diff options
author | Shih-wei Liao <sliao@google.com> | 2010-02-10 11:10:31 -0800 |
---|---|---|
committer | Shih-wei Liao <sliao@google.com> | 2010-02-10 11:10:31 -0800 |
commit | e264f62ca09a8f65c87a46d562a4d0f9ec5d457e (patch) | |
tree | 59e3d57ef656cef79afa708ae0a3daf25cd91fcf /lib/CodeGen/RegAllocPBQP.cpp | |
download | external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.zip external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.tar.gz external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.tar.bz2 |
Check in LLVM r95781.
Diffstat (limited to 'lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r-- | lib/CodeGen/RegAllocPBQP.cpp | 918 |
1 files changed, 918 insertions, 0 deletions
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp new file mode 100644 index 0000000..2701faf --- /dev/null +++ b/lib/CodeGen/RegAllocPBQP.cpp @@ -0,0 +1,918 @@ +//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based +// register allocator for LLVM. This allocator works by constructing a PBQP +// problem representing the register allocation problem under consideration, +// solving this using a PBQP solver, and mapping the solution back to a +// register assignment. If any variables are selected for spilling then spill +// code is inserted and the process repeated. +// +// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned +// for register allocation. For more information on PBQP for register +// allocation, see the following papers: +// +// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with +// PBQP. In Proceedings of the 7th Joint Modular Languages Conference +// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. +// +// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular +// architectures. In Proceedings of the Joint Conference on Languages, +// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, +// NY, USA, 139-148. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" + +#include "PBQP/HeuristicSolver.h" +#include "PBQP/Graph.h" +#include "PBQP/Heuristics/Briggs.h" +#include "VirtRegMap.h" +#include "VirtRegRewriter.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/RegisterCoalescer.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <limits> +#include <map> +#include <memory> +#include <set> +#include <vector> + +using namespace llvm; + +static RegisterRegAlloc +registerPBQPRepAlloc("pbqp", "PBQP register allocator.", + llvm::createPBQPRegisterAllocator); + +static cl::opt<bool> +pbqpCoalescing("pbqp-coalescing", + cl::desc("Attempt coalescing during PBQP register allocation."), + cl::init(false), cl::Hidden); + +namespace { + + /// + /// PBQP based allocators solve the register allocation problem by mapping + /// register allocation problems to Partitioned Boolean Quadratic + /// Programming problems. + class PBQPRegAlloc : public MachineFunctionPass { + public: + + static char ID; + + /// Construct a PBQP register allocator. + PBQPRegAlloc() : MachineFunctionPass(&ID) {} + + /// Return the pass name. + virtual const char* getPassName() const { + return "PBQP Register Allocator"; + } + + /// PBQP analysis usage. + virtual void getAnalysisUsage(AnalysisUsage &au) const { + au.addRequired<SlotIndexes>(); + au.addPreserved<SlotIndexes>(); + au.addRequired<LiveIntervals>(); + //au.addRequiredID(SplitCriticalEdgesID); + au.addRequired<RegisterCoalescer>(); + au.addRequired<CalculateSpillWeights>(); + au.addRequired<LiveStacks>(); + au.addPreserved<LiveStacks>(); + au.addRequired<MachineLoopInfo>(); + au.addPreserved<MachineLoopInfo>(); + au.addRequired<VirtRegMap>(); + MachineFunctionPass::getAnalysisUsage(au); + } + + /// Perform register allocation + virtual bool runOnMachineFunction(MachineFunction &MF); + + private: + typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; + typedef std::vector<const LiveInterval*> Node2LIMap; + typedef std::vector<unsigned> AllowedSet; + typedef std::vector<AllowedSet> AllowedSetMap; + typedef std::set<unsigned> RegSet; + typedef std::pair<unsigned, unsigned> RegPair; + typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; + + typedef std::set<LiveInterval*> LiveIntervalSet; + + typedef std::vector<PBQP::Graph::NodeItr> NodeVector; + + MachineFunction *mf; + const TargetMachine *tm; + const TargetRegisterInfo *tri; + const TargetInstrInfo *tii; + const MachineLoopInfo *loopInfo; + MachineRegisterInfo *mri; + + LiveIntervals *lis; + LiveStacks *lss; + VirtRegMap *vrm; + + LI2NodeMap li2Node; + Node2LIMap node2LI; + AllowedSetMap allowedSets; + LiveIntervalSet vregIntervalsToAlloc, + emptyVRegIntervals; + NodeVector problemNodes; + + + /// Builds a PBQP cost vector. + template <typename RegContainer> + PBQP::Vector buildCostVector(unsigned vReg, + const RegContainer &allowed, + const CoalesceMap &cealesces, + PBQP::PBQPNum spillCost) const; + + /// \brief Builds a PBQP interference matrix. + /// + /// @return Either a pointer to a non-zero PBQP matrix representing the + /// allocation option costs, or a null pointer for a zero matrix. + /// + /// Expects allowed sets for two interfering LiveIntervals. These allowed + /// sets should contain only allocable registers from the LiveInterval's + /// register class, with any interfering pre-colored registers removed. + template <typename RegContainer> + PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1, + const RegContainer &allowed2) const; + + /// + /// Expects allowed sets for two potentially coalescable LiveIntervals, + /// and an estimated benefit due to coalescing. The allowed sets should + /// contain only allocable registers from the LiveInterval's register + /// classes, with any interfering pre-colored registers removed. + template <typename RegContainer> + PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1, + const RegContainer &allowed2, + PBQP::PBQPNum cBenefit) const; + + /// \brief Finds coalescing opportunities and returns them as a map. + /// + /// Any entries in the map are guaranteed coalescable, even if their + /// corresponding live intervals overlap. + CoalesceMap findCoalesces(); + + /// \brief Finds the initial set of vreg intervals to allocate. + void findVRegIntervalsToAlloc(); + + /// \brief Constructs a PBQP problem representation of the register + /// allocation problem for this function. + /// + /// @return a PBQP solver object for the register allocation problem. + PBQP::Graph constructPBQPProblem(); + + /// \brief Adds a stack interval if the given live interval has been + /// spilled. Used to support stack slot coloring. + void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri); + + /// \brief Given a solved PBQP problem maps this solution back to a register + /// assignment. + bool mapPBQPToRegAlloc(const PBQP::Solution &solution); + + /// \brief Postprocessing before final spilling. Sets basic block "live in" + /// variables. + void finalizeAlloc() const; + + }; + + char PBQPRegAlloc::ID = 0; +} + + +template <typename RegContainer> +PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg, + const RegContainer &allowed, + const CoalesceMap &coalesces, + PBQP::PBQPNum spillCost) const { + + typedef typename RegContainer::const_iterator AllowedItr; + + // Allocate vector. Additional element (0th) used for spill option + PBQP::Vector v(allowed.size() + 1, 0); + + v[0] = spillCost; + + // Iterate over the allowed registers inserting coalesce benefits if there + // are any. + unsigned ai = 0; + for (AllowedItr itr = allowed.begin(), end = allowed.end(); + itr != end; ++itr, ++ai) { + + unsigned pReg = *itr; + + CoalesceMap::const_iterator cmItr = + coalesces.find(RegPair(vReg, pReg)); + + // No coalesce - on to the next preg. + if (cmItr == coalesces.end()) + continue; + + // We have a coalesce - insert the benefit. + v[ai + 1] = -cmItr->second; + } + + return v; +} + +template <typename RegContainer> +PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix( + const RegContainer &allowed1, const RegContainer &allowed2) const { + + typedef typename RegContainer::const_iterator RegContainerIterator; + + // Construct a PBQP matrix representing the cost of allocation options. The + // rows and columns correspond to the allocation options for the two live + // intervals. Elements will be infinite where corresponding registers alias, + // since we cannot allocate aliasing registers to interfering live intervals. + // All other elements (non-aliasing combinations) will have zero cost. Note + // that the spill option (element 0,0) has zero cost, since we can allocate + // both intervals to memory safely (the cost for each individual allocation + // to memory is accounted for by the cost vectors for each live interval). + PBQP::Matrix *m = + new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0); + + // Assume this is a zero matrix until proven otherwise. Zero matrices occur + // between interfering live ranges with non-overlapping register sets (e.g. + // non-overlapping reg classes, or disjoint sets of allowed regs within the + // same class). The term "overlapping" is used advisedly: sets which do not + // intersect, but contain registers which alias, will have non-zero matrices. + // We optimize zero matrices away to improve solver speed. + bool isZeroMatrix = true; + + + // Row index. Starts at 1, since the 0th row is for the spill option, which + // is always zero. + unsigned ri = 1; + + // Iterate over allowed sets, insert infinities where required. + for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); + a1Itr != a1End; ++a1Itr) { + + // Column index, starts at 1 as for row index. + unsigned ci = 1; + unsigned reg1 = *a1Itr; + + for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); + a2Itr != a2End; ++a2Itr) { + + unsigned reg2 = *a2Itr; + + // If the row/column regs are identical or alias insert an infinity. + if (tri->regsOverlap(reg1, reg2)) { + (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity(); + isZeroMatrix = false; + } + + ++ci; + } + + ++ri; + } + + // If this turns out to be a zero matrix... + if (isZeroMatrix) { + // free it and return null. + delete m; + return 0; + } + + // ...otherwise return the cost matrix. + return m; +} + +template <typename RegContainer> +PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix( + const RegContainer &allowed1, const RegContainer &allowed2, + PBQP::PBQPNum cBenefit) const { + + typedef typename RegContainer::const_iterator RegContainerIterator; + + // Construct a PBQP Matrix representing the benefits of coalescing. As with + // interference matrices the rows and columns represent allowed registers + // for the LiveIntervals which are (potentially) to be coalesced. The amount + // -cBenefit will be placed in any element representing the same register + // for both intervals. + PBQP::Matrix *m = + new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0); + + // Reset costs to zero. + m->reset(0); + + // Assume the matrix is zero till proven otherwise. Zero matrices will be + // optimized away as in the interference case. + bool isZeroMatrix = true; + + // Row index. Starts at 1, since the 0th row is for the spill option, which + // is always zero. + unsigned ri = 1; + + // Iterate over the allowed sets, insert coalescing benefits where + // appropriate. + for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); + a1Itr != a1End; ++a1Itr) { + + // Column index, starts at 1 as for row index. + unsigned ci = 1; + unsigned reg1 = *a1Itr; + + for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); + a2Itr != a2End; ++a2Itr) { + + // If the row and column represent the same register insert a beneficial + // cost to preference this allocation - it would allow us to eliminate a + // move instruction. + if (reg1 == *a2Itr) { + (*m)[ri][ci] = -cBenefit; + isZeroMatrix = false; + } + + ++ci; + } + + ++ri; + } + + // If this turns out to be a zero matrix... + if (isZeroMatrix) { + // ...free it and return null. + delete m; + return 0; + } + + return m; +} + +PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() { + + typedef MachineFunction::const_iterator MFIterator; + typedef MachineBasicBlock::const_iterator MBBIterator; + typedef LiveInterval::const_vni_iterator VNIIterator; + + CoalesceMap coalescesFound; + + // To find coalesces we need to iterate over the function looking for + // copy instructions. + for (MFIterator bbItr = mf->begin(), bbEnd = mf->end(); + bbItr != bbEnd; ++bbItr) { + + const MachineBasicBlock *mbb = &*bbItr; + + for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end(); + iItr != iEnd; ++iItr) { + + const MachineInstr *instr = &*iItr; + unsigned srcReg, dstReg, srcSubReg, dstSubReg; + + // If this isn't a copy then continue to the next instruction. + if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg)) + continue; + + // If the registers are already the same our job is nice and easy. + if (dstReg == srcReg) + continue; + + bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg), + dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg); + + // If both registers are physical then we can't coalesce. + if (srcRegIsPhysical && dstRegIsPhysical) + continue; + + // If it's a copy that includes a virtual register but the source and + // destination classes differ then we can't coalesce, so continue with + // the next instruction. + const TargetRegisterClass *srcRegClass = srcRegIsPhysical ? + tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg); + + const TargetRegisterClass *dstRegClass = dstRegIsPhysical ? + tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg); + + if (srcRegClass != dstRegClass) + continue; + + // We also need any physical regs to be allocable, coalescing with + // a non-allocable register is invalid. + if (srcRegIsPhysical) { + if (std::find(dstRegClass->allocation_order_begin(*mf), + dstRegClass->allocation_order_end(*mf), srcReg) == + dstRegClass->allocation_order_end(*mf)) + continue; + } + + if (dstRegIsPhysical) { + if (std::find(srcRegClass->allocation_order_begin(*mf), + srcRegClass->allocation_order_end(*mf), dstReg) == + srcRegClass->allocation_order_end(*mf)) + continue; + } + + // If we've made it here we have a copy with compatible register classes. + // We can probably coalesce, but we need to consider overlap. + const LiveInterval *srcLI = &lis->getInterval(srcReg), + *dstLI = &lis->getInterval(dstReg); + + if (srcLI->overlaps(*dstLI)) { + // Even in the case of an overlap we might still be able to coalesce, + // but we need to make sure that no definition of either range occurs + // while the other range is live. + + // Otherwise start by assuming we're ok. + bool badDef = false; + + // Test all defs of the source range. + for (VNIIterator + vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end(); + vniItr != vniEnd; ++vniItr) { + + // If we find a poorly defined def we err on the side of caution. + if (!(*vniItr)->def.isValid()) { + badDef = true; + break; + } + + // If we find a def that kills the coalescing opportunity then + // record it and break from the loop. + if (dstLI->liveAt((*vniItr)->def)) { + badDef = true; + break; + } + } + + // If we have a bad def give up, continue to the next instruction. + if (badDef) + continue; + + // Otherwise test definitions of the destination range. + for (VNIIterator + vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end(); + vniItr != vniEnd; ++vniItr) { + + // We want to make sure we skip the copy instruction itself. + if ((*vniItr)->getCopy() == instr) + continue; + + if (!(*vniItr)->def.isValid()) { + badDef = true; + break; + } + + if (srcLI->liveAt((*vniItr)->def)) { + badDef = true; + break; + } + } + + // As before a bad def we give up and continue to the next instr. + if (badDef) + continue; + } + + // If we make it to here then either the ranges didn't overlap, or they + // did, but none of their definitions would prevent us from coalescing. + // We're good to go with the coalesce. + + float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0; + + coalescesFound[RegPair(srcReg, dstReg)] = cBenefit; + coalescesFound[RegPair(dstReg, srcReg)] = cBenefit; + } + + } + + return coalescesFound; +} + +void PBQPRegAlloc::findVRegIntervalsToAlloc() { + + // Iterate over all live ranges. + for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); + itr != end; ++itr) { + + // Ignore physical ones. + if (TargetRegisterInfo::isPhysicalRegister(itr->first)) + continue; + + LiveInterval *li = itr->second; + + // If this live interval is non-empty we will use pbqp to allocate it. + // Empty intervals we allocate in a simple post-processing stage in + // finalizeAlloc. + if (!li->empty()) { + vregIntervalsToAlloc.insert(li); + } + else { + emptyVRegIntervals.insert(li); + } + } +} + +PBQP::Graph PBQPRegAlloc::constructPBQPProblem() { + + typedef std::vector<const LiveInterval*> LIVector; + typedef std::vector<unsigned> RegVector; + + // This will store the physical intervals for easy reference. + LIVector physIntervals; + + // Start by clearing the old node <-> live interval mappings & allowed sets + li2Node.clear(); + node2LI.clear(); + allowedSets.clear(); + + // Populate physIntervals, update preg use: + for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); + itr != end; ++itr) { + + if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { + physIntervals.push_back(itr->second); + mri->setPhysRegUsed(itr->second->reg); + } + } + + // Iterate over vreg intervals, construct live interval <-> node number + // mappings. + for (LiveIntervalSet::const_iterator + itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end(); + itr != end; ++itr) { + const LiveInterval *li = *itr; + + li2Node[li] = node2LI.size(); + node2LI.push_back(li); + } + + // Get the set of potential coalesces. + CoalesceMap coalesces; + + if (pbqpCoalescing) { + coalesces = findCoalesces(); + } + + // Construct a PBQP solver for this problem + PBQP::Graph problem; + problemNodes.resize(vregIntervalsToAlloc.size()); + + // Resize allowedSets container appropriately. + allowedSets.resize(vregIntervalsToAlloc.size()); + + // Iterate over virtual register intervals to compute allowed sets... + for (unsigned node = 0; node < node2LI.size(); ++node) { + + // Grab pointers to the interval and its register class. + const LiveInterval *li = node2LI[node]; + const TargetRegisterClass *liRC = mri->getRegClass(li->reg); + + // Start by assuming all allocable registers in the class are allowed... + RegVector liAllowed(liRC->allocation_order_begin(*mf), + liRC->allocation_order_end(*mf)); + + // Eliminate the physical registers which overlap with this range, along + // with all their aliases. + for (LIVector::iterator pItr = physIntervals.begin(), + pEnd = physIntervals.end(); pItr != pEnd; ++pItr) { + + if (!li->overlaps(**pItr)) + continue; + + unsigned pReg = (*pItr)->reg; + + // If we get here then the live intervals overlap, but we're still ok + // if they're coalescable. + if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end()) + continue; + + // If we get here then we have a genuine exclusion. + + // Remove the overlapping reg... + RegVector::iterator eraseItr = + std::find(liAllowed.begin(), liAllowed.end(), pReg); + + if (eraseItr != liAllowed.end()) + liAllowed.erase(eraseItr); + + const unsigned *aliasItr = tri->getAliasSet(pReg); + + if (aliasItr != 0) { + // ...and its aliases. + for (; *aliasItr != 0; ++aliasItr) { + RegVector::iterator eraseItr = + std::find(liAllowed.begin(), liAllowed.end(), *aliasItr); + + if (eraseItr != liAllowed.end()) { + liAllowed.erase(eraseItr); + } + } + } + } + + // Copy the allowed set into a member vector for use when constructing cost + // vectors & matrices, and mapping PBQP solutions back to assignments. + allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end()); + + // Set the spill cost to the interval weight, or epsilon if the + // interval weight is zero + PBQP::PBQPNum spillCost = (li->weight != 0.0) ? + li->weight : std::numeric_limits<PBQP::PBQPNum>::min(); + + // Build a cost vector for this interval. + problemNodes[node] = + problem.addNode( + buildCostVector(li->reg, allowedSets[node], coalesces, spillCost)); + + } + + + // Now add the cost matrices... + for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) { + const LiveInterval *li = node2LI[node1]; + + // Test for live range overlaps and insert interference matrices. + for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) { + const LiveInterval *li2 = node2LI[node2]; + + CoalesceMap::const_iterator cmItr = + coalesces.find(RegPair(li->reg, li2->reg)); + + PBQP::Matrix *m = 0; + + if (cmItr != coalesces.end()) { + m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2], + cmItr->second); + } + else if (li->overlaps(*li2)) { + m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]); + } + + if (m != 0) { + problem.addEdge(problemNodes[node1], + problemNodes[node2], + *m); + + delete m; + } + } + } + + assert(problem.getNumNodes() == allowedSets.size()); +/* + std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, " + << problem.getNumEdges() << " edges.\n"; + + problem.printDot(std::cerr); +*/ + // We're done, PBQP problem constructed - return it. + return problem; +} + +void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, + MachineRegisterInfo* mri) { + int stackSlot = vrm->getStackSlot(spilled->reg); + + if (stackSlot == VirtRegMap::NO_STACK_SLOT) + return; + + const TargetRegisterClass *RC = mri->getRegClass(spilled->reg); + LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC); + + VNInfo *vni; + if (stackInterval.getNumValNums() != 0) + vni = stackInterval.getValNumInfo(0); + else + vni = stackInterval.getNextValue( + SlotIndex(), 0, false, lss->getVNInfoAllocator()); + + LiveInterval &rhsInterval = lis->getInterval(spilled->reg); + stackInterval.MergeRangesInAsValue(rhsInterval, vni); +} + +bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) { + + // Set to true if we have any spills + bool anotherRoundNeeded = false; + + // Clear the existing allocation. + vrm->clearAllVirt(); + + // Iterate over the nodes mapping the PBQP solution to a register assignment. + for (unsigned node = 0; node < node2LI.size(); ++node) { + unsigned virtReg = node2LI[node]->reg, + allocSelection = solution.getSelection(problemNodes[node]); + + + // If the PBQP solution is non-zero it's a physical register... + if (allocSelection != 0) { + // Get the physical reg, subtracting 1 to account for the spill option. + unsigned physReg = allowedSets[node][allocSelection - 1]; + + DEBUG(dbgs() << "VREG " << virtReg << " -> " + << tri->getName(physReg) << "\n"); + + assert(physReg != 0); + + // Add to the virt reg map and update the used phys regs. + vrm->assignVirt2Phys(virtReg, physReg); + } + // ...Otherwise it's a spill. + else { + + // Make sure we ignore this virtual reg on the next round + // of allocation + vregIntervalsToAlloc.erase(&lis->getInterval(virtReg)); + + // Insert spill ranges for this live range + const LiveInterval *spillInterval = node2LI[node]; + double oldSpillWeight = spillInterval->weight; + SmallVector<LiveInterval*, 8> spillIs; + std::vector<LiveInterval*> newSpills = + lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm); + addStackInterval(spillInterval, mri); + + (void) oldSpillWeight; + DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: " + << oldSpillWeight << ", New vregs: "); + + // Copy any newly inserted live intervals into the list of regs to + // allocate. + for (std::vector<LiveInterval*>::const_iterator + itr = newSpills.begin(), end = newSpills.end(); + itr != end; ++itr) { + + assert(!(*itr)->empty() && "Empty spill range."); + + DEBUG(dbgs() << (*itr)->reg << " "); + + vregIntervalsToAlloc.insert(*itr); + } + + DEBUG(dbgs() << ")\n"); + + // We need another round if spill intervals were added. + anotherRoundNeeded |= !newSpills.empty(); + } + } + + return !anotherRoundNeeded; +} + +void PBQPRegAlloc::finalizeAlloc() const { + typedef LiveIntervals::iterator LIIterator; + typedef LiveInterval::Ranges::const_iterator LRIterator; + + // First allocate registers for the empty intervals. + for (LiveIntervalSet::const_iterator + itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end(); + itr != end; ++itr) { + LiveInterval *li = *itr; + + unsigned physReg = vrm->getRegAllocPref(li->reg); + + if (physReg == 0) { + const TargetRegisterClass *liRC = mri->getRegClass(li->reg); + physReg = *liRC->allocation_order_begin(*mf); + } + + vrm->assignVirt2Phys(li->reg, physReg); + } + + // Finally iterate over the basic blocks to compute and set the live-in sets. + SmallVector<MachineBasicBlock*, 8> liveInMBBs; + MachineBasicBlock *entryMBB = &*mf->begin(); + + for (LIIterator liItr = lis->begin(), liEnd = lis->end(); + liItr != liEnd; ++liItr) { + + const LiveInterval *li = liItr->second; + unsigned reg = 0; + + // Get the physical register for this interval + if (TargetRegisterInfo::isPhysicalRegister(li->reg)) { + reg = li->reg; + } + else if (vrm->isAssignedReg(li->reg)) { + reg = vrm->getPhys(li->reg); + } + else { + // Ranges which are assigned a stack slot only are ignored. + continue; + } + + if (reg == 0) { + // Filter out zero regs - they're for intervals that were spilled. + continue; + } + + // Iterate over the ranges of the current interval... + for (LRIterator lrItr = li->begin(), lrEnd = li->end(); + lrItr != lrEnd; ++lrItr) { + + // Find the set of basic blocks which this range is live into... + if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) { + // And add the physreg for this interval to their live-in sets. + for (unsigned i = 0; i < liveInMBBs.size(); ++i) { + if (liveInMBBs[i] != entryMBB) { + if (!liveInMBBs[i]->isLiveIn(reg)) { + liveInMBBs[i]->addLiveIn(reg); + } + } + } + liveInMBBs.clear(); + } + } + } + +} + +bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) { + + mf = &MF; + tm = &mf->getTarget(); + tri = tm->getRegisterInfo(); + tii = tm->getInstrInfo(); + mri = &mf->getRegInfo(); + + lis = &getAnalysis<LiveIntervals>(); + lss = &getAnalysis<LiveStacks>(); + loopInfo = &getAnalysis<MachineLoopInfo>(); + + vrm = &getAnalysis<VirtRegMap>(); + + DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n"); + + // Allocator main loop: + // + // * Map current regalloc problem to a PBQP problem + // * Solve the PBQP problem + // * Map the solution back to a register allocation + // * Spill if necessary + // + // This process is continued till no more spills are generated. + + // Find the vreg intervals in need of allocation. + findVRegIntervalsToAlloc(); + + // If there aren't any then we're done here. + if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty()) + return true; + + // If there are non-empty intervals allocate them using pbqp. + if (!vregIntervalsToAlloc.empty()) { + + bool pbqpAllocComplete = false; + unsigned round = 0; + + while (!pbqpAllocComplete) { + DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n"); + + PBQP::Graph problem = constructPBQPProblem(); + PBQP::Solution solution = + PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem); + + pbqpAllocComplete = mapPBQPToRegAlloc(solution); + + ++round; + } + } + + // Finalise allocation, allocate empty ranges. + finalizeAlloc(); + + vregIntervalsToAlloc.clear(); + emptyVRegIntervals.clear(); + li2Node.clear(); + node2LI.clear(); + allowedSets.clear(); + problemNodes.clear(); + + DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n"); + + // Run rewriter + std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); + + rewriter->runOnMachineFunction(*mf, *vrm, lis); + + return true; +} + +FunctionPass* llvm::createPBQPRegisterAllocator() { + return new PBQPRegAlloc(); +} + + +#undef DEBUG_TYPE |