diff options
author | Jush Lu <jush.msn@gmail.com> | 2011-03-09 19:39:16 +0800 |
---|---|---|
committer | Jush Lu <jush.msn@gmail.com> | 2011-03-09 19:39:16 +0800 |
commit | b5530586d68bd25831a6796b5d3199cb0769a35c (patch) | |
tree | fac4a03b53b6a64b0c00f433e4d8b3c9f2bc67cd /lib/CodeGen/SelectionDAG/TargetLowering.cpp | |
parent | b4e17c5bf4361bbdeced39aa071150d7fa9c3c10 (diff) | |
parent | d01f50f42ce60207ed6d27fb1778e456d83be06c (diff) | |
download | external_llvm-b5530586d68bd25831a6796b5d3199cb0769a35c.zip external_llvm-b5530586d68bd25831a6796b5d3199cb0769a35c.tar.gz external_llvm-b5530586d68bd25831a6796b5d3199cb0769a35c.tar.bz2 |
Merge upstream r127116
Diffstat (limited to 'lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/TargetLowering.cpp | 439 |
1 files changed, 234 insertions, 205 deletions
diff --git a/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/lib/CodeGen/SelectionDAG/TargetLowering.cpp index f23125f..35b847c 100644 --- a/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ b/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -28,7 +28,7 @@ #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" -#include <ctype.h> +#include <cctype> using namespace llvm; namespace llvm { @@ -531,7 +531,7 @@ TargetLowering::TargetLowering(const TargetMachine &tm, setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); } - + // These operations default to expand. setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); @@ -539,8 +539,8 @@ TargetLowering::TargetLowering(const TargetMachine &tm, // Most targets ignore the @llvm.prefetch intrinsic. setOperationAction(ISD::PREFETCH, MVT::Other, Expand); - - // ConstantFP nodes default to expand. Targets can either change this to + + // ConstantFP nodes default to expand. Targets can either change this to // Legal, in which case all fp constants are legal, or use isFPImmLegal() // to optimize expansions for certain constants. setOperationAction(ISD::ConstantFP, MVT::f32, Expand); @@ -561,18 +561,21 @@ TargetLowering::TargetLowering(const TargetMachine &tm, // Default ISD::TRAP to expand (which turns it into abort). setOperationAction(ISD::TRAP, MVT::Other, Expand); - + IsLittleEndian = TD->isLittleEndian(); - ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); + PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; + maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize + = maxStoresPerMemmoveOptSize = 4; benefitFromCodePlacementOpt = false; UseUnderscoreSetJmp = false; UseUnderscoreLongJmp = false; SelectIsExpensive = false; IntDivIsCheap = false; Pow2DivIsCheap = false; + JumpIsExpensive = false; StackPointerRegisterToSaveRestore = 0; ExceptionPointerRegister = 0; ExceptionSelectorRegister = 0; @@ -593,6 +596,10 @@ TargetLowering::~TargetLowering() { delete &TLOF; } +MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { + return MVT::getIntegerVT(8*TD->getPointerSize()); +} + /// canOpTrap - Returns true if the operation can trap for the value type. /// VT must be a legal type. bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { @@ -618,16 +625,16 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, // Figure out the right, legal destination reg to copy into. unsigned NumElts = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType(); - + unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we // could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(NumElts)) { NumVectorRegs = NumElts; NumElts = 1; } - + // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { @@ -636,7 +643,7 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, } NumIntermediates = NumVectorRegs; - + MVT NewVT = MVT::getVectorVT(EltTy, NumElts); if (!TLI->isTypeLegal(NewVT)) NewVT = EltTy; @@ -646,7 +653,7 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, RegisterVT = DestVT; if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); - + // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; @@ -751,7 +758,7 @@ void TargetLowering::computeRegisterProperties() { RegisterTypeForVT[MVT::ppcf128] = MVT::f64; TransformToType[MVT::ppcf128] = MVT::f64; ValueTypeActions.setTypeAction(MVT::ppcf128, Expand); - } + } // Decide how to handle f64. If the target does not have native f64 support, // expand it to i64 and we will be generating soft float library calls. @@ -777,13 +784,13 @@ void TargetLowering::computeRegisterProperties() { ValueTypeActions.setTypeAction(MVT::f32, Expand); } } - + // Loop over all of the vector value types to see which need transformations. for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT VT = (MVT::SimpleValueType)i; if (isTypeLegal(VT)) continue; - + // Determine if there is a legal wider type. If so, we should promote to // that wider vector type. EVT EltVT = VT.getVectorElementType(); @@ -793,7 +800,7 @@ void TargetLowering::computeRegisterProperties() { for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { EVT SVT = (MVT::SimpleValueType)nVT; if (SVT.getVectorElementType() == EltVT && - SVT.getVectorNumElements() > NElts && + SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { TransformToType[i] = SVT; RegisterTypeForVT[i] = SVT; @@ -805,7 +812,7 @@ void TargetLowering::computeRegisterProperties() { } if (IsLegalWiderType) continue; } - + MVT IntermediateVT; EVT RegisterVT; unsigned NumIntermediates; @@ -813,7 +820,7 @@ void TargetLowering::computeRegisterProperties() { getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, RegisterVT, this); RegisterTypeForVT[i] = RegisterVT; - + EVT NVT = VT.getPow2VectorType(); if (NVT == VT) { // Type is already a power of 2. The default action is to split. @@ -866,7 +873,7 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, unsigned &NumIntermediates, EVT &RegisterVT) const { unsigned NumElts = VT.getVectorNumElements(); - + // If there is a wider vector type with the same element type as this one, // we should widen to that legal vector type. This handles things like // <2 x float> -> <4 x float>. @@ -878,19 +885,19 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, return 1; } } - + // Figure out the right, legal destination reg to copy into. EVT EltTy = VT.getVectorElementType(); - + unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we // could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(NumElts)) { NumVectorRegs = NumElts; NumElts = 1; } - + // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (NumElts > 1 && !isTypeLegal( @@ -900,7 +907,7 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, } NumIntermediates = NumVectorRegs; - + EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); if (!isTypeLegal(NewVT)) NewVT = EltTy; @@ -910,13 +917,13 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, RegisterVT = DestVT; if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits()); - + // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } -/// Get the EVTs and ArgFlags collections that represent the legalized return +/// Get the EVTs and ArgFlags collections that represent the legalized return /// type of the given function. This does not require a DAG or a return value, /// and is suitable for use before any DAGs for the function are constructed. /// TODO: Move this out of TargetLowering.cpp. @@ -989,11 +996,11 @@ unsigned TargetLowering::getJumpTableEncoding() const { // In non-pic modes, just use the address of a block. if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return MachineJumpTableInfo::EK_BlockAddress; - + // In PIC mode, if the target supports a GPRel32 directive, use it. if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) return MachineJumpTableInfo::EK_GPRel32BlockAddress; - + // Otherwise, use a label difference. return MachineJumpTableInfo::EK_LabelDifference32; } @@ -1037,11 +1044,11 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // Optimization Methods //===----------------------------------------------------------------------===// -/// ShrinkDemandedConstant - Check to see if the specified operand of the +/// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. -bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, +bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded) { DebugLoc dl = Op.getDebugLoc(); @@ -1063,7 +1070,7 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, EVT VT = Op.getValueType(); SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), DAG.getConstant(Demanded & - C->getAPIntValue(), + C->getAPIntValue(), VT)); return CombineTo(Op, New); } @@ -1140,9 +1147,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, KnownZero = KnownOne = APInt(BitWidth, 0); // Other users may use these bits. - if (!Op.getNode()->hasOneUse()) { + if (!Op.getNode()->hasOneUse()) { if (Depth != 0) { - // If not at the root, Just compute the KnownZero/KnownOne bits to + // If not at the root, Just compute the KnownZero/KnownOne bits to // simplify things downstream. TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); return false; @@ -1150,7 +1157,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // If this is the root being simplified, allow it to have multiple uses, // just set the NewMask to all bits. NewMask = APInt::getAllOnesValue(BitWidth); - } else if (DemandedMask == 0) { + } else if (DemandedMask == 0) { // Not demanding any bits from Op. if (Op.getOpcode() != ISD::UNDEF) return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); @@ -1173,8 +1180,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // the RHS. if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { APInt LHSZero, LHSOne; + // Do not increment Depth here; that can cause an infinite loop. TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask, - LHSZero, LHSOne, Depth+1); + LHSZero, LHSOne, Depth); // If the LHS already has zeros where RHSC does, this and is dead. if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) return TLO.CombineTo(Op, Op.getOperand(0)); @@ -1183,16 +1191,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) return true; } - + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + // If all of the demanded bits are known one on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) @@ -1215,15 +1223,15 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, KnownZero |= KnownZero2; break; case ISD::OR: - if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) @@ -1249,15 +1257,15 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, KnownOne |= KnownOne2; break; case ISD::XOR: - if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, + if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((KnownZero & NewMask) == NewMask) @@ -1275,12 +1283,12 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), Op.getOperand(0), Op.getOperand(1))); - + // Output known-0 bits are known if clear or set in both the LHS & RHS. KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); - + // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. @@ -1289,11 +1297,11 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if ((KnownOne & KnownOne2) == KnownOne) { EVT VT = Op.getValueType(); SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), ANDC)); } } - + // If the RHS is a constant, see if we can simplify it. // for XOR, we prefer to force bits to 1 if they will make a -1. // if we can't force bits, try to shrink constant @@ -1318,37 +1326,37 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, KnownOne = KnownOneOut; break; case ISD::SELECT: - if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, + if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + // If the operands are constants, see if we can simplify them. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; - + // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; case ISD::SELECT_CC: - if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, + if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, KnownOne2, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + // If the operands are constants, see if we can simplify them. if (TLO.ShrinkDemandedConstant(Op, NewMask)) return true; - + // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; @@ -1374,16 +1382,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (Diff < 0) { Diff = -Diff; Opc = ISD::SRL; - } - - SDValue NewSA = + } + + SDValue NewSA = TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); EVT VT = Op.getValueType(); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, InOp.getOperand(0), NewSA)); } - } - + } + if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), KnownZero, KnownOne, TLO, Depth+1)) return true; @@ -1397,7 +1405,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, BitWidth - InnerVT.getSizeInBits()) & DemandedMask) == 0 && isTypeDesirableForOp(ISD::SHL, InnerVT)) { - EVT ShTy = getShiftAmountTy(); + EVT ShTy = getShiftAmountTy(InnerVT); if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) ShTy = InnerVT; SDValue NarrowShl = @@ -1422,7 +1430,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, unsigned ShAmt = SA->getZExtValue(); unsigned VTSize = VT.getSizeInBits(); SDValue InOp = Op.getOperand(0); - + // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; @@ -1439,20 +1447,20 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (Diff < 0) { Diff = -Diff; Opc = ISD::SHL; - } - + } + SDValue NewSA = TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, InOp.getOperand(0), NewSA)); } - } - + } + // Compute the new bits that are at the top now. if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); @@ -1473,7 +1481,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { EVT VT = Op.getValueType(); unsigned ShAmt = SA->getZExtValue(); - + // If the shift count is an invalid immediate, don't do anything. if (ShAmt >= BitWidth) break; @@ -1485,21 +1493,21 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); if (HighBits.intersects(NewMask)) InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); - + if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero = KnownZero.lshr(ShAmt); KnownOne = KnownOne.lshr(ShAmt); - + // Handle the sign bit, adjusted to where it is now in the mask. APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); - + // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), Op.getOperand(1))); } else if (KnownOne.intersects(SignBit)) { // New bits are known one. @@ -1510,23 +1518,23 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, case ISD::SIGN_EXTEND_INREG: { EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); - // Sign extension. Compute the demanded bits in the result that are not + // Sign extension. Compute the demanded bits in the result that are not // present in the input. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EVT.getScalarType().getSizeInBits()); - + // If none of the extended bits are demanded, eliminate the sextinreg. if ((NewBits & NewMask) == 0) return TLO.CombineTo(Op, Op.getOperand(0)); - APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits()); - InSignBit.zext(BitWidth); + APInt InSignBit = + APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth); APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EVT.getScalarType().getSizeInBits()) & NewMask; - + // Since the sign extended bits are demanded, we know that the sign // bit is demanded. InputDemandedBits |= InSignBit; @@ -1534,16 +1542,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. - + // If the input sign bit is known zero, convert this into a zero extension. if (KnownZero.intersects(InSignBit)) - return TLO.CombineTo(Op, + return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT)); - + if (KnownOne.intersects(InSignBit)) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; @@ -1556,23 +1564,22 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, case ISD::ZERO_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); - APInt InMask = NewMask; - InMask.trunc(OperandBitWidth); - + APInt InMask = NewMask.trunc(OperandBitWidth); + // If none of the top bits are demanded, convert this into an any_extend. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; if (!NewBits.intersects(NewMask)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, - Op.getValueType(), + Op.getValueType(), Op.getOperand(0))); - + if (SimplifyDemandedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero.zext(BitWidth); - KnownOne.zext(BitWidth); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); KnownZero |= NewBits; break; } @@ -1582,31 +1589,31 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); APInt NewBits = ~InMask & NewMask; - + // If none of the top bits are demanded, convert this into an any_extend. if (NewBits == 0) return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Op.getOperand(0))); - + // Since some of the sign extended bits are demanded, we know that the sign // bit is demanded. APInt InDemandedBits = InMask & NewMask; InDemandedBits |= InSignBit; - InDemandedBits.trunc(InBits); - - if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, + InDemandedBits = InDemandedBits.trunc(InBits); + + if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, KnownOne, TLO, Depth+1)) return true; - KnownZero.zext(BitWidth); - KnownOne.zext(BitWidth); - + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + // If the sign bit is known zero, convert this to a zero extend. if (KnownZero.intersects(InSignBit)) return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, - Op.getValueType(), + Op.getValueType(), Op.getOperand(0))); - + // If the sign bit is known one, the top bits match. if (KnownOne.intersects(InSignBit)) { KnownOne |= NewBits; @@ -1620,14 +1627,13 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, case ISD::ANY_EXTEND: { unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); - APInt InMask = NewMask; - InMask.trunc(OperandBitWidth); + APInt InMask = NewMask.trunc(OperandBitWidth); if (SimplifyDemandedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - KnownZero.zext(BitWidth); - KnownOne.zext(BitWidth); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); break; } case ISD::TRUNCATE: { @@ -1635,14 +1641,13 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, // zero/one bits live out. unsigned OperandBitWidth = Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); - APInt TruncMask = NewMask; - TruncMask.zext(OperandBitWidth); + APInt TruncMask = NewMask.zext(OperandBitWidth); if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - KnownZero.trunc(BitWidth); - KnownOne.trunc(BitWidth); - + KnownZero = KnownZero.trunc(BitWidth); + KnownOne = KnownOne.trunc(BitWidth); + // If the input is only used by this truncate, see if we can shrink it based // on the known demanded bits. if (Op.getOperand(0).getNode()->hasOneUse()) { @@ -1662,25 +1667,24 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, break; APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); - HighBits = HighBits.lshr(ShAmt->getZExtValue()); - HighBits.trunc(BitWidth); + HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { // None of the shifted in bits are needed. Add a truncate of the // shift input, then shift it. SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, - Op.getValueType(), + Op.getValueType(), In.getOperand(0)); return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), - NewTrunc, + NewTrunc, In.getOperand(1))); } break; } } - - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); break; } case ISD::AssertZext: { @@ -1690,7 +1694,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero, KnownOne, TLO, Depth+1)) return true; - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, @@ -1698,7 +1702,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, KnownZero |= ~InMask & NewMask; break; } - case ISD::BIT_CONVERT: + case ISD::BITCAST: #if 0 // If this is an FP->Int bitcast and if the sign bit is the only thing that // is demanded, turn this into a FGETSIGN. @@ -1710,7 +1714,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, isOperationLegal(ISD::FGETSIGN, Op.getValueType())) { // Make a FGETSIGN + SHL to move the sign bit into the appropriate // place. We expect the SHL to be eliminated by other optimizations. - SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), + SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), Op.getOperand(0)); unsigned ShVal = Op.getValueType().getSizeInBits()-1; SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy()); @@ -1743,21 +1747,21 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op, TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth); break; } - + // If we know the value of all of the demanded bits, return this as a // constant. if ((NewMask & (KnownZero|KnownOne)) == NewMask) return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); - + return false; } -/// computeMaskedBitsForTargetNode - Determine which of the bits specified -/// in Mask are known to be either zero or one and return them in the +/// computeMaskedBitsForTargetNode - Determine which of the bits specified +/// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. -void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, +void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, const APInt &Mask, - APInt &KnownZero, + APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const { @@ -1818,7 +1822,7 @@ static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { (KnownOne.countPopulation() == 1); } -/// SimplifySetCC - Try to simplify a setcc built with the specified operands +/// SimplifySetCC - Try to simplify a setcc built with the specified operands /// and cc. If it is unable to simplify it, return a null SDValue. SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, @@ -1870,6 +1874,30 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } } + SDValue CTPOP = N0; + // Look through truncs that don't change the value of a ctpop. + if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) + CTPOP = N0.getOperand(0); + + if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && + (N0 == CTPOP || N0.getValueType().getSizeInBits() > + Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { + EVT CTVT = CTPOP.getValueType(); + SDValue CTOp = CTPOP.getOperand(0); + + // (ctpop x) u< 2 -> (x & x-1) == 0 + // (ctpop x) u> 1 -> (x & x-1) != 0 + if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ + SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, + DAG.getConstant(1, CTVT)); + SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); + ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; + return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); + } + + // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. + } + // If the LHS is '(and load, const)', the RHS is 0, // the test is for equality or unsigned, and all 1 bits of the const are // in the same partial word, see if we can shorten the load. @@ -1885,7 +1913,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (!Lod->isVolatile() && Lod->isUnindexed()) { unsigned origWidth = N0.getValueType().getSizeInBits(); unsigned maskWidth = origWidth; - // We can narrow (e.g.) 16-bit extending loads on 32-bit target to + // We can narrow (e.g.) 16-bit extending loads on 32-bit target to // 8 bits, but have to be careful... if (Lod->getExtensionType() != ISD::NON_EXTLOAD) origWidth = Lod->getMemoryVT().getSizeInBits(); @@ -1919,7 +1947,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, Lod->getPointerInfo().getWithOffset(bestOffset), false, false, NewAlign); - return DAG.getSetCC(dl, VT, + return DAG.getSetCC(dl, VT, DAG.getNode(ISD::AND, dl, newVT, NewLoad, DAG.getConstant(bestMask.trunc(bestWidth), newVT)), @@ -1969,7 +1997,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, (isOperationLegal(ISD::SETCC, newVT) && getCondCodeAction(Cond, newVT)==Legal)) return DAG.getSetCC(dl, VT, N0.getOperand(0), - DAG.getConstant(APInt(C1).trunc(InSize), newVT), + DAG.getConstant(C1.trunc(InSize), newVT), Cond); break; } @@ -1987,7 +2015,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // the sign extension, it is impossible for both sides to be equal. if (C1.getMinSignedBits() > ExtSrcTyBits) return DAG.getConstant(Cond == ISD::SETNE, VT); - + SDValue ZextOp; EVT Op0Ty = N0.getOperand(0).getValueType(); if (Op0Ty == ExtSrcTy) { @@ -2000,10 +2028,10 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(ZextOp.getNode()); // Otherwise, make this a use of a zext. - return DAG.getSetCC(dl, VT, ZextOp, + return DAG.getSetCC(dl, VT, ZextOp, DAG.getConstant(C1 & APInt::getLowBitsSet( ExtDstTyBits, - ExtSrcTyBits), + ExtSrcTyBits), ExtDstTy), Cond); } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && @@ -2013,16 +2041,16 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); if (TrueWhenTrue) - return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); + return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); // Invert the condition. ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - CC = ISD::getSetCCInverse(CC, + CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType().isInteger()); return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); } if ((N0.getOpcode() == ISD::XOR || - (N0.getOpcode() == ISD::AND && + (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR && N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && isa<ConstantSDNode>(N0.getOperand(1)) && @@ -2038,7 +2066,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (N0.getOpcode() == ISD::XOR) Val = N0.getOperand(0); else { - assert(N0.getOpcode() == ISD::AND && + assert(N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR); // ((X^1)&1)^1 -> X & 1 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), @@ -2082,7 +2110,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } } } - + APInt MinVal, MaxVal; unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); if (ISD::isSignedIntSetCC(Cond)) { @@ -2097,7 +2125,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true // X >= C0 --> X > (C0-1) - return DAG.getSetCC(dl, VT, N0, + return DAG.getSetCC(dl, VT, N0, DAG.getConstant(C1-1, N1.getValueType()), (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); } @@ -2105,7 +2133,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (Cond == ISD::SETLE || Cond == ISD::SETULE) { if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true // X <= C0 --> X < (C0+1) - return DAG.getSetCC(dl, VT, N0, + return DAG.getSetCC(dl, VT, N0, DAG.getConstant(C1+1, N1.getValueType()), (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); } @@ -2128,12 +2156,12 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // If we have setult X, 1, turn it into seteq X, 0 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) - return DAG.getSetCC(dl, VT, N0, - DAG.getConstant(MinVal, N0.getValueType()), + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MinVal, N0.getValueType()), ISD::SETEQ); // If we have setugt X, Max-1, turn it into seteq X, Max else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) - return DAG.getSetCC(dl, VT, N0, + return DAG.getSetCC(dl, VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), ISD::SETEQ); @@ -2141,9 +2169,9 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, // by changing cc. // SETUGT X, SINTMAX -> SETLT X, 0 - if (Cond == ISD::SETUGT && + if (Cond == ISD::SETUGT && C1 == APInt::getSignedMaxValue(OperandBitSize)) - return DAG.getSetCC(dl, VT, N0, + return DAG.getSetCC(dl, VT, N0, DAG.getConstant(0, N1.getValueType()), ISD::SETLT); @@ -2164,7 +2192,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { EVT ShiftTy = DCI.isBeforeLegalize() ? - getPointerTy() : getShiftAmountTy(); + getPointerTy() : getShiftAmountTy(N0.getValueType()); if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 // Perform the xform if the AND RHS is a single bit. if (AndRHS->getAPIntValue().isPowerOf2()) { @@ -2203,7 +2231,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, return DAG.getUNDEF(VT); } } - + // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the // constant if knowing that the operand is non-nan is enough. We prefer to // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to @@ -2278,14 +2306,14 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, if (DAG.isCommutativeBinOp(N0.getOpcode())) { // If X op Y == Y op X, try other combinations. if (N0.getOperand(0) == N1.getOperand(1)) - return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), Cond); if (N0.getOperand(1) == N1.getOperand(0)) - return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), Cond); } } - + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { // Turn (X+C1) == C2 --> X == C2-C1 @@ -2295,7 +2323,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, LHSR->getAPIntValue(), N0.getValueType()), Cond); } - + // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. if (N0.getOpcode() == ISD::XOR) // If we know that all of the inverted bits are zero, don't bother @@ -2308,7 +2336,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, N0.getValueType()), Cond); } - + // Turn (C1-X) == C2 --> X == C1-C2 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { @@ -2319,7 +2347,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, N0.getValueType()), Cond); } - } + } } // Simplify (X+Z) == X --> Z == 0 @@ -2334,8 +2362,8 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); // (Z-X) == X --> Z == X<<1 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), - N1, - DAG.getConstant(1, getShiftAmountTy())); + N1, + DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); @@ -2356,8 +2384,8 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, } else if (N1.getNode()->hasOneUse()) { assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); // X == (Z-X) --> X<<1 == Z - SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, - DAG.getConstant(1, getShiftAmountTy())); + SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, + DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); if (!DCI.isCalledByLegalizer()) DCI.AddToWorklist(SH.getNode()); return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); @@ -2443,7 +2471,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. -bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA, +bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const { if (isa<GlobalAddressSDNode>(N)) { GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); @@ -2469,6 +2497,7 @@ bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA, } } } + return false; } @@ -2515,8 +2544,8 @@ TargetLowering::getConstraintType(const std::string &Constraint) const { return C_Other; } } - - if (Constraint.size() > 1 && Constraint[0] == '{' && + + if (Constraint.size() > 1 && Constraint[0] == '{' && Constraint[Constraint.size()-1] == '}') return C_Register; return C_Unknown; @@ -2555,7 +2584,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, // is possible and fine if either GV or C are missing. ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); - + // If we have "(add GV, C)", pull out GV/C if (Op.getOpcode() == ISD::ADD) { C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); @@ -2567,14 +2596,14 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, if (C == 0 || GA == 0) C = 0, GA = 0; } - + // If we find a valid operand, map to the TargetXXX version so that the // value itself doesn't get selected. if (GA) { // Either &GV or &GV+C if (ConstraintLetter != 'n') { int64_t Offs = GA->getOffset(); if (C) Offs += C->getZExtValue(); - Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), + Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), C ? C->getDebugLoc() : DebugLoc(), Op.getValueType(), Offs)); return; @@ -2618,8 +2647,8 @@ getRegForInlineAsmConstraint(const std::string &Constraint, for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), E = RI->regclass_end(); RCI != E; ++RCI) { const TargetRegisterClass *RC = *RCI; - - // If none of the value types for this register class are valid, we + + // If none of the value types for this register class are valid, we // can't use it. For example, 64-bit reg classes on 32-bit targets. bool isLegal = false; for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); @@ -2629,16 +2658,16 @@ getRegForInlineAsmConstraint(const std::string &Constraint, break; } } - + if (!isLegal) continue; - - for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); + + for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E; ++I) { if (RegName.equals_lower(RI->getName(*I))) return std::make_pair(*I, RC); } } - + return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); } @@ -2659,7 +2688,7 @@ unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { return atoi(ConstraintCode.c_str()); } - + /// ParseConstraints - Split up the constraint string from the inline /// assembly value into the specific constraints and their prefixes, /// and also tie in the associated operand values. @@ -2676,7 +2705,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( // ConstraintOperands list. InlineAsm::ConstraintInfoVector ConstraintInfos = IA->ParseConstraints(); - + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. unsigned ResNo = 0; // ResNo - The result number of the next output. @@ -2718,7 +2747,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( // Nothing to do. break; } - + if (OpInfo.CallOperandVal) { const llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); if (OpInfo.isIndirect) { @@ -2814,7 +2843,7 @@ TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); cIndex != eIndex; ++cIndex) { AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; - + // If this is an output operand with a matching input operand, look up the // matching input. If their types mismatch, e.g. one is an integer, the // other is floating point, or their sizes are different, flag it as an @@ -2979,12 +3008,12 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, break; } } - + // Things with matching constraints can only be registers, per gcc // documentation. This mainly affects "g" constraints. if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) continue; - + // This constraint letter is more general than the previous one, use it. int Generality = getConstraintGenerality(CType); if (Generality > BestGenerality) { @@ -2993,7 +3022,7 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, BestGenerality = Generality; } } - + OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; OpInfo.ConstraintType = BestType; } @@ -3002,10 +3031,10 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, /// type to use for the specific AsmOperandInfo, setting /// OpInfo.ConstraintCode and OpInfo.ConstraintType. void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, - SDValue Op, + SDValue Op, SelectionDAG *DAG) const { assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); - + // Single-letter constraints ('r') are very common. if (OpInfo.Codes.size() == 1) { OpInfo.ConstraintCode = OpInfo.Codes[0]; @@ -3013,7 +3042,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, } else { ChooseConstraint(OpInfo, *this, Op, DAG); } - + // 'X' matches anything. if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { // Labels and constants are handled elsewhere ('X' is the only thing @@ -3024,7 +3053,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, OpInfo.CallOperandVal = v; return; } - + // Otherwise, try to resolve it to something we know about by looking at // the actual operand type. if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { @@ -3040,7 +3069,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. -bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, +bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const { // The default implementation of this implements a conservative RISCy, r+r and // r+i addr mode. @@ -3048,12 +3077,12 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, // Allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; - + // No global is ever allowed as a base. if (AM.BaseGV) return false; - - // Only support r+r, + + // Only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; @@ -3068,7 +3097,7 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, // Allow 2*r as r+r. break; } - + return true; } @@ -3076,19 +3105,19 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> -SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, +SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, std::vector<SDNode*>* Created) const { EVT VT = N->getValueType(0); DebugLoc dl= N->getDebugLoc(); - + // Check to see if we can do this. // FIXME: We should be more aggressive here. if (!isTypeLegal(VT)) return SDValue(); - + APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); APInt::ms magics = d.magic(); - + // Multiply the numerator (operand 0) by the magic value // FIXME: We should support doing a MUL in a wider type SDValue Q; @@ -3102,7 +3131,7 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, else return SDValue(); // No mulhs or equvialent // If d > 0 and m < 0, add the numerator - if (d.isStrictlyPositive() && magics.m.isNegative()) { + if (d.isStrictlyPositive() && magics.m.isNegative()) { Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); if (Created) Created->push_back(Q.getNode()); @@ -3115,15 +3144,15 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, } // Shift right algebraic if shift value is nonzero if (magics.s > 0) { - Q = DAG.getNode(ISD::SRA, dl, VT, Q, - DAG.getConstant(magics.s, getShiftAmountTy())); + Q = DAG.getNode(ISD::SRA, dl, VT, Q, + DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); if (Created) Created->push_back(Q.getNode()); } // Extract the sign bit and add it to the quotient SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, - getShiftAmountTy())); + getShiftAmountTy(Q.getValueType()))); if (Created) Created->push_back(T.getNode()); return DAG.getNode(ISD::ADD, dl, VT, Q, T); @@ -3166,20 +3195,20 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, if (magics.a == 0) { assert(magics.s < N1C->getAPIntValue().getBitWidth() && "We shouldn't generate an undefined shift!"); - return DAG.getNode(ISD::SRL, dl, VT, Q, - DAG.getConstant(magics.s, getShiftAmountTy())); + return DAG.getNode(ISD::SRL, dl, VT, Q, + DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); } else { SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); if (Created) Created->push_back(NPQ.getNode()); - NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, - DAG.getConstant(1, getShiftAmountTy())); + NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, + DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); if (Created) Created->push_back(NPQ.getNode()); NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); if (Created) Created->push_back(NPQ.getNode()); - return DAG.getNode(ISD::SRL, dl, VT, NPQ, - DAG.getConstant(magics.s-1, getShiftAmountTy())); + return DAG.getNode(ISD::SRL, dl, VT, NPQ, + DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); } } |