aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/PowerPC
diff options
context:
space:
mode:
authorNate Begeman <natebegeman@mac.com>2005-08-18 23:53:15 +0000
committerNate Begeman <natebegeman@mac.com>2005-08-18 23:53:15 +0000
commit73bfa7152481620d60bf63d5397dfe35bbc9c098 (patch)
tree129c67f7b6aed90a90140376213d51644e89eb8d /lib/Target/PowerPC
parentcfbf96aa9c3bd317548f72e022ba28a40353f95a (diff)
downloadexternal_llvm-73bfa7152481620d60bf63d5397dfe35bbc9c098.zip
external_llvm-73bfa7152481620d60bf63d5397dfe35bbc9c098.tar.gz
external_llvm-73bfa7152481620d60bf63d5397dfe35bbc9c098.tar.bz2
Remove the X86 and PowerPC Simple instruction selectors; their time has
passed. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22886 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/PowerPC')
-rw-r--r--lib/Target/PowerPC/PPC.h1
-rw-r--r--lib/Target/PowerPC/PPC32ISelSimple.cpp3924
-rw-r--r--lib/Target/PowerPC/PPCTargetMachine.cpp17
3 files changed, 4 insertions, 3938 deletions
diff --git a/lib/Target/PowerPC/PPC.h b/lib/Target/PowerPC/PPC.h
index 6b9f906..b8adc25 100644
--- a/lib/Target/PowerPC/PPC.h
+++ b/lib/Target/PowerPC/PPC.h
@@ -27,7 +27,6 @@ enum PPCTargetEnum {
};
FunctionPass *createPPCBranchSelectionPass();
-FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
FunctionPass *createPPC32ISelPattern(TargetMachine &TM);
FunctionPass *createPPC32ISelDag(TargetMachine &TM);
FunctionPass *createDarwinAsmPrinter(std::ostream &OS, TargetMachine &TM);
diff --git a/lib/Target/PowerPC/PPC32ISelSimple.cpp b/lib/Target/PowerPC/PPC32ISelSimple.cpp
deleted file mode 100644
index 742b920..0000000
--- a/lib/Target/PowerPC/PPC32ISelSimple.cpp
+++ /dev/null
@@ -1,3924 +0,0 @@
-//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "isel"
-#include "PowerPC.h"
-#include "PowerPCInstrBuilder.h"
-#include "PowerPCInstrInfo.h"
-#include "PPC32TargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
-#include <vector>
-using namespace llvm;
-
-
-// IsRunOfOnes - returns true if Val consists of one contiguous run of 1's with
-// any number of 0's on either side. the 1's are allowed to wrap from LSB to
-// MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
-// not, since all 1's are not contiguous.
-static bool IsRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
- if (isShiftedMask_32(Val)) {
- // look for the first non-zero bit
- MB = CountLeadingZeros_32(Val);
- // look for the first zero bit after the run of ones
- ME = CountLeadingZeros_32((Val - 1) ^ Val);
- return true;
- } else if (isShiftedMask_32(Val = ~Val)) { // invert mask
- // effectively look for the first zero bit
- ME = CountLeadingZeros_32(Val) - 1;
- // effectively look for the first one bit after the run of zeros
- MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
- return true;
- }
- // no run present
- return false;
-}
-
-namespace {
- /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
- /// PPC Representation.
- ///
- enum TypeClass {
- cByte, cShort, cInt, cFP32, cFP64, cLong
- };
-}
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::SByteTyID:
- case Type::UByteTyID: return cByte; // Byte operands are class #0
- case Type::ShortTyID:
- case Type::UShortTyID: return cShort; // Short operands are class #1
- case Type::IntTyID:
- case Type::UIntTyID:
- case Type::PointerTyID: return cInt; // Ints and pointers are class #2
-
- case Type::FloatTyID: return cFP32; // Single float is #3
- case Type::DoubleTyID: return cFP64; // Double Point is #4
-
- case Type::LongTyID:
- case Type::ULongTyID: return cLong; // Longs are class #5
- default:
- assert(0 && "Invalid type to getClass!");
- return cByte; // not reached
- }
-}
-
-// getClassB - Just like getClass, but treat boolean values as ints.
-static inline TypeClass getClassB(const Type *Ty) {
- if (Ty == Type::BoolTy) return cByte;
- return getClass(Ty);
-}
-
-namespace {
- struct PPC32ISel : public FunctionPass, InstVisitor<PPC32ISel> {
- PPC32TargetMachine &TM;
- MachineFunction *F; // The function we are compiling into
- MachineBasicBlock *BB; // The current MBB we are compiling
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
-
- /// CollapsedGepOp - This struct is for recording the intermediate results
- /// used to calculate the base, index, and offset of a GEP instruction.
