diff options
author | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
---|---|---|
committer | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
commit | f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch) | |
tree | ebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/CodeGen/IntrinsicLowering.cpp | |
download | external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2 |
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/IntrinsicLowering.cpp')
-rw-r--r-- | lib/CodeGen/IntrinsicLowering.cpp | 799 |
1 files changed, 799 insertions, 0 deletions
diff --git a/lib/CodeGen/IntrinsicLowering.cpp b/lib/CodeGen/IntrinsicLowering.cpp new file mode 100644 index 0000000..8ae4df6 --- /dev/null +++ b/lib/CodeGen/IntrinsicLowering.cpp @@ -0,0 +1,799 @@ +//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the IntrinsicLowering class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/Type.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/Support/Streams.h" +#include "llvm/Target/TargetData.h" +#include "llvm/ADT/SmallVector.h" +using namespace llvm; + +template <class ArgIt> +static void EnsureFunctionExists(Module &M, const char *Name, + ArgIt ArgBegin, ArgIt ArgEnd, + const Type *RetTy) { + // Insert a correctly-typed definition now. + std::vector<const Type *> ParamTys; + for (ArgIt I = ArgBegin; I != ArgEnd; ++I) + ParamTys.push_back(I->getType()); + M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false)); +} + +/// ReplaceCallWith - This function is used when we want to lower an intrinsic +/// call to a call of an external function. This handles hard cases such as +/// when there was already a prototype for the external function, and if that +/// prototype doesn't match the arguments we expect to pass in. +template <class ArgIt> +static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI, + ArgIt ArgBegin, ArgIt ArgEnd, + const Type *RetTy, Constant *&FCache) { + if (!FCache) { + // If we haven't already looked up this function, check to see if the + // program already contains a function with this name. + Module *M = CI->getParent()->getParent()->getParent(); + // Get or insert the definition now. + std::vector<const Type *> ParamTys; + for (ArgIt I = ArgBegin; I != ArgEnd; ++I) + ParamTys.push_back((*I)->getType()); + FCache = M->getOrInsertFunction(NewFn, + FunctionType::get(RetTy, ParamTys, false)); + } + + SmallVector<Value*, 8> Operands(ArgBegin, ArgEnd); + CallInst *NewCI = new CallInst(FCache, &Operands[0], Operands.size(), + CI->getName(), CI); + if (!CI->use_empty()) + CI->replaceAllUsesWith(NewCI); + return NewCI; +} + +void IntrinsicLowering::AddPrototypes(Module &M) { + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + if (I->isDeclaration() && !I->use_empty()) + switch (I->getIntrinsicID()) { + default: break; + case Intrinsic::setjmp: + EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(), + Type::Int32Ty); + break; + case Intrinsic::longjmp: + EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(), + Type::VoidTy); + break; + case Intrinsic::siglongjmp: + EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(), + Type::VoidTy); + break; + case Intrinsic::memcpy_i32: + case Intrinsic::memcpy_i64: + M.getOrInsertFunction("memcpy", PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + TD.getIntPtrType(), (Type *)0); + break; + case Intrinsic::memmove_i32: + case Intrinsic::memmove_i64: + M.getOrInsertFunction("memmove", PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + TD.getIntPtrType(), (Type *)0); + break; + case Intrinsic::memset_i32: + case Intrinsic::memset_i64: + M.getOrInsertFunction("memset", PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), Type::Int32Ty, + TD.getIntPtrType(), (Type *)0); + break; + case Intrinsic::sqrt_f32: + case Intrinsic::sqrt_f64: + if(I->arg_begin()->getType() == Type::FloatTy) + EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(), + Type::FloatTy); + else + EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(), + Type::DoubleTy); + break; + } +} + +/// LowerBSWAP - Emit the code to lower bswap of V before the specified +/// instruction IP. +static Value *LowerBSWAP(Value *V, Instruction *IP) { + assert(V->getType()->isInteger() && "Can't bswap a non-integer type!"); + + unsigned BitSize = V->getType()->getPrimitiveSizeInBits(); + + switch(BitSize) { + default: assert(0 && "Unhandled type size of value to byteswap!"); + case 16: { + Value *Tmp1 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),8),"bswap.2",IP); + Value *Tmp2 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),8),"bswap.1",IP); + V = BinaryOperator::createOr(Tmp1, Tmp2, "bswap.i16", IP); + break; + } + case 32: { + Value *Tmp4 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),24),"bswap.4", IP); + Value *Tmp3 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),8),"bswap.3",IP); + Value *Tmp2 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),8),"bswap.2",IP); + Value *Tmp1 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),24),"bswap.1", IP); + Tmp3 = BinaryOperator::createAnd(Tmp3, + ConstantInt::get(Type::Int32Ty, 0xFF0000), + "bswap.and3", IP); + Tmp2 = BinaryOperator::createAnd(Tmp2, + ConstantInt::get(Type::Int32Ty, 0xFF00), + "bswap.and2", IP); + Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or1", IP); + Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or2", IP); + V = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.i32", IP); + break; + } + case 64: { + Value *Tmp8 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),56),"bswap.8", IP); + Value *Tmp7 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),40),"bswap.7", IP); + Value *Tmp6 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),24),"bswap.6", IP); + Value *Tmp5 = BinaryOperator::createShl(V, + ConstantInt::get(V->getType(),8),"bswap.5", IP); + Value* Tmp4 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),8),"bswap.4", IP); + Value* Tmp3 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),24),"bswap.3", IP); + Value* Tmp2 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),40),"bswap.2", IP); + Value* Tmp1 = BinaryOperator::createLShr(V, + ConstantInt::get(V->getType(),56),"bswap.1", IP); + Tmp7 = BinaryOperator::createAnd(Tmp7, + ConstantInt::get(Type::Int64Ty, + 0xFF000000000000ULL), + "bswap.and7", IP); + Tmp6 = BinaryOperator::createAnd(Tmp6, + ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL), + "bswap.and6", IP); + Tmp5 = BinaryOperator::createAnd(Tmp5, + ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL), + "bswap.and5", IP); + Tmp4 = BinaryOperator::createAnd(Tmp4, + ConstantInt::get(Type::Int64Ty, 0xFF000000ULL), + "bswap.and4", IP); + Tmp3 = BinaryOperator::createAnd(Tmp3, + ConstantInt::get(Type::Int64Ty, 0xFF0000ULL), + "bswap.and3", IP); + Tmp2 = BinaryOperator::createAnd(Tmp2, + ConstantInt::get(Type::Int64Ty, 0xFF00ULL), + "bswap.and2", IP); + Tmp8 = BinaryOperator::createOr(Tmp8, Tmp7, "bswap.or1", IP); + Tmp6 = BinaryOperator::createOr(Tmp6, Tmp5, "bswap.or2", IP); + Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or3", IP); + Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or4", IP); + Tmp8 = BinaryOperator::createOr(Tmp8, Tmp6, "bswap.or5", IP); + Tmp4 = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.or6", IP); + V = BinaryOperator::createOr(Tmp8, Tmp4, "bswap.i64", IP); + break; + } + } + return V; +} + +/// LowerCTPOP - Emit the code to lower ctpop of V before the specified +/// instruction IP. +static Value *LowerCTPOP(Value *V, Instruction *IP) { + assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!"); + + static