aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC/PPCISelLowering.cpp
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-07-21 00:45:20 -0700
committerStephen Hines <srhines@google.com>2014-07-21 00:45:20 -0700
commitc6a4f5e819217e1e12c458aed8e7b122e23a3a58 (patch)
tree81b7dd2bb4370a392f31d332a566c903b5744764 /lib/Target/PowerPC/PPCISelLowering.cpp
parent19c6fbb3e8aaf74093afa08013134b61fa08f245 (diff)
downloadexternal_llvm-c6a4f5e819217e1e12c458aed8e7b122e23a3a58.zip
external_llvm-c6a4f5e819217e1e12c458aed8e7b122e23a3a58.tar.gz
external_llvm-c6a4f5e819217e1e12c458aed8e7b122e23a3a58.tar.bz2
Update LLVM for rebase to r212749.
Includes a cherry-pick of: r212948 - fixes a small issue with atomic calls Change-Id: Ib97bd980b59f18142a69506400911a6009d9df18
Diffstat (limited to 'lib/Target/PowerPC/PPCISelLowering.cpp')
-rw-r--r--lib/Target/PowerPC/PPCISelLowering.cpp1002
1 files changed, 543 insertions, 459 deletions
diff --git a/lib/Target/PowerPC/PPCISelLowering.cpp b/lib/Target/PowerPC/PPCISelLowering.cpp
index cf4c9e6..bc057bf 100644
--- a/lib/Target/PowerPC/PPCISelLowering.cpp
+++ b/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -19,6 +19,7 @@
#include "PPCTargetObjectFile.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -50,20 +51,18 @@ cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
// FIXME: Remove this once the bug has been fixed!
extern cl::opt<bool> ANDIGlueBug;
-static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
- if (TM.getSubtargetImpl()->isDarwin())
+static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
+ // If it isn't a Mach-O file then it's going to be a linux ELF
+ // object file.
+ if (TT.isOSDarwin())
return new TargetLoweringObjectFileMachO();
- if (TM.getSubtargetImpl()->isSVR4ABI())
- return new PPC64LinuxTargetObjectFile();
-
- return new TargetLoweringObjectFileELF();
+ return new PPC64LinuxTargetObjectFile();
}
PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
- : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
- const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
-
+ : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))),
+ Subtarget(*TM.getSubtargetImpl()) {
setPow2DivIsCheap();
// Use _setjmp/_longjmp instead of setjmp/longjmp.
@@ -72,7 +71,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
// arguments are at least 4/8 bytes aligned.
- bool isPPC64 = Subtarget->isPPC64();
+ bool isPPC64 = Subtarget.isPPC64();
setMinStackArgumentAlignment(isPPC64 ? 8:4);
// Set up the register classes.
@@ -98,10 +97,10 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
- if (Subtarget->useCRBits()) {
+ if (Subtarget.useCRBits()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
- if (isPPC64 || Subtarget->hasFPCVT()) {
+ if (isPPC64 || Subtarget.hasFPCVT()) {
setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
isPPC64 ? MVT::i64 : MVT::i32);
@@ -176,17 +175,17 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
// If we're enabling GP optimizations, use hardware square root
- if (!Subtarget->hasFSQRT() &&
+ if (!Subtarget.hasFSQRT() &&
!(TM.Options.UnsafeFPMath &&
- Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
+ Subtarget.hasFRSQRTE() && Subtarget.hasFRE()))
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
- if (!Subtarget->hasFSQRT() &&
+ if (!Subtarget.hasFSQRT() &&
!(TM.Options.UnsafeFPMath &&
- Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
+ Subtarget.hasFRSQRTES() && Subtarget.hasFRES()))
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
- if (Subtarget->hasFCPSGN()) {
+ if (Subtarget.hasFCPSGN()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
} else {
@@ -194,7 +193,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
}
- if (Subtarget->hasFPRND()) {
+ if (Subtarget.hasFPRND()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
@@ -216,7 +215,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
- if (Subtarget->hasPOPCNTD()) {
+ if (Subtarget.hasPOPCNTD()) {
setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
} else {
@@ -228,7 +227,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
setOperationAction(ISD::ROTR, MVT::i64 , Expand);
- if (!Subtarget->useCRBits()) {
+ if (!Subtarget.useCRBits()) {
// PowerPC does not have Select
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
@@ -241,11 +240,11 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// PowerPC wants to optimize integer setcc a bit
- if (!Subtarget->useCRBits())
+ if (!Subtarget.useCRBits())
setOperationAction(ISD::SETCC, MVT::i32, Custom);
// PowerPC does not have BRCOND which requires SetCC
- if (!Subtarget->useCRBits())
+ if (!Subtarget.useCRBits())
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
@@ -297,7 +296,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
- if (Subtarget->isSVR4ABI()) {
+ if (Subtarget.isSVR4ABI()) {
if (isPPC64) {
// VAARG always uses double-word chunks, so promote anything smaller.
setOperationAction(ISD::VAARG, MVT::i1, Promote);
@@ -317,7 +316,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
} else
setOperationAction(ISD::VAARG, MVT::Other, Expand);
- if (Subtarget->isSVR4ABI() && !isPPC64)
+ if (Subtarget.isSVR4ABI() && !isPPC64)
// VACOPY is custom lowered with the 32-bit SVR4 ABI.
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
else
@@ -350,7 +349,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
- if (Subtarget->has64BitSupport()) {
+ if (Subtarget.has64BitSupport()) {
// They also have instructions for converting between i64 and fp.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
@@ -360,7 +359,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// We cannot do this with Promote because i64 is not a legal type.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
- if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
+ if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
} else {
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
@@ -368,8 +367,8 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
}
// With the instructions enabled under FPCVT, we can do everything.
- if (PPCSubTarget.hasFPCVT()) {
- if (Subtarget->has64BitSupport()) {
+ if (Subtarget.hasFPCVT()) {
+ if (Subtarget.has64BitSupport()) {
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
@@ -382,7 +381,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
}
- if (Subtarget->use64BitRegs()) {
+ if (Subtarget.use64BitRegs()) {
// 64-bit PowerPC implementations can support i64 types directly
addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
@@ -398,7 +397,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
- if (Subtarget->hasAltivec()) {
+ if (Subtarget.hasAltivec()) {
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
@@ -488,7 +487,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
setOperationAction(ISD::SELECT, MVT::v4i32,
- Subtarget->useCRBits() ? Legal : Expand);
+ Subtarget.useCRBits() ? Legal : Expand);
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
@@ -507,7 +506,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
- if (TM.Options.UnsafeFPMath || Subtarget->hasVSX()) {
+ if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
}
@@ -535,7 +534,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
- if (Subtarget->hasVSX()) {
+ if (Subtarget.hasVSX()) {
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
@@ -613,7 +612,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
}
}
- if (Subtarget->has64BitSupport()) {
+ if (Subtarget.has64BitSupport()) {
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
}
@@ -642,7 +641,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
- if (Subtarget->useCRBits())
+ if (Subtarget.useCRBits())
setTargetDAGCombine(ISD::BRCOND);
setTargetDAGCombine(ISD::BSWAP);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
@@ -651,7 +650,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
- if (Subtarget->useCRBits()) {
+ if (Subtarget.useCRBits()) {
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::SELECT_CC);
@@ -664,7 +663,7 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
}
// Darwin long double math library functions have $LDBL128 appended.
- if (Subtarget->isDarwin()) {
+ if (Subtarget.isDarwin()) {
setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
@@ -679,21 +678,21 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// With 32 condition bits, we don't need to sink (and duplicate) compares
// aggressively in CodeGenPrep.