- struct CollapsedGepOp {
- ConstantSInt *offset; // the current offset into the struct/array
- Value *index; // the index of the array element
- ConstantUInt *size; // the size of each array element
- CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) :
- offset(o), index(i), size(s) {}
- };
-
- /// FoldedGEP - This struct is for recording the necessary information to
- /// emit the GEP in a load or store instruction, used by emitGEPOperation.
- struct FoldedGEP {
- unsigned base;
- unsigned index;
- ConstantSInt *offset;
- FoldedGEP() : base(0), index(0), offset(0) {}
- FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) :
- base(b), index(i), offset(o) {}
- };
-
- /// RlwimiRec - This struct is for recording the arguments to a PowerPC
- /// rlwimi instruction to be output for a particular Instruction::Or when
- /// we recognize the pattern for rlwimi, starting with a shift or and.
- struct RlwimiRec {
- Value *Target, *Insert;
- unsigned Shift, MB, ME;
- RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {}
- RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) :
- Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {}
- };
-
- // External functions we may use in compiling the Module
- Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
- *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
- *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
-
- // Mapping between Values and SSA Regs
- std::map<Value*, unsigned> RegMap;
-
- // MBBMap - Mapping between LLVM BB -> Machine BB
- std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
- // AllocaMap - Mapping from fixed sized alloca instructions to the
- // FrameIndex for the alloca.
- std::map<AllocaInst*, unsigned> AllocaMap;
-
- // GEPMap - Mapping between basic blocks and GEP definitions
- std::map<GetElementPtrInst*, FoldedGEP> GEPMap;
-
- // RlwimiMap - Mapping between BinaryOperand (Or) instructions and info
- // needed to properly emit a rlwimi instruction in its place.
- std::map<Instruction *, RlwimiRec> InsertMap;
-
- // A rlwimi instruction is the combination of at least three instructions.
- // Keep a vector of instructions to skip around so that we do not try to
- // emit instructions that were folded into a rlwimi.
- std::vector<Instruction *> SkipList;
-
- // A Reg to hold the base address used for global loads and stores, and a
- // flag to set whether or not we need to emit it for this function.
- unsigned GlobalBaseReg;
- bool GlobalBaseInitialized;
-
- PPC32ISel(TargetMachine &tm):TM(reinterpret_cast<PPC32TargetMachine&>(tm)),
- F(0), BB(0) {}
-
- bool doInitialization(Module &M) {
- // Add external functions that we may call
- Type *i = Type::IntTy;
- Type *d = Type::DoubleTy;
- Type *f = Type::FloatTy;
- Type *l = Type::LongTy;
- Type *ul = Type::ULongTy;
- Type *voidPtr = PointerType::get(Type::SByteTy);
- // float fmodf(float, float);
- fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
- // double fmod(double, double);
- fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
- // int __cmpdi2(long, long);
- __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
- // long __moddi3(long, long);
- __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
- // long __divdi3(long, long);
- __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
- // unsigned long __umoddi3(unsigned long, unsigned long);
- __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
- // unsigned long __udivdi3(unsigned long, unsigned long);
- __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
- // long __fixsfdi(float)
- __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
- // long __fixdfdi(double)
- __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
- // unsigned long __fixunssfdi(float)
- __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
- // unsigned long __fixunsdfdi(double)
- __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
- // float __floatdisf(long)
- __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
- // double __floatdidf(long)
- __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
- // void* malloc(size_t)
- mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
- // void free(void*)
- freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
- return true;
- }
-
- /// runOnFunction - Top level implementation of instruction selection for
- /// the entire function.
- ///
- bool runOnFunction(Function &Fn) {
- // First pass over the function, lower any unknown intrinsic functions
- // with the IntrinsicLowering class.
- LowerUnknownIntrinsicFunctionCalls(Fn);
-
- F = &MachineFunction::construct(&Fn, TM);
-
- // Create all of the machine basic blocks for the function...
- for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
- BB = &F->front();
-
- // Make sure we re-emit a set of the global base reg if necessary
- GlobalBaseInitialized = false;
-
- // Copy incoming arguments off of the stack...
