aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocPBQP.cpp
diff options
context:
space:
mode:
authorLang Hames <lhames@gmail.com>2008-11-16 12:12:54 +0000
committerLang Hames <lhames@gmail.com>2008-11-16 12:12:54 +0000
commit27601ef8325f85b9677b55e3e2ca1a1368d8eee5 (patch)
treebc69c0bbbfbe6ef9cddbace90f8d6f63c70b40de /lib/CodeGen/RegAllocPBQP.cpp
parent1a6111f32dcc1f4b0bc5993a09af4adb65a23b3f (diff)
downloadexternal_llvm-27601ef8325f85b9677b55e3e2ca1a1368d8eee5.zip
external_llvm-27601ef8325f85b9677b55e3e2ca1a1368d8eee5.tar.gz
external_llvm-27601ef8325f85b9677b55e3e2ca1a1368d8eee5.tar.bz2
Big PBQP allocator update. Adds coalescing support, stack slot coloring, several bug-fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59414 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp617
1 files changed, 478 insertions, 139 deletions
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index 8f3284d..e9271ef 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -32,20 +32,15 @@
//
//===----------------------------------------------------------------------===//
-// TODO:
-//
-// * Use of std::set in constructPBQPProblem destroys allocation order preference.
-// Switch to an order preserving container.
-//
-// * Coalescing support.
-
#define DEBUG_TYPE "regalloc"
#include "PBQP.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Target/TargetMachine.h"
@@ -63,7 +58,6 @@ static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
createPBQPRegisterAllocator);
-
namespace {
//!
@@ -86,7 +80,11 @@ namespace {
//! PBQP analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const {
au.addRequired<LiveIntervals>();
+ au.addRequiredTransitive<RegisterCoalescer>();
+ au.addRequired<LiveStacks>();
+ au.addPreserved<LiveStacks>();
au.addRequired<MachineLoopInfo>();
+ au.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(au);
}
@@ -98,7 +96,11 @@ namespace {
typedef std::vector<const LiveInterval*> Node2LIMap;
typedef std::vector<unsigned> AllowedSet;
typedef std::vector<AllowedSet> AllowedSetMap;
- typedef std::set<unsigned> IgnoreSet;
+ typedef std::set<unsigned> RegSet;
+ typedef std::pair<unsigned, unsigned> RegPair;
+ typedef std::map<RegPair, PBQPNum> CoalesceMap;
+
+ typedef std::set<LiveInterval*> LiveIntervalSet;
MachineFunction *mf;
const TargetMachine *tm;
@@ -107,17 +109,22 @@ namespace {
const MachineLoopInfo *loopInfo;
MachineRegisterInfo *mri;
- LiveIntervals *li;
+ LiveIntervals *lis;
+ LiveStacks *lss;
VirtRegMap *vrm;
LI2NodeMap li2Node;
Node2LIMap node2LI;
AllowedSetMap allowedSets;
- IgnoreSet ignoreSet;
+ LiveIntervalSet vregIntervalsToAlloc,
+ emptyVRegIntervals;
+
//! Builds a PBQP cost vector.
- template <typename Container>
- PBQPVector* buildCostVector(const Container &allowed,
+ template <typename RegContainer>
+ PBQPVector* buildCostVector(unsigned vReg,
+ const RegContainer &allowed,
+ const CoalesceMap &cealesces,
PBQPNum spillCost) const;
//! \brief Builds a PBQP interference matrix.
@@ -128,29 +135,28 @@ namespace {
//! Expects allowed sets for two interfering LiveIntervals. These allowed
//! sets should contain only allocable registers from the LiveInterval's
//! register class, with any interfering pre-colored registers removed.
- template <typename Container>
- PBQPMatrix* buildInterferenceMatrix(const Container &allowed1,
- const Container &allowed2) const;
+ template <typename RegContainer>
+ PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
+ const RegContainer &allowed2) const;
//!
//! Expects allowed sets for two potentially coalescable LiveIntervals,
//! and an estimated benefit due to coalescing. The allowed sets should
//! contain only allocable registers from the LiveInterval's register
//! classes, with any interfering pre-colored registers removed.
- template <typename Container>
- PBQPMatrix* buildCoalescingMatrix(const Container &allowed1,
- const Container &allowed2,
+ template <typename RegContainer>
+ PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
+ const RegContainer &allowed2,
PBQPNum cBenefit) const;
- //! \brief Helper function for constructInitialPBQPProblem().
+ //! \brief Finds coalescing opportunities and returns them as a map.
//!
- //! This function iterates over the Function we are about to allocate for
- //! and computes spill costs.
- void calcSpillCosts();
+ //! Any entries in the map are guaranteed coalescable, even if their
+ //! corresponding live intervals overlap.
+ CoalesceMap findCoalesces();
- //! \brief Scans the MachineFunction being allocated to find coalescing
- // opportunities.
- void findCoalescingOpportunities();
+ //! \brief Finds the initial set of vreg intervals to allocate.
+ void findVRegIntervalsToAlloc();
//! \brief Constructs a PBQP problem representation of the register
//! allocation problem for this function.
@@ -158,33 +164,64 @@ namespace {
//! @return a PBQP solver object for the register allocation problem.
pbqp* constructPBQPProblem();
+ //! \brief Adds a stack interval if the given live interval has been
+ //! spilled. Used to support stack slot coloring.
+ void addStackInterval(const LiveInterval *spilled, float &weight);
+
//! \brief Given a solved PBQP problem maps this solution back to a register
//! assignment.
bool mapPBQPToRegAlloc(pbqp *problem);
+ //! \brief Postprocessing before final spilling. Sets basic block "live in"
+ //! variables.
+ void finalizeAlloc() const;
+
};
char PBQPRegAlloc::ID = 0;
}
-template <typename Container>
-PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed,
+template <typename RegContainer>
+PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
+ const RegContainer &allowed,
+ const CoalesceMap &coalesces,
PBQPNum spillCost) const {
+ typedef typename RegContainer::const_iterator AllowedItr;
+
// Allocate vector. Additional element (0th) used for spill option
PBQPVector *v = new PBQPVector(allowed.size() + 1);
(*v)[0] = spillCost;
+ // Iterate over the allowed registers inserting coalesce benefits if there
+ // are any.
+ unsigned ai = 0;
+ for (AllowedItr itr = allowed.begin(), end = allowed.end();
+ itr != end; ++itr, ++ai) {
+
+ unsigned pReg = *itr;
+
+ CoalesceMap::const_iterator cmItr =
+ coalesces.find(RegPair(vReg, pReg));
+
+ // No coalesce - on to the next preg.
+ if (cmItr == coalesces.end())
+ continue;
+
+ // We have a coalesce - insert the benefit.
+ (*v)[ai + 1] = -cmItr->second;
+ }
+
return v;
}
-template <typename Container>
+template <typename RegContainer>
PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
- const Container &allowed1, const Container &allowed2) const {
+ const RegContainer &allowed1, const RegContainer &allowed2) const {
- typedef typename Container::const_iterator ContainerIterator;
+ typedef typename RegContainer::const_iterator RegContainerIterator;
// Construct a PBQP matrix representing the cost of allocation options. The
// rows and columns correspond to the allocation options for the two live
@@ -210,14 +247,14 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
unsigned ri = 1;
// Iterate over allowed sets, insert infinities where required.
- for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
+ for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
a1Itr != a1End; ++a1Itr) {
// Column index, starts at 1 as for row index.
unsigned ci = 1;
unsigned reg1 = *a1Itr;
- for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
+ for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
a2Itr != a2End; ++a2Itr) {
unsigned reg2 = *a2Itr;
@@ -245,100 +282,262 @@ PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
return m;
}
-void PBQPRegAlloc::calcSpillCosts() {
+template <typename RegContainer>
+PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
+ const RegContainer &allowed1, const RegContainer &allowed2,
+ PBQPNum cBenefit) const {
+
+ typedef typename RegContainer::const_iterator RegContainerIterator;
+
+ // Construct a PBQP Matrix representing the benefits of coalescing. As with
+ // interference matrices the rows and columns represent allowed registers
+ // for the LiveIntervals which are (potentially) to be coalesced. The amount
+ // -cBenefit will be placed in any element representing the same register
+ // for both intervals.
+ PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
+
+ // Reset costs to zero.
+ m->reset(0);
+
+ // Assume the matrix is zero till proven otherwise. Zero matrices will be
+ // optimized away as in the interference case.
+ bool isZeroMatrix = true;
+
+ // Row index. Starts at 1, since the 0th row is for the spill option, which
+ // is always zero.
+ unsigned ri = 1;
+
+ // Iterate over the allowed sets, insert coalescing benefits where
+ // appropriate.
+ for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
+ a1Itr != a1End; ++a1Itr) {
+
+ // Column index, starts at 1 as for row index.
+ unsigned ci = 1;
+ unsigned reg1 = *a1Itr;
+
+ for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
+ a2Itr != a2End; ++a2Itr) {
+
+ // If the row and column represent the same register insert a beneficial
+ // cost to preference this allocation - it would allow us to eliminate a
+ // move instruction.
+ if (reg1 == *a2Itr) {
+ (*m)[ri][ci] = -cBenefit;
+ isZeroMatrix = false;
+ }
+
+ ++ci;
+ }
+
+ ++ri;
+ }
+
+ // If this turns out to be a zero matrix...
+ if (isZeroMatrix) {
+ // ...free it and return null.
+ delete m;
+ return 0;
+ }
+
+ return m;
+}
+
+PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
+
+ typedef MachineFunction::const_iterator MFIterator;
+ typedef MachineBasicBlock::const_iterator MBBIterator;
+ typedef LiveInterval::const_vni_iterator VNIIterator;
+
+ CoalesceMap coalescesFound;
- // Calculate the spill cost for each live interval by iterating over the
- // function counting loads and stores, with loop depth taken into account.
- for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end();
+ // To find coalesces we need to iterate over the function looking for
+ // copy instructions.
+ for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
bbItr != bbEnd; ++bbItr) {
const MachineBasicBlock *mbb = &*bbItr;
- float loopDepth = loopInfo->getLoopDepth(mbb);
- for (MachineBasicBlock::const_iterator
- iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) {
+ for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
+ iItr != iEnd; ++iItr) {
const MachineInstr *instr = &*iItr;
+ unsigned srcReg, dstReg;
- for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) {
+ // If this isn't a copy then continue to the next instruction.
+ if (!tii->isMoveInstr(*instr, srcReg, dstReg))
+ continue;
- const MachineOperand &mo = instr->getOperand(opNo);
+ // If the registers are already the same our job is nice and easy.
+ if (dstReg == srcReg)
+ continue;
- // We're not interested in non-registers...
- if (!mo.isReg())
- continue;
-
- unsigned moReg = mo.getReg();
+ bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
+ dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
- // ...Or invalid registers...
- if (moReg == 0)
+ // If both registers are physical then we can't coalesce.
+ if (srcRegIsPhysical && dstRegIsPhysical)
+ continue;
+
+ // If it's a copy that includes a virtual register but the source and
+ // destination classes differ then we can't coalesce, so continue with
+ // the next instruction.
+ const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
+ tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
+
+ const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
+ tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
+
+ if (srcRegClass != dstRegClass)
+ continue;
+
+ // We also need any physical regs to be allocable, coalescing with
+ // a non-allocable register is invalid.
+ if (srcRegIsPhysical) {
+ if (std::find(srcRegClass->allocation_order_begin(*mf),
+ srcRegClass->allocation_order_end(*mf), srcReg) ==
+ srcRegClass->allocation_order_end(*mf))
continue;
+ }
- // ...Or physical registers...
- if (TargetRegisterInfo::isPhysicalRegister(moReg))
+ if (dstRegIsPhysical) {
+ if (std::find(dstRegClass->allocation_order_begin(*mf),
+ dstRegClass->allocation_order_end(*mf), dstReg) ==
+ dstRegClass->allocation_order_end(*mf))
continue;
+ }
- assert ((mo.isUse() || mo.isDef()) &&
- "Not a use, not a def, what is it?");
+ // If we've made it here we have a copy with compatible register classes.
+ // We can probably coalesce, but we need to consider overlap.
+ const LiveInterval *srcLI = &lis->getInterval(srcReg),
+ *dstLI = &lis->getInterval(dstReg);
+
+ if (srcLI->overlaps(*dstLI)) {
+ // Even in the case of an overlap we might still be able to coalesce,
+ // but we need to make sure that no definition of either range occurs
+ // while the other range is live.
+
+ // Otherwise start by assuming we're ok.
+ bool badDef = false;
+
+ // Test all defs of the source range.
+ for (VNIIterator
+ vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
+ vniItr != vniEnd; ++vniItr) {
+
+ // If we find a def that kills the coalescing opportunity then
+ // record it and break from the loop.
+ if (dstLI->liveAt((*vniItr)->def)) {
+ badDef = true;
+ break;
+ }
+ }
- //... Just the virtual registers. We treat loads and stores as equal.
- li->getInterval(moReg).weight += powf(10.0f, loopDepth);
+ // If we have a bad def give up, continue to the next instruction.
+ if (badDef)
+ continue;
+
+ // Otherwise test definitions of the destination range.
+ for (VNIIterator
+ vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
+ vniItr != vniEnd; ++vniItr) {
+
+ // We want to make sure we skip the copy instruction itself.
+ if ((*vniItr)->copy == instr)
+ continue;
+
+ if (srcLI->liveAt((*vniItr)->def)) {
+ badDef = true;
+ break;
+ }
+ }
+
+ // As before a bad def we give up and continue to the next instr.
+ if (badDef)
+ continue;
}
+ // If we make it to here then either the ranges didn't overlap, or they
+ // did, but none of their definitions would prevent us from coalescing.
+ // We're good to go with the coalesce.
+
+ float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
+
+ coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
+ coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
}
}
+ return coalescesFound;
+}
+
+void PBQPRegAlloc::findVRegIntervalsToAlloc() {
+
+ // Iterate over all live ranges.
+ for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
+ itr != end; ++itr) {
+
+ // Ignore physical ones.
+ if (TargetRegisterInfo::isPhysicalRegister(itr->first))
+ continue;
+
+ LiveInterval *li = itr->second;
+
+ // If this live interval is non-empty we will use pbqp to allocate it.
+ // Empty intervals we allocate in a simple post-processing stage in
+ // finalizeAlloc.
+ if (!li->empty()) {
+ vregIntervalsToAlloc.insert(li);
+ }
+ else {
+ emptyVRegIntervals.insert(li);
+ }
+ }
}
pbqp* PBQPRegAlloc::constructPBQPProblem() {
typedef std::vector<const LiveInterval*> LIVector;
- typedef std::set<unsigned> RegSet;
+ typedef std::vector<unsigned> RegVector;
- // These will store the physical & virtual intervals, respectively.
- LIVector physIntervals, virtIntervals;
+ // This will store the physical intervals for easy reference.
+ LIVector physIntervals;
// Start by clearing the old node <-> live interval mappings & allowed sets
li2Node.clear();
node2LI.clear();
allowedSets.clear();
- // Iterate over intervals classifying them as physical or virtual, and
- // constructing live interval <-> node number mappings.
- for (LiveIntervals::iterator itr = li->begin(), end = li->end();
+ // Populate physIntervals, update preg use:
+ for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
itr != end; ++itr) {
- if (itr->second->getNumValNums() != 0) {
- DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n";
- }
-
if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
physIntervals.push_back(itr->second);
mri->setPhysRegUsed(itr->second->reg);
}
- else {
+ }
- // If we've allocated this virtual register interval a stack slot on a
- // previous round then it's not an allocation candidate
- if (ignoreSet.find(itr->first) != ignoreSet.end())
- continue;
+ // Iterate over vreg intervals, construct live interval <-> node number
+ // mappings.
+ for (LiveIntervalSet::const_iterator
+ itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
+ itr != end; ++itr) {
+ const LiveInterval *li = *itr;
- li2Node[itr->second] = node2LI.size();
- node2LI.push_back(itr->second);
- virtIntervals.push_back(itr->second);
- }
+ li2Node[li] = node2LI.size();
+ node2LI.push_back(li);
}
- // Early out if there's no regs to allocate for.
- if (virtIntervals.empty())
- return 0;
+ // Get the set of potential coalesces.
+ CoalesceMap coalesces(findCoalesces());
// Construct a PBQP solver for this problem
- pbqp *solver = alloc_pbqp(virtIntervals.size());
+ pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
// Resize allowedSets container appropriately.
- allowedSets.resize(virtIntervals.size());
+ allowedSets.resize(vregIntervalsToAlloc.size());
// Iterate over virtual register intervals to compute allowed sets...
for (unsigned node = 0; node < node2LI.size(); ++node) {
@@ -348,36 +547,46 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
// Start by assuming all allocable registers in the class are allowed...
- RegSet liAllowed(liRC->allocation_order_begin(*mf),
- liRC->allocation_order_end(*mf));
-
- // If this range is non-empty then eliminate the physical registers which
- // overlap with this range, along with all their aliases.
- if (!li->empty()) {
- for (LIVector::iterator pItr = physIntervals.begin(),
- pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
+ RegVector liAllowed(liRC->allocation_order_begin(*mf),
+ liRC->allocation_order_end(*mf));
- if (li->overlaps(**pItr)) {
+ // Eliminate the physical registers which overlap with this range, along
+ // with all their aliases.
+ for (LIVector::iterator pItr = physIntervals.begin(),
+ pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
- unsigned pReg = (*pItr)->reg;
+ if (!li->overlaps(**pItr))
+ continue;
- // Remove the overlapping reg...
- liAllowed.erase(pReg);
+ unsigned pReg = (*pItr)->reg;
- const unsigned *aliasItr = tri->getAliasSet(pReg);
+ // If we get here then the live intervals overlap, but we're still ok
+ // if they're coalescable.
+ if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
+ continue;
- if (aliasItr != 0) {
- // ...and its aliases.
- for (; *aliasItr != 0; ++aliasItr) {
- liAllowed.erase(*aliasItr);
- }
+ // If we get here then we have a genuine exclusion.
+ // Remove the overlapping reg...
+ RegVector::iterator eraseItr =
+ std::find(liAllowed.begin(), liAllowed.end(), pReg);
+
+ if (eraseItr != liAllowed.end())
+ liAllowed.erase(eraseItr);
+
+ const unsigned *aliasItr = tri->getAliasSet(pReg);
+
+ if (aliasItr != 0) {
+ // ...and its aliases.
+ for (; *aliasItr != 0; ++aliasItr) {
+ RegVector::iterator eraseItr =
+ std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
+
+ if (eraseItr != liAllowed.end()) {
+ liAllowed.erase(eraseItr);
}
-
}
-
}
-
}
// Copy the allowed set into a member vector for use when constructing cost
@@ -391,33 +600,36 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
// Build a cost vector for this interval.
add_pbqp_nodecosts(solver, node,
- buildCostVector(allowedSets[node], spillCost));
+ buildCostVector(li->reg, allowedSets[node], coalesces,
+ spillCost));
}
+
// Now add the cost matrices...
for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
-
const LiveInterval *li = node2LI[node1];
- if (li->empty())
- continue;
-
// Test for live range overlaps and insert interference matrices.
for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
const LiveInterval *li2 = node2LI[node2];
- if (li2->empty())
- continue;
+ CoalesceMap::const_iterator cmItr =
+ coalesces.find(RegPair(li->reg, li2->reg));
- if (li->overlaps(*li2)) {
- PBQPMatrix *m =
- buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
+ PBQPMatrix *m = 0;
- if (m != 0) {
- add_pbqp_edgecosts(solver, node1, node2, m);
- delete m;
- }
+ if (cmItr != coalesces.end()) {
+ m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
+ cmItr->second);
+ }
+ else if (li->overlaps(*li2)) {
+ m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
+ }
+
+ if (m != 0) {
+ add_pbqp_edgecosts(solver, node1, node2, m);
+ delete m;
}
}
}
@@ -426,6 +638,25 @@ pbqp* PBQPRegAlloc::constructPBQPProblem() {
return solver;
}
+void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) {
+ int stackSlot = vrm->getStackSlot(spilled->reg);
+
+ if (stackSlot == VirtRegMap::NO_STACK_SLOT)
+ return;
+
+ LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot);
+ stackInterval.weight += weight;
+
+ VNInfo *vni;
+ if (stackInterval.getNumValNums() != 0)
+ vni = stackInterval.getValNumInfo(0);
+ else
+ vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator());
+
+ LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
+ stackInterval.MergeRangesInAsValue(rhsInterval, vni);
+}
+
bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Set to true if we have any spills
@@ -436,7 +667,7 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Iterate over the nodes mapping the PBQP solution to a register assignment.
for (unsigned node = 0; node < node2LI.size(); ++node) {
- unsigned symReg = node2LI[node]->reg,
+ unsigned virtReg = node2LI[node]->reg,
allocSelection = get_pbqp_solution(problem, node);
// If the PBQP solution is non-zero it's a physical register...
@@ -444,24 +675,48 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
// Get the physical reg, subtracting 1 to account for the spill option.
unsigned physReg = allowedSets[node][allocSelection - 1];
+ DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
+
+ assert(physReg != 0);
+
// Add to the virt reg map and update the used phys regs.
- vrm->assignVirt2Phys(symReg, physReg);
- mri->setPhysRegUsed(physReg);
+ vrm->assignVirt2Phys(virtReg, physReg);
}
// ...Otherwise it's a spill.
else {
// Make sure we ignore this virtual reg on the next round
// of allocation
- ignoreSet.insert(node2LI[node]->reg);
+ vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
- float SSWeight;
+ float ssWeight;
// Insert spill ranges for this live range
+ const LiveInterval *spillInterval = node2LI[node];
+ double oldSpillWeight = spillInterval->weight;
SmallVector<LiveInterval*, 8> spillIs;
std::vector<LiveInterval*> newSpills =
- li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm,
- SSWeight);
+ lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm,
+ ssWeight);
+ addStackInterval(spillInterval, ssWeight);
+
+ DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
+ << oldSpillWeight << ", New vregs: ";
+
+ // Copy any newly inserted live intervals into the list of regs to
+ // allocate.
+ for (std::vector<LiveInterval*>::const_iterator
+ itr = newSpills.begin(), end = newSpills.end();
+ itr != end; ++itr) {
+
+ assert(!(*itr)->empty() && "Empty spill range.");
+
+ DOUT << (*itr)->reg << " ";
+
+ vregIntervalsToAlloc.insert(*itr);
+ }
+
+ DOUT << ")\n";
// We need another round if spill intervals were added.
anotherRoundNeeded |= !newSpills.empty();
@@ -471,19 +726,86 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
return !anotherRoundNeeded;
}
+void PBQPRegAlloc::finalizeAlloc() const {
+ typedef LiveIntervals::iterator LIIterator;
+ typedef LiveInterval::Ranges::const_iterator LRIterator;
+
+ // First allocate registers for the empty intervals.
+ for (LiveIntervalSet::iterator
+ itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
+ itr != end; ++itr) {
+ LiveInterval *li = *itr;
+
+ unsigned physReg = li->preference;
+
+ if (physReg == 0) {
+ const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
+ physReg = *liRC->allocation_order_begin(*mf);
+ }
+
+ vrm->assignVirt2Phys(li->reg, physReg);
+ }
+
+ // Finally iterate over the basic blocks to compute and set the live-in sets.
+ SmallVector<MachineBasicBlock*, 8> liveInMBBs;
+ MachineBasicBlock *entryMBB = &*mf->begin();
+
+ for (LIIterator liItr = lis->begin(), liEnd = lis->end();
+ liItr != liEnd; ++liItr) {
+
+ const LiveInterval *li = liItr->second;
+ unsigned reg = 0;
+
+ // Get the physical register for this interval
+ if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
+ reg = li->reg;
+ }
+ else if (vrm->isAssignedReg(li->reg)) {
+ reg = vrm->getPhys(li->reg);
+ }
+ else {
+ // Ranges which are assigned a stack slot only are ignored.
+ continue;
+ }
+
+ // Iterate over the ranges of the current interval...
+ for (LRIterator lrItr = li->begin(), lrEnd = li->end();
+ lrItr != lrEnd; ++lrItr) {
+
+ // Find the set of basic blocks which this range is live into...
+ if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
+ // And add the physreg for this interval to their live-in sets.
+ for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
+ if (liveInMBBs[i] != entryMBB) {
+ if (!liveInMBBs[i]->isLiveIn(reg)) {
+ liveInMBBs[i]->addLiveIn(reg);
+ }
+ }
+ }
+ liveInMBBs.clear();
+ }
+ }
+ }
+
+}
+
bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
-
+
mf = &MF;
tm = &mf->getTarget();
tri = tm->getRegisterInfo();
+ tii = tm->getInstrInfo();
mri = &mf->getRegInfo();
- li = &getAnalysis<LiveIntervals>();
+ lis = &getAnalysis<LiveIntervals>();
+ lss = &getAnalysis<LiveStacks>();
loopInfo = &getAnalysis<MachineLoopInfo>();
std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
vrm = vrmAutoPtr.get();
+ DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
+
// Allocator main loop:
//
// * Map current regalloc problem to a PBQP problem
@@ -493,31 +815,49 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
//
// This process is continued till no more spills are generated.
- bool regallocComplete = false;
+ // Find the vreg intervals in need of allocation.
+ findVRegIntervalsToAlloc();
- // Calculate spill costs for intervals
- calcSpillCosts();
+ // If there aren't any then we're done here.
+ if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
+ return true;
- while (!regallocComplete) {
- pbqp *problem = constructPBQPProblem();
+ // If there are non-empty intervals allocate them using pbqp.
+ if (!vregIntervalsToAlloc.empty()) {
+
+ bool pbqpAllocComplete = false;
+ unsigned round = 0;
+
+ while (!pbqpAllocComplete) {
+ DOUT << " PBQP Regalloc round " << round << ":\n";
+
+ pbqp *problem = constructPBQPProblem();
- // Fast out if there's no problem to solve.
- if (problem == 0)
- return true;
-
- solve_pbqp(problem);
+ solve_pbqp(problem);
- regallocComplete = mapPBQPToRegAlloc(problem);
+ pbqpAllocComplete = mapPBQPToRegAlloc(problem);
+
+ free_pbqp(problem);
- free_pbqp(problem);
+ ++round;
+ }
}
- ignoreSet.clear();
+ // Finalise allocation, allocate empty ranges.
+ finalizeAlloc();
- std::auto_ptr<Spiller> spiller(createSpiller());
+ vregIntervalsToAlloc.clear();
+ emptyVRegIntervals.clear();
+ li2Node.clear();
+ node2LI.clear();
+ allowedSets.clear();
+ DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
+
+ // Run spiller
+ std::auto_ptr<Spiller> spiller(createSpiller());
spiller->runOnMachineFunction(*mf, *vrm);
-
+
return true;
}
@@ -527,4 +867,3 @@ FunctionPass* llvm::createPBQPRegisterAllocator() {
#undef DEBUG_TYPE
-