that Type is not packed
+ if (STy->isPacked())
+ GEN_ERROR("Unpacked Initializer to vector type '" +
+ STy->getDescription() + "'");
+
+ $$ = ConstantStruct::get(STy, std::vector<Constant*>());
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types '<' '{' ConstVector '}' '>' {
+ const StructType *STy = dyn_cast<StructType>($1->get());
+ if (STy == 0)
+ GEN_ERROR("Cannot make struct constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ if ($4->size() != STy->getNumContainedTypes())
+ GEN_ERROR("Illegal number of initializers for structure type");
+
+ // Check to ensure that constants are compatible with the type initializer!
+ for (unsigned i = 0, e = $4->size(); i != e; ++i)
+ if ((*$4)[i]->getType() != STy->getElementType(i))
+ GEN_ERROR("Expected type '" +
+ STy->getElementType(i)->getDescription() +
+ "' for element #" + utostr(i) +
+ " of structure initializer");
+
+ // Check to ensure that Type is packed
+ if (!STy->isPacked())
+ GEN_ERROR("Vector initializer to non-vector type '" +
+ STy->getDescription() + "'");
+
+ $$ = ConstantStruct::get(STy, *$4);
+ delete $1; delete $4;
+ CHECK_FOR_ERROR
+ }
+ | Types '<' '{' '}' '>' {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const StructType *STy = dyn_cast<StructType>($1->get());
+ if (STy == 0)
+ GEN_ERROR("Cannot make struct constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ if (STy->getNumContainedTypes() != 0)
+ GEN_ERROR("Illegal number of initializers for structure type");
+
+ // Check to ensure that Type is packed
+ if (!STy->isPacked())
+ GEN_ERROR("Vector initializer to non-vector type '" +
+ STy->getDescription() + "'");
+
+ $$ = ConstantStruct::get(STy, std::vector<Constant*>());
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types NULL_TOK {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const PointerType *PTy = dyn_cast<PointerType>($1->get());
+ if (PTy == 0)
+ GEN_ERROR("Cannot make null pointer constant with type: '" +
+ (*$1)->getDescription() + "'");
+
+ $$ = ConstantPointerNull::get(PTy);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types UNDEF {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ $$ = UndefValue::get($1->get());
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types SymbolicValueRef {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const PointerType *Ty = dyn_cast<PointerType>($1->get());
+ if (Ty == 0)
+ GEN_ERROR("Global const reference must be a pointer type");
+
+ // ConstExprs can exist in the body of a function, thus creating
+ // GlobalValues whenever they refer to a variable. Because we are in
+ // the context of a function, getExistingVal will search the functions
+ // symbol table instead of the module symbol table for the global symbol,
+ // which throws things all off. To get around this, we just tell
+ // getExistingVal that we are at global scope here.
+ //
+ Function *SavedCurFn = CurFun.CurrentFunction;
+ CurFun.CurrentFunction = 0;
+
+ Value *V = getExistingVal(Ty, $2);
+ CHECK_FOR_ERROR
+
+ CurFun.CurrentFunction = SavedCurFn;
+
+ // If this is an initializer for a constant pointer, which is referencing a
+ // (currently) undefined variable, create a stub now that shall be replaced
+ // in the future with the right type of variable.
+ //
+ if (V == 0) {
+ assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
+ const PointerType *PT = cast<PointerType>(Ty);
+
+ // First check to see if the forward references value is already created!
+ PerModuleInfo::GlobalRefsType::iterator I =
+ CurModule.GlobalRefs.find(std::make_pair(PT, $2));
+
+ if (I != CurModule.GlobalRefs.end()) {
+ V = I->second; // Placeholder already exists, use it...
+ $2.destroy();
+ } else {
+ std::string Name;
+ if ($2.Type == ValID::GlobalName)
+ Name = $2.getName();
+ else if ($2.Type != ValID::GlobalID)
+ GEN_ERROR("Invalid reference to global");
+
+ // Create the forward referenced global.
+ GlobalValue *GV;
+ if (const FunctionType *FTy =
+ dyn_cast<FunctionType>(PT->getElementType())) {
+ GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
+ CurModule.CurrentModule);
+ } else {
+ GV = new GlobalVariable(PT->getElementType(), false,
+ GlobalValue::ExternalWeakLinkage, 0,
+ Name, CurModule.CurrentModule);
+ }
+
+ // Keep track of the fact that we have a forward ref to recycle it
+ CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
+ V = GV;
+ }
+ }
+
+ $$ = cast<GlobalValue>(V);
+ delete $1; // Free the type handle
+ CHECK_FOR_ERROR
+ }
+ | Types ConstExpr {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ if ($1->get() != $2->getType())
+ GEN_ERROR("Mismatched types for constant expression: " +
+ (*$1)->getDescription() + " and " + $2->getType()->getDescription());
+ $$ = $2;
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | Types ZEROINITIALIZER {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ const Type *Ty = $1->get();
+ if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
+ GEN_ERROR("Cannot create a null initialized value of this type");
+ $$ = Constant::getNullValue(Ty);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | IntType ESINT64VAL { // integral constants
+ if (!ConstantInt::isValueValidForType($1, $2))
+ GEN_ERROR("Constant value doesn't fit in type");
+ $$ = ConstantInt::get($1, $2, true);
+ CHECK_FOR_ERROR
+ }
+ | IntType ESAPINTVAL { // arbitrary precision integer constants
+ uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
+ if ($2->getBitWidth() > BitWidth) {
+ GEN_ERROR("Constant value does not fit in type");
+ }
+ $2->sextOrTrunc(BitWidth);
+ $$ = ConstantInt::get(*$2);
+ delete $2;
+ CHECK_FOR_ERROR
+ }
+ | IntType EUINT64VAL { // integral constants
+ if (!ConstantInt::isValueValidForType($1, $2))
+ GEN_ERROR("Constant value doesn't fit in type");
+ $$ = ConstantInt::get($1, $2, false);
+ CHECK_FOR_ERROR
+ }
+ | IntType EUAPINTVAL { // arbitrary precision integer constants
+ uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
+ if ($2->getBitWidth() > BitWidth) {
+ GEN_ERROR("Constant value does not fit in type");
+ }
+ $2->zextOrTrunc(BitWidth);
+ $$ = ConstantInt::get(*$2);
+ delete $2;
+ CHECK_FOR_ERROR
+ }
+ | INTTYPE TRUETOK { // Boolean constants
+ assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
+ $$ = ConstantInt::getTrue();
+ CHECK_FOR_ERROR
+ }
+ | INTTYPE FALSETOK { // Boolean constants
+ assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
+ $$ = ConstantInt::getFalse();
+ CHECK_FOR_ERROR
+ }
+ | FPType FPVAL { // Float & Double constants
+ if (!ConstantFP::isValueValidForType($1, $2))
+ GEN_ERROR("Floating point constant invalid for type");
+ $$ = ConstantFP::get($1, $2);
+ CHECK_FOR_ERROR
+ };
+
+
+ConstExpr: CastOps '(' ConstVal TO Types ')' {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
+ Constant *Val = $3;
+ const Type *DestTy = $5->get();
+ if (!CastInst::castIsValid($1, $3, DestTy))
+ GEN_ERROR("invalid cast opcode for cast from '" +
+ Val->getType()->getDescription() + "' to '" +
+ DestTy->getDescription() + "'");
+ $$ = ConstantExpr::getCast($1, $3, DestTy);
+ delete $5;
+ }
+ | GETELEMENTPTR '(' ConstVal IndexList ')' {
+ if (!isa<PointerType>($3->getType()))
+ GEN_ERROR("GetElementPtr requires a pointer operand");
+
+ const Type *IdxTy =
+ GetElementPtrInst::getIndexedType($3->getType(), &(*$4)[0], $4->size(),
+ true);
+ if (!IdxTy)
+ GEN_ERROR("Index list invalid for constant getelementptr");
+
+ SmallVector<Constant*, 8> IdxVec;
+ for (unsigned i = 0, e = $4->size(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>((*$4)[i]))
+ IdxVec.push_back(C);
+ else
+ GEN_ERROR("Indices to constant getelementptr must be constants");
+
+ delete $4;
+
+ $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
+ CHECK_FOR_ERROR
+ }
+ | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
+ if ($3->getType() != Type::Int1Ty)
+ GEN_ERROR("Select condition must be of boolean type");
+ if ($5->getType() != $7->getType())
+ GEN_ERROR("Select operand types must match");
+ $$ = ConstantExpr::getSelect($3, $5, $7);
+ CHECK_FOR_ERROR
+ }
+ | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
+ if ($3->getType() != $5->getType())
+ GEN_ERROR("Binary operator types must match");
+ CHECK_FOR_ERROR;
+ $$ = ConstantExpr::get($1, $3, $5);
+ }
+ | LogicalOps '(' ConstVal ',' ConstVal ')' {
+ if ($3->getType() != $5->getType())
+ GEN_ERROR("Logical operator types must match");
+ if (!$3->getType()->isInteger()) {
+ if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
+ !cast<VectorType>($3->getType())->getElementType()->isInteger())
+ GEN_ERROR("Logical operator requires integral operands");
+ }
+ $$ = ConstantExpr::get($1, $3, $5);
+ CHECK_FOR_ERROR
+ }
+ | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
+ if ($4->getType() != $6->getType())
+ GEN_ERROR("icmp operand types must match");
+ $$ = ConstantExpr::getICmp($2, $4, $6);
+ }
+ | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
+ if ($4->getType() != $6->getType())
+ GEN_ERROR("fcmp operand types must match");
+ $$ = ConstantExpr::getFCmp($2, $4, $6);
+ }
+ | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
+ if (!ExtractElementInst::isValidOperands($3, $5))
+ GEN_ERROR("Invalid extractelement operands");
+ $$ = ConstantExpr::getExtractElement($3, $5);
+ CHECK_FOR_ERROR
+ }
+ | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
+ if (!InsertElementInst::isValidOperands($3, $5, $7))
+ GEN_ERROR("Invalid insertelement operands");
+ $$ = ConstantExpr::getInsertElement($3, $5, $7);
+ CHECK_FOR_ERROR
+ }
+ | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
+ if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
+ GEN_ERROR("Invalid shufflevector operands");
+ $$ = ConstantExpr::getShuffleVector($3, $5, $7);
+ CHECK_FOR_ERROR
+ };
+
+
+// ConstVector - A list of comma separated constants.
+ConstVector : ConstVector ',' ConstVal {
+ ($$ = $1)->push_back($3);
+ CHECK_FOR_ERROR
+ }
+ | ConstVal {
+ $$ = new std::vector<Constant*>();
+ $$->push_back($1);
+ CHECK_FOR_ERROR
+ };
+
+
+// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
+GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
+
+// ThreadLocal
+ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
+
+// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
+AliaseeRef : ResultTypes SymbolicValueRef {
+ const Type* VTy = $1->get();
+ Value *V = getVal(VTy, $2);
+ GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
+ if (!Aliasee)
+ GEN_ERROR("Aliases can be created only to global values");
+
+ $$ = Aliasee;
+ CHECK_FOR_ERROR
+ delete $1;
+ }
+ | BITCAST '(' AliaseeRef TO Types ')' {
+ Constant *Val = $3;
+ const Type *DestTy = $5->get();
+ if (!CastInst::castIsValid($1, $3, DestTy))
+ GEN_ERROR("invalid cast opcode for cast from '" +
+ Val->getType()->getDescription() + "' to '" +
+ DestTy->getDescription() + "'");
+
+ $$ = ConstantExpr::getCast($1, $3, DestTy);
+ CHECK_FOR_ERROR
+ delete $5;
+ };
+
+//===----------------------------------------------------------------------===//
+// Rules to match Modules
+//===----------------------------------------------------------------------===//
+
+// Module rule: Capture the result of parsing the whole file into a result
+// variable...
+//
+Module
+ : DefinitionList {
+ $$ = ParserResult = CurModule.CurrentModule;
+ CurModule.ModuleDone();
+ CHECK_FOR_ERROR;
+ }
+ | /*empty*/ {
+ $$ = ParserResult = CurModule.CurrentModule;
+ CurModule.ModuleDone();
+ CHECK_FOR_ERROR;
+ }
+ ;
+
+DefinitionList
+ : Definition
+ | DefinitionList Definition
+ ;
+
+Definition
+ : DEFINE { CurFun.isDeclare = false; } Function {
+ CurFun.FunctionDone();
+ CHECK_FOR_ERROR
+ }
+ | DECLARE { CurFun.isDeclare = true; } FunctionProto {
+ CHECK_FOR_ERROR
+ }
+ | MODULE ASM_TOK AsmBlock {
+ CHECK_FOR_ERROR
+ }
+ | OptLocalAssign TYPE Types {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+ // Eagerly resolve types. This is not an optimization, this is a
+ // requirement that is due to the fact that we could have this:
+ //
+ // %list = type { %list * }
+ // %list = type { %list * } ; repeated type decl
+ //
+ // If types are not resolved eagerly, then the two types will not be
+ // determined to be the same type!
+ //
+ ResolveTypeTo($1, *$3);
+
+ if (!setTypeName(*$3, $1) && !$1) {
+ CHECK_FOR_ERROR
+ // If this is a named type that is not a redefinition, add it to the slot
+ // table.
+ CurModule.Types.push_back(*$3);
+ }
+
+ delete $3;
+ CHECK_FOR_ERROR
+ }
+ | OptLocalAssign TYPE VOID {
+ ResolveTypeTo($1, $3);
+
+ if (!setTypeName($3, $1) && !$1) {
+ CHECK_FOR_ERROR
+ // If this is a named type that is not a redefinition, add it to the slot
+ // table.
+ CurModule.Types.push_back($3);
+ }
+ CHECK_FOR_ERROR
+ }
+ | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal {
+ /* "Externally Visible" Linkage */
+ if ($5 == 0)
+ GEN_ERROR("Global value initializer is not a constant");
+ CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
+ $2, $4, $5->getType(), $5, $3);
+ CHECK_FOR_ERROR
+ } GlobalVarAttributes {
+ CurGV = 0;
+ }
+ | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
+ ConstVal {
+ if ($6 == 0)
+ GEN_ERROR("Global value initializer is not a constant");
+ CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
+ CHECK_FOR_ERROR
+ } GlobalVarAttributes {
+ CurGV = 0;
+ }
+ | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
+ Types {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
+ CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
+ CHECK_FOR_ERROR
+ delete $6;
+ } GlobalVarAttributes {
+ CurGV = 0;
+ CHECK_FOR_ERROR
+ }
+ | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
+ std::string Name;
+ if ($1) {
+ Name = *$1;
+ delete $1;
+ }
+ if (Name.empty())
+ GEN_ERROR("Alias name cannot be empty");
+
+ Constant* Aliasee = $5;
+ if (Aliasee == 0)
+ GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
+
+ GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
+ CurModule.CurrentModule);
+ GA->setVisibility($2);
+ InsertValue(GA, CurModule.Values);
+ CHECK_FOR_ERROR
+ }
+ | TARGET TargetDefinition {
+ CHECK_FOR_ERROR
+ }
+ | DEPLIBS '=' LibrariesDefinition {
+ CHECK_FOR_ERROR
+ }
+ ;
+
+
+AsmBlock : STRINGCONSTANT {
+ const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
+ if (AsmSoFar.empty())
+ CurModule.CurrentModule->setModuleInlineAsm(*$1);
+ else
+ CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
+ delete $1;
+ CHECK_FOR_ERROR
+};
+
+TargetDefinition : TRIPLE '=' STRINGCONSTANT {
+ CurModule.CurrentModule->setTargetTriple(*$3);
+ delete $3;
+ }
+ | DATALAYOUT '=' STRINGCONSTANT {
+ CurModule.CurrentModule->setDataLayout(*$3);
+ delete $3;
+ };
+
+LibrariesDefinition : '[' LibList ']';
+
+LibList : LibList ',' STRINGCONSTANT {
+ CurModule.CurrentModule->addLibrary(*$3);
+ delete $3;
+ CHECK_FOR_ERROR
+ }
+ | STRINGCONSTANT {
+ CurModule.CurrentModule->addLibrary(*$1);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | /* empty: end of list */ {
+ CHECK_FOR_ERROR
+ }
+ ;
+
+//===----------------------------------------------------------------------===//
+// Rules to match Function Headers
+//===----------------------------------------------------------------------===//
+
+ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+ if (*$3 == Type::VoidTy)
+ GEN_ERROR("void typed arguments are invalid");
+ ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
+ $$ = $1;
+ $1->push_back(E);
+ CHECK_FOR_ERROR
+ }
+ | Types OptParamAttrs OptLocalName {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ if (*$1 == Type::VoidTy)
+ GEN_ERROR("void typed arguments are invalid");
+ ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
+ $$ = new ArgListType;
+ $$->push_back(E);
+ CHECK_FOR_ERROR
+ };
+
+ArgList : ArgListH {
+ $$ = $1;
+ CHECK_FOR_ERROR
+ }
+ | ArgListH ',' DOTDOTDOT {
+ $$ = $1;
+ struct ArgListEntry E;
+ E.Ty = new PATypeHolder(Type::VoidTy);
+ E.Name = 0;
+ E.Attrs = ParamAttr::None;
+ $$->push_back(E);
+ CHECK_FOR_ERROR
+ }
+ | DOTDOTDOT {
+ $$ = new ArgListType;
+ struct ArgListEntry E;
+ E.Ty = new PATypeHolder(Type::VoidTy);
+ E.Name = 0;
+ E.Attrs = ParamAttr::None;
+ $$->push_back(E);
+ CHECK_FOR_ERROR
+ }
+ | /* empty */ {
+ $$ = 0;
+ CHECK_FOR_ERROR
+ };
+
+FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
+ OptFuncAttrs OptSection OptAlign {
+ std::string FunctionName(*$3);
+ delete $3; // Free strdup'd memory!
+
+ // Check the function result for abstractness if this is a define. We should
+ // have no abstract types at this point
+ if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
+ GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
+
+ std::vector<const Type*> ParamTypeList;
+ ParamAttrsVector Attrs;
+ if ($7 != ParamAttr::None) {
+ ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
+ Attrs.push_back(PAWI);
+ }
+ if ($5) { // If there are arguments...
+ unsigned index = 1;
+ for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
+ const Type* Ty = I->Ty->get();
+ if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
+ GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
+ ParamTypeList.push_back(Ty);
+ if (Ty != Type::VoidTy)
+ if (I->Attrs != ParamAttr::None) {
+ ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
+ Attrs.push_back(PAWI);
+ }
+ }
+ }
+
+ bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
+ if (isVarArg) ParamTypeList.pop_back();
+
+ ParamAttrsList *PAL = 0;
+ if (!Attrs.empty())
+ PAL = ParamAttrsList::get(Attrs);
+
+ FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
+ const PointerType *PFT = PointerType::get(FT);
+ delete $2;
+
+ ValID ID;
+ if (!FunctionName.empty()) {
+ ID = ValID::createGlobalName((char*)FunctionName.c_str());
+ } else {
+ ID = ValID::createGlobalID(CurModule.Values.size());
+ }
+
+ Function *Fn = 0;
+ // See if this function was forward referenced. If so, recycle the object.
+ if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
+ // Move the function to the end of the list, from whereever it was
+ // previously inserted.
+ Fn = cast<Function>(FWRef);
+ CurModule.CurrentModule->getFunctionList().remove(Fn);
+ CurModule.CurrentModule->getFunctionList().push_back(Fn);
+ } else if (!FunctionName.empty() && // Merge with an earlier prototype?
+ (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
+ if (Fn->getFunctionType() != FT) {
+ // The existing function doesn't have the same type. This is an overload
+ // error.
+ GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
+ } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
+ // Neither the existing or the current function is a declaration and they
+ // have the same name and same type. Clearly this is a redefinition.
+ GEN_ERROR("Redefinition of function '" + FunctionName + "'");
+ } if (Fn->isDeclaration()) {
+ // Make sure to strip off any argument names so we can't get conflicts.
+ for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
+ AI != AE; ++AI)
+ AI->setName("");
+ }
+ } else { // Not already defined?
+ Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
+ CurModule.CurrentModule);
+
+ InsertValue(Fn, CurModule.Values);
+ }
+
+ CurFun.FunctionStart(Fn);
+
+ if (CurFun.isDeclare) {
+ // If we have declaration, always overwrite linkage. This will allow us to
+ // correctly handle cases, when pointer to function is passed as argument to
+ // another function.
+ Fn->setLinkage(CurFun.Linkage);
+ Fn->setVisibility(CurFun.Visibility);
+ }
+ Fn->setCallingConv($1);
+ Fn->setAlignment($9);
+ if ($8) {
+ Fn->setSection(*$8);
+ delete $8;
+ }
+
+ // Add all of the arguments we parsed to the function...
+ if ($5) { // Is null if empty...
+ if (isVarArg) { // Nuke the last entry
+ assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
+ "Not a varargs marker!");
+ delete $5->back().Ty;
+ $5->pop_back(); // Delete the last entry
+ }
+ Function::arg_iterator ArgIt = Fn->arg_begin();
+ Function::arg_iterator ArgEnd = Fn->arg_end();
+ unsigned Idx = 1;
+ for (ArgListType::iterator I = $5->begin();
+ I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
+ delete I->Ty; // Delete the typeholder...
+ setValueName(ArgIt, I->Name); // Insert arg into symtab...
+ CHECK_FOR_ERROR
+ InsertValue(ArgIt);
+ Idx++;
+ }
+
+ delete $5; // We're now done with the argument list
+ }
+ CHECK_FOR_ERROR
+};
+
+BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
+
+FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
+ $$ = CurFun.CurrentFunction;
+
+ // Make sure that we keep track of the linkage type even if there was a
+ // previous "declare".
+ $$->setLinkage($1);
+ $$->setVisibility($2);
+};
+
+END : ENDTOK | '}'; // Allow end of '}' to end a function
+
+Function : BasicBlockList END {
+ $$ = $1;
+ CHECK_FOR_ERROR
+};
+
+FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
+ CurFun.CurrentFunction->setLinkage($1);
+ CurFun.CurrentFunction->setVisibility($2);
+ $$ = CurFun.CurrentFunction;
+ CurFun.FunctionDone();
+ CHECK_FOR_ERROR
+ };
+
+//===----------------------------------------------------------------------===//
+// Rules to match Basic Blocks
+//===----------------------------------------------------------------------===//
+
+OptSideEffect : /* empty */ {
+ $$ = false;
+ CHECK_FOR_ERROR
+ }
+ | SIDEEFFECT {
+ $$ = true;
+ CHECK_FOR_ERROR
+ };
+
+ConstValueRef : ESINT64VAL { // A reference to a direct constant
+ $$ = ValID::create($1);
+ CHECK_FOR_ERROR
+ }
+ | EUINT64VAL {
+ $$ = ValID::create($1);
+ CHECK_FOR_ERROR
+ }
+ | FPVAL { // Perhaps it's an FP constant?
+ $$ = ValID::create($1);
+ CHECK_FOR_ERROR
+ }
+ | TRUETOK {
+ $$ = ValID::create(ConstantInt::getTrue());
+ CHECK_FOR_ERROR
+ }
+ | FALSETOK {
+ $$ = ValID::create(ConstantInt::getFalse());
+ CHECK_FOR_ERROR
+ }
+ | NULL_TOK {
+ $$ = ValID::createNull();
+ CHECK_FOR_ERROR
+ }
+ | UNDEF {
+ $$ = ValID::createUndef();
+ CHECK_FOR_ERROR
+ }
+ | ZEROINITIALIZER { // A vector zero constant.
+ $$ = ValID::createZeroInit();
+ CHECK_FOR_ERROR
+ }
+ | '<' ConstVector '>' { // Nonempty unsized packed vector
+ const Type *ETy = (*$2)[0]->getType();
+ int NumElements = $2->size();
+
+ VectorType* pt = VectorType::get(ETy, NumElements);
+ PATypeHolder* PTy = new PATypeHolder(
+ HandleUpRefs(
+ VectorType::get(
+ ETy,
+ NumElements)
+ )
+ );
+
+ // Verify all elements are correct type!
+ for (unsigned i = 0; i < $2->size(); i++) {
+ if (ETy != (*$2)[i]->getType())
+ GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
+ ETy->getDescription() +"' as required!\nIt is of type '" +
+ (*$2)[i]->getType()->getDescription() + "'.");
+ }
+
+ $$ = ValID::create(ConstantVector::get(pt, *$2));
+ delete PTy; delete $2;
+ CHECK_FOR_ERROR
+ }
+ | ConstExpr {
+ $$ = ValID::create($1);
+ CHECK_FOR_ERROR
+ }
+ | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
+ $$ = ValID::createInlineAsm(*$3, *$5, $2);
+ delete $3;
+ delete $5;
+ CHECK_FOR_ERROR
+ };
+
+// SymbolicValueRef - Reference to one of two ways of symbolically refering to
+// another value.
+//
+SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
+ $$ = ValID::createLocalID($1);
+ CHECK_FOR_ERROR
+ }
+ | GLOBALVAL_ID {
+ $$ = ValID::createGlobalID($1);
+ CHECK_FOR_ERROR
+ }
+ | LocalName { // Is it a named reference...?
+ $$ = ValID::createLocalName(*$1);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ | GlobalName { // Is it a named reference...?
+ $$ = ValID::createGlobalName(*$1);
+ delete $1;
+ CHECK_FOR_ERROR
+ };
+
+// ValueRef - A reference to a definition... either constant or symbolic
+ValueRef : SymbolicValueRef | ConstValueRef;
+
+
+// ResolvedVal - a <type> <value> pair. This is used only in cases where the
+// type immediately preceeds the value reference, and allows complex constant
+// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
+ResolvedVal : Types ValueRef {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ $$ = getVal(*$1, $2);
+ delete $1;
+ CHECK_FOR_ERROR
+ }
+ ;
+
+BasicBlockList : BasicBlockList BasicBlock {
+ $$ = $1;
+ CHECK_FOR_ERROR
+ }
+ | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
+ $$ = $1;
+ CHECK_FOR_ERROR
+ };
+
+
+// Basic blocks are terminated by branching instructions:
+// br, br/cc, switch, ret
+//
+BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
+ setValueName($3, $2);
+ CHECK_FOR_ERROR
+ InsertValue($3);
+ $1->getInstList().push_back($3);
+ $$ = $1;
+ CHECK_FOR_ERROR
+ };
+
+InstructionList : InstructionList Inst {
+ if (CastInst *CI1 = dyn_cast<CastInst>($2))
+ if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
+ if (CI2->getParent() == 0)
+ $1->getInstList().push_back(CI2);
+ $1->getInstList().push_back($2);
+ $$ = $1;
+ CHECK_FOR_ERROR
+ }
+ | /* empty */ { // Empty space between instruction lists
+ $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
+ CHECK_FOR_ERROR
+ }
+ | LABELSTR { // Labelled (named) basic block
+ $$ = defineBBVal(ValID::createLocalName(*$1));
+ delete $1;
+ CHECK_FOR_ERROR
+
+ };
+
+BBTerminatorInst : RET ResolvedVal { // Return with a result...
+ $$ = new ReturnInst($2);
+ CHECK_FOR_ERROR
+ }
+ | RET VOID { // Return with no result...
+ $$ = new ReturnInst();
+ CHECK_FOR_ERROR
+ }
+ | BR LABEL ValueRef { // Unconditional Branch...
+ BasicBlock* tmpBB = getBBVal($3);
+ CHECK_FOR_ERROR
+ $$ = new BranchInst(tmpBB);
+ } // Conditional Branch...
+ | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
+ assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
+ BasicBlock* tmpBBA = getBBVal($6);
+ CHECK_FOR_ERROR
+ BasicBlock* tmpBBB = getBBVal($9);
+ CHECK_FOR_ERROR
+ Value* tmpVal = getVal(Type::Int1Ty, $3);
+ CHECK_FOR_ERROR
+ $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
+ }
+ | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
+ Value* tmpVal = getVal($2, $3);
+ CHECK_FOR_ERROR
+ BasicBlock* tmpBB = getBBVal($6);
+ CHECK_FOR_ERROR
+ SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
+ $$ = S;
+
+ std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
+ E = $8->end();
+ for (; I != E; ++I) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
+ S->addCase(CI, I->second);
+ else
+ GEN_ERROR("Switch case is constant, but not a simple integer");
+ }
+ delete $8;
+ CHECK_FOR_ERROR
+ }
+ | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
+ Value* tmpVal = getVal($2, $3);
+ CHECK_FOR_ERROR
+ BasicBlock* tmpBB = getBBVal($6);
+ CHECK_FOR_ERROR
+ SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
+ $$ = S;
+ CHECK_FOR_ERROR
+ }
+ | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
+ TO LABEL ValueRef UNWIND LABEL ValueRef {
+
+ // Handle the short syntax
+ const PointerType *PFTy = 0;
+ const FunctionType *Ty = 0;
+ if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
+ !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+ // Pull out the types of all of the arguments...
+ std::vector<const Type*> ParamTypes;
+ ParamAttrsVector Attrs;
+ if ($8 != ParamAttr::None) {
+ ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
+ Attrs.push_back(PAWI);
+ }
+ ValueRefList::iterator I = $6->begin(), E = $6->end();
+ unsigned index = 1;
+ for (; I != E; ++I, ++index) {
+ const Type *Ty = I->Val->getType();
+ if (Ty == Type::VoidTy)
+ GEN_ERROR("Short call syntax cannot be used with varargs");
+ ParamTypes.push_back(Ty);
+ if (I->Attrs != ParamAttr::None) {
+ ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
+ Attrs.push_back(PAWI);
+ }
+ }
+
+ ParamAttrsList *PAL = 0;
+ if (!Attrs.empty())
+ PAL = ParamAttrsList::get(Attrs);
+ Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
+ PFTy = PointerType::get(Ty);
+ }
+
+ delete $3;
+
+ Value *V = getVal(PFTy, $4); // Get the function we're calling...
+ CHECK_FOR_ERROR
+ BasicBlock *Normal = getBBVal($11);
+ CHECK_FOR_ERROR
+ BasicBlock *Except = getBBVal($14);
+ CHECK_FOR_ERROR
+
+ // Check the arguments
+ ValueList Args;
+ if ($6->empty()) { // Has no arguments?
+ // Make sure no arguments is a good thing!
+ if (Ty->getNumParams() != 0)
+ GEN_ERROR("No arguments passed to a function that "
+ "expects arguments");
+ } else { // Has arguments?
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly!
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
+
+ for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
+ if (ArgI->Val->getType() != *I)
+ GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
+ (*I)->getDescription() + "'");
+ Args.push_back(ArgI->Val);
+ }
+
+ if (Ty->isVarArg()) {
+ if (I == E)
+ for (; ArgI != ArgE; ++ArgI)
+ Args.push_back(ArgI->Val); // push the remaining varargs
+ } else if (I != E || ArgI != ArgE)
+ GEN_ERROR("Invalid number of parameters detected");
+ }
+
+ // Create the InvokeInst
+ InvokeInst *II = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
+ II->setCallingConv($2);
+ $$ = II;
+ delete $6;
+ CHECK_FOR_ERROR
+ }
+ | UNWIND {
+ $$ = new UnwindInst();
+ CHECK_FOR_ERROR
+ }
+ | UNREACHABLE {
+ $$ = new UnreachableInst();
+ CHECK_FOR_ERROR
+ };
+
+
+
+JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
+ $$ = $1;
+ Constant *V = cast<Constant>(getExistingVal($2, $3));
+ CHECK_FOR_ERROR
+ if (V == 0)
+ GEN_ERROR("May only switch on a constant pool value");
+
+ BasicBlock* tmpBB = getBBVal($6);
+ CHECK_FOR_ERROR
+ $$->push_back(std::make_pair(V, tmpBB));
+ }
+ | IntType ConstValueRef ',' LABEL ValueRef {
+ $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
+ Constant *V = cast<Constant>(getExistingVal($1, $2));
+ CHECK_FOR_ERROR
+
+ if (V == 0)
+ GEN_ERROR("May only switch on a constant pool value");
+
+ BasicBlock* tmpBB = getBBVal($5);
+ CHECK_FOR_ERROR
+ $$->push_back(std::make_pair(V, tmpBB));
+ };
+
+Inst : OptLocalAssign InstVal {
+ // Is this definition named?? if so, assign the name...
+ setValueName($2, $1);
+ CHECK_FOR_ERROR
+ InsertValue($2);
+ $$ = $2;
+ CHECK_FOR_ERROR
+ };
+
+
+PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ $$ = new std::list<std::pair<Value*, BasicBlock*> >();
+ Value* tmpVal = getVal(*$1, $3);
+ CHECK_FOR_ERROR
+ BasicBlock* tmpBB = getBBVal($5);
+ CHECK_FOR_ERROR
+ $$->push_back(std::make_pair(tmpVal, tmpBB));
+ delete $1;
+ }
+ | PHIList ',' '[' ValueRef ',' ValueRef ']' {
+ $$ = $1;
+ Value* tmpVal = getVal($1->front().first->getType(), $4);
+ CHECK_FOR_ERROR
+ BasicBlock* tmpBB = getBBVal($6);
+ CHECK_FOR_ERROR
+ $1->push_back(std::make_pair(tmpVal, tmpBB));
+ };
+
+
+ValueRefList : Types ValueRef OptParamAttrs {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
+ // Used for call and invoke instructions
+ $$ = new ValueRefList();
+ ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
+ $$->push_back(E);
+ delete $1;
+ }
+ | ValueRefList ',' Types ValueRef OptParamAttrs {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+ $$ = $1;
+ ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
+ $$->push_back(E);
+ delete $3;
+ CHECK_FOR_ERROR
+ }
+ | /*empty*/ { $$ = new ValueRefList(); };
+
+IndexList // Used for gep instructions and constant expressions
+ : /*empty*/ { $$ = new std::vector<Value*>(); }
+ | IndexList ',' ResolvedVal {
+ $$ = $1;
+ $$->push_back($3);
+ CHECK_FOR_ERROR
+ }
+ ;
+
+OptTailCall : TAIL CALL {
+ $$ = true;
+ CHECK_FOR_ERROR
+ }
+ | CALL {
+ $$ = false;
+ CHECK_FOR_ERROR
+ };
+
+InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
+ !isa<VectorType>((*$2).get()))
+ GEN_ERROR(
+ "Arithmetic operator requires integer, FP, or packed operands");
+ if (isa<VectorType>((*$2).get()) &&
+ ($1 == Instruction::URem ||
+ $1 == Instruction::SRem ||
+ $1 == Instruction::FRem))
+ GEN_ERROR("Remainder not supported on vector types");
+ Value* val1 = getVal(*$2, $3);
+ CHECK_FOR_ERROR
+ Value* val2 = getVal(*$2, $5);
+ CHECK_FOR_ERROR
+ $$ = BinaryOperator::create($1, val1, val2);
+ if ($$ == 0)
+ GEN_ERROR("binary operator returned null");
+ delete $2;
+ }
+ | LogicalOps Types ValueRef ',' ValueRef {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ if (!(*$2)->isInteger()) {
+ if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
+ !cast<VectorType>($2->get())->getElementType()->isInteger())
+ GEN_ERROR("Logical operator requires integral operands");
+ }
+ Value* tmpVal1 = getVal(*$2, $3);
+ CHECK_FOR_ERROR
+ Value* tmpVal2 = getVal(*$2, $5);
+ CHECK_FOR_ERROR
+ $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
+ if ($$ == 0)
+ GEN_ERROR("binary operator returned null");
+ delete $2;
+ }
+ | ICMP IPredicates Types ValueRef ',' ValueRef {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+ if (isa<VectorType>((*$3).get()))
+ GEN_ERROR("Vector types not supported by icmp instruction");
+ Value* tmpVal1 = getVal(*$3, $4);
+ CHECK_FOR_ERROR
+ Value* tmpVal2 = getVal(*$3, $6);
+ CHECK_FOR_ERROR
+ $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
+ if ($$ == 0)
+ GEN_ERROR("icmp operator returned null");
+ delete $3;
+ }
+ | FCMP FPredicates Types ValueRef ',' ValueRef {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+ if (isa<VectorType>((*$3).get()))
+ GEN_ERROR("Vector types not supported by fcmp instruction");
+ Value* tmpVal1 = getVal(*$3, $4);
+ CHECK_FOR_ERROR
+ Value* tmpVal2 = getVal(*$3, $6);
+ CHECK_FOR_ERROR
+ $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
+ if ($$ == 0)
+ GEN_ERROR("fcmp operator returned null");
+ delete $3;
+ }
+ | CastOps ResolvedVal TO Types {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
+ Value* Val = $2;
+ const Type* DestTy = $4->get();
+ if (!CastInst::castIsValid($1, Val, DestTy))
+ GEN_ERROR("invalid cast opcode for cast from '" +
+ Val->getType()->getDescription() + "' to '" +
+ DestTy->getDescription() + "'");
+ $$ = CastInst::create($1, Val, DestTy);
+ delete $4;
+ }
+ | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
+ if ($2->getType() != Type::Int1Ty)
+ GEN_ERROR("select condition must be boolean");
+ if ($4->getType() != $6->getType())
+ GEN_ERROR("select value types should match");
+ $$ = new SelectInst($2, $4, $6);
+ CHECK_FOR_ERROR
+ }
+ | VAARG ResolvedVal ',' Types {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
+ $$ = new VAArgInst($2, *$4);
+ delete $4;
+ CHECK_FOR_ERROR
+ }
+ | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
+ if (!ExtractElementInst::isValidOperands($2, $4))
+ GEN_ERROR("Invalid extractelement operands");
+ $$ = new ExtractElementInst($2, $4);
+ CHECK_FOR_ERROR
+ }
+ | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
+ if (!InsertElementInst::isValidOperands($2, $4, $6))
+ GEN_ERROR("Invalid insertelement operands");
+ $$ = new InsertElementInst($2, $4, $6);
+ CHECK_FOR_ERROR
+ }
+ | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
+ if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
+ GEN_ERROR("Invalid shufflevector operands");
+ $$ = new ShuffleVectorInst($2, $4, $6);
+ CHECK_FOR_ERROR
+ }
+ | PHI_TOK PHIList {
+ const Type *Ty = $2->front().first->getType();
+ if (!Ty->isFirstClassType())
+ GEN_ERROR("PHI node operands must be of first class type");
+ $$ = new PHINode(Ty);
+ ((PHINode*)$$)->reserveOperandSpace($2->size());
+ while ($2->begin() != $2->end()) {
+ if ($2->front().first->getType() != Ty)
+ GEN_ERROR("All elements of a PHI node must be of the same type");
+ cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
+ $2->pop_front();
+ }
+ delete $2; // Free the list...
+ CHECK_FOR_ERROR
+ }
+ | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')'
+ OptFuncAttrs {
+
+ // Handle the short syntax
+ const PointerType *PFTy = 0;
+ const FunctionType *Ty = 0;
+ if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
+ !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
+ // Pull out the types of all of the arguments...
+ std::vector<const Type*> ParamTypes;
+ ParamAttrsVector Attrs;
+ if ($8 != ParamAttr::None) {
+ ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
+ Attrs.push_back(PAWI);
+ }
+ unsigned index = 1;
+ ValueRefList::iterator I = $6->begin(), E = $6->end();
+ for (; I != E; ++I, ++index) {
+ const Type *Ty = I->Val->getType();
+ if (Ty == Type::VoidTy)
+ GEN_ERROR("Short call syntax cannot be used with varargs");
+ ParamTypes.push_back(Ty);
+ if (I->Attrs != ParamAttr::None) {
+ ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
+ Attrs.push_back(PAWI);
+ }
+ }
+
+ ParamAttrsList *PAL = 0;
+ if (!Attrs.empty())
+ PAL = ParamAttrsList::get(Attrs);
+
+ Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
+ PFTy = PointerType::get(Ty);
+ }
+
+ Value *V = getVal(PFTy, $4); // Get the function we're calling...
+ CHECK_FOR_ERROR
+
+ // Check for call to invalid intrinsic to avoid crashing later.
+ if (Function *theF = dyn_cast<Function>(V)) {
+ if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
+ (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
+ !theF->getIntrinsicID(true))
+ GEN_ERROR("Call to invalid LLVM intrinsic function '" +
+ theF->getName() + "'");
+ }
+
+ // Check the arguments
+ ValueList Args;
+ if ($6->empty()) { // Has no arguments?
+ // Make sure no arguments is a good thing!
+ if (Ty->getNumParams() != 0)
+ GEN_ERROR("No arguments passed to a function that "
+ "expects arguments");
+ } else { // Has arguments?
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly!
+ //
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
+
+ for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
+ if (ArgI->Val->getType() != *I)
+ GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
+ (*I)->getDescription() + "'");
+ Args.push_back(ArgI->Val);
+ }
+ if (Ty->isVarArg()) {
+ if (I == E)
+ for (; ArgI != ArgE; ++ArgI)
+ Args.push_back(ArgI->Val); // push the remaining varargs
+ } else if (I != E || ArgI != ArgE)
+ GEN_ERROR("Invalid number of parameters detected");
+ }
+ // Create the call node
+ CallInst *CI = new CallInst(V, &Args[0], Args.size());
+ CI->setTailCall($1);
+ CI->setCallingConv($2);
+ $$ = CI;
+ delete $6;
+ delete $3;
+ CHECK_FOR_ERROR
+ }
+ | MemoryInst {
+ $$ = $1;
+ CHECK_FOR_ERROR
+ };
+
+OptVolatile : VOLATILE {
+ $$ = true;
+ CHECK_FOR_ERROR
+ }
+ | /* empty */ {
+ $$ = false;
+ CHECK_FOR_ERROR
+ };
+
+
+
+MemoryInst : MALLOC Types OptCAlign {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ $$ = new MallocInst(*$2, 0, $3);
+ delete $2;
+ CHECK_FOR_ERROR
+ }
+ | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ Value* tmpVal = getVal($4, $5);
+ CHECK_FOR_ERROR
+ $$ = new MallocInst(*$2, tmpVal, $6);
+ delete $2;
+ }
+ | ALLOCA Types OptCAlign {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ $$ = new AllocaInst(*$2, 0, $3);
+ delete $2;
+ CHECK_FOR_ERROR
+ }
+ | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ Value* tmpVal = getVal($4, $5);
+ CHECK_FOR_ERROR
+ $$ = new AllocaInst(*$2, tmpVal, $6);
+ delete $2;
+ }
+ | FREE ResolvedVal {
+ if (!isa<PointerType>($2->getType()))
+ GEN_ERROR("Trying to free nonpointer type " +
+ $2->getType()->getDescription() + "");
+ $$ = new FreeInst($2);
+ CHECK_FOR_ERROR
+ }
+
+ | OptVolatile LOAD Types ValueRef OptCAlign {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
+ if (!isa<PointerType>($3->get()))
+ GEN_ERROR("Can't load from nonpointer type: " +
+ (*$3)->getDescription());
+ if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
+ GEN_ERROR("Can't load from pointer of non-first-class type: " +
+ (*$3)->getDescription());
+ Value* tmpVal = getVal(*$3, $4);
+ CHECK_FOR_ERROR
+ $$ = new LoadInst(tmpVal, "", $1, $5);
+ delete $3;
+ }
+ | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
+ const PointerType *PT = dyn_cast<PointerType>($5->get());
+ if (!PT)
+ GEN_ERROR("Can't store to a nonpointer type: " +
+ (*$5)->getDescription());
+ const Type *ElTy = PT->getElementType();
+ if (ElTy != $3->getType())
+ GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
+ "' into space of type '" + ElTy->getDescription() + "'");
+
+ Value* tmpVal = getVal(*$5, $6);
+ CHECK_FOR_ERROR
+ $$ = new StoreInst($3, tmpVal, $1, $7);
+ delete $5;
+ }
+ | GETELEMENTPTR Types ValueRef IndexList {
+ if (!UpRefs.empty())
+ GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
+ if (!isa<PointerType>($2->get()))
+ GEN_ERROR("getelementptr insn requires pointer operand");
+
+ if (!GetElementPtrInst::getIndexedType(*$2, &(*$4)[0], $4->size(), true))
+ GEN_ERROR("Invalid getelementptr indices for type '" +
+ (*$2)->getDescription()+ "'");
+ Value* tmpVal = getVal(*$2, $3);
+ CHECK_FOR_ERROR
+ $$ = new GetElementPtrInst(tmpVal, &(*$4)[0], $4->size());
+ delete $2;
+ delete $4;
+ };
+
+
+%%
+
+// common code from the two 'RunVMAsmParser' functions
+static Module* RunParser(Module * M) {
+
+ llvmAsmlineno = 1; // Reset the current line number...
+ CurModule.CurrentModule = M;
+#if YYDEBUG
+ yydebug = Debug;
+#endif
+
+ // Check to make sure the parser succeeded
+ if (yyparse()) {
+ if (ParserResult)
+ delete ParserResult;
+ return 0;
+ }
+
+ // Emit an error if there are any unresolved types left.
+ if (!CurModule.LateResolveTypes.empty()) {
+ const ValID &DID = CurModule.LateResolveTypes.begin()->first;
+ if (DID.Type == ValID::LocalName) {
+ GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
+ } else {
+ GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
+ }
+ if (ParserResult)
+ delete ParserResult;
+ return 0;
+ }
+
+ // Emit an error if there are any unresolved values left.
+ if (!CurModule.LateResolveValues.empty()) {
+ Value *V = CurModule.LateResolveValues.back();
+ std::map<Value*, std::pair<ValID, int> >::iterator I =
+ CurModule.PlaceHolderInfo.find(V);
+
+ if (I != CurModule.PlaceHolderInfo.end()) {
+ ValID &DID = I->second.first;
+ if (DID.Type == ValID::LocalName) {
+ GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
+ } else {
+ GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
+ }
+ if (ParserResult)
+ delete ParserResult;
+ return 0;
+ }
+ }
+
+ // Check to make sure that parsing produced a result
+ if (!ParserResult)
+ return 0;
+
+ // Reset ParserResult variable while saving its value for the result.
+ Module *Result = ParserResult;
+ ParserResult = 0;
+
+ return Result;
+}
+
+void llvm::GenerateError(const std::string &message, int LineNo) {
+ if (LineNo == -1) LineNo = llvmAsmlineno;
+ // TODO: column number in exception
+ if (TheParseError)
+ TheParseError->setError(CurFilename, message, LineNo);
+ TriggerError = 1;
+}
+
+int yyerror(const char *ErrorMsg) {
+ std::string where
+ = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+ + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
+ std::string errMsg = where + "error: " + std::string(ErrorMsg);
+ if (yychar != YYEMPTY && yychar != 0)
+ errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
+ "'";
+ GenerateError(errMsg);
+ return 0;
+}