- LoadArgumentsToVirtualRegs(Fn);
-
- // Instruction select everything except PHI nodes
- visit(Fn);
-
- // Select the PHI nodes
- SelectPHINodes();
-
- GEPMap.clear();
- RegMap.clear();
- MBBMap.clear();
- InsertMap.clear();
- AllocaMap.clear();
- SkipList.clear();
- F = 0;
- // We always build a machine code representation for the function
- return true;
- }
-
- virtual const char *getPassName() const {
- return "PowerPC Simple Instruction Selection";
- }
-
- /// visitBasicBlock - This method is called when we are visiting a new basic
- /// block. This simply creates a new MachineBasicBlock to emit code into
- /// and adds it to the current MachineFunction. Subsequent visit* for
- /// instructions will be invoked for all instructions in the basic block.
- ///
- void visitBasicBlock(BasicBlock &LLVM_BB) {
- BB = MBBMap[&LLVM_BB];
- }
-
- /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
- /// function, lowering any calls to unknown intrinsic functions into the
- /// equivalent LLVM code.
- ///
- void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
- /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
- /// from the stack into virtual registers.
- ///
- void LoadArgumentsToVirtualRegs(Function &F);
-
- /// SelectPHINodes - Insert machine code to generate phis. This is tricky
- /// because we have to generate our sources into the source basic blocks,
- /// not the current one.
- ///
- void SelectPHINodes();
-
- // Visitation methods for various instructions. These methods simply emit
- // fixed PowerPC code for each instruction.
-
- // Control flow operators.
- void visitReturnInst(ReturnInst &RI);
- void visitBranchInst(BranchInst &BI);
- void visitUnreachableInst(UnreachableInst &UI) {}
-
- struct ValueRecord {
- Value *Val;
- unsigned Reg;
- const Type *Ty;
- ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
- ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
- };
-
- void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg);
- void visitCallInst(CallInst &I);
- void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
- // Arithmetic operators
- void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
- void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
- void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
- void visitMul(BinaryOperator &B);
-
- void visitDiv(BinaryOperator &B) { visitDivRem(B); }
- void visitRem(BinaryOperator &B) { visitDivRem(B); }
- void visitDivRem(BinaryOperator &B);
-
- // Bitwise operators
- void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
- void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
- void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
-
- // Comparison operators...
- void visitSetCondInst(SetCondInst &I);
- void EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI);
- void visitSelectInst(SelectInst &SI);
-
-
- // Memory Instructions
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitMallocInst(MallocInst &I);
- void visitFreeInst(FreeInst &I);
-
- // Other operators
- void visitShiftInst(ShiftInst &I);
- void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
- void visitCastInst(CastInst &I);
- void visitVAArgInst(VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- std::cerr << "Cannot instruction select: " << I;
- abort();
- }
-
- unsigned ExtendOrClear(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0);
-
- /// promote32 - Make a value 32-bits wide, and put it somewhere.
- ///
- void promote32(unsigned targetReg, const ValueRecord &VR);
-
- /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
- /// constant expression GEP support.
- ///
- void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- GetElementPtrInst *GEPI, bool foldGEP);
-
- /// emitCastOperation - Common code shared between visitCastInst and
- /// constant expression cast support.
- ///
- void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy, unsigned TargetReg);
-
-
- /// emitBitfieldInsert - return true if we were able to fold the sequence of
- /// instructions into a bitfield insert (rlwimi).
- bool emitBitfieldInsert(User *OpUser, unsigned DestReg);
-
- /// emitBitfieldExtract - return true if we were able to fold the sequence
- /// of instructions into a bitfield extract (rlwinm).
- bool emitBitfieldExtract(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- User *OpUser, unsigned DestReg);
-
- /// emitBinaryConstOperation - Used by several functions to emit simple
- /// arithmetic and logical operations with constants on a register rather
- /// than a Value.
- ///
- void emitBinaryConstOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned Op0Reg, ConstantInt *Op1,
- unsigned Opcode, unsigned DestReg);
-
- /// emitSimpleBinaryOperation - Implement simple binary operators for
- /// integral types. OperatorClass is one of: 0 for Add, 1 for Sub,
- /// 2 for And, 3 for Or, 4 for Xor.
- ///
- void emitSimpleBinaryOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- BinaryOperator *BO, Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- /// emitBinaryFPOperation - This method handles emission of floating point
- /// Add (0), Sub (1), Mul (2), and Div (3) operations.
- void emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned TargetReg);
-
- void doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1);
-
- /// doMultiplyConst - This method will multiply the value in Op0Reg by the
- /// value of the ContantInt *CI
- void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI);
-
- void emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned TargetReg);
-
- /// emitSetCCOperation - Common code shared between visitSetCondInst and
- /// constant expression support.
- ///
- void emitSetCCOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg);
-
- /// emitShiftOperation - Common code shared between visitShiftInst and
- /// constant expression support.