const uint64_t MaskValues[6] = { + 0x5555555555555555ULL, 0x3333333333333333ULL, + 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, + 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL + }; + + unsigned BitSize = V->getType()->getPrimitiveSizeInBits(); + unsigned WordSize = (BitSize + 63) / 64; + Value *Count = ConstantInt::get(V->getType(), 0); + + for (unsigned n = 0; n < WordSize; ++n) { + Value *PartValue = V; + for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize); + i <<= 1, ++ct) { + Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]); + Value *LHS = BinaryOperator::createAnd( + PartValue, MaskCst, "cppop.and1", IP); + Value *VShift = BinaryOperator::createLShr(PartValue, + ConstantInt::get(V->getType(), i), "ctpop.sh", IP); + Value *RHS = BinaryOperator::createAnd(VShift, MaskCst, "cppop.and2", IP); + PartValue = BinaryOperator::createAdd(LHS, RHS, "ctpop.step", IP); + } + Count = BinaryOperator::createAdd(PartValue, Count, "ctpop.part", IP); + if (BitSize > 64) { + V = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(), 64), + "ctpop.part.sh", IP); + BitSize -= 64; + } + } + + return CastInst::createIntegerCast(Count, Type::Int32Ty, false, "ctpop", IP); +} + +/// LowerCTLZ - Emit the code to lower ctlz of V before the specified +/// instruction IP. +static Value *LowerCTLZ(Value *V, Instruction *IP) { + + unsigned BitSize = V->getType()->getPrimitiveSizeInBits(); + for (unsigned i = 1; i < BitSize; i <<= 1) { + Value *ShVal = ConstantInt::get(V->getType(), i); + ShVal = BinaryOperator::createLShr(V, ShVal, "ctlz.sh", IP); + V = BinaryOperator::createOr(V, ShVal, "ctlz.step", IP); + } + + V = BinaryOperator::createNot(V, "", IP); + return LowerCTPOP(V, IP); +} + +/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes +/// three integer arguments. The first argument is the Value from which the +/// bits will be selected. It may be of any bit width. The second and third +/// arguments specify a range of bits to select with the second argument +/// specifying the low bit and the third argument specifying the high bit. Both +/// must be type i32. The result is the corresponding selected bits from the +/// Value in the same width as the Value (first argument). If the low bit index +/// is higher than the high bit index then the inverse selection is done and +/// the bits are returned in inverse order. +/// @brief Lowering of llvm.part.select intrinsic. +static Instruction *LowerPartSelect(CallInst *CI) { + // Make sure we're dealing with a part select intrinsic here + Function *F = CI->getCalledFunction(); + const FunctionType *FT = F->getFunctionType(); + if (!F->isDeclaration() || !FT->getReturnType()->isInteger() || + FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() || + !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger()) + return CI; + + // Get the intrinsic implementation function by converting all the . to _ + // in the intrinsic's function name and then reconstructing the function + // declaration. + std::string Name(F->getName()); + for (unsigned i = 4; i < Name.length(); ++i) + if (Name[i] == '.') + Name[i] = '_'; + Module* M = F->getParent(); + F = cast<Function>(M->getOrInsertFunction(Name, FT)); + F->setLinkage(GlobalValue::WeakLinkage); + + // If we haven't defined the impl function yet, do so now + if (F->isDeclaration()) { + + // Get the arguments to the function + Function::arg_iterator args = F->arg_begin(); + Value* Val = args++; Val->setName("Val"); + Value* Lo = args++; Lo->setName("Lo"); + Value* Hi = args++; Hi->setName("High"); + + // We want to select a range of bits here such that [Hi, Lo] is shifted + // down to the low bits. However, it is quite possible that Hi is smaller + // than Lo in which case the bits have to be reversed. + + // Create the blocks we will need for the two cases (forward, reverse) + BasicBlock* CurBB = new BasicBlock("entry", F); + BasicBlock *RevSize = new BasicBlock("revsize", CurBB->getParent()); + BasicBlock *FwdSize = new BasicBlock("fwdsize", CurBB->getParent()); + BasicBlock *Compute = new BasicBlock("compute", CurBB->getParent()); + BasicBlock *Reverse = new BasicBlock("reverse", CurBB->getParent()); + BasicBlock *RsltBlk = new BasicBlock("result", CurBB->getParent()); + + // Cast Hi and Lo to the size of Val so the widths are all the same + if (Hi->getType() != Val->getType()) + Hi = CastInst::createIntegerCast(Hi, Val->getType(), false, + "tmp", CurBB); + if (Lo->getType() != Val->getType()) + Lo = CastInst::createIntegerCast(Lo, Val->getType(), false, + "tmp", CurBB); + + // Compute a few things that both cases will need, up front. + Constant* Zero = ConstantInt::get(Val->getType(), 0); + Constant* One = ConstantInt::get(Val->getType(), 1); + Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType()); + + // Compare the Hi and Lo bit positions. This is used to determine + // which case we have (forward or reverse) + ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB); + new BranchInst(RevSize, FwdSize, Cmp, CurBB); + + // First, copmute the number of bits in the forward case. + Instruction* FBitSize = + BinaryOperator::createSub(Hi, Lo,"fbits", FwdSize); + new BranchInst(Compute, FwdSize); + + // Second, compute the number of bits in the reverse case. + Instruction* RBitSize = + BinaryOperator::createSub(Lo, Hi, "rbits", RevSize); + new BranchInst(Compute, RevSize); + + // Now, compute the bit range. Start by getting the bitsize and the shift + // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for + // the number of bits we want in the range. We shift the bits down to the + // least significant bits, apply the mask to zero out unwanted high bits, + // and we have computed the "forward" result. It may still need to be + // reversed. + + // Get the BitSize from one of the two subtractions + PHINode *BitSize = new PHINode(Val->getType(), "bits", Compute); + BitSize->reserveOperandSpace(2); + BitSize->addIncoming(FBitSize, FwdSize); + BitSize->addIncoming(RBitSize, RevSize); + + // Get the ShiftAmount as the smaller of Hi/Lo + PHINode *ShiftAmt = new PHINode(Val->getType(), "shiftamt", Compute); + ShiftAmt->reserveOperandSpace(2); + ShiftAmt->addIncoming(Lo, FwdSize); + ShiftAmt->addIncoming(Hi, RevSize); + + // Increment the bit size + Instruction *BitSizePlusOne = + BinaryOperator::createAdd(BitSize, One, "bits", Compute); + + // Create a Mask to zero out the high order bits. + Instruction* Mask = + BinaryOperator::createShl(AllOnes, BitSizePlusOne, "mask", Compute); + Mask = BinaryOperator::createNot(Mask, "mask", Compute); + + // Shift the bits down and apply the mask + Instruction* FRes = + BinaryOperator::createLShr(Val, ShiftAmt, "fres", Compute); + FRes = BinaryOperator::createAnd(FRes, Mask, "fres", Compute); + new BranchInst(Reverse, RsltBlk, Cmp, Compute); + + // In the Reverse block we have the mask already in FRes but we must reverse + // it by shifting FRes bits right and putting them in RRes by shifting them + // in from left. + + // First set up our loop counters + PHINode *Count = new PHINode(Val->getType(), "count", Reverse); + Count->reserveOperandSpace(2); + Count->addIncoming(BitSizePlusOne, Compute); + + // Next, get the value that we are shifting. + PHINode *BitsToShift = new PHINode(Val->getType(), "val", Reverse); + BitsToShift->reserveOperandSpace(2); + BitsToShift->addIncoming(FRes, Compute); + + // Finally, get the result of the last computation + PHINode *RRes = new PHINode(Val->getType(), "rres", Reverse); + RRes->reserveOperandSpace(2); + RRes->addIncoming(Zero, Compute); + + // Decrement