aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Support
diff options
context:
space:
mode:
authorAndrew Trick <atrick@apple.com>2013-10-15 23:33:07 +0000
committerAndrew Trick <atrick@apple.com>2013-10-15 23:33:07 +0000
commit6a7770b7ae43d784dec6f4d3c73ffed6166f3882 (patch)
tree289f5949305117ae55c95f997e9f6e50b28b5ece /lib/Support
parentc622824ccbb74ac726c656ebc98647810d152cce (diff)
downloadexternal_llvm-6a7770b7ae43d784dec6f4d3c73ffed6166f3882.zip
external_llvm-6a7770b7ae43d784dec6f4d3c73ffed6166f3882.tar.gz
external_llvm-6a7770b7ae43d784dec6f4d3c73ffed6166f3882.tar.bz2
Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source order. Soon, the SelectionDAG scheduler can be bypassed saving a nice chunk of compile time. Performance differences that result from this change are often a consequence of register coalescing. The register coalescer is far from perfect. Bugs can be filed for deficiencies. On x86 SandyBridge/Haswell, the source order schedule is often preserved, particularly for small blocks. Register pressure is generally improved over the SD scheduler's ILP mode. However, we are still able to handle large blocks that require latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also attempts to discover the critical path in single-block loops and adjust heuristics accordingly. The MI scheduler relies on the new machine model. This is currently unimplemented for AVX, so we may not be generating the best code yet. Unit tests are updated so they don't depend on SD scheduling heuristics. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192750 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Support')
0 files changed, 0 insertions, 0 deletions