aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/RegAllocPBQP.cpp
diff options
context:
space:
mode:
authorShih-wei Liao <sliao@google.com>2010-02-10 11:10:31 -0800
committerShih-wei Liao <sliao@google.com>2010-02-10 11:10:31 -0800
commite264f62ca09a8f65c87a46d562a4d0f9ec5d457e (patch)
tree59e3d57ef656cef79afa708ae0a3daf25cd91fcf /lib/CodeGen/RegAllocPBQP.cpp
downloadexternal_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.zip
external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.tar.gz
external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.tar.bz2
Check in LLVM r95781.
Diffstat (limited to 'lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp918
1 files changed, 918 insertions, 0 deletions
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
new file mode 100644
index 0000000..2701faf
--- /dev/null
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -0,0 +1,918 @@
+//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
+// register allocator for LLVM. This allocator works by constructing a PBQP
+// problem representing the register allocation problem under consideration,
+// solving this using a PBQP solver, and mapping the solution back to a
+// register assignment. If any variables are selected for spilling then spill
+// code is inserted and the process repeated.
+//
+// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
+// for register allocation. For more information on PBQP for register
+// allocation, see the following papers:
+//
+// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
+// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
+// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
+//
+// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
+// architectures. In Proceedings of the Joint Conference on Languages,
+// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
+// NY, USA, 139-148.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+
+#include "PBQP/HeuristicSolver.h"
+#include "PBQP/Graph.h"
+#include "PBQP/Heuristics/Briggs.h"
+#include "VirtRegMap.h"
+#include "VirtRegRewriter.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <limits>
+#include <map>
+#include <memory>
+#include <set>
+#include <vector>
+
+using namespace llvm;
+
+static RegisterRegAlloc
+registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
+ llvm::createPBQPRegisterAllocator);
+
+static cl::opt<bool>
+pbqpCoalescing("pbqp-coalescing",
+ cl::desc("Attempt coalescing during PBQP register allocation."),
+ cl::init(false), cl::Hidden);
+
+namespace {
+
+ ///
+ /// PBQP based allocators solve the register allocation problem by mapping
+ /// register allocation problems to Partitioned Boolean Quadratic
+ /// Programming problems.
+ class PBQPRegAlloc : public MachineFunctionPass {
+ public:
+
+ static char ID;
+
+ /// Construct a PBQP register allocator.
+ PBQPRegAlloc() : MachineFunctionPass(&ID) {}
+
+ /// Return the pass name.
+ virtual const char* getPassName() const {
+ return "PBQP Register Allocator";
+ }
+
+ /// PBQP analysis usage.
+ virtual void getAnalysisUsage(AnalysisUsage &au) const {
+ au.addRequired<SlotIndexes>();
+ au.addPreserved<SlotIndexes>();
+ au.addRequired<LiveIntervals>();
+ //au.addRequiredID(SplitCriticalEdgesID);
+ au.addRequired<RegisterCoalescer>();
+ au.addRequired<CalculateSpillWeights>();
+ au.addRequired<LiveStacks>();
+ au.addPreserved<LiveStacks>();
+ au.addRequired<MachineLoopInfo>();
+ au.addPreserved<MachineLoopInfo>();
+ au.addRequired<VirtRegMap>();
+ MachineFunctionPass::getAnalysisUsage(au);
+ }
+
+ /// Perform register allocation
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ private:
+ typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
+ typedef std::vector<const LiveInterval*> Node2LIMap;
+ typedef std::vector<unsigned> AllowedSet;
+ typedef std::vector<AllowedSet> AllowedSetMap;
+ typedef std::set<unsigned> RegSet;
+ typedef std::pair<unsigned, unsigned> RegPair;
+ typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
+
+ typedef std::set<LiveInterval*> LiveIntervalSet;
+
+ typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
+
+ MachineFunction *mf;
+ const TargetMachine *tm;
+ const TargetRegisterInfo *tri;
+ const TargetInstrInfo *tii;
+ const MachineLoopInfo *loopInfo;
+ MachineRegisterInfo *mri;
+
+ LiveIntervals *lis;
+ LiveStacks *lss;
+ VirtRegMap *vrm;
+
+ LI2NodeMap li2Node;
+ Node2LIMap node2LI;
+ AllowedSetMap allowedSets;
+ LiveIntervalSet vregIntervalsToAlloc,
+ emptyVRegIntervals;
+ NodeVector problemNodes;
+
+
+ /// Builds a PBQP cost vector.
+ template <typename RegContainer>
+ PBQP::Vector buildCostVector(unsigned vReg,
+ const RegContainer &allowed,
+ const CoalesceMap &cealesces,
+ PBQP::PBQPNum spillCost) const;
+
+ /// \brief Builds a PBQP interference matrix.
+ ///
+ /// @return Either a pointer to a non-zero PBQP matrix representing the
+ /// allocation option costs, or a null pointer for a zero matrix.
+ ///
+ /// Expects allowed sets for two interfering LiveIntervals. These allowed
+ /// sets should contain only allocable registers from the LiveInterval's
+ /// register class, with any interfering pre-colored registers removed.
+ template <typename RegContainer>
+ PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
+ const RegContainer &allowed2) const;
+
+ ///
+ /// Expects allowed sets for two potentially coalescable LiveIntervals,
+ /// and an estimated benefit due to coalescing. The allowed sets should
+ /// contain only allocable registers from the LiveInterval's register
+ /// classes, with any interfering pre-colored registers removed.
+ template <typename RegContainer>
+ PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
+ const RegContainer &allowed2,
+ PBQP::PBQPNum cBenefit) const;
+
+ /// \brief Finds coalescing opportunities and returns them as a map.
+ ///
+ /// Any entries in the map are guaranteed coalescable, even if their
+ /// corresponding live intervals overlap.
+ CoalesceMap findCoalesces();
+
+ /// \brief Finds the initial set of vreg intervals to allocate.
+ void findVRegIntervalsToAlloc();
+
+ /// \brief Constructs a PBQP problem representation of the register
+ /// allocation problem for this function.
+ ///
+ /// @return a PBQP solver object for the register allocation problem.
+ PBQP::Graph constructPBQPProblem();
+
+ /// \brief Adds a stack interval if the given live interval has been
+ /// spilled. Used to support stack slot coloring.
+ void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
+
+ /// \brief Given a solved PBQP problem maps this solution back to a register
+ /// assignment.
+ bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
+
+ /// \brief Postprocessing before final spilling. Sets basic block "live in"
+ /// variables.
+ void finalizeAlloc() const;
+
+ };
+
+ char PBQPRegAlloc::ID = 0;
+}
+
+
+template <typename RegContainer>
+PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
+ const RegContainer &allowed,
+ const CoalesceMap &coalesces,
+ PBQP::PBQPNum spillCost) const {
+
+ typedef typename RegContainer::const_iterator AllowedItr;
+
+ // Allocate vector. Additional element (0th) used for spill option
+ PBQP::Vector v(allowed.size() + 1, 0);
+
+ v[0] = spillCost;
+
+ // Iterate over the allowed registers inserting coalesce benefits if there
+ // are any.
+ unsigned ai = 0;
+ for (AllowedItr itr = allowed.begin(), end = allowed.end();
+ itr != end; ++itr, ++ai) {
+
+ unsigned pReg = *itr;
+
+ CoalesceMap::const_iterator cmItr =
+ coalesces.find(RegPair(vReg, pReg));
+
+ // No coalesce - on to the next preg.
+ if (cmItr == coalesces.end())
+ continue;
+
+ // We have a coalesce - insert the benefit.
+ v[ai + 1] = -cmItr->second;
+ }
+
+ return v;
+}
+
+template <typename RegContainer>
+PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
+ const RegContainer &allowed1, const RegContainer &allowed2) const {
+
+ typedef typename RegContainer::const_iterator RegContainerIterator;
+
+ // Construct a PBQP matrix representing the cost of allocation options. The
+ // rows and columns correspond to the allocation options for the two live
+ // intervals. Elements will be infinite where corresponding registers alias,
+ // since we cannot allocate aliasing registers to interfering live intervals.
+ // All other elements (non-aliasing combinations) will have zero cost. Note
+ // that the spill option (element 0,0) has zero cost, since we can allocate
+ // both intervals to memory safely (the cost for each individual allocation
+ // to memory is accounted for by the cost vectors for each live interval).
+ PBQP::Matrix *m =
+ new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
+
+ // Assume this is a zero matrix until proven otherwise. Zero matrices occur
+ // between interfering live ranges with non-overlapping register sets (e.g.
+ // non-overlapping reg classes, or disjoint sets of allowed regs within the
+ // same class). The term "overlapping" is used advisedly: sets which do not
+ // intersect, but contain registers which alias, will have non-zero matrices.
+ // We optimize zero matrices away to improve solver speed.
+ bool isZeroMatrix = true;
+
+
+ // Row index. Starts at 1, since the 0th row is for the spill option, which
+ // is always zero.
+ unsigned ri = 1;
+
+ // Iterate over allowed sets, insert infinities where required.
+ for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
+ a1Itr != a1End; ++a1Itr) {
+
+ // Column index, starts at 1 as for row index.
+ unsigned ci = 1;
+ unsigned reg1 = *a1Itr;
+
+ for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
+ a2Itr != a2End; ++a2Itr) {
+
+ unsigned reg2 = *a2Itr;
+
+ // If the row/column regs are identical or alias insert an infinity.
+ if (tri->regsOverlap(reg1, reg2)) {
+ (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+ isZeroMatrix = false;
+ }
+
+ ++ci;
+ }
+
+ ++ri;
+ }
+
+ // If this turns out to be a zero matrix...
+ if (isZeroMatrix) {
+ // free it and return null.
+ delete m;
+ return 0;
+ }
+
+ // ...otherwise return the cost matrix.
+ return m;
+}
+
+template <typename RegContainer>
+PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
+ const RegContainer &allowed1, const RegContainer &allowed2,
+ PBQP::PBQPNum cBenefit) const {
+
+ typedef typename RegContainer::const_iterator RegContainerIterator;
+
+ // Construct a PBQP Matrix representing the benefits of coalescing. As with
+ // interference matrices the rows and columns represent allowed registers
+ // for the LiveIntervals which are (potentially) to be coalesced. The amount
+ // -cBenefit will be placed in any element representing the same register
+ // for both intervals.
+ PBQP::Matrix *m =
+ new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
+
+ // Reset costs to zero.
+ m->reset(0);
+
+ // Assume the matrix is zero till proven otherwise. Zero matrices will be
+ // optimized away as in the interference case.
+ bool isZeroMatrix = true;
+
+ // Row index. Starts at 1, since the 0th row is for the spill option, which
+ // is always zero.
+ unsigned ri = 1;
+
+ // Iterate over the allowed sets, insert coalescing benefits where
+ // appropriate.
+ for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
+ a1Itr != a1End; ++a1Itr) {
+
+ // Column index, starts at 1 as for row index.
+ unsigned ci = 1;
+ unsigned reg1 = *a1Itr;
+
+ for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
+ a2Itr != a2End; ++a2Itr) {
+
+ // If the row and column represent the same register insert a beneficial
+ // cost to preference this allocation - it would allow us to eliminate a
+ // move instruction.
+ if (reg1 == *a2Itr) {
+ (*m)[ri][ci] = -cBenefit;
+ isZeroMatrix = false;
+ }
+
+ ++ci;
+ }
+
+ ++ri;
+ }
+
+ // If this turns out to be a zero matrix...
+ if (isZeroMatrix) {
+ // ...free it and return null.
+ delete m;
+ return 0;
+ }
+
+ return m;
+}
+
+PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
+
+ typedef MachineFunction::const_iterator MFIterator;
+ typedef MachineBasicBlock::const_iterator MBBIterator;
+ typedef LiveInterval::const_vni_iterator VNIIterator;
+
+ CoalesceMap coalescesFound;
+
+ // To find coalesces we need to iterate over the function looking for
+ // copy instructions.
+ for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
+ bbItr != bbEnd; ++bbItr) {
+
+ const MachineBasicBlock *mbb = &*bbItr;
+
+ for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
+ iItr != iEnd; ++iItr) {
+
+ const MachineInstr *instr = &*iItr;
+ unsigned srcReg, dstReg, srcSubReg, dstSubReg;
+
+ // If this isn't a copy then continue to the next instruction.
+ if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
+ continue;
+
+ // If the registers are already the same our job is nice and easy.
+ if (dstReg == srcReg)
+ continue;
+
+ bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
+ dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
+
+ // If both registers are physical then we can't coalesce.
+ if (srcRegIsPhysical && dstRegIsPhysical)
+ continue;
+
+ // If it's a copy that includes a virtual register but the source and
+ // destination classes differ then we can't coalesce, so continue with
+ // the next instruction.
+ const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
+ tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
+
+ const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
+ tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
+
+ if (srcRegClass != dstRegClass)
+ continue;
+
+ // We also need any physical regs to be allocable, coalescing with
+ // a non-allocable register is invalid.
+ if (srcRegIsPhysical) {
+ if (std::find(dstRegClass->allocation_order_begin(*mf),
+ dstRegClass->allocation_order_end(*mf), srcReg) ==
+ dstRegClass->allocation_order_end(*mf))
+ continue;
+ }
+
+ if (dstRegIsPhysical) {
+ if (std::find(srcRegClass->allocation_order_begin(*mf),
+ srcRegClass->allocation_order_end(*mf), dstReg) ==
+ srcRegClass->allocation_order_end(*mf))
+ continue;
+ }
+
+ // If we've made it here we have a copy with compatible register classes.
+ // We can probably coalesce, but we need to consider overlap.
+ const LiveInterval *srcLI = &lis->getInterval(srcReg),
+ *dstLI = &lis->getInterval(dstReg);
+
+ if (srcLI->overlaps(*dstLI)) {
+ // Even in the case of an overlap we might still be able to coalesce,
+ // but we need to make sure that no definition of either range occurs
+ // while the other range is live.
+
+ // Otherwise start by assuming we're ok.
+ bool badDef = false;
+
+ // Test all defs of the source range.
+ for (VNIIterator
+ vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
+ vniItr != vniEnd; ++vniItr) {
+
+ // If we find a poorly defined def we err on the side of caution.
+ if (!(*vniItr)->def.isValid()) {
+ badDef = true;
+ break;
+ }
+
+ // If we find a def that kills the coalescing opportunity then
+ // record it and break from the loop.
+ if (dstLI->liveAt((*vniItr)->def)) {
+ badDef = true;
+ break;
+ }
+ }
+
+ // If we have a bad def give up, continue to the next instruction.
+ if (badDef)
+ continue;
+
+ // Otherwise test definitions of the destination range.
+ for (VNIIterator
+ vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
+ vniItr != vniEnd; ++vniItr) {
+
+ // We want to make sure we skip the copy instruction itself.
+ if ((*vniItr)->getCopy() == instr)
+ continue;
+
+ if (!(*vniItr)->def.isValid()) {
+ badDef = true;
+ break;
+ }
+
+ if (srcLI->liveAt((*vniItr)->def)) {
+ badDef = true;
+ break;
+ }
+ }
+
+ // As before a bad def we give up and continue to the next instr.
+ if (badDef)
+ continue;
+ }
+
+ // If we make it to here then either the ranges didn't overlap, or they
+ // did, but none of their definitions would prevent us from coalescing.
+ // We're good to go with the coalesce.
+
+ float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
+
+ coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
+ coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
+ }
+
+ }
+
+ return coalescesFound;
+}
+
+void PBQPRegAlloc::findVRegIntervalsToAlloc() {
+
+ // Iterate over all live ranges.
+ for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
+ itr != end; ++itr) {
+
+ // Ignore physical ones.
+ if (TargetRegisterInfo::isPhysicalRegister(itr->first))
+ continue;
+
+ LiveInterval *li = itr->second;
+
+ // If this live interval is non-empty we will use pbqp to allocate it.
+ // Empty intervals we allocate in a simple post-processing stage in
+ // finalizeAlloc.
+ if (!li->empty()) {
+ vregIntervalsToAlloc.insert(li);
+ }
+ else {
+ emptyVRegIntervals.insert(li);
+ }
+ }
+}
+
+PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
+
+ typedef std::vector<const LiveInterval*> LIVector;
+ typedef std::vector<unsigned> RegVector;
+
+ // This will store the physical intervals for easy reference.
+ LIVector physIntervals;
+
+ // Start by clearing the old node <-> live interval mappings & allowed sets
+ li2Node.clear();
+ node2LI.clear();
+ allowedSets.clear();
+
+ // Populate physIntervals, update preg use:
+ for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
+ itr != end; ++itr) {
+
+ if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
+ physIntervals.push_back(itr->second);
+ mri->setPhysRegUsed(itr->second->reg);
+ }
+ }
+
+ // Iterate over vreg intervals, construct live interval <-> node number
+ // mappings.
+ for (LiveIntervalSet::const_iterator
+ itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
+ itr != end; ++itr) {
+ const LiveInterval *li = *itr;
+
+ li2Node[li] = node2LI.size();
+ node2LI.push_back(li);
+ }
+
+ // Get the set of potential coalesces.
+ CoalesceMap coalesces;
+
+ if (pbqpCoalescing) {
+ coalesces = findCoalesces();
+ }
+
+ // Construct a PBQP solver for this problem
+ PBQP::Graph problem;
+ problemNodes.resize(vregIntervalsToAlloc.size());
+
+ // Resize allowedSets container appropriately.
+ allowedSets.resize(vregIntervalsToAlloc.size());
+
+ // Iterate over virtual register intervals to compute allowed sets...
+ for (unsigned node = 0; node < node2LI.size(); ++node) {
+
+ // Grab pointers to the interval and its register class.
+ const LiveInterval *li = node2LI[node];
+ const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
+
+ // Start by assuming all allocable registers in the class are allowed...
+ RegVector liAllowed(liRC->allocation_order_begin(*mf),
+ liRC->allocation_order_end(*mf));
+
+ // Eliminate the physical registers which overlap with this range, along
+ // with all their aliases.
+ for (LIVector::iterator pItr = physIntervals.begin(),
+ pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
+
+ if (!li->overlaps(**pItr))
+ continue;
+
+ unsigned pReg = (*pItr)->reg;
+
+ // If we get here then the live intervals overlap, but we're still ok
+ // if they're coalescable.
+ if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
+ continue;
+
+ // If we get here then we have a genuine exclusion.
+
+ // Remove the overlapping reg...
+ RegVector::iterator eraseItr =
+ std::find(liAllowed.begin(), liAllowed.end(), pReg);
+
+ if (eraseItr != liAllowed.end())
+ liAllowed.erase(eraseItr);
+
+ const unsigned *aliasItr = tri->getAliasSet(pReg);
+
+ if (aliasItr != 0) {
+ // ...and its aliases.
+ for (; *aliasItr != 0; ++aliasItr) {
+ RegVector::iterator eraseItr =
+ std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
+
+ if (eraseItr != liAllowed.end()) {
+ liAllowed.erase(eraseItr);
+ }
+ }
+ }
+ }
+
+ // Copy the allowed set into a member vector for use when constructing cost
+ // vectors & matrices, and mapping PBQP solutions back to assignments.
+ allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
+
+ // Set the spill cost to the interval weight, or epsilon if the
+ // interval weight is zero
+ PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
+ li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
+
+ // Build a cost vector for this interval.
+ problemNodes[node] =
+ problem.addNode(
+ buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
+
+ }
+
+
+ // Now add the cost matrices...
+ for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
+ const LiveInterval *li = node2LI[node1];
+
+ // Test for live range overlaps and insert interference matrices.
+ for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
+ const LiveInterval *li2 = node2LI[node2];
+
+ CoalesceMap::const_iterator cmItr =
+ coalesces.find(RegPair(li->reg, li2->reg));
+
+ PBQP::Matrix *m = 0;
+
+ if (cmItr != coalesces.end()) {
+ m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
+ cmItr->second);
+ }
+ else if (li->overlaps(*li2)) {
+ m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
+ }
+
+ if (m != 0) {
+ problem.addEdge(problemNodes[node1],
+ problemNodes[node2],
+ *m);
+
+ delete m;
+ }
+ }
+ }
+
+ assert(problem.getNumNodes() == allowedSets.size());
+/*
+ std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
+ << problem.getNumEdges() << " edges.\n";
+
+ problem.printDot(std::cerr);
+*/
+ // We're done, PBQP problem constructed - return it.
+ return problem;
+}
+
+void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
+ MachineRegisterInfo* mri) {
+ int stackSlot = vrm->getStackSlot(spilled->reg);
+
+ if (stackSlot == VirtRegMap::NO_STACK_SLOT)
+ return;
+
+ const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
+ LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
+
+ VNInfo *vni;
+ if (stackInterval.getNumValNums() != 0)
+ vni = stackInterval.getValNumInfo(0);
+ else
+ vni = stackInterval.getNextValue(
+ SlotIndex(), 0, false, lss->getVNInfoAllocator());
+
+ LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
+ stackInterval.MergeRangesInAsValue(rhsInterval, vni);
+}
+
+bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
+
+ // Set to true if we have any spills
+ bool anotherRoundNeeded = false;
+
+ // Clear the existing allocation.
+ vrm->clearAllVirt();
+
+ // Iterate over the nodes mapping the PBQP solution to a register assignment.
+ for (unsigned node = 0; node < node2LI.size(); ++node) {
+ unsigned virtReg = node2LI[node]->reg,
+ allocSelection = solution.getSelection(problemNodes[node]);
+
+
+ // If the PBQP solution is non-zero it's a physical register...
+ if (allocSelection != 0) {
+ // Get the physical reg, subtracting 1 to account for the spill option.
+ unsigned physReg = allowedSets[node][allocSelection - 1];
+
+ DEBUG(dbgs() << "VREG " << virtReg << " -> "
+ << tri->getName(physReg) << "\n");
+
+ assert(physReg != 0);
+
+ // Add to the virt reg map and update the used phys regs.
+ vrm->assignVirt2Phys(virtReg, physReg);
+ }
+ // ...Otherwise it's a spill.
+ else {
+
+ // Make sure we ignore this virtual reg on the next round
+ // of allocation
+ vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
+
+ // Insert spill ranges for this live range
+ const LiveInterval *spillInterval = node2LI[node];
+ double oldSpillWeight = spillInterval->weight;
+ SmallVector<LiveInterval*, 8> spillIs;
+ std::vector<LiveInterval*> newSpills =
+ lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
+ addStackInterval(spillInterval, mri);
+
+ (void) oldSpillWeight;
+ DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
+ << oldSpillWeight << ", New vregs: ");
+
+ // Copy any newly inserted live intervals into the list of regs to
+ // allocate.
+ for (std::vector<LiveInterval*>::const_iterator
+ itr = newSpills.begin(), end = newSpills.end();
+ itr != end; ++itr) {
+
+ assert(!(*itr)->empty() && "Empty spill range.");
+
+ DEBUG(dbgs() << (*itr)->reg << " ");
+
+ vregIntervalsToAlloc.insert(*itr);
+ }
+
+ DEBUG(dbgs() << ")\n");
+
+ // We need another round if spill intervals were added.
+ anotherRoundNeeded |= !newSpills.empty();
+ }
+ }
+
+ return !anotherRoundNeeded;
+}
+
+void PBQPRegAlloc::finalizeAlloc() const {
+ typedef LiveIntervals::iterator LIIterator;
+ typedef LiveInterval::Ranges::const_iterator LRIterator;
+
+ // First allocate registers for the empty intervals.
+ for (LiveIntervalSet::const_iterator
+ itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
+ itr != end; ++itr) {
+ LiveInterval *li = *itr;
+
+ unsigned physReg = vrm->getRegAllocPref(li->reg);
+
+ if (physReg == 0) {
+ const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
+ physReg = *liRC->allocation_order_begin(*mf);
+ }
+
+ vrm->assignVirt2Phys(li->reg, physReg);
+ }
+
+ // Finally iterate over the basic blocks to compute and set the live-in sets.
+ SmallVector<MachineBasicBlock*, 8> liveInMBBs;
+ MachineBasicBlock *entryMBB = &*mf->begin();
+
+ for (LIIterator liItr = lis->begin(), liEnd = lis->end();
+ liItr != liEnd; ++liItr) {
+
+ const LiveInterval *li = liItr->second;
+ unsigned reg = 0;
+
+ // Get the physical register for this interval
+ if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
+ reg = li->reg;
+ }
+ else if (vrm->isAssignedReg(li->reg)) {
+ reg = vrm->getPhys(li->reg);
+ }
+ else {
+ // Ranges which are assigned a stack slot only are ignored.
+ continue;
+ }
+
+ if (reg == 0) {
+ // Filter out zero regs - they're for intervals that were spilled.
+ continue;
+ }
+
+ // Iterate over the ranges of the current interval...
+ for (LRIterator lrItr = li->begin(), lrEnd = li->end();
+ lrItr != lrEnd; ++lrItr) {
+
+ // Find the set of basic blocks which this range is live into...
+ if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
+ // And add the physreg for this interval to their live-in sets.
+ for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
+ if (liveInMBBs[i] != entryMBB) {
+ if (!liveInMBBs[i]->isLiveIn(reg)) {
+ liveInMBBs[i]->addLiveIn(reg);
+ }
+ }
+ }
+ liveInMBBs.clear();
+ }
+ }
+ }
+
+}
+
+bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
+
+ mf = &MF;
+ tm = &mf->getTarget();
+ tri = tm->getRegisterInfo();
+ tii = tm->getInstrInfo();
+ mri = &mf->getRegInfo();
+
+ lis = &getAnalysis<LiveIntervals>();
+ lss = &getAnalysis<LiveStacks>();
+ loopInfo = &getAnalysis<MachineLoopInfo>();
+
+ vrm = &getAnalysis<VirtRegMap>();
+
+ DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
+
+ // Allocator main loop:
+ //
+ // * Map current regalloc problem to a PBQP problem
+ // * Solve the PBQP problem
+ // * Map the solution back to a register allocation
+ // * Spill if necessary
+ //
+ // This process is continued till no more spills are generated.
+
+ // Find the vreg intervals in need of allocation.
+ findVRegIntervalsToAlloc();
+
+ // If there aren't any then we're done here.
+ if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
+ return true;
+
+ // If there are non-empty intervals allocate them using pbqp.
+ if (!vregIntervalsToAlloc.empty()) {
+
+ bool pbqpAllocComplete = false;
+ unsigned round = 0;
+
+ while (!pbqpAllocComplete) {
+ DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
+
+ PBQP::Graph problem = constructPBQPProblem();
+ PBQP::Solution solution =
+ PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
+
+ pbqpAllocComplete = mapPBQPToRegAlloc(solution);
+
+ ++round;
+ }
+ }
+
+ // Finalise allocation, allocate empty ranges.
+ finalizeAlloc();
+
+ vregIntervalsToAlloc.clear();
+ emptyVRegIntervals.clear();
+ li2Node.clear();
+ node2LI.clear();
+ allowedSets.clear();
+ problemNodes.clear();
+
+ DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
+
+ // Run rewriter
+ std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
+
+ rewriter->runOnMachineFunction(*mf, *vrm, lis);
+
+ return true;
+}
+
+FunctionPass* llvm::createPBQPRegisterAllocator() {
+ return new PBQPRegAlloc();
+}
+
+
+#undef DEBUG_TYPE