- if (Subtarget->useCRBits())
+ if (Subtarget.useCRBits())
setHasMultipleConditionRegisters();
setMinFunctionAlignment(2);
- if (PPCSubTarget.isDarwin())
+ if (Subtarget.isDarwin())
setPrefFunctionAlignment(4);
- if (isPPC64 && Subtarget->isJITCodeModel())
+ if (isPPC64 && Subtarget.isJITCodeModel())
// Temporary workaround for the inability of PPC64 JIT to handle jump
// tables.
setSupportJumpTables(false);
setInsertFencesForAtomic(true);
- if (Subtarget->enableMachineScheduler())
+ if (Subtarget.enableMachineScheduler())
setSchedulingPreference(Sched::Source);
else
setSchedulingPreference(Sched::Hybrid);
@@ -702,8 +701,8 @@ PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
// The Freescale cores does better with aggressive inlining of memcpy and
// friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
- if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
- Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
+ if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
+ Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
MaxStoresPerMemset = 32;
MaxStoresPerMemsetOptSize = 16;
MaxStoresPerMemcpy = 32;
@@ -747,14 +746,14 @@ static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
/// function arguments in the caller parameter area.
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
// Darwin passes everything on 4 byte boundary.
- if (PPCSubTarget.isDarwin())
+ if (Subtarget.isDarwin())
return 4;
// 16byte and wider vectors are passed on 16byte boundary.
// The rest is 8 on PPC64 and 4 on PPC32 boundary.
- unsigned Align = PPCSubTarget.isPPC64() ? 8 : 4;
- if (PPCSubTarget.hasAltivec() || PPCSubTarget.hasQPX())
- getMaxByValAlign(Ty, Align, PPCSubTarget.hasQPX() ? 32 : 16);
+ unsigned Align = Subtarget.isPPC64() ? 8 : 4;
+ if (Subtarget.hasAltivec() || Subtarget.hasQPX())
+ getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
return Align;
}
@@ -774,7 +773,6 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
- case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE";
case PPCISD::LOAD: return "PPCISD::LOAD";
case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
@@ -826,7 +824,7 @@ const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
- return PPCSubTarget.useCRBits() ? MVT::i1 : MVT::i32;
+ return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
@@ -855,15 +853,17 @@ static bool isConstantOrUndef(int Op, int Val) {
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
-bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
+bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
+ SelectionDAG &DAG) {
+ unsigned j = DAG.getTarget().getDataLayout()->isLittleEndian() ? 0 : 1;
if (!isUnary) {
for (unsigned i = 0; i != 16; ++i)
- if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2+j))
return false;
} else {
for (unsigned i = 0; i != 8; ++i)
- if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
- !isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
+ if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
return false;
}
return true;
@@ -871,18 +871,27 @@ bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
-bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
+bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
+ SelectionDAG &DAG) {
+ unsigned j, k;
+ if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ j = 0;
+ k = 1;
+ } else {
+ j = 2;
+ k = 3;
+ }
if (!isUnary) {
for (unsigned i = 0; i != 16; i += 2)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+k))
return false;
} else {
for (unsigned i = 0; i != 8; i += 2)
- if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
- !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
- !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
- !isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
+ if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+1), i*2+k) ||
+ !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
+ !isConstantOrUndef(N->getMaskElt(i+9), i*2+k))
return false;
}
return true;
@@ -909,27 +918,39 @@ static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
}
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
-/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
+/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
- bool isUnary) {
- if (!isUnary)
- return isVMerge(N, UnitSize, 8, 24);
- return isVMerge(N, UnitSize, 8, 8);
+ bool isUnary, SelectionDAG &DAG) {
+ if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 0, 16);
+ return isVMerge(N, UnitSize, 0, 0);
+ } else {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 8, 24);
+ return isVMerge(N, UnitSize, 8, 8);
+ }
}
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
-/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
+/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
- bool isUnary) {
- if (!isUnary)
- return isVMerge(N, UnitSize, 0, 16);
- return isVMerge(N, UnitSize, 0, 0);
+ bool isUnary, SelectionDAG &DAG) {
+ if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 8, 24);
+ return isVMerge(N, UnitSize, 8, 8);
+ } else {
+ if (!isUnary)
+ return isVMerge(N, UnitSize, 0, 16);
+ return isVMerge(N, UnitSize, 0, 0);
+ }
}
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
-int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
+int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG) {
if (N->getValueType(0) != MVT::v16i8)
return -1;
@@ -946,18 +967,38 @@ int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
// numbered from this value.
unsigned ShiftAmt = SVOp->getMaskElt(i);
if (ShiftAmt < i) return -1;
- ShiftAmt -= i;
- if (!isUnary) {
- // Check the rest of the elements to see if they are consecutive.
- for (++i; i != 16; ++i)
- if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
- return -1;
- } else {
- // Check the rest of the elements to see if they are consecutive.
- for (++i; i != 16; ++i)
- if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
- return -1;
+ if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+
+ ShiftAmt += i;
+
+ if (!isUnary) {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt - i))
+ return -1;
+ } else {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt - i) & 15))
+ return -1;
+ }
+
+ } else { // Big Endian
+
+ ShiftAmt -= i;
+
+ if (!isUnary) {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
+ return -1;
+ } else {
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != 16; ++i)
+ if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
+ return -1;
+ }
}
return ShiftAmt;
}
@@ -1010,10 +1051,14 @@ bool PPC::isAllNegativeZeroVector(SDNode *N) {
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
-unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
+unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
+ SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
assert(isSplatShuffleMask(SVOp, EltSize));
- return SVOp->getMaskElt(0) / EltSize;
+ if (DAG.getTarget().getDataLayout()->isLittleEndian())
+ return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
+ else
+ return SVOp->getMaskElt(0) / EltSize;
}
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
@@ -1299,7 +1344,7 @@ bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
short Imm;
if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
- Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
+ Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
CN->getValueType(0));
return true;
}
@@ -1350,7 +1395,7 @@ bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
}
// Otherwise, do it the hard way, using R0 as the base register.
- Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
+ Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
N.getValueType());
Index = N;
return true;
@@ -1497,7 +1542,7 @@ SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
- if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
DAG.getRegister(PPC::X2, MVT::i64));
@@ -1518,7 +1563,7 @@ SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
- if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
DAG.getRegister(PPC::X2, MVT::i64));
@@ -1555,7 +1600,7 @@ SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SDLoc dl(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
- bool is64bit = PPCSubTarget.isPPC64();
+ bool is64bit = Subtarget.isPPC64();
TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
@@ -1646,7 +1691,7 @@ SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
// 64-bit SVR4 ABI code is always position-independent.
// The actual address of the GlobalValue is stored in the TOC.
- if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
+ if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
DAG.getRegister(PPC::X2, MVT::i64));
@@ -1891,7 +1936,8 @@ SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
- DAG.getExternalSymbol("__trampoline_setup", PtrVT), &Args, 0);
+ DAG.getExternalSymbol("__trampoline_setup", PtrVT),
+ std::move(Args), 0);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.second;
@@ -2086,6 +2132,43 @@ static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
return ArgSize;
}
+/// CalculateStackSlotAlignment - Calculates the alignment of this argument
+/// on the stack.
+static unsigned CalculateStackSlotAlignment(EVT ArgVT, ISD::ArgFlagsTy Flags,
+ unsigned PtrByteSize) {
+ unsigned Align = PtrByteSize;
+
+ // Altivec parameters are padded to a 16 byte boundary.
+ if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
+ ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
+ ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
+ Align = 16;
+
+ // ByVal parameters are aligned as requested.