- ///
- void emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, ShiftInst *SI,
- unsigned DestReg);
-
- /// emitSelectOperation - Common code shared between visitSelectInst and the
- /// constant expression support.
- ///
- void emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg);
-
- /// getGlobalBaseReg - Output the instructions required to put the
- /// base address to use for accessing globals into a register. Returns the
- /// register containing the base address.
- ///
- unsigned getGlobalBaseReg();
-
- /// copyConstantToRegister - Output the instructions required to put the
- /// specified constant into the specified register.
- ///
- void copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- Constant *C, unsigned Reg);
-
- void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned LHS, unsigned RHS);
-
- /// makeAnotherReg - This method returns the next register number we haven't
- /// yet used.
- ///
- /// Long values are handled somewhat specially. They are always allocated
- /// as pairs of 32 bit integer values. The register number returned is the
- /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
- ///
- unsigned makeAnotherReg(const Type *Ty) {
- assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) &&
- "Current target doesn't have PPC reg info??");
- const PPC32RegisterInfo *PPCRI =
- static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo());
- if (Ty == Type::LongTy || Ty == Type::ULongTy) {
- const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy);
- // Create the upper part
- F->getSSARegMap()->createVirtualRegister(RC);
- // Create the lower part.
- return F->getSSARegMap()->createVirtualRegister(RC)-1;
- }
-
- // Add the mapping of regnumber => reg class to MachineFunction
- const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
- return F->getSSARegMap()->createVirtualRegister(RC);
- }
-
- /// getReg - This method turns an LLVM value into a register number.
- ///
- unsigned getReg(Value &V) { return getReg(&V); } // Allow references
- unsigned getReg(Value *V) {
- // Just append to the end of the current bb.
- MachineBasicBlock::iterator It = BB->end();
- return getReg(V, BB, It);
- }
- unsigned getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt);
-
- /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
- /// is okay to use as an immediate argument to a certain binary operation
- bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
- bool Shifted);
-
- /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
- /// that is to be statically allocated with the initial stack frame
- /// adjustment.
- unsigned getFixedSizedAllocaFI(AllocaInst *AI);
- };
-}
-
-/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
-/// instruction in the entry block, return it. Otherwise, return a null
-/// pointer.
-static AllocaInst *dyn_castFixedAlloca(Value *V) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- BasicBlock *BB = AI->getParent();
- if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
- return AI;
- }
- return 0;
-}
-
-/// getReg - This method turns an LLVM value into a register number.
-///
-unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- copyConstantToRegister(MBB, IPt, C, Reg);
- return Reg;
- } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
- // Do not emit noop casts at all, unless it's a double -> float cast.
- if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
- return getReg(CI->getOperand(0), MBB, IPt);
- } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
- return Reg;
- }
-
- unsigned &Reg = RegMap[V];
- if (Reg == 0) {
- Reg = makeAnotherReg(V->getType());
- RegMap[V] = Reg;
- }
-
- return Reg;
-}
-
-/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
-/// is okay to use as an immediate argument to a certain binary operator.
-/// The shifted argument determines if the immediate is suitable to be used with
-/// the PowerPC instructions such as addis which concatenate 16 bits of the
-/// immediate with 16 bits of zeroes.
-///
-bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode,
- bool Shifted) {
- ConstantSInt *Op1Cs;
- ConstantUInt *Op1Cu;
-
- // For shifted immediates, any value with the low halfword cleared may be used
- if (Shifted) {
- if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0)
- return true;
- else
- return false;
- }
-
- // Treat subfic like addi for the purposes of constant validation
- if (Opcode == 5) Opcode = 0;
-
- // addi, subfic, compare, and non-indexed load take SIMM
- bool cond1 = (Opcode < 2)
- && ((int32_t)CI->getRawValue() <= 32767)
- && ((int32_t)CI->getRawValue() >= -32768);
-
- // ANDIo, ORI, and XORI take unsigned values
- bool cond2 = (Opcode >= 2)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() >= 0)
- && (Op1Cs->getValue() <= 65535);
-
- // ANDIo, ORI, and XORI take UIMMs, so they can be larger
- bool cond3 = (Opcode >= 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 65535);
-
- if (cond1 || cond2 || cond3)
- return true;
-
- return false;
-}
-
-/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-/// that is to be statically allocated with the initial stack frame
-/// adjustment.
-unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
- // Already computed this?
- std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
- if (I != AllocaMap.end() && I->first == AI) return I->second;
-
- const Type *Ty = AI->getAllocatedType();
- ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
- TySize *= CUI->getValue(); // Get total allocated size...
- unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-
- // Create a new stack object using the frame manager...
- int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
- AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
- return FrameIdx;
-}
-
-
-/// getGlobalBaseReg - Output the instructions required to put the
-/// base address to use for accessing globals into a register.
-///
-unsigned PPC32ISel::getGlobalBaseReg() {
- if (!GlobalBaseInitialized) {
- // Insert the set of GlobalBaseReg into the first MBB of the function
- MachineBasicBlock &FirstMBB = F->front();
- MachineBasicBlock::iterator MBBI = FirstMBB.begin();
- GlobalBaseReg = makeAnotherReg(Type::IntTy);
- BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
- BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
- GlobalBaseInitialized = true;
- }
- return GlobalBaseReg;
-}
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Constant *C, unsigned R) {
- if (isa<UndefValue>(C)) {
- BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R);
- if (getClassB(C->getType()) == cLong)
- BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1);
- return;
- }
- if (C->getType()->isIntegral()) {
- unsigned Class = getClassB(C->getType());
-
- if (Class == cLong) {
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- uint64_t uval = CUI->getValue();
- unsigned hiUVal = uval >> 32;
- unsigned loUVal = uval;
- ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
- ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
- copyConstantToRegister(MBB, IP, CUHi, R);
- copyConstantToRegister(MBB, IP, CULo, R+1);
- return;
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int64_t sval = CSI->getValue();
- int hiSVal = sval >> 32;
- int loSVal = sval;
- ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
- ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
- copyConstantToRegister(MBB, IP, CSHi, R);
- copyConstantToRegister(MBB, IP, CSLo, R+1);
- return;
- } else {
- std::cerr << "Unhandled long constant type!\n";
- abort();
- }
- }
-
- assert(Class <= cInt && "Type not handled yet!");
-
- // Handle bool
- if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
- return;
- }
-
- // Handle int
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- unsigned uval = CUI->getValue();
- if (uval < 32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF);
- }
- return;
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int sval = CSI->getValue();
- if (sval < 32768 && sval >= -32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF);
- }
- return;
- }
- std::cerr << "Unhandled integer constant!\n";
- abort();
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- // We need to spill the constant to memory...
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
-
- assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
-
- // Load addr of constant to reg; constant is located at base + distance
- unsigned Reg1 = makeAnotherReg(Type::IntTy);
- unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
- // Move value at base + distance into return reg
- BuildMI(*MBB, IP, PPC::ADDIS, 2, Reg1)
- .addReg(getGlobalBaseReg()).addConstantPoolIndex(CPI);
- BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1);
- } else if (isa<ConstantPointerNull>(C)) {
- // Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
- // GV is located at base + distance
- unsigned TmpReg = makeAnotherReg(GV->getType());
-
- // Move value at base + distance into return reg
- BuildMI(*MBB, IP, PPC::ADDIS, 2, TmpReg)
- .addReg(getGlobalBaseReg()).addGlobalAddress(GV);
-
- if (GV->hasWeakLinkage() || GV->isExternal()) {
- BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg);
- } else {
- BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV);
- }
- } else {
- std::cerr << "Offending constant: " << *C << "\n";
- assert(0 && "Type not handled yet!");
- }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
- unsigned ArgOffset = 24;
- unsigned GPR_remaining = 8;
- unsigned FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
- };
-
- MachineFrameInfo *MFI = F->getFrameInfo();
-
- for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
- I != E; ++I) {
- bool ArgLive = !I->use_empty();
- unsigned Reg = ArgLive ? getReg(*I) : 0;
- int FI; // Frame object index
-
- switch (getClassB(I->getType())) {
- case cByte:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- F->addLiveIn(GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
- }
- }
- break;
- case cShort:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- F->addLiveIn(GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
- }
- }
- break;
- case cInt:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- F->addLiveIn(GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
- }
- }
- break;
- case cLong:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
- if (GPR_remaining > 1) {
- F->addLiveIn(GPR[GPR_idx]);
- F->addLiveIn(GPR[GPR_idx+1]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
- .addReg(GPR[GPR_idx+1]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4);
- }
- }
- // longs require 4 additional bytes and use 2 GPRs
- ArgOffset += 4;
- if (GPR_remaining > 1) {
- GPR_remaining--;
- GPR_idx++;
- }
- break;
- case cFP32:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
-
- if (FPR_remaining > 0) {
- F->addLiveIn(FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
- }
- }
- break;
- case cFP64:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
-
- if (FPR_remaining > 0) