diff options
author | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
---|---|---|
committer | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
commit | f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch) | |
tree | ebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/CodeGen/MachOWriter.cpp | |
download | external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2 |
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/MachOWriter.cpp')
-rw-r--r-- | lib/CodeGen/MachOWriter.cpp | 945 |
1 files changed, 945 insertions, 0 deletions
diff --git a/lib/CodeGen/MachOWriter.cpp b/lib/CodeGen/MachOWriter.cpp new file mode 100644 index 0000000..36060e1 --- /dev/null +++ b/lib/CodeGen/MachOWriter.cpp @@ -0,0 +1,945 @@ +//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by Nate Begeman and is distributed under the +// University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the target-independent Mach-O writer. This file writes +// out the Mach-O file in the following order: +// +// #1 FatHeader (universal-only) +// #2 FatArch (universal-only, 1 per universal arch) +// Per arch: +// #3 Header +// #4 Load Commands +// #5 Sections +// #6 Relocations +// #7 Symbols +// #8 Strings +// +//===----------------------------------------------------------------------===// + +#include "MachOWriter.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/PassManager.h" +#include "llvm/CodeGen/FileWriters.h" +#include "llvm/CodeGen/MachineCodeEmitter.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/Target/TargetAsmInfo.h" +#include "llvm/Target/TargetJITInfo.h" +#include "llvm/Support/Mangler.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/OutputBuffer.h" +#include "llvm/Support/Streams.h" +#include <algorithm> +using namespace llvm; + +/// AddMachOWriter - Concrete function to add the Mach-O writer to the function +/// pass manager. +MachineCodeEmitter *llvm::AddMachOWriter(FunctionPassManager &FPM, + std::ostream &O, + TargetMachine &TM) { + MachOWriter *MOW = new MachOWriter(O, TM); + FPM.add(MOW); + return &MOW->getMachineCodeEmitter(); +} + +//===----------------------------------------------------------------------===// +// MachOCodeEmitter Implementation +//===----------------------------------------------------------------------===// + +namespace llvm { + /// MachOCodeEmitter - This class is used by the MachOWriter to emit the code + /// for functions to the Mach-O file. + class MachOCodeEmitter : public MachineCodeEmitter { + MachOWriter &MOW; + + /// Target machine description. + TargetMachine &TM; + + /// is64Bit/isLittleEndian - This information is inferred from the target + /// machine directly, indicating what header values and flags to set. + bool is64Bit, isLittleEndian; + + /// Relocations - These are the relocations that the function needs, as + /// emitted. + std::vector<MachineRelocation> Relocations; + + /// CPLocations - This is a map of constant pool indices to offsets from the + /// start of the section for that constant pool index. + std::vector<intptr_t> CPLocations; + + /// CPSections - This is a map of constant pool indices to the MachOSection + /// containing the constant pool entry for that index. + std::vector<unsigned> CPSections; + + /// JTLocations - This is a map of jump table indices to offsets from the + /// start of the section for that jump table index. + std::vector<intptr_t> JTLocations; + + /// MBBLocations - This vector is a mapping from MBB ID's to their address. + /// It is filled in by the StartMachineBasicBlock callback and queried by + /// the getMachineBasicBlockAddress callback. + std::vector<intptr_t> MBBLocations; + + public: + MachOCodeEmitter(MachOWriter &mow) : MOW(mow), TM(MOW.TM) { + is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; + isLittleEndian = TM.getTargetData()->isLittleEndian(); + } + + virtual void startFunction(MachineFunction &MF); + virtual bool finishFunction(MachineFunction &MF); + + virtual void addRelocation(const MachineRelocation &MR) { + Relocations.push_back(MR); + } + + void emitConstantPool(MachineConstantPool *MCP); + void emitJumpTables(MachineJumpTableInfo *MJTI); + + virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const { + assert(CPLocations.size() > Index && "CP not emitted!"); + return CPLocations[Index]; + } + virtual intptr_t getJumpTableEntryAddress(unsigned Index) const { + assert(JTLocations.size() > Index && "JT not emitted!"); + return JTLocations[Index]; + } + + virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { + if (MBBLocations.size() <= (unsigned)MBB->getNumber()) + MBBLocations.resize((MBB->getNumber()+1)*2); + MBBLocations[MBB->getNumber()] = getCurrentPCOffset(); + } + + virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { + assert(MBBLocations.size() > (unsigned)MBB->getNumber() && + MBBLocations[MBB->getNumber()] && "MBB not emitted!"); + return MBBLocations[MBB->getNumber()]; + } + + /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE! + virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) { + assert(0 && "JIT specific function called!"); + abort(); + } + virtual void *finishFunctionStub(const Function *F) { + assert(0 && "JIT specific function called!"); + abort(); + return 0; + } + }; +} + +/// startFunction - This callback is invoked when a new machine function is +/// about to be emitted. +void MachOCodeEmitter::startFunction(MachineFunction &MF) { + const TargetData *TD = TM.getTargetData(); + const Function *F = MF.getFunction(); + + // Align the output buffer to the appropriate alignment, power of 2. + unsigned FnAlign = F->getAlignment(); + unsigned TDAlign = TD->getPrefTypeAlignment(F->getType()); + unsigned Align = Log2_32(std::max(FnAlign, TDAlign)); + assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); + + // Get the Mach-O Section that this function belongs in. + MachOWriter::MachOSection *MOS = MOW.getTextSection(); + + // FIXME: better memory management + MOS->SectionData.reserve(4096); + BufferBegin = &MOS->SectionData[0]; + BufferEnd = BufferBegin + MOS->SectionData.capacity(); + + // Upgrade the section alignment if required. + if (MOS->align < Align) MOS->align = Align; + + // Round the size up to the correct alignment for starting the new function. + if ((MOS->size & ((1 << Align) - 1)) != 0) { + MOS->size += (1 << Align); + MOS->size &= ~((1 << Align) - 1); + } + + // FIXME: Using MOS->size directly here instead of calculating it from the + // output buffer size (impossible because the code emitter deals only in raw + // bytes) forces us to manually synchronize size and write padding zero bytes + // to the output buffer for all non-text sections. For text sections, we do + // not synchonize the output buffer, and we just blow up if anyone tries to + // write non-code to it. An assert should probably be added to + // AddSymbolToSection to prevent calling it on the text section. + CurBufferPtr = BufferBegin + MOS->size; + + // Clear per-function data structures. + CPLocations.clear(); + CPSections.clear(); + JTLocations.clear(); + MBBLocations.clear(); +} + +/// finishFunction - This callback is invoked after the function is completely +/// finished. +bool MachOCodeEmitter::finishFunction(MachineFunction &MF) { + // Get the Mach-O Section that this function belongs in. + MachOWriter::MachOSection *MOS = MOW.getTextSection(); + + // Get a symbol for the function to add to the symbol table + // FIXME: it seems like we should call something like AddSymbolToSection + // in startFunction rather than changing the section size and symbol n_value + // here. + const GlobalValue *FuncV = MF.getFunction(); + MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index, TM); + FnSym.n_value = MOS->size; + MOS->size = CurBufferPtr - BufferBegin; + + // Emit constant pool to appropriate section(s) + emitConstantPool(MF.getConstantPool()); + + // Emit jump tables to appropriate section + emitJumpTables(MF.getJumpTableInfo()); + + // If we have emitted any relocations to function-specific objects such as + // basic blocks, constant pools entries, or jump tables, record their + // addresses now so that we can rewrite them with the correct addresses + // later. + for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { + MachineRelocation &MR = Relocations[i]; + intptr_t Addr; + + if (MR.isBasicBlock()) { + Addr = getMachineBasicBlockAddress(MR.getBasicBlock()); + MR.setConstantVal(MOS->Index); + MR.setResultPointer((void*)Addr); + } else if (MR.isJumpTableIndex()) { + Addr = getJumpTableEntryAddress(MR.getJumpTableIndex()); + MR.setConstantVal(MOW.getJumpTableSection()->Index); + MR.setResultPointer((void*)Addr); + } else if (MR.isConstantPoolIndex()) { + Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex()); + MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]); + MR.setResultPointer((void*)Addr); + } else if (MR.isGlobalValue()) { + // FIXME: This should be a set or something that uniques + MOW.PendingGlobals.push_back(MR.getGlobalValue()); + } else { + assert(0 && "Unhandled relocation type"); + } + MOS->Relocations.push_back(MR); + } + Relocations.clear(); + + // Finally, add it to the symtab. + MOW.SymbolTable.push_back(FnSym); + return false; +} + +/// emitConstantPool - For each constant pool entry, figure out which section +/// the constant should live in, allocate space for it, and emit it to the +/// Section data buffer. +void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) { + const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); + if (CP.empty()) return; + + // FIXME: handle PIC codegen + bool isPIC = TM.getRelocationModel() == Reloc::PIC_; + assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!"); + + // Although there is no strict necessity that I am aware of, we will do what + // gcc for OS X does and put each constant pool entry in a section of constant + // objects of a certain size. That means that float constants go in the + // literal4 section, and double objects go in literal8, etc. + // + // FIXME: revisit this decision if we ever do the "stick everything into one + // "giant object for PIC" optimization. + for (unsigned i = 0, e = CP.size(); i != e; ++i) { + const Type *Ty = CP[i].getType(); + unsigned Size = TM.getTargetData()->getTypeSize(Ty); + + MachOWriter::MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal); + OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian); + + CPLocations.push_back(Sec->SectionData.size()); + CPSections.push_back(Sec->Index); + + // FIXME: remove when we have unified size + output buffer + Sec->size += Size; + + // Allocate space in the section for the global. + // FIXME: need alignment? + // FIXME: share between here and AddSymbolToSection? + for (unsigned j = 0; j < Size; ++j) + SecDataOut.outbyte(0); + + MOW.InitMem(CP[i].Val.ConstVal, &Sec->SectionData[0], CPLocations[i], + TM.getTargetData(), Sec->Relocations); + } +} + +/// emitJumpTables - Emit all the jump tables for a given jump table info +/// record to the appropriate section. +void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) { + const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); + if (JT.empty()) return; + + // FIXME: handle PIC codegen + bool isPIC = TM.getRelocationModel() == Reloc::PIC_; + assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!"); + + MachOWriter::MachOSection *Sec = MOW.getJumpTableSection(); + unsigned TextSecIndex = MOW.getTextSection()->Index; + OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian); + + for (unsigned i = 0, e = JT.size(); i != e; ++i) { + // For each jump table, record its offset from the start of the section, + // reserve space for the relocations to the MBBs, and add the relocations. + const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; + JTLocations.push_back(Sec->SectionData.size()); + for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { + MachineRelocation MR(MOW.GetJTRelocation(Sec->SectionData.size(), + MBBs[mi])); + MR.setResultPointer((void *)JTLocations[i]); + MR.setConstantVal(TextSecIndex); + Sec->Relocations.push_back(MR); + SecDataOut.outaddr(0); + } + } + // FIXME: remove when we have unified size + output buffer + Sec->size = Sec->SectionData.size(); +} + +//===----------------------------------------------------------------------===// +// MachOWriter Implementation +//===----------------------------------------------------------------------===// + +char MachOWriter::ID = 0; +MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) + : MachineFunctionPass((intptr_t)&ID), O(o), TM(tm) { + is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; + isLittleEndian = TM.getTargetData()->isLittleEndian(); + + // Create the machine code emitter object for this target. + MCE = new MachOCodeEmitter(*this); +} + +MachOWriter::~MachOWriter() { + delete MCE; +} + +void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) { + const Type *Ty = GV->getType()->getElementType(); + unsigned Size = TM.getTargetData()->getTypeSize(Ty); + unsigned Align = GV->getAlignment(); + if (Align == 0) + Align = TM.getTargetData()->getPrefTypeAlignment(Ty); + + // Reserve space in the .bss section for this symbol while maintaining the + // desired section alignment, which must be at least as much as required by + // this symbol. + OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian); + + if (Align) { + uint64_t OrigSize = Sec->size; + Align = Log2_32(Align); + Sec->align = std::max(unsigned(Sec->align), Align); + Sec->size = (Sec->size + Align - 1) & ~(Align-1); + + // Add alignment padding to buffer as well. + // FIXME: remove when we have unified size + output buffer + unsigned AlignedSize = Sec->size - OrigSize; + for (unsigned i = 0; i < AlignedSize; ++i) + SecDataOut.outbyte(0); + } + // Globals without external linkage apparently do not go in the symbol table. + if (GV->getLinkage() != GlobalValue::InternalLinkage) { + MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM); + Sym.n_value = Sec->size; + SymbolTable.push_back(Sym); + } + + // Record the offset of the symbol, and then allocate space for it. + // FIXME: remove when we have unified size + output buffer + Sec->size += Size; + + // Now that we know what section the GlovalVariable is going to be emitted + // into, update our mappings. + // FIXME: We may also need to update this when outputting non-GlobalVariable + // GlobalValues such as functions. + GVSection[GV] = Sec; + GVOffset[GV] = Sec->SectionData.size(); + + // Allocate space in the section for the global. + for (unsigned i = 0; i < Size; ++i) + SecDataOut.outbyte(0); +} + +void MachOWriter::EmitGlobal(GlobalVariable *GV) { + const Type *Ty = GV->getType()->getElementType(); + unsigned Size = TM.getTargetData()->getTypeSize(Ty); + bool NoInit = !GV->hasInitializer(); + + // If this global has a zero initializer, it is part of the .bss or common + // section. + if (NoInit || GV->getInitializer()->isNullValue()) { + // If this global is part of the common block, add it now. Variables are + // part of the common block if they are zero initialized and allowed to be + // merged with other symbols. + if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) { + MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT,TM); + // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in + // bytes of the symbol. + ExtOrCommonSym.n_value = Size; + SymbolTable.push_back(ExtOrCommonSym); + // Remember that we've seen this symbol + GVOffset[GV] = Size; + return; + } + // Otherwise, this symbol is part of the .bss section. + MachOSection *BSS = getBSSSection(); + AddSymbolToSection(BSS, GV); + return; + } + + // Scalar read-only data goes in a literal section if the scalar is 4, 8, or + // 16 bytes, or a cstring. Other read only data goes into a regular const + // section. Read-write data goes in the data section. + MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) : + getDataSection(); + AddSymbolToSection(Sec, GV); + InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV], + TM.getTargetData(), Sec->Relocations); +} + + +bool MachOWriter::runOnMachineFunction(MachineFunction &MF) { + // Nothing to do here, this is all done through the MCE object. + return false; +} + +bool MachOWriter::doInitialization(Module &M) { + // Set the magic value, now that we know the pointer size and endianness + Header.setMagic(isLittleEndian, is64Bit); + + // Set the file type + // FIXME: this only works for object files, we do not support the creation + // of dynamic libraries or executables at this time. + Header.filetype = MachOHeader::MH_OBJECT; + + Mang = new Mangler(M); + return false; +} + +/// doFinalization - Now that the module has been completely processed, emit +/// the Mach-O file to 'O'. +bool MachOWriter::doFinalization(Module &M) { + // FIXME: we don't handle debug info yet, we should probably do that. + + // Okay, the.text section has been completed, build the .data, .bss, and + // "common" sections next. + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + EmitGlobal(I); + + // Emit the header and load commands. + EmitHeaderAndLoadCommands(); + + // Emit the various sections and their relocation info. + EmitSections(); + + // Write the symbol table and the string table to the end of the file. + O.write((char*)&SymT[0], SymT.size()); + O.write((char*)&StrT[0], StrT.size()); + + // We are done with the abstract symbols. + SectionList.clear(); + SymbolTable.clear(); + DynamicSymbolTable.clear(); + + // Release the name mangler object. + delete Mang; Mang = 0; + return false; +} + +void MachOWriter::EmitHeaderAndLoadCommands() { + // Step #0: Fill in the segment load command size, since we need it to figure + // out the rest of the header fields + MachOSegment SEG("", is64Bit); + SEG.nsects = SectionList.size(); + SEG.cmdsize = SEG.cmdSize(is64Bit) + + SEG.nsects * SectionList[0]->cmdSize(is64Bit); + + // Step #1: calculate the number of load commands. We always have at least + // one, for the LC_SEGMENT load command, plus two for the normal + // and dynamic symbol tables, if there are any symbols. + Header.ncmds = SymbolTable.empty() ? 1 : 3; + + // Step #2: calculate the size of the load commands + Header.sizeofcmds = SEG.cmdsize; + if (!SymbolTable.empty()) + Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize; + + // Step #3: write the header to the file + // Local alias to shortenify coming code. + DataBuffer &FH = Header.HeaderData; + OutputBuffer FHOut(FH, is64Bit, isLittleEndian); + + FHOut.outword(Header.magic); + FHOut.outword(TM.getMachOWriterInfo()->getCPUType()); + FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType()); + FHOut.outword(Header.filetype); + FHOut.outword(Header.ncmds); + FHOut.outword(Header.sizeofcmds); + FHOut.outword(Header.flags); + if (is64Bit) + FHOut.outword(Header.reserved); + + // Step #4: Finish filling in the segment load command and write it out + for (std::vector<MachOSection*>::iterator I = SectionList.begin(), + E = SectionList.end(); I != E; ++I) + SEG.filesize += (*I)->size; + + SEG.vmsize = SEG.filesize; + SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds; + + FHOut.outword(SEG.cmd); + FHOut.outword(SEG.cmdsize); + FHOut.outstring(SEG.segname, 16); + FHOut.outaddr(SEG.vmaddr); + FHOut.outaddr(SEG.vmsize); + FHOut.outaddr(SEG.fileoff); + FHOut.outaddr(SEG.filesize); + FHOut.outword(SEG.maxprot); + FHOut.outword(SEG.initprot); + FHOut.outword(SEG.nsects); + FHOut.outword(SEG.flags); + + // Step #5: Finish filling in the fields of the MachOSections + uint64_t currentAddr = 0; + for (std::vector<MachOSection*>::iterator I = SectionList.begin(), + E = SectionList.end(); I != E; ++I) { + MachOSection *MOS = *I; + MOS->addr = currentAddr; + MOS->offset = currentAddr + SEG.fileoff; + + // FIXME: do we need to do something with alignment here? + currentAddr += MOS->size; + } + + // Step #6: Emit the symbol table to temporary buffers, so that we know the + // size of the string table when we write the next load command. This also + // sorts and assigns indices to each of the symbols, which is necessary for + // emitting relocations to externally-defined objects. + BufferSymbolAndStringTable(); + + // Step #7: Calculate the number of relocations for each section and write out + // the section commands for each section + currentAddr += SEG.fileoff; + for (std::vector<MachOSection*>::iterator I = SectionList.begin(), + E = SectionList.end(); I != E; ++I) { + MachOSection *MOS = *I; + // Convert the relocations to target-specific relocations, and fill in the + // relocation offset for this section. + CalculateRelocations(*MOS); + MOS->reloff = MOS->nreloc ? currentAddr : 0; + currentAddr += MOS->nreloc * 8; + + // write the finalized section command to the output buffer + FHOut.outstring(MOS->sectname, 16); + FHOut.outstring(MOS->segname, 16); + FHOut.outaddr(MOS->addr); + FHOut.outaddr(MOS->size); + FHOut.outword(MOS->offset); + FHOut.outword(MOS->align); + FHOut.outword(MOS->reloff); + FHOut.outword(MOS->nreloc); + FHOut.outword(MOS->flags); + FHOut.outword(MOS->reserved1); + FHOut.outword(MOS->reserved2); + if (is64Bit) + FHOut.outword(MOS->reserved3); + } + + // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands + SymTab.symoff = currentAddr; + SymTab.nsyms = SymbolTable.size(); + SymTab.stroff = SymTab.symoff + SymT.size(); + SymTab.strsize = StrT.size(); + FHOut.outword(SymTab.cmd); + FHOut.outword(SymTab.cmdsize); + FHOut.outword(SymTab.symoff); + FHOut.outword(SymTab.nsyms); + FHOut.outword(SymTab.stroff); + FHOut.outword(SymTab.strsize); + + // FIXME: set DySymTab fields appropriately + // We should probably just update these in BufferSymbolAndStringTable since + // thats where we're partitioning up the different kinds of symbols. + FHOut.outword(DySymTab.cmd); + FHOut.outword(DySymTab.cmdsize); + FHOut.outword(DySymTab.ilocalsym); + FHOut.outword(DySymTab.nlocalsym); + FHOut.outword(DySymTab.iextdefsym); + FHOut.outword(DySymTab.nextdefsym); + FHOut.outword(DySymTab.iundefsym); + FHOut.outword(DySymTab.nundefsym); + FHOut.outword(DySymTab.tocoff); + FHOut.outword(DySymTab.ntoc); + FHOut.outword(DySymTab.modtaboff); + FHOut.outword(DySymTab.nmodtab); + FHOut.outword(DySymTab.extrefsymoff); + FHOut.outword(DySymTab.nextrefsyms); + FHOut.outword(DySymTab.indirectsymoff); + FHOut.outword(DySymTab.nindirectsyms); + FHOut.outword(DySymTab.extreloff); + FHOut.outword(DySymTab.nextrel); + FHOut.outword(DySymTab.locreloff); + FHOut.outword(DySymTab.nlocrel); + + O.write((char*)&FH[0], FH.size()); +} + +/// EmitSections - Now that we have constructed the file header and load +/// commands, emit the data for each section to the file. +void MachOWriter::EmitSections() { + for (std::vector<MachOSection*>::iterator I = SectionList.begin(), + E = SectionList.end(); I != E; ++I) + // Emit the contents of each section + O.write((char*)&(*I)->SectionData[0], (*I)->size); + for (std::vector<MachOSection*>::iterator I = SectionList.begin(), + E = SectionList.end(); I != E; ++I) + // Emit the relocation entry data for each section. + O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size()); +} + +/// PartitionByLocal - Simple boolean predicate that returns true if Sym is +/// a local symbol rather than an external symbol. +bool MachOWriter::PartitionByLocal(const MachOSym &Sym) { + return (Sym.n_type & (MachOSym::N_EXT | MachOSym::N_PEXT)) == 0; +} + +/// PartitionByDefined - Simple boolean predicate that returns true if Sym is +/// defined in this module. +bool MachOWriter::PartitionByDefined(const MachOSym &Sym) { + // FIXME: Do N_ABS or N_INDR count as defined? + return (Sym.n_type & MachOSym::N_SECT) == MachOSym::N_SECT; +} + +/// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them +/// each a string table index so that they appear in the correct order in the +/// output file. +void MachOWriter::BufferSymbolAndStringTable() { + // The order of the symbol table is: + // 1. local symbols + // 2. defined external symbols (sorted by name) + // 3. undefined external symbols (sorted by name) + + // Before sorting the symbols, check the PendingGlobals for any undefined + // globals that need to be put in the symbol table. + for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(), + E = PendingGlobals.end(); I != E; ++I) { + if (GVOffset[*I] == 0 && GVSection[*I] == 0) { + MachOSym UndfSym(*I, Mang->getValueName(*I), MachOSym::NO_SECT, TM); + SymbolTable.push_back(UndfSym); + GVOffset[*I] = -1; + } + } + + // Sort the symbols by name, so that when we partition the symbols by scope + // of definition, we won't have to sort by name within each partition. + std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSymCmp()); + + // Parition the symbol table entries so that all local symbols come before + // all symbols with external linkage. { 1 | 2 3 } + std::partition(SymbolTable.begin(), SymbolTable.end(), PartitionByLocal); + + // Advance iterator to beginning of external symbols and partition so that + // all external symbols defined in this module come before all external + // symbols defined elsewhere. { 1 | 2 | 3 } + for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), + E = SymbolTable.end(); I != E; ++I) { + if (!PartitionByLocal(*I)) { + std::partition(I, E, PartitionByDefined); + break; + } + } + + // Calculate the starting index for each of the local, extern defined, and + // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB + // load command. + for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), + E = SymbolTable.end(); I != E; ++I) { + if (PartitionByLocal(*I)) { + ++DySymTab.nlocalsym; + ++DySymTab.iextdefsym; + ++DySymTab.iundefsym; + } else if (PartitionByDefined(*I)) { + ++DySymTab.nextdefsym; + ++DySymTab.iundefsym; + } else { + ++DySymTab.nundefsym; + } + } + + // Write out a leading zero byte when emitting string table, for n_strx == 0 + // which means an empty string. + OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian); + StrTOut.outbyte(0); + + // The order of the string table is: + // 1. strings for external symbols + // 2. strings for local symbols + // Since this is the opposite order from the symbol table, which we have just + // sorted, we can walk the symbol table backwards to output the string table. + for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(), + E = SymbolTable.rend(); I != E; ++I) { + if (I->GVName == "") { + I->n_strx = 0; + } else { + I->n_strx = StrT.size(); + StrTOut.outstring(I->GVName, I->GVName.length()+1); + } + } + + OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian); + + unsigned index = 0; + for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), + E = SymbolTable.end(); I != E; ++I, ++index) { + // Add the section base address to the section offset in the n_value field + // to calculate the full address. + // FIXME: handle symbols where the n_value field is not the address + GlobalValue *GV = const_cast<GlobalValue*>(I->GV); + if (GV && GVSection[GV]) + I->n_value += GVSection[GV]->addr; + if (GV && (GVOffset[GV] == -1)) + GVOffset[GV] = index; + + // Emit nlist to buffer + SymTOut.outword(I->n_strx); + SymTOut.outbyte(I->n_type); + SymTOut.outbyte(I->n_sect); + SymTOut.outhalf(I->n_desc); + SymTOut.outaddr(I->n_value); + } +} + +/// CalculateRelocations - For each MachineRelocation in the current section, +/// calculate the index of the section containing the object to be relocated, +/// and the offset into that section. From this information, create the +/// appropriate target-specific MachORelocation type and add buffer it to be +/// written out after we are finished writing out sections. +void MachOWriter::CalculateRelocations(MachOSection &MOS) { + for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) { + MachineRelocation &MR = MOS.Relocations[i]; + unsigned TargetSection = MR.getConstantVal(); + unsigned TargetAddr = 0; + unsigned TargetIndex = 0; + + // This is a scattered relocation entry if it points to a global value with + // a non-zero offset. + bool Scattered = false; + bool Extern = false; + + // Since we may not have seen the GlobalValue we were interested in yet at + // the time we emitted the relocation for it, fix it up now so that it + // points to the offset into the correct section. + if (MR.isGlobalValue()) { + GlobalValue *GV = MR.getGlobalValue(); + MachOSection *MOSPtr = GVSection[GV]; + intptr_t Offset = GVOffset[GV]; + + // If we have never seen the global before, it must be to a symbol + // defined in another module (N_UNDF). + if (!MOSPtr) { + // FIXME: need to append stub suffix + Extern = true; + TargetAddr = 0; + TargetIndex = GVOffset[GV]; + } else { + Scattered = TargetSection != 0; + TargetSection = MOSPtr->Index; + } + MR.setResultPointer((void*)Offset); + } + + // If the symbol is locally defined, pass in the address of the section and + // the section index to the code which will generate the target relocation. + if (!Extern) { + MachOSection &To = *SectionList[TargetSection - 1]; + TargetAddr = To.addr; + TargetIndex = To.Index; + } + + OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian); + OutputBuffer SecOut(MOS.SectionData, is64Bit, isLittleEndian); + + MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex, + RelocOut, SecOut, Scattered, Extern); + } +} + +// InitMem - Write the value of a Constant to the specified memory location, +// converting it into bytes and relocations. +void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset, + const TargetData *TD, + std::vector<MachineRelocation> &MRs) { + typedef std::pair<const Constant*, intptr_t> CPair; + std::vector<CPair> WorkList; + + WorkList.push_back(CPair(C,(intptr_t)Addr + Offset)); + + intptr_t ScatteredOffset = 0; + + while (!WorkList.empty()) { + const Constant *PC = WorkList.back().first; + intptr_t PA = WorkList.back().second; + WorkList.pop_back(); + + if (isa<UndefValue>(PC)) { + continue; + } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) { + unsigned ElementSize = TD->getTypeSize(CP->getType()->getElementType()); + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) + WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize)); + } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) { + // + // FIXME: Handle ConstantExpression. See EE::getConstantValue() + // + switch (CE->getOpcode()) { + case Instruction::GetElementPtr: { + SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); + ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(), + &Indices[0], Indices.size()); + WorkList.push_back(CPair(CE->getOperand(0), PA)); + break; + } + case Instruction::Add: + default: + cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; + abort(); + break; + } + } else if (PC->getType()->isFirstClassType()) { + unsigned char *ptr = (unsigned char *)PA; + switch (PC->getType()->getTypeID()) { + case Type::IntegerTyID: { + unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth(); + uint64_t val = cast<ConstantInt>(PC)->getZExtValue(); + if (NumBits <= 8) + ptr[0] = val; + else if (NumBits <= 16) { + if (TD->isBigEndian()) + val = ByteSwap_16(val); + ptr[0] = val; + ptr[1] = val >> 8; + } else if (NumBits <= 32) { + if (TD->isBigEndian()) + val = ByteSwap_32(val); + ptr[0] = val; + ptr[1] = val >> 8; + ptr[2] = val >> 16; + ptr[3] = val >> 24; + } else if (NumBits <= 64) { + if (TD->isBigEndian()) + val = ByteSwap_64(val); + ptr[0] = val; + ptr[1] = val >> 8; + ptr[2] = val >> 16; + ptr[3] = val >> 24; + ptr[4] = val >> 32; + ptr[5] = val >> 40; + ptr[6] = val >> 48; + ptr[7] = val >> 56; + } else { + assert(0 && "Not implemented: bit widths > 64"); + } + break; + } + case Type::FloatTyID: { + uint64_t val = FloatToBits(cast<ConstantFP>(PC)->getValue()); + if (TD->isBigEndian()) + val = ByteSwap_32(val); + ptr[0] = val; + ptr[1] = val >> 8; + ptr[2] = val >> 16; + ptr[3] = val >> 24; + break; + } + case Type::DoubleTyID: { + uint64_t val = DoubleToBits(cast<ConstantFP>(PC)->getValue()); + if (TD->isBigEndian()) + val = ByteSwap_64(val); + ptr[0] = val; + ptr[1] = val >> 8; + ptr[2] = val >> 16; + ptr[3] = val >> 24; + ptr[4] = val >> 32; + ptr[5] = val >> 40; + ptr[6] = val >> 48; + ptr[7] = val >> 56; + break; + } + case Type::PointerTyID: + if (isa<ConstantPointerNull>(PC)) + memset(ptr, 0, TD->getPointerSize()); + else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) { + // FIXME: what about function stubs? + MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr, + MachineRelocation::VANILLA, + const_cast<GlobalValue*>(GV), + ScatteredOffset)); + ScatteredOffset = 0; + } else + assert(0 && "Unknown constant pointer type!"); + break; + default: + cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n"; + abort(); + } + } else if (isa<ConstantAggregateZero>(PC)) { + memset((void*)PA, 0, (size_t)TD->getTypeSize(PC->getType())); + } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) { + unsigned ElementSize = TD->getTypeSize(CPA->getType()->getElementType()); + for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) + WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize)); + } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) { + const StructLayout *SL = + TD->getStructLayout(cast<StructType>(CPS->getType())); + for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) + WorkList.push_back(CPair(CPS->getOperand(i), + PA+SL->getElementOffset(i))); + } else { + cerr << "Bad Type: " << *PC->getType() << "\n"; + assert(0 && "Unknown constant type to initialize memory with!"); + } + } +} + +MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect, + TargetMachine &TM) : + GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect), + n_desc(0), n_value(0) { + + const TargetAsmInfo *TAI = TM.getTargetAsmInfo(); + + switch (GV->getLinkage()) { + default: + assert(0 && "Unexpected linkage type!"); + break; + case GlobalValue::WeakLinkage: + case GlobalValue::LinkOnceLinkage: + assert(!isa<Function>(gv) && "Unexpected linkage type for Function!"); + case GlobalValue::ExternalLinkage: + GVName = TAI->getGlobalPrefix() + name; + n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT; + break; + case GlobalValue::InternalLinkage: + GVName = TAI->getGlobalPrefix() + name; + break; + } +} |