diff options
author | Gordon Henriksen <gordonhenriksen@mac.com> | 2008-08-17 12:56:54 +0000 |
---|---|---|
committer | Gordon Henriksen <gordonhenriksen@mac.com> | 2008-08-17 12:56:54 +0000 |
commit | f194af2c195199ed66d8a1a9df60acf69bb14410 (patch) | |
tree | 5b3d6361013f6491b7c1178eef88ac30a08de64c /lib/CodeGen/ShadowStackGC.cpp | |
parent | 3385c9b3aefbeb3fedca07320b1a7eedc68f220d (diff) | |
download | external_llvm-f194af2c195199ed66d8a1a9df60acf69bb14410.zip external_llvm-f194af2c195199ed66d8a1a9df60acf69bb14410.tar.gz external_llvm-f194af2c195199ed66d8a1a9df60acf69bb14410.tar.bz2 |
Factor GC metadata table assembly generation out of Collector in preparation for splitting AsmPrinter into its own library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54881 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/ShadowStackGC.cpp')
-rw-r--r-- | lib/CodeGen/ShadowStackGC.cpp | 441 |
1 files changed, 441 insertions, 0 deletions
diff --git a/lib/CodeGen/ShadowStackGC.cpp b/lib/CodeGen/ShadowStackGC.cpp new file mode 100644 index 0000000..850c005 --- /dev/null +++ b/lib/CodeGen/ShadowStackGC.cpp @@ -0,0 +1,441 @@ +//===-- ShadowStackCollector.cpp - GC support for uncooperative targets ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements lowering for the llvm.gc* intrinsics for targets that do +// not natively support them (which includes the C backend). Note that the code +// generated is not quite as efficient as collectors which generate stack maps +// to identify roots. +// +// This pass implements the code transformation described in this paper: +// "Accurate Garbage Collection in an Uncooperative Environment" +// Fergus Henderson, ISMM, 2002 +// +// In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with +// this collector. +// +// In order to support this particular transformation, all stack roots are +// coallocated in the stack. This allows a fully target-independent stack map +// while introducing only minor runtime overhead. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "shadowstackgc" +#include "llvm/CodeGen/GCs.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Module.h" +#include "llvm/Support/IRBuilder.h" + +using namespace llvm; + +namespace { + + class VISIBILITY_HIDDEN ShadowStackCollector : public Collector { + /// RootChain - This is the global linked-list that contains the chain of GC + /// roots. + GlobalVariable *Head; + + /// StackEntryTy - Abstract type of a link in the shadow stack. + /// + const StructType *StackEntryTy; + + /// Roots - GC roots in the current function. Each is a pair of the + /// intrinsic call and its corresponding alloca. + std::vector<std::pair<CallInst*,AllocaInst*> > Roots; + + public: + ShadowStackCollector(); + + bool initializeCustomLowering(Module &M); + bool performCustomLowering(Function &F); + + private: + bool IsNullValue(Value *V); + Constant *GetFrameMap(Function &F); + const Type* GetConcreteStackEntryType(Function &F); + void CollectRoots(Function &F); + static GetElementPtrInst *CreateGEP(IRBuilder<> &B, Value *BasePtr, + int Idx1, const char *Name); + static GetElementPtrInst *CreateGEP(IRBuilder<> &B, Value *BasePtr, + int Idx1, int Idx2, const char *Name); + }; + +} + +static CollectorRegistry::Add<ShadowStackCollector> +Y("shadow-stack", + "Very portable collector for uncooperative code generators"); + +namespace { + /// EscapeEnumerator - This is a little algorithm to find all escape points + /// from a function so that "finally"-style code can be inserted. In addition + /// to finding the existing return and unwind instructions, it also (if + /// necessary) transforms any call instructions into invokes and sends them to + /// a landing pad. + /// + /// It's wrapped up in a state machine using the same transform C# uses for + /// 'yield return' enumerators, This transform allows it to be non-allocating. + class VISIBILITY_HIDDEN EscapeEnumerator { + Function &F; + const char *CleanupBBName; + + // State. + int State; + Function::iterator StateBB, StateE; + IRBuilder<> Builder; + + public: + EscapeEnumerator(Function &F, const char *N = "cleanup") + : F(F), CleanupBBName(N), State(0) {} + + IRBuilder<> *Next() { + switch (State) { + default: + return 0; + + case 0: + StateBB = F.begin(); + StateE = F.end(); + State = 1; + + case 1: + // Find all 'return' and 'unwind' instructions. + while (StateBB != StateE) { + BasicBlock *CurBB = StateBB++; + + // Branches and invokes do not escape, only unwind and return do. + TerminatorInst *TI = CurBB->getTerminator(); + if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI)) + continue; + + Builder.SetInsertPoint(TI->getParent(), TI); + return &Builder; + } + + State = 2; + + // Find all 'call' instructions. + SmallVector<Instruction*,16> Calls; + for (Function::iterator BB = F.begin(), + E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator II = BB->begin(), + EE = BB->end(); II != EE; ++II) + if (CallInst *CI = dyn_cast<CallInst>(II)) + if (!CI->getCalledFunction() || + !CI->getCalledFunction()->getIntrinsicID()) + Calls.push_back(CI); + + if (Calls.empty()) + return 0; + + // Create a cleanup block. + BasicBlock *CleanupBB = BasicBlock::Create(CleanupBBName, &F); + UnwindInst *UI = new UnwindInst(CleanupBB); + + // Transform the 'call' instructions into 'invoke's branching to the + // cleanup block. Go in reverse order to make prettier BB names. + SmallVector<Value*,16> Args; + for (unsigned I = Calls.size(); I != 0; ) { + CallInst *CI = cast<CallInst>(Calls[--I]); + + // Split the basic block containing the function call. + BasicBlock *CallBB = CI->getParent(); + BasicBlock *NewBB = + CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); + + // Remove the unconditional branch inserted at the end of CallBB. + CallBB->getInstList().pop_back(); + NewBB->getInstList().remove(CI); + + // Create a new invoke instruction. + Args.clear(); + Args.append(CI->op_begin() + 1, CI->op_end()); + + InvokeInst *II = InvokeInst::Create(CI->getOperand(0), + NewBB, CleanupBB, + Args.begin(), Args.end(), + CI->getName(), CallBB); + II->setCallingConv(CI->getCallingConv()); + II->setParamAttrs(CI->getParamAttrs()); + CI->replaceAllUsesWith(II); + delete CI; + } + + Builder.SetInsertPoint(UI->getParent(), UI); + return &Builder; + } + } + }; + +} + +// ----------------------------------------------------------------------------- + +Collector *llvm::createShadowStackCollector() { + return new ShadowStackCollector(); +} + +ShadowStackCollector::ShadowStackCollector() : Head(0), StackEntryTy(0) { + InitRoots = true; + CustomRoots = true; +} + +Constant *ShadowStackCollector::GetFrameMap(Function &F) { + // doInitialization creates the abstract type of this value. + + Type *VoidPtr = PointerType::getUnqual(Type::Int8Ty); + + // Truncate the ShadowStackDescriptor if some metadata is null. + unsigned NumMeta = 0; + SmallVector<Constant*,16> Metadata; + for (unsigned I = 0; I != Roots.size(); ++I) { + Constant *C = cast<Constant>(Roots[I].first->getOperand(2)); + if (!C->isNullValue()) + NumMeta = I + 1; + Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); + } + + Constant *BaseElts[] = { + ConstantInt::get(Type::Int32Ty, Roots.size(), false), + ConstantInt::get(Type::Int32Ty, NumMeta, false), + }; + + Constant *DescriptorElts[] = { + ConstantStruct::get(BaseElts, 2), + ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), + Metadata.begin(), NumMeta) + }; + + Constant *FrameMap = ConstantStruct::get(DescriptorElts, 2); + + std::string TypeName("gc_map."); + TypeName += utostr(NumMeta); + F.getParent()->addTypeName(TypeName, FrameMap->getType()); + + // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems + // that, short of multithreaded LLVM, it should be safe; all that is + // necessary is that a simple Module::iterator loop not be invalidated. + // Appending to the GlobalVariable list is safe in that sense. + // + // All of the output passes emit globals last. The ExecutionEngine + // explicitly supports adding globals to the module after + // initialization. + // + // Still, if it isn't deemed acceptable, then this transformation needs + // to be a ModulePass (which means it cannot be in the 'llc' pipeline + // (which uses a FunctionPassManager (which segfaults (not asserts) if + // provided a ModulePass))). + Constant *GV = new GlobalVariable(FrameMap->getType(), true, + GlobalVariable::InternalLinkage, + FrameMap, "__gc_" + F.getName(), + F.getParent()); + + Constant *GEPIndices[2] = { ConstantInt::get(Type::Int32Ty, 0), + ConstantInt::get(Type::Int32Ty, 0) }; + return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2); +} + +const Type* ShadowStackCollector::GetConcreteStackEntryType(Function &F) { + // doInitialization creates the generic version of this type. + std::vector<const Type*> EltTys; + EltTys.push_back(StackEntryTy); + for (size_t I = 0; I != Roots.size(); I++) + EltTys.push_back(Roots[I].second->getAllocatedType()); + Type *Ty = StructType::get(EltTys); + + std::string TypeName("gc_stackentry."); + TypeName += F.getName(); + F.getParent()->addTypeName(TypeName, Ty); + + return Ty; +} + +/// doInitialization - If this module uses the GC intrinsics, find them now. If +/// not, exit fast. +bool ShadowStackCollector::initializeCustomLowering(Module &M) { + // struct FrameMap { + // int32_t NumRoots; // Number of roots in stack frame. + // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots. + // void *Meta[]; // May be absent for roots without metadata. + // }; + std::vector<const Type*> EltTys; + EltTys.push_back(Type::Int32Ty); // 32 bits is ok up to a 32GB stack frame. :) + EltTys.push_back(Type::Int32Ty); // Specifies length of variable length array. + StructType *FrameMapTy = StructType::get(EltTys); + M.addTypeName("gc_map", FrameMapTy); + PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); + + // struct StackEntry { + // ShadowStackEntry *Next; // Caller's stack entry. + // FrameMap *Map; // Pointer to constant FrameMap. + // void *Roots[]; // Stack roots (in-place array, so we pretend). + // }; + OpaqueType *RecursiveTy = OpaqueType::get(); + + EltTys.clear(); + EltTys.push_back(PointerType::getUnqual(RecursiveTy)); + EltTys.push_back(FrameMapPtrTy); + PATypeHolder LinkTyH = StructType::get(EltTys); + + RecursiveTy->refineAbstractTypeTo(LinkTyH.get()); + StackEntryTy = cast<StructType>(LinkTyH.get()); + const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); + M.addTypeName("gc_stackentry", LinkTyH.get()); // FIXME: Is this safe from + // a FunctionPass? + + // Get the root chain if it already exists. + Head = M.getGlobalVariable("llvm_gc_root_chain"); + if (!Head) { + // If the root chain does not exist, insert a new one with linkonce + // linkage! + Head = new GlobalVariable(StackEntryPtrTy, false, + GlobalValue::LinkOnceLinkage, + Constant::getNullValue(StackEntryPtrTy), + "llvm_gc_root_chain", &M); + } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { + Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); + Head->setLinkage(GlobalValue::LinkOnceLinkage); + } + + return true; +} + +bool ShadowStackCollector::IsNullValue(Value *V) { + if (Constant *C = dyn_cast<Constant>(V)) + return C->isNullValue(); + return false; +} + +void ShadowStackCollector::CollectRoots(Function &F) { + // FIXME: Account for original alignment. Could fragment the root array. + // Approach 1: Null initialize empty slots at runtime. Yuck. + // Approach 2: Emit a map of the array instead of just a count. + + assert(Roots.empty() && "Not cleaned up?"); + + SmallVector<std::pair<CallInst*,AllocaInst*>,16> MetaRoots; + + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) + if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) + if (Function *F = CI->getCalledFunction()) + if (F->getIntrinsicID() == Intrinsic::gcroot) { + std::pair<CallInst*,AllocaInst*> Pair = std::make_pair( + CI, cast<AllocaInst>(CI->getOperand(1)->stripPointerCasts())); + if (IsNullValue(CI->getOperand(2))) + Roots.push_back(Pair); + else + MetaRoots.push_back(Pair); + } + + // Number roots with metadata (usually empty) at the beginning, so that the + // FrameMap::Meta array can be elided. + Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); +} + +GetElementPtrInst * +ShadowStackCollector::CreateGEP(IRBuilder<> &B, Value *BasePtr, + int Idx, int Idx2, const char *Name) { + Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0), + ConstantInt::get(Type::Int32Ty, Idx), + ConstantInt::get(Type::Int32Ty, Idx2) }; + Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name); + + assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); + + return dyn_cast<GetElementPtrInst>(Val); +} + +GetElementPtrInst * +ShadowStackCollector::CreateGEP(IRBuilder<> &B, Value *BasePtr, + int Idx, const char *Name) { + Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0), + ConstantInt::get(Type::Int32Ty, Idx) }; + Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name); + + assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); + + return dyn_cast<GetElementPtrInst>(Val); +} + +/// runOnFunction - Insert code to maintain the shadow stack. +bool ShadowStackCollector::performCustomLowering(Function &F) { + // Find calls to llvm.gcroot. + CollectRoots(F); + + // If there are no roots in this function, then there is no need to add a + // stack map entry for it. + if (Roots.empty()) + return false; + + // Build the constant map and figure the type of the shadow stack entry. + Value *FrameMap = GetFrameMap(F); + const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); + + // Build the shadow stack entry at the very start of the function. + BasicBlock::iterator IP = F.getEntryBlock().begin(); + IRBuilder<> AtEntry(IP->getParent(), IP); + + Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0, + "gc_frame"); + + while (isa<AllocaInst>(IP)) ++IP; + AtEntry.SetInsertPoint(IP->getParent(), IP); + + // Initialize the map pointer and load the current head of the shadow stack. + Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead"); + Instruction *EntryMapPtr = CreateGEP(AtEntry, StackEntry,0,1,"gc_frame.map"); + AtEntry.CreateStore(FrameMap, EntryMapPtr); + + // After all the allocas... + for (unsigned I = 0, E = Roots.size(); I != E; ++I) { + // For each root, find the corresponding slot in the aggregate... + Value *SlotPtr = CreateGEP(AtEntry, StackEntry, 1 + I, "gc_root"); + + // And use it in lieu of the alloca. + AllocaInst *OriginalAlloca = Roots[I].second; + SlotPtr->takeName(OriginalAlloca); + OriginalAlloca->replaceAllUsesWith(SlotPtr); + } + + // Move past the original stores inserted by Collector::InitRoots. This isn't + // really necessary (the collector would never see the intermediate state), + // but it's nicer not to push the half-initialized entry onto the stack. + while (isa<StoreInst>(IP)) ++IP; + AtEntry.SetInsertPoint(IP->getParent(), IP); + + // Push the entry onto the shadow stack. + Instruction *EntryNextPtr = CreateGEP(AtEntry,StackEntry,0,0,"gc_frame.next"); + Instruction *NewHeadVal = CreateGEP(AtEntry,StackEntry, 0, "gc_newhead"); + AtEntry.CreateStore(CurrentHead, EntryNextPtr); + AtEntry.CreateStore(NewHeadVal, Head); + + // For each instruction that escapes... + EscapeEnumerator EE(F, "gc_cleanup"); + while (IRBuilder<> *AtExit = EE.Next()) { + // Pop the entry from the shadow stack. Don't reuse CurrentHead from + // AtEntry, since that would make the value live for the entire function. + Instruction *EntryNextPtr2 = CreateGEP(*AtExit, StackEntry, 0, 0, + "gc_frame.next"); + Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); + AtExit->CreateStore(SavedHead, Head); + } + + // Delete the original allocas (which are no longer used) and the intrinsic + // calls (which are no longer valid). Doing this last avoids invalidating + // iterators. + for (unsigned I = 0, E = Roots.size(); I != E; ++I) { + Roots[I].first->eraseFromParent(); + Roots[I].second->eraseFromParent(); + } + + Roots.clear(); + return true; +} |