the counter + Instruction *Decr = BinaryOperator::createSub(Count, One, "decr", Reverse); + Count->addIncoming(Decr, Reverse); + + // Compute the Bit that we want to move + Instruction *Bit = + BinaryOperator::createAnd(BitsToShift, One, "bit", Reverse); + + // Compute the new value for next iteration. + Instruction *NewVal = + BinaryOperator::createLShr(BitsToShift, One, "rshift", Reverse); + BitsToShift->addIncoming(NewVal, Reverse); + + // Shift the bit into the low bits of the result. + Instruction *NewRes = + BinaryOperator::createShl(RRes, One, "lshift", Reverse); + NewRes = BinaryOperator::createOr(NewRes, Bit, "addbit", Reverse); + RRes->addIncoming(NewRes, Reverse); + + // Terminate loop if we've moved all the bits. + ICmpInst *Cond = + new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse); + new BranchInst(RsltBlk, Reverse, Cond, Reverse); + + // Finally, in the result block, select one of the two results with a PHI + // node and return the result; + CurBB = RsltBlk; + PHINode *BitSelect = new PHINode(Val->getType(), "part_select", CurBB); + BitSelect->reserveOperandSpace(2); + BitSelect->addIncoming(FRes, Compute); + BitSelect->addIncoming(NewRes, Reverse); + new ReturnInst(BitSelect, CurBB); + } + + // Return a call to the implementation function + Value *Args[] = { + CI->getOperand(1), + CI->getOperand(2), + CI->getOperand(3) + }; + return new CallInst(F, Args, sizeof(Args)/sizeof(Args[0]), CI->getName(), CI); +} + +/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes +/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High) +/// The first two arguments can be any bit width. The result is the same width +/// as %Value. The operation replaces bits between %Low and %High with the value +/// in %Replacement. If %Replacement is not the same width, it is truncated or +/// zero extended as appropriate to fit the bits being replaced. If %Low is +/// greater than %High then the inverse set of bits are replaced. +/// @brief Lowering of llvm.bit.part.set intrinsic. +static Instruction *LowerPartSet(CallInst *CI) { + // Make sure we're dealing with a part select intrinsic here + Function *F = CI->getCalledFunction(); + const FunctionType *FT = F->getFunctionType(); + if (!F->isDeclaration() || !FT->getReturnType()->isInteger() || + FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() || + !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() || + !FT->getParamType(3)->isInteger()) + return CI; + + // Get the intrinsic implementation function by converting all the . to _ + // in the intrinsic's function name and then reconstructing the function + // declaration. + std::string Name(F->getName()); + for (unsigned i = 4; i < Name.length(); ++i) + if (Name[i] == '.') + Name[i] = '_'; + Module* M = F->getParent(); + F = cast<Function>(M->getOrInsertFunction(Name, FT)); + F->setLinkage(GlobalValue::WeakLinkage); + + // If we haven't defined the impl function yet, do so now + if (F->isDeclaration()) { + // Get the arguments for the function. + Function::arg_iterator args = F->arg_begin(); + Value* Val = args++; Val->setName("Val"); + Value* Rep = args++; Rep->setName("Rep"); + Value* Lo = args++; Lo->setName("Lo"); + Value* Hi = args++; Hi->setName("Hi"); + + // Get some types we need + const IntegerType* ValTy = cast<IntegerType>(Val->getType()); + const IntegerType* RepTy = cast<IntegerType>(Rep->getType()); + uint32_t ValBits = ValTy->getBitWidth(); + uint32_t RepBits = RepTy->getBitWidth(); + + // Constant Definitions + ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits); + ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy); + ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy); + ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1); + ConstantInt* ValOne = ConstantInt::get(ValTy, 1); + ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0); + ConstantInt* ValZero = ConstantInt::get(ValTy, 0); + + // Basic blocks we fill in below. + BasicBlock* entry = new BasicBlock("entry", F, 0); + BasicBlock* large = new BasicBlock("large", F, 0); + BasicBlock* small = new BasicBlock("small", F, 0); + BasicBlock* reverse = new BasicBlock("reverse", F, 0); + BasicBlock* result = new BasicBlock("result", F, 0); + + // BASIC BLOCK: entry + // First, get the number of bits that we're placing as an i32 + ICmpInst* is_forward = + new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry); + SelectInst* Hi_pn = new SelectInst(is_forward, Hi, Lo, "", entry); + SelectInst* Lo_pn = new SelectInst(is_forward, Lo, Hi, "", entry); + BinaryOperator* NumBits = BinaryOperator::createSub(Hi_pn, Lo_pn, "",entry); + NumBits = BinaryOperator::createAdd(NumBits, One, "", entry); + // Now, convert Lo and Hi to ValTy bit width + if (ValBits > 32) { + Lo = new ZExtInst(Lo_pn, ValTy, "", entry); + } else if (ValBits < 32) { + Lo = new TruncInst(Lo_pn, ValTy, "", entry); + } + // Determine if the replacement bits are larger than the number of bits we + // are replacing and deal with it. + ICmpInst* is_large = + new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry); + new BranchInst(large, small, is_large, entry); + + // BASIC BLOCK: large + Instruction* MaskBits = + BinaryOperator::createSub(RepBitWidth, NumBits, "", large); + MaskBits = CastInst::createIntegerCast(MaskBits, RepMask->getType(), + false, "", large); + BinaryOperator* Mask1 = + BinaryOperator::createLShr(RepMask, MaskBits, "", large); + BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large); + new BranchInst(small, large); + + // BASIC BLOCK: small + PHINode* Rep3 = new PHINode(RepTy, "", small); + Rep3->reserveOperandSpace(2); + Rep3->addIncoming(Rep2, large); + Rep3->addIncoming(Rep, entry); + Value* Rep4 = Rep3; + if (ValBits > RepBits) + Rep4 = new ZExtInst(Rep3, ValTy, "", small); + else if (ValBits < RepBits) + Rep4 = new TruncInst(Rep3, ValTy, "", small); + new BranchInst(result, reverse, is_forward, small); + + // BASIC BLOCK: reverse (reverses the bits of the replacement) + // Set up our loop counter as a PHI so we can decrement on each iteration. + // We will loop for the number of bits in the replacement value. + PHINode *Count = new PHINode(Type::Int32Ty, "count", reverse); + Count->reserveOperandSpace(2); + Count->addIncoming(NumBits, small); + + // Get the value that we are shifting bits out of as a PHI because + // we'll change this with each iteration. + PHINode *BitsToShift = new PHINode(Val->getType(), "val", reverse); + BitsToShift->reserveOperandSpace(2); + BitsToShift->addIncoming(Rep4, small); + + // Get the result of the last computation or zero on first iteration + PHINode *RRes = new PHINode(Val->getType(), "rres", reverse); + RRes->reserveOperandSpace(2); + RRes->addIncoming(ValZero, small); + + // Decrement the loop counter by one + Instruction *Decr = BinaryOperator::createSub(Count, One, "", reverse); + Count->addIncoming(Decr, reverse); + + // Get the bit that we want to move into the result + Value *Bit = BinaryOperator::createAnd(BitsToShift, ValOne, "", reverse); + + // Compute the new value of the bits to shift for the next iteration. + Value *NewVal = BinaryOperator::createLShr(BitsToShift, ValOne,"", reverse); + BitsToShift->addIncoming(NewVal, reverse); + + // Shift the bit we extracted into the low bit of the result. + Instruction *NewRes = BinaryOperator::createShl(RRes, ValOne, "", reverse); + NewRes = BinaryOperator::createOr(NewRes, Bit, "", reverse); + RRes->addIncoming(NewRes, reverse); + + // Terminate loop if we've moved all the bits. + ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse); + new BranchInst(result, reverse, Cond, reverse); + + // BASIC BLOCK: result + PHINode *Rplcmnt = new PHINode(Val->getType(), "", result); + Rplcmnt->reserveOperandSpace(2); + Rplcmnt->addIncoming(NewRes, reverse); + Rplcmnt->addIncoming(Rep4, small); + Value* t0 = CastInst::createIntegerCast(NumBits,ValTy,false,"",result); + Value* t1 = BinaryOperator::createShl(ValMask, Lo, "", result); + Value* t2 = BinaryOperator::createNot(t1, "", result); + Value* t3 = BinaryOperator::createShl(t1, t0, "", result); + Value* t4 = BinaryOperator::createOr(t2, t3, "", result); + Value* t5 = BinaryOperator::createAnd(t4, Val, "", result); + Value* t6 = BinaryOperator::createShl(Rplcmnt, Lo, "", result); + Value* Rslt = BinaryOperator::createOr(t5, t6, "part_set", result); + new ReturnInst(Rslt, result); + } + + // Return a call to the implementation function + Value *Args[] = { + CI->getOperand(1), + CI->getOperand(2), + CI->getOperand(3), + CI->getOperand(4) + }; + return new CallInst(F, Args, sizeof(Args)/sizeof(Args[0]), CI->getName(), CI); +} + + +void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) { + Function *Callee = CI->getCalledFunction(); + assert(Callee && "Cannot lower an indirect call!"); + + switch (Callee->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + cerr << "Cannot lower a call to a non-intrinsic function '" + << Callee->getName() << "'!\n"; + abort(); + default: + cerr << "Error: Code generator does not support intrinsic function '" + << Callee->getName() << "'!\n"; + abort(); + + // The setjmp/longjmp intrinsics should only exist in the code if it was + // never optimized (ie, right out of the CFE), or if it has been hacked on + // by the lowerinvoke pass. In both cases, the right thing to do is to + // convert the call to an explicit setjmp or longjmp call. + case Intrinsic::setjmp: { + static Constant *SetjmpFCache = 0; + Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(), + Type::Int32Ty, SetjmpFCache); + if (CI->getType() != Type::VoidTy) + CI->replaceAllUsesWith(V); + break; + } + case Intrinsic::sigsetjmp: + if (CI->getType() != Type::VoidTy) + CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); + break; + + case Intrinsic::longjmp: { + static Constant *LongjmpFCache = 0; + ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(), + Type::VoidTy, LongjmpFCache); + break; + } + + case Intrinsic::siglongjmp: { + // Insert the call to abort + static Constant *AbortFCache = 0; + ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(), + Type::VoidTy, AbortFCache); + break; + } + case Intrinsic::ctpop: + CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI)); + break; + + case Intrinsic::bswap: + CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI)); + break; + + case Intrinsic::ctlz: + CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI)); + break; + + case Intrinsic::cttz: { + // cttz(x) -> ctpop(~X & (X-1)) + Value *Src = CI->getOperand(1); + Value *NotSrc = BinaryOperator::createNot(Src, Src->getName()+".not", CI); + Value *SrcM1 = ConstantInt::get(Src->getType(), 1); + SrcM1 = BinaryOperator::createSub(Src, SrcM1, "", CI); + Src = LowerCTPOP(BinaryOperator::createAnd(NotSrc, SrcM1, "", CI), CI); + CI->replaceAllUsesWith(Src); + break; + } + + case Intrinsic::part_select: + CI->replaceAllUsesWith(LowerPartSelect(CI)); + break; + + case Intrinsic::part_set: + CI->replaceAllUsesWith(LowerPartSet(CI)); + break; + + case Intrinsic::stacksave: + case Intrinsic::stackrestore: { + static bool Warned = false; + if (!Warned) + cerr << "WARNING: this target does not support the llvm.stack" + << (Callee->getIntrinsicID() == Intrinsic::stacksave ? + "save" : "restore") << " intrinsic.\n"; + Warned = true; + if (Callee->getIntrinsicID() == Intrinsic::stacksave) + CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); + break; + } + + case Intrinsic::returnaddress: + case Intrinsic::frameaddress: + cerr << "WARNING: this target does not support the llvm." + << (Callee->getIntrinsicID() == Intrinsic::returnaddress ? + "return" : "frame") << "address intrinsic.\n"; + CI->replaceAllUsesWith(ConstantPointerNull::get( + cast<PointerType>(CI->getType()))); + break; + + case Intrinsic::prefetch: + break; // Simply strip out prefetches on unsupported architectures + + case Intrinsic::pcmarker: + break; // Simply strip out pcmarker on unsupported architectures + case Intrinsic::readcyclecounter: { + cerr << "WARNING: this target does not support the llvm.readcyclecoun" + << "ter intrinsic. It is being lowered to a constant 0\n"; + CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0)); + break; + } + + case Intrinsic::dbg_stoppoint: + case Intrinsic::dbg_region_start: + case Intrinsic::dbg_region_end: + case Intrinsic::dbg_func_start: + case Intrinsic::dbg_declare: + break; // Simply strip out debugging intrinsics + + case Intrinsic::eh_exception: + case Intrinsic::eh_selector: + CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); + break; + + case Intrinsic::eh_typeid_for: + // Return something different to eh_selector. + CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1)); + break; + + case Intrinsic::var_annotation: + break; // Strip out annotate intrinsic + + case Intrinsic::memcpy_i32: + case Intrinsic::memcpy_i64: { + static Constant *MemcpyFCache = 0; + Value *Size = CI->getOperand(3); + const Type *IntPtr = TD.getIntPtrType(); + if (Size->getType()->getPrimitiveSizeInBits() < + IntPtr->getPrimitiveSizeInBits()) + Size = new ZExtInst(Size, IntPtr, "", CI); + else if (Size->getType()->getPrimitiveSizeInBits() > + IntPtr->getPrimitiveSizeInBits()) + Size = new TruncInst(Size, IntPtr, "", CI); + Value *Ops[3]; + Ops[0] = CI->getOperand(1); + Ops[1] = CI->getOperand(2); + Ops[2] = Size; + ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(), + MemcpyFCache); + break; + } + case Intrinsic::memmove_i32: + case Intrinsic::memmove_i64: { + static Constant *MemmoveFCache = 0; + Value *Size = CI->getOperand(3); + const Type *IntPtr = TD.getIntPtrType(); + if (Size->getType()->getPrimitiveSizeInBits() < + IntPtr->getPrimitiveSizeInBits()) + Size = new ZExtInst(Size, IntPtr, "", CI); + else if (Size->getType()->getPrimitiveSizeInBits() > + IntPtr->getPrimitiveSizeInBits()) + Size = new TruncInst(Size, IntPtr, "", CI); + Value *Ops[3]; + Ops[0] = CI->getOperand(1); + Ops[1] = CI->getOperand(2); + Ops[2] = Size; + ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(), + MemmoveFCache); + break; + } + case Intrinsic::memset_i32: + case Intrinsic::memset_i64: { + static Constant *MemsetFCache = 0; + Value *Size = CI->getOperand(3); + const Type *IntPtr = TD.getIntPtrType(); + if (Size->getType()->getPrimitiveSizeInBits() < + IntPtr->getPrimitiveSizeInBits()) + Size = new ZExtInst(Size, IntPtr, "", CI); + else if (Size->getType()->getPrimitiveSizeInBits() > + IntPtr->getPrimitiveSizeInBits()) + Size = new TruncInst(Size, IntPtr, "", CI); + Value *Ops[3]; + Ops[0] = CI->getOperand(1); + // Extend the amount to i32. + Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI); + Ops[2] = Size; + ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(), + MemsetFCache); + break; + } + case Intrinsic::sqrt_f32: { + static Constant *sqrtfFCache = 0; + ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(), + Type::FloatTy, sqrtfFCache); + break; + } + case Intrinsic::sqrt_f64: { + static Constant *sqrtFCache = 0; + ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(), + Type::DoubleTy, sqrtFCache); + break; + } + } + + assert(CI->use_empty() && + "Lowering should have eliminated any uses of the intrinsic call!"); + CI->eraseFromParent(); +} |