+ if (Flags.isByVal()) {
+ unsigned BVAlign = Flags.getByValAlign();
+ if (BVAlign > PtrByteSize) {
+ if (BVAlign % PtrByteSize != 0)
+ llvm_unreachable(
+ "ByVal alignment is not a multiple of the pointer size");
+
+ Align = BVAlign;
+ }
+ }
+
+ return Align;
+}
+
+/// EnsureStackAlignment - Round stack frame size up from NumBytes to
+/// ensure minimum alignment required for target.
+static unsigned EnsureStackAlignment(const TargetMachine &Target,
+ unsigned NumBytes) {
+ unsigned TargetAlign = Target.getFrameLowering()->getStackAlignment();
+ unsigned AlignMask = TargetAlign - 1;
+ NumBytes = (NumBytes + AlignMask) & ~AlignMask;
+ return NumBytes;
+}
+
SDValue
PPCTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
@@ -2094,8 +2177,8 @@ PPCTargetLowering::LowerFormalArguments(SDValue Chain,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
- if (PPCSubTarget.isSVR4ABI()) {
- if (PPCSubTarget.isPPC64())
+ if (Subtarget.isSVR4ABI()) {
+ if (Subtarget.isPPC64())
return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
dl, DAG, InVals);
else
@@ -2161,7 +2244,8 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
getTargetMachine(), ArgLocs, *DAG.getContext());
// Reserve space for the linkage area on the stack.
- CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(false, false);
+ CCInfo.AllocateStack(LinkageSize, PtrByteSize);
CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
@@ -2184,7 +2268,7 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
RC = &PPC::F4RCRegClass;
break;
case MVT::f64:
- if (PPCSubTarget.hasVSX())
+ if (Subtarget.hasVSX())
RC = &PPC::VSFRCRegClass;
else
RC = &PPC::F8RCRegClass;
@@ -2240,23 +2324,14 @@ PPCTargetLowering::LowerFormalArguments_32SVR4(
// Area that is at least reserved in the caller of this function.
unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
+ MinReservedArea = std::max(MinReservedArea, LinkageSize);
// Set the size that is at least reserved in caller of this function. Tail
// call optimized function's reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
- PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
-
- MinReservedArea =
- std::max(MinReservedArea,
- PPCFrameLowering::getMinCallFrameSize(false, false));
-
- unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
- getStackAlignment();
- unsigned AlignMask = TargetAlign-1;
- MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
-
- FI->setMinReservedArea(MinReservedArea);
+ MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
+ FuncInfo->setMinReservedArea(MinReservedArea);
SmallVector<SDValue, 8> MemOps;
@@ -2352,32 +2427,6 @@ PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
}
-// Set the size that is at least reserved in caller of this function. Tail
-// call optimized functions' reserved stack space needs to be aligned so that
-// taking the difference between two stack areas will result in an aligned
-// stack.
-void
-PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
- unsigned nAltivecParamsAtEnd,
- unsigned MinReservedArea,
- bool isPPC64) const {
- PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
- // Add the Altivec parameters at the end, if needed.
- if (nAltivecParamsAtEnd) {
- MinReservedArea = ((MinReservedArea+15)/16)*16;
- MinReservedArea += 16*nAltivecParamsAtEnd;
- }
- MinReservedArea =
- std::max(MinReservedArea,
- PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
- unsigned TargetAlign
- = DAG.getMachineFunction().getTarget().getFrameLowering()->
- getStackAlignment();
- unsigned AlignMask = TargetAlign-1;
- MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
- FI->setMinReservedArea(MinReservedArea);
-}
-
SDValue
PPCTargetLowering::LowerFormalArguments_64SVR4(
SDValue Chain,
@@ -2388,6 +2437,7 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
SmallVectorImpl<SDValue> &InVals) const {
// TODO: add description of PPC stack frame format, or at least some docs.
//
+ bool isLittleEndian = Subtarget.isLittleEndian();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
@@ -2398,9 +2448,8 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = 8;
- unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
- // Area that is at least reserved in caller of this function.
- unsigned MinReservedArea = ArgOffset;
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
+ unsigned ArgOffset = LinkageSize;
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
@@ -2422,14 +2471,13 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
const unsigned Num_FPR_Regs = 13;
const unsigned Num_VR_Regs = array_lengthof(VR);
- unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+ unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start after the linkage area,
// although the first ones are often in registers.
SmallVector<SDValue, 8> MemOps;
- unsigned nAltivecParamsAtEnd = 0;
Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
unsigned CurArgIdx = 0;
for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
@@ -2442,24 +2490,15 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
CurArgIdx = Ins[ArgNo].OrigArgIndex;
+ /* Respect alignment of argument on the stack. */
+ unsigned Align =
+ CalculateStackSlotAlignment(ObjectVT, Flags, PtrByteSize);
+ ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
unsigned CurArgOffset = ArgOffset;
- // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
- if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
- ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8 ||
- ObjectVT==MVT::v2f64 || ObjectVT==MVT::v2i64) {
- if (isVarArg) {
- MinReservedArea = ((MinReservedArea+15)/16)*16;
- MinReservedArea += CalculateStackSlotSize(ObjectVT,
- Flags,
- PtrByteSize);
- } else
- nAltivecParamsAtEnd++;
- } else
- // Calculate min reserved area.
- MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
- Flags,
- PtrByteSize);
+ /* Compute GPR index associated with argument offset. */
+ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
+ GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
// FIXME the codegen can be much improved in some cases.
// We do not have to keep everything in memory.
@@ -2481,14 +2520,8 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
continue;
}
- unsigned BVAlign = Flags.getByValAlign();
- if (BVAlign > 8) {
- ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
- CurArgOffset = ArgOffset;
- }
-
// All aggregates smaller than 8 bytes must be passed right-justified.
- if (ObjSize < PtrByteSize)
+ if (ObjSize < PtrByteSize && !isLittleEndian)
CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
// The value of the object is its address.
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
@@ -2522,7 +2555,6 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
}
MemOps.push_back(Store);
- ++GPR_idx;
}
// Whether we copied from a register or not, advance the offset
// into the parameter save area by a full doubleword.
@@ -2567,8 +2599,6 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
// value to MVT::i64 and then truncate to the correct register size.
ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
-
- ++GPR_idx;
} else {
needsLoad = true;
ArgSize = PtrByteSize;
@@ -2578,18 +2608,13 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
case MVT::f32:
case MVT::f64:
- // Every 8 bytes of argument space consumes one of the GPRs available for
- // argument passing.
- if (GPR_idx != Num_GPR_Regs) {
- ++GPR_idx;
- }
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
else
- VReg = MF.addLiveIn(FPR[FPR_idx], PPCSubTarget.hasVSX() ?
+ VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ?
&PPC::VSFRCRegClass :
&PPC::F8RCRegClass);
@@ -2608,39 +2633,25 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
- // Note that vector arguments in registers don't reserve stack space,
- // except in varargs functions.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
- if (isVarArg) {
- while ((ArgOffset % 16) != 0) {
- ArgOffset += PtrByteSize;
- if (GPR_idx != Num_GPR_Regs)
- GPR_idx++;
- }
- ArgOffset += 16;
- GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
- }
++VR_idx;
} else {
- // Vectors are aligned.
- ArgOffset = ((ArgOffset+15)/16)*16;
- CurArgOffset = ArgOffset;
- ArgOffset += 16;
needsLoad = true;
}
+ ArgOffset += 16;
break;
}
// We need to load the argument to a virtual register if we determined
// above that we ran out of physical registers of the appropriate type.
if (needsLoad) {
- int FI = MFI->CreateFixedObject(ObjSize,
- CurArgOffset + (ArgSize - ObjSize),
- isImmutable);
+ if (ObjSize < ArgSize && !isLittleEndian)
+ CurArgOffset += ArgSize - ObjSize;
+ int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
false, false, false, 0);
@@ -2649,11 +2660,16 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
InVals.push_back(ArgVal);
}
+ // Area that is at least reserved in the caller of this function.
+ unsigned MinReservedArea;
+ MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
+
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
- setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
+ MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
+ FuncInfo->setMinReservedArea(MinReservedArea);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
@@ -2667,7 +2683,8 @@ PPCTargetLowering::LowerFormalArguments_64SVR4(
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
- for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
+ for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
+ GPR_idx < Num_GPR_Regs; ++GPR_idx) {
unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
@@ -2706,7 +2723,8 @@ PPCTargetLowering::LowerFormalArguments_Darwin(
(CallConv == CallingConv::Fast));
unsigned PtrByteSize = isPPC64 ? 8 : 4;
- unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ unsigned ArgOffset = LinkageSize;
// Area that is at least reserved in caller of this function.
unsigned MinReservedArea = ArgOffset;
@@ -2997,11 +3015,21 @@ PPCTargetLowering::LowerFormalArguments_Darwin(
InVals.push_back(ArgVal);
}
+ // Allow for Altivec parameters at the end, if needed.
+ if (nAltivecParamsAtEnd) {
+ MinReservedArea = ((MinReservedArea+15)/16)*16;
+ MinReservedArea += 16*nAltivecParamsAtEnd;
+ }
+
+ // Area that is at least reserved in the caller of this function.
+ MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
+
// Set the size that is at least reserved in caller of this function. Tail
// call optimized functions' reserved stack space needs to be aligned so that
// taking the difference between two stack areas will result in an aligned
// stack.
- setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
+ MinReservedArea = EnsureStackAlignment(MF.getTarget(), MinReservedArea);
+ FuncInfo->setMinReservedArea(MinReservedArea);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
@@ -3040,75 +3068,6 @@ PPCTargetLowering::LowerFormalArguments_Darwin(
return Chain;
}
-/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
-/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
-static unsigned
-CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
- bool isPPC64,
- bool isVarArg,
- unsigned CC,
- const SmallVectorImpl<ISD::OutputArg>
- &Outs,
- const SmallVectorImpl<SDValue> &OutVals,
- unsigned &nAltivecParamsAtEnd) {
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, and parameter passing area. We start with 24/48 bytes, which is
- // prereserved space for [SP][CR][LR][3 x unused].
- unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
- unsigned NumOps = Outs.size();
- unsigned PtrByteSize = isPPC64 ? 8 : 4;
-
- // Add up all the space actually used.
- // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
- // they all go in registers, but we must reserve stack space for them for
- // possible use by the caller. In varargs or 64-bit calls, parameters are
- // assigned stack space in order, with padding so Altivec parameters are
- // 16-byte aligned.
- nAltivecParamsAtEnd = 0;
- for (unsigned i = 0; i != NumOps; ++i) {
- ISD::ArgFlagsTy Flags = Outs[i].Flags;
- EVT ArgVT = Outs[i].VT;
- // Varargs Altivec parameters are padded to a 16 byte boundary.
- if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
- ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8 ||
- ArgVT==MVT::v2f64 || ArgVT==MVT::v2i64) {
- if (!isVarArg && !isPPC64) {
- // Non-varargs Altivec parameters go after all the non-Altivec
- // parameters; handle those later so we know how much padding we need.
- nAltivecParamsAtEnd++;
- continue;
- }
- // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
- NumBytes = ((NumBytes+15)/16)*16;
- }
- NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
- }
-
- // Allow for Altivec parameters at the end, if needed.
- if (nAltivecParamsAtEnd) {
- NumBytes = ((NumBytes+15)/16)*16;
- NumBytes += 16*nAltivecParamsAtEnd;
- }
-
- // The prolog code of the callee may store up to 8 GPR argument registers to
- // the stack, allowing va_start to index over them in memory if its varargs.
- // Because we cannot tell if this is needed on the caller side, we have to
- // conservatively assume that it is needed. As such, make sure we have at
- // least enough stack space for the caller to store the 8 GPRs.
- NumBytes = std::max(NumBytes,
- PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
-
- // Tail call needs the stack to be aligned.
- if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
- unsigned TargetAlign = DAG.getMachineFunction().getTarget().
- getFrameLowering()->getStackAlignment();
- unsigned AlignMask = TargetAlign-1;
- NumBytes = (NumBytes + AlignMask) & ~AlignMask;
- }
-
- return NumBytes;
-}
-
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
/// adjusted to accommodate the arguments for the tailcall.
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
@@ -3280,7 +3239,7 @@ SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
SDLoc dl) const {
if (SPDiff) {
// Load the LR and FP stack slot for later adjusting.
- EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
+ EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
LROpOut = getReturnAddrFrameIndex(DAG);
LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
false, false, false, 0);
@@ -3373,10 +3332,10 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
- const PPCSubtarget &PPCSubTarget) {
+ const PPCSubtarget &Subtarget) {
- bool isPPC64 = PPCSubTarget.isPPC64();
- bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isSVR4ABI = Subtarget.isSVR4ABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
NodeTys.push_back(MVT::Other); // Returns a chain
@@ -3385,11 +3344,12 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
unsigned CallOpc = PPCISD::CALL;
bool needIndirectCall = true;
- if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
- // If this is an absolute destination address, use the munged value.
- Callee = SDValue(Dest, 0);
- needIndirectCall = false;
- }
+ if (!isSVR4ABI || !isPPC64)
+ if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
+ // If this is an absolute destination address, use the munged value.
+ Callee = SDValue(Dest, 0);
+ needIndirectCall = false;
+ }
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
@@ -3398,8 +3358,8 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
unsigned OpFlags = 0;
if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
- (PPCSubTarget.getTargetTriple().isMacOSX() &&
- PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
+ (Subtarget.getTargetTriple().isMacOSX() &&
+ Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
(G->getGlobal()->isDeclaration() ||
G->getGlobal()->isWeakForLinker())) {
// PC-relative references to external symbols should go through $stub,
@@ -3422,8 +3382,8 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
unsigned char OpFlags = 0;
if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
- (PPCSubTarget.getTargetTriple().isMacOSX() &&
- PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ (Subtarget.getTargetTriple().isMacOSX() &&
+ Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
@@ -3497,8 +3457,10 @@ unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
// additional register being allocated and an unnecessary move instruction
// being generated.
VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue TOCOff = DAG.getIntPtrConstant(8);
+ SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
- Callee, InFlag);
+ AddTOC, InFlag);
Chain = LoadTOCPtr.getValue(0);
InFlag = LoadTOCPtr.getValue(1);
@@ -3613,10 +3575,10 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
SmallVector<SDValue, 8> Ops;
unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
isTailCall, RegsToPass, Ops, NodeTys,
- PPCSubTarget);
+ Subtarget);
// Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
- if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
+ if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
// When performing tail call optimization the callee pops its arguments off
@@ -3657,7 +3619,7 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
// same TOC), the NOP will remain unchanged.
bool needsTOCRestore = false;
- if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
+ if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64()) {
if (CallOpc == PPCISD::BCTRL) {
// This is a call through a function pointer.
// Restore the caller TOC from the save area into R2.
@@ -3682,7 +3644,12 @@ PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
if (needsTOCRestore) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
- Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
+ unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
+ SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
+ SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
+ Chain = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, AddTOC, InFlag);
InFlag = Chain.getValue(1);
}
@@ -3718,8 +3685,8 @@ PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
- if (PPCSubTarget.isSVR4ABI()) {
- if (PPCSubTarget.isPPC64())
+ if (Subtarget.isSVR4ABI()) {
+ if (Subtarget.isPPC64())
return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
isTailCall, Outs, OutVals, Ins,
dl, DAG, InVals);
@@ -3981,6 +3948,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
+ bool isLittleEndian = Subtarget.isLittleEndian();
unsigned NumOps = Outs.size();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
@@ -3997,16 +3965,37 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
- unsigned nAltivecParamsAtEnd = 0;
-
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with at least 48 bytes, which
// is reserved space for [SP][CR][LR][3 x unused].
- // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
- // of this call.
- unsigned NumBytes =
- CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
- Outs, OutVals, nAltivecParamsAtEnd);
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(true, false);
+ unsigned NumBytes = LinkageSize;
+
+ // Add up all the space actually used.
+ for (unsigned i = 0; i != NumOps; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Outs[i].VT;
+
+ /* Respect alignment of argument on the stack. */
+ unsigned Align = CalculateStackSlotAlignment(ArgVT, Flags, PtrByteSize);
+ NumBytes = ((NumBytes + Align - 1) / Align) * Align;
+
+ NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+ }
+
+ unsigned NumBytesActuallyUsed = NumBytes;
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
+
+ // Tail call needs the stack to be aligned.
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
@@ -4038,8 +4027,8 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
- unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
- unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
+ unsigned ArgOffset = LinkageSize;
+ unsigned GPR_idx, FPR_idx = 0, VR_idx = 0;
static const MCPhysReg GPR[] = {
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
@@ -4068,6 +4057,15 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ /* Respect alignment of argument on the stack. */
+ unsigned Align =
+ CalculateStackSlotAlignment(Outs[i].VT, Flags, PtrByteSize);
+ ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
+
+ /* Compute GPR index associated with argument offset. */
+ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
+ GPR_idx = std::min(GPR_idx, NumGPRs);
+
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDValue PtrOff;
@@ -4099,15 +4097,6 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
if (Size == 0)
continue;
- unsigned BVAlign = Flags.getByValAlign();
- if (BVAlign > 8) {
- if (BVAlign % PtrByteSize != 0)
- llvm_unreachable(
- "ByVal alignment is not a multiple of the pointer size");
-
- ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
- }
-
// All aggregates smaller than 8 bytes must be passed right-justified.
if (Size==1 || Size==2 || Size==4) {
EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
@@ -4116,7 +4105,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
MachinePointerInfo(), VT,
false, false, 0);
MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
ArgOffset += PtrByteSize;
continue;
@@ -4124,9 +4113,12 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
}
if (GPR_idx == NumGPRs && Size < 8) {
- SDValue Const = DAG.getConstant(PtrByteSize - Size,
- PtrOff.getValueType());
- SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ SDValue AddPtr = PtrOff;
+ if (!isLittleEndian) {
+ SDValue Const = DAG.getConstant(PtrByteSize - Size,
+ PtrOff.getValueType());
+ AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ }
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
@@ -4161,8 +4153,11 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
// small aggregates, particularly for packed ones.
// FIXME: It would be preferable to use the slot in the
// parameter save area instead of a new local variable.
- SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
- SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ SDValue AddPtr = PtrOff;
+ if (!isLittleEndian) {
+ SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
+ AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
+ }
Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
CallSeqStart,
Flags, DAG, dl);
@@ -4172,7 +4167,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
MachinePointerInfo(),
false, false, false, 0);
MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
// Done with this argument.
ArgOffset += PtrByteSize;
@@ -4205,7 +4200,7 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Arg));
} else {
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, false, MemOpChains,
@@ -4223,7 +4218,8 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
// must be passed right-justified in the stack doubleword, and
// in the GPR, if one is available.
SDValue StoreOff;
- if (Arg.getSimpleValueType().SimpleTy == MVT::f32) {
+ if (Arg.getSimpleValueType().SimpleTy == MVT::f32 &&
+ !isLittleEndian) {
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
} else
@@ -4239,15 +4235,13 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
MachinePointerInfo(), false, false,
false, 0);
MemOpChains.push_back(Load.getValue(1));
- RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
+ RegsToPass.push_back(std::make_pair(GPR[GPR_idx], Load));
}
- } else if (GPR_idx != NumGPRs)
- // If we have any FPRs remaining, we may also have GPRs remaining.
- ++GPR_idx;
+ }
} else {
// Single-precision floating-point values are mapped to the
// second (rightmost) word of the stack doubleword.
- if (Arg.getValueType() == MVT::f32) {
+ if (Arg.getValueType() == MVT::f32 && !isLittleEndian) {
SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
}
@@ -4264,21 +4258,13 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
case MVT::v16i8:
case MVT::v2f64:
case MVT::v2i64:
+ // For a varargs call, named arguments go into VRs or on the stack as
+ // usual; unnamed arguments always go to the stack or the corresponding
+ // GPRs when within range. For now, we always put the value in both
+ // locations (or even all three).
if (isVarArg) {
- // These go aligned on the stack, or in the corresponding R registers
- // when within range. The Darwin PPC ABI doc claims they also go in
- // V registers; in fact gcc does this only for arguments that are
- // prototyped, not for those that match the ... We do it for all
- // arguments, seems to work.
- while (ArgOffset % 16 !=0) {
- ArgOffset += PtrByteSize;
- if (GPR_idx != NumGPRs)
- GPR_idx++;
- }
// We could elide this store in the case where the object fits
// entirely in R registers. Maybe later.
- PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
- DAG.getConstant(ArgOffset, PtrVT));
SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(), false, false, 0);
MemOpChains.push_back(Store);
@@ -4309,10 +4295,8 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
break;
}
- // Non-varargs Altivec params generally go in registers, but have
- // stack space allocated at the end.
+ // Non-varargs Altivec params go into VRs or on the stack.
if (VR_idx != NumVRs) {
- // Doesn't have GPR space allocated.
unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
Arg.getSimpleValueType() == MVT::v2i64) ?
VSRH[VR_idx] : VR[VR_idx];
@@ -4323,12 +4307,15 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
true, isTailCall, true, MemOpChains,
TailCallArguments, dl);
- ArgOffset += 16;
}
+ ArgOffset += 16;
break;
}
}
+ assert(NumBytesActuallyUsed == ArgOffset);
+ (void)NumBytesActuallyUsed;
+
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
@@ -4337,19 +4324,15 @@ PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
// pointers in the 64-bit SVR4 ABI.
if (!isTailCall &&
!dyn_cast<GlobalAddressSDNode>(Callee) &&
- !dyn_cast<ExternalSymbolSDNode>(Callee) &&
- !isBLACompatibleAddress(Callee, DAG)) {
+ !dyn_cast<ExternalSymbolSDNode>(Callee)) {
// Load r2 into a virtual register and store it to the TOC save area.
SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
// TOC save area offset.
- SDValue PtrOff = DAG.getIntPtrConstant(40);
+ unsigned TOCSaveOffset = PPCFrameLowering::getTOCSaveOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
false, false, 0);
- // R12 must contain the address of an indirect callee. This does not
- // mean the MTCTR instruction must use R12; it's easier to model this
- // as an extra parameter, so do that.
- RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
}
// Build a sequence of copy-to-reg nodes chained together with token chain
@@ -4397,15 +4380,55 @@ PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallConv == CallingConv::Fast)
MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
- unsigned nAltivecParamsAtEnd = 0;
-
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
- unsigned NumBytes =
- CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
- Outs, OutVals,
- nAltivecParamsAtEnd);
+ unsigned LinkageSize = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ unsigned NumBytes = LinkageSize;
+
+ // Add up all the space actually used.
+ // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
+ // they all go in registers, but we must reserve stack space for them for
+ // possible use by the caller. In varargs or 64-bit calls, parameters are
+ // assigned stack space in order, with padding so Altivec parameters are
+ // 16-byte aligned.
+ unsigned nAltivecParamsAtEnd = 0;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ EVT ArgVT = Outs[i].VT;
+ // Varargs Altivec parameters are padded to a 16 byte boundary.
+ if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
+ ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
+ ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
+ if (!isVarArg && !isPPC64) {
+ // Non-varargs Altivec parameters go after all the non-Altivec
+ // parameters; handle those later so we know how much padding we need.
+ nAltivecParamsAtEnd++;
+ continue;
+ }
+ // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
+ NumBytes = ((NumBytes+15)/16)*16;
+ }
+ NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
+ }
+
+ // Allow for Altivec parameters at the end, if needed.
+ if (nAltivecParamsAtEnd) {
+ NumBytes = ((NumBytes+15)/16)*16;
+ NumBytes += 16*nAltivecParamsAtEnd;
+ }
+
+ // The prolog code of the callee may store up to 8 GPR argument registers to
+ // the stack, allowing va_start to index over them in memory if its varargs.
+ // Because we cannot tell if this is needed on the caller side, we have to
+ // conservatively assume that it is needed. As such, make sure we have at
+ // least enough stack space for the caller to store the 8 GPRs.
+ NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
+
+ // Tail call needs the stack to be aligned.
+ if (getTargetMachine().Options.GuaranteedTailCallOpt &&
+ CallConv == CallingConv::Fast)
+ NumBytes = EnsureStackAlignment(MF.getTarget(), NumBytes);
// Calculate by how many bytes the stack has to be adjusted in case of tail
// call optimization.
@@ -4441,7 +4464,7 @@ PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
- unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
+ unsigned ArgOffset = LinkageSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const MCPhysReg GPR_32[] = { // 32-bit registers.
@@ -4818,8 +4841,8 @@ SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
SDValue
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
- bool isPPC64 = PPCSubTarget.isPPC64();
- bool isDarwinABI = PPCSubTarget.isDarwinABI();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
@@ -4842,8 +4865,8 @@ PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
SDValue
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
- bool isPPC64 = PPCSubTarget.isPPC64();
- bool isDarwinABI = PPCSubTarget.isDarwinABI();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
// Get current frame pointer save index. The users of this index will be
@@ -5063,12 +5086,12 @@ SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
- (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
+ (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ :
PPCISD::FCTIDZ),
dl, MVT::f64, Src);
break;
case MVT::i64:
- assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
+ assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
"i64 FP_TO_UINT is supported only with FPCVT");
Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
PPCISD::FCTIDUZ,
@@ -5077,8 +5100,8 @@ SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
}
// Convert the FP value to an int value through memory.
- bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
- (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
+ bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
+ (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
@@ -5120,17 +5143,17 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
DAG.getConstantFP(1.0, Op.getValueType()),
DAG.getConstantFP(0.0, Op.getValueType()));
- assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
+ assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
"UINT_TO_FP is supported only with FPCVT");
// If we have FCFIDS, then use it when converting to single-precision.
// Otherwise, convert to double-precision and then round.
- unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::FCFIDUS : PPCISD::FCFIDS) :
(Op.getOpcode() == ISD::UINT_TO_FP ?
PPCISD::FCFIDU : PPCISD::FCFID);
- MVT FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
+ MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
MVT::f32 : MVT::f64;
if (Op.getOperand(0).getValueType() == MVT::i64) {
@@ -5146,7 +5169,7 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
// However, if -enable-unsafe-fp-math is in effect, accept double
// rounding to avoid the extra overhead.
if (Op.getValueType() == MVT::f32 &&
- !PPCSubTarget.hasFPCVT() &&
+ !Subtarget.hasFPCVT() &&
!DAG.getTarget().Options.UnsafeFPMath) {
// Twiddle input to make sure the low 11 bits are zero. (If this
@@ -5184,7 +5207,7 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
- if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
+ if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl,
MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
@@ -5201,7 +5224,7 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue Ld;
- if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
+ if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
@@ -5220,7 +5243,7 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
dl, DAG.getVTList(MVT::f64, MVT::Other),
Ops, MVT::i32, MMO);
} else {
- assert(PPCSubTarget.isPPC64() &&
+ assert(Subtarget.isPPC64() &&
"i32->FP without LFIWAX supported only on PPC64");
int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
@@ -5242,7 +5265,7 @@ SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
// FCFID it and return it.
SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
- if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
+ if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
return FP;
}
@@ -5557,6 +5580,22 @@ SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
}
+ // The remaining cases assume either big endian element order or
+ // a splat-size that equates to the element size of the vector
+ // to be built. An example that doesn't work for little endian is
+ // {0, -1, 0, -1, 0, -1, 0, -1} which has a splat size of 32 bits
+ // and a vector element size of 16 bits. The code below will
+ // produce the vector in big endian element order, which for little
+ // endian is {-1, 0, -1, 0, -1, 0, -1, 0}.
+
+ // For now, just avoid these optimizations in that case.
+ // FIXME: Develop correct optimizations for LE with mismatched
+ // splat and element sizes.
+
+ if (Subtarget.isLittleEndian() &&
+ SplatSize != Op.getValueType().getVectorElementType().getSizeInBits())
+ return SDValue();
+
// Check to see if this is a wide variety of vsplti*, binop self cases.
static const signed char SplatCsts[] = {
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
@@ -5725,6 +5764,7 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
SDValue V2 = Op.getOperand(1);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
EVT VT = Op.getValueType();
+ bool isLittleEndian = Subtarget.isLittleEndian();
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
@@ -5733,15 +5773,15 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
if (PPC::isSplatShuffleMask(SVOp, 1) ||
PPC::isSplatShuffleMask(SVOp, 2) ||
PPC::isSplatShuffleMask(SVOp, 4) ||
- PPC::isVPKUWUMShuffleMask(SVOp, true) ||
- PPC::isVPKUHUMShuffleMask(SVOp, true) ||
- PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
- PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
- PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
- PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
- PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
- PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
- PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
+ PPC::isVPKUWUMShuffleMask(SVOp, true, DAG) ||
+ PPC::isVPKUHUMShuffleMask(SVOp, true, DAG) ||
+ PPC::isVSLDOIShuffleMask(SVOp, true, DAG) != -1 ||
+ PPC::isVMRGLShuffleMask(SVOp, 1, true, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 2, true, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 4, true, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 1, true, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 2, true, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 4, true, DAG)) {
return Op;
}
}
@@ -5749,15 +5789,15 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
// Altivec has a variety of "shuffle immediates" that take two vector inputs
// and produce a fixed permutation. If any of these match, do not lower to
// VPERM.
- if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
- PPC::isVPKUHUMShuffleMask(SVOp, false) ||
- PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
- PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
- PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
- PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
- PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
- PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
- PPC::isVMRGHShuffleMask(SVOp, 4, false))
+ if (PPC::isVPKUWUMShuffleMask(SVOp, false, DAG) ||
+ PPC::isVPKUHUMShuffleMask(SVOp, false, DAG) ||
+ PPC::isVSLDOIShuffleMask(SVOp, false, DAG) != -1 ||
+ PPC::isVMRGLShuffleMask(SVOp, 1, false, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 2, false, DAG) ||
+ PPC::isVMRGLShuffleMask(SVOp, 4, false, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 1, false, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 2, false, DAG) ||
+ PPC::isVMRGHShuffleMask(SVOp, 4, false, DAG))
return Op;
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
@@ -5791,7 +5831,9 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
// perfect shuffle vector to determine if it is cost effective to do this as
// discrete instructions, or whether we should use a vperm.
- if (isFourElementShuffle) {
+ // For now, we skip this for little endian until such time as we have a
+ // little-endian perfect shuffle table.
+ if (isFourElementShuffle && !isLittleEndian) {
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
@@ -5820,6 +5862,11 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
+
+ // For little endian, the order of the input vectors is reversed, and
+ // the permutation mask is complemented with respect to 31. This is
+ // necessary to produce proper semantics with the big-endian-biased vperm
+ // instruction.
EVT EltVT = V1.getValueType().getVectorElementType();
unsigned BytesPerElement = EltVT.getSizeInBits()/8;
@@ -5828,13 +5875,22 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
for (unsigned j = 0; j != BytesPerElement; ++j)
- ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
- MVT::i32));
+ if (isLittleEndian)
+ ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
+ MVT::i32));
+ else
+ ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
+ MVT::i32));
}
SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
ResultMask);
- return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
+ if (isLittleEndian)
+ return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
+ V2, V1, VPermMask);
+ else
+ return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
+ V1, V2, VPermMask);
}
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
@@ -6027,6 +6083,7 @@ SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
LHS, RHS, Zero, DAG, dl);
} else if (Op.getValueType() == MVT::v16i8) {
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
+ bool isLittleEndian = Subtarget.isLittleEndian();
// Multiply the even 8-bit parts, producing 16-bit sums.
SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
@@ -6038,13 +6095,24 @@ SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
LHS, RHS, DAG, dl, MVT::v8i16);
OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
- // Merge the results together.
+ // Merge the results together. Because vmuleub and vmuloub are
+ // instructions with a big-endian bias, we must reverse the
+ // element numbering and reverse the meaning of "odd" and "even"
+ // when generating little endian code.
int Ops[16];
for (unsigned i = 0; i != 8; ++i) {
- Ops[i*2 ] = 2*i+1;
- Ops[i*2+1] = 2*i+1+16;
+ if (isLittleEndian) {
+ Ops[i*2 ] = 2*i;
+ Ops[i*2+1] = 2*i+16;
+ } else {
+ Ops[i*2 ] = 2*i+1;
+ Ops[i*2+1] = 2*i+1+16;
+ }
}
- return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
+ if (isLittleEndian)
+ return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
+ else
+ return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
} else {
llvm_unreachable("Unknown mul to lower!");
}
@@ -6064,17 +6132,17 @@ SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::VASTART:
- return LowerVASTART(Op, DAG, PPCSubTarget);
+ return LowerVASTART(Op, DAG, Subtarget);
case ISD::VAARG:
- return LowerVAARG(Op, DAG, PPCSubTarget);
+ return LowerVAARG(Op, DAG, Subtarget);
case ISD::VACOPY:
- return LowerVACOPY(Op, DAG, PPCSubTarget);
+ return LowerVACOPY(Op, DAG, Subtarget);
- case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
+ case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, Subtarget);
case ISD::DYNAMIC_STACKALLOC:
- return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
+ return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
@@ -6144,7 +6212,7 @@ void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
EVT VT = N->getValueType(0);
if (VT == MVT::i64) {
- SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
+ SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
Results.push_back(NewNode);
Results.push_back(NewNode.getValue(1));
@@ -6255,7 +6323,7 @@ PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
// lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
// registers without caring whether they're 32 or 64, but here we're
// doing actual arithmetic on the addresses.
- bool is64bit = PPCSubTarget.isPPC64();
+ bool is64bit = Subtarget.isPPC64();
unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
const BasicBlock *LLVM_BB = BB->getBasicBlock();
@@ -6450,7 +6518,7 @@ PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
unsigned BufReg = MI->getOperand(1).getReg();
- if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
+ if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
.addReg(PPC::X2)
.addImm(TOCOffset)
@@ -6463,12 +6531,12 @@ PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
unsigned BaseReg;
if (MF->getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::Naked))
- BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
+ BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
else
- BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
+ BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
MIB = BuildMI(*thisMBB, MI, DL,
- TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
+ TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
.addReg(BaseReg)
.addImm(BPOffset)
.addReg(BufReg);
@@ -6492,10 +6560,10 @@ PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
// mainMBB:
// mainDstReg = 0
MIB = BuildMI(mainMBB, DL,
- TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
+ TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
// Store IP
- if (PPCSubTarget.isPPC64()) {
+ if (Subtarget.isPPC64()) {
MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
.addReg(LabelReg)
.addImm(LabelOffset)
@@ -6607,7 +6675,7 @@ PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload TOC
- if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
+ if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
.addImm(TOCOffset)
.addReg(BufReg);
@@ -6645,7 +6713,7 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineFunction *F = BB->getParent();
- if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
+ if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
MI->getOpcode() == PPC::SELECT_I4 ||
MI->getOpcode() == PPC::SELECT_I8)) {
@@ -6765,13 +6833,13 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
- BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
+ BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
- BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
+ BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
- BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
+ BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
- BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
+ BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
@@ -6862,7 +6930,7 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
// We must use 64-bit registers for addresses when targeting 64-bit,
// since we're actually doing arithmetic on them. Other registers
// can be 32-bit.
- bool is64bit = PPCSubTarget.isPPC64();
+ bool is64bit = Subtarget.isPPC64();
bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
unsigned dest = MI->getOperand(0).getReg();
@@ -7070,10 +7138,10 @@ SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
EVT VT = Op.getValueType();
- if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
- (VT == MVT::f64 && PPCSubTarget.hasFRE()) ||
- (VT == MVT::v4f32 && PPCSubTarget.hasAltivec()) ||
- (VT == MVT::v2f64 && PPCSubTarget.hasVSX())) {
+ if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
+ (VT == MVT::f64 && Subtarget.hasFRE()) ||
+ (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
+ (VT == MVT::v2f64 && Subtarget.hasVSX())) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal, we need to find the zero of the function:
@@ -7086,7 +7154,7 @@ SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
// correct after every iteration. The minimum architected relative
// accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
// 23 digits and double has 52 digits.
- int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
+ int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++Iterations;
@@ -7133,10 +7201,10 @@ SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
EVT VT = Op.getValueType();
- if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
- (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE()) ||
- (VT == MVT::v4f32 && PPCSubTarget.hasAltivec()) ||
- (VT == MVT::v2f64 && PPCSubTarget.hasVSX())) {
+ if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
+ (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
+ (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
+ (VT == MVT::v2f64 && Subtarget.hasVSX())) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal sqrt, we need to find the zero of the function:
@@ -7149,7 +7217,7 @@ SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
// correct after every iteration. The minimum architected relative
// accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
// 23 digits and double has 52 digits.
- int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
+ int Iterations = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++Iterations;
@@ -7266,10 +7334,9 @@ static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
if (!Visited.count(ChainLD->getChain().getNode()))
Queue.push_back(ChainLD->getChain().getNode());
} else if (ChainNext->getOpcode() == ISD::TokenFactor) {
- for (SDNode::op_iterator O = ChainNext->op_begin(),
- OE = ChainNext->op_end(); O != OE; ++O)
- if (!Visited.count(O->getNode()))
- Queue.push_back(O->getNode());
+ for (const SDUse &O : ChainNext->ops())
+ if (!Visited.count(O.getNode()))
+ Queue.push_back(O.getNode());
} else
LoadRoots.insert(ChainNext);
}
@@ -7312,7 +7379,7 @@ SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
- assert(PPCSubTarget.useCRBits() &&
+ assert(Subtarget.useCRBits() &&
"Expecting to be tracking CR bits");
// If we're tracking CR bits, we need to be careful that we don't have:
// trunc(binary-ops(zext(x), zext(y)))
@@ -7610,9 +7677,9 @@ SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
return SDValue();
if (!((N->getOperand(0).getValueType() == MVT::i1 &&
- PPCSubTarget.useCRBits()) ||
+ Subtarget.useCRBits()) ||
(N->getOperand(0).getValueType() == MVT::i32 &&
- PPCSubTarget.isPPC64())))
+ Subtarget.isPPC64())))
return SDValue();
if (N->getOperand(0).getOpcode() != ISD::AND &&
@@ -7930,8 +7997,8 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
DCI.AddToWorklist(RV.getNode());
RV = DAGCombineFastRecip(RV, DCI);
if (RV.getNode()) {
- // Unfortunately, RV is now NaN if the input was exactly 0. Select out
- // this case and force the answer to 0.
+ // Unfortunately, RV is now NaN if the input was exactly 0. Select out
+ // this case and force the answer to 0.
EVT VT = RV.getValueType();
@@ -8051,6 +8118,7 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
// This is a type-legal unaligned Altivec load.
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
+ bool isLittleEndian = Subtarget.isLittleEndian();
// This implements the loading of unaligned vectors as described in
// the venerable Apple Velocity Engine overview. Specifically:
@@ -8058,25 +8126,28 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
// https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
//
// The general idea is to expand a sequence of one or more unaligned
- // loads into a alignment-based permutation-control instruction (lvsl),
- // a series of regular vector loads (which always truncate their
- // input address to an aligned address), and a series of permutations.
- // The results of these permutations are the requested loaded values.
- // The trick is that the last "extra" load is not taken from the address
- // you might suspect (sizeof(vector) bytes after the last requested
- // load), but rather sizeof(vector) - 1 bytes after the last
- // requested vector. The point of this is to avoid a page fault if the
- // base address happened to be aligned. This works because if the base
- // address is aligned, then adding less than a full vector length will
- // cause the last vector in the sequence to be (re)loaded. Otherwise,
- // the next vector will be fetched as you might suspect was necessary.
+ // loads into an alignment-based permutation-control instruction (lvsl
+ // or lvsr), a series of regular vector loads (which always truncate
+ // their input address to an aligned address), and a series of
+ // permutations. The results of these permutations are the requested
+ // loaded values. The trick is that the last "extra" load is not taken
+ // from the address you might suspect (sizeof(vector) bytes after the
+ // last requested load), but rather sizeof(vector) - 1 bytes after the
+ // last requested vector. The point of this is to avoid a page fault if
+ // the base address happened to be aligned. This works because if the
+ // base address is aligned, then adding less than a full vector length
+ // will cause the last vector in the sequence to be (re)loaded.
+ // Otherwise, the next vector will be fetched as you might suspect was
+ // necessary.
// We might be able to reuse the permutation generation from
// a different base address offset from this one by an aligned amount.
// The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
// optimization later.
- SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
- DAG, dl, MVT::v16i8);
+ Intrinsic::ID Intr = (isLittleEndian ?
+ Intrinsic::ppc_altivec_lvsr :
+ Intrinsic::ppc_altivec_lvsl);
+ SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, MVT::v16i8);
// Refine the alignment of the original load (a "new" load created here
// which was identical to the first except for the alignment would be
@@ -8125,8 +8196,18 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
if (ExtraLoad.getValueType() != MVT::v4i32)
ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
- SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
- BaseLoad, ExtraLoad, PermCntl, DAG, dl);
+ // Because vperm has a big-endian bias, we must reverse the order
+ // of the input vectors and complement the permute control vector
+ // when generating little endian code. We have already handled the
+ // latter by using lvsr instead of lvsl, so just reverse BaseLoad
+ // and ExtraLoad here.
+ SDValue Perm;
+ if (isLittleEndian)
+ Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
+ ExtraLoad, BaseLoad, PermCntl, DAG, dl);
+ else
+ Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
+ BaseLoad, ExtraLoad, PermCntl, DAG, dl);
if (VT != MVT::v4i32)
Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
@@ -8151,12 +8232,11 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
++UI;
SmallVector<SDValue, 8> Ops;
- for (SDNode::op_iterator O = User->op_begin(),
- OE = User->op_end(); O != OE; ++O) {
- if (*O == Use)
+ for (const SDUse &O : User->ops()) {
+ if (O == Use)
Ops.push_back(To);
else
- Ops.push_back(*O);
+ Ops.push_back(O);
}
DAG.UpdateNodeOperands(User, Ops);
@@ -8166,9 +8246,12 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
}
}
break;
- case ISD::INTRINSIC_WO_CHAIN:
- if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
- Intrinsic::ppc_altivec_lvsl &&
+ case ISD::INTRINSIC_WO_CHAIN: {
+ bool isLittleEndian = Subtarget.isLittleEndian();
+ Intrinsic::ID Intr = (isLittleEndian ?
+ Intrinsic::ppc_altivec_lvsr :
+ Intrinsic::ppc_altivec_lvsl);
+ if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() == Intr &&
N->getOperand(1)->getOpcode() == ISD::ADD) {
SDValue Add = N->getOperand(1);
@@ -8180,8 +8263,8 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
UE = BasePtr->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
- Intrinsic::ppc_altivec_lvsl) {
- // We've found another LVSL, and this address if an aligned
+ Intr) {
+ // We've found another LVSL/LVSR, and this address is an aligned
// multiple of that one. The results will be the same, so use the
// one we've just found instead.
@@ -8190,6 +8273,7 @@ SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
}
}
}
+ }
break;
case ISD::BSWAP:
@@ -8537,11 +8621,11 @@ PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
// GCC RS6000 Constraint Letters
switch (Constraint[0]) {
case 'b': // R1-R31
- if (VT == MVT::i64 && PPCSubTarget.isPPC64())
+ if (VT == MVT::i64 && Subtarget.isPPC64())
return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
case 'r': // R0-R31
- if (VT == MVT::i64 && PPCSubTarget.isPPC64())
+ if (VT == MVT::i64 && Subtarget.isPPC64())
return std::make_pair(0U, &PPC::G8RCRegClass);
return std::make_pair(0U, &PPC::GPRCRegClass);
case 'f':
@@ -8573,7 +8657,7 @@ PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
// register.
// FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
// the AsmName field from *RegisterInfo.td, then this would not be necessary.
- if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
+ if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
PPC::GPRCRegClass.contains(R.first)) {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
return std::make_pair(TRI->getMatchingSuperReg(R.first,
@@ -8707,8 +8791,8 @@ SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
// the stack.
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setLRStoreRequired();
- bool isPPC64 = PPCSubTarget.isPPC64();
- bool isDarwinABI = PPCSubTarget.isDarwinABI();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
@@ -8762,8 +8846,8 @@ SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
// this table could be generated automatically from RegInfo.
unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
EVT VT) const {
- bool isPPC64 = PPCSubTarget.isPPC64();
- bool isDarwinABI = PPCSubTarget.isDarwinABI();
+ bool isPPC64 = Subtarget.isPPC64();
+ bool isDarwinABI = Subtarget.isDarwinABI();
if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
(!isPPC64 && VT != MVT::i32))
@@ -8804,7 +8888,7 @@ EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
- if (this->PPCSubTarget.isPPC64()) {
+ if (Subtarget.isPPC64()) {
return MVT::i64;
} else {
return MVT::i32;
@@ -8863,7 +8947,7 @@ bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
return false;
if (VT.getSimpleVT().isVector()) {
- if (PPCSubTarget.hasVSX()) {
+ if (Subtarget.hasVSX()) {
if (VT != MVT::v2f64 && VT != MVT::v2i64)
return false;
} else {
@@ -8907,7 +8991,7 @@ PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
}
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
- if (DisableILPPref || PPCSubTarget.enableMachineScheduler())
+ if (DisableILPPref || Subtarget.enableMachineScheduler())
return TargetLowering::getSchedulingPreference(N);
return Sched::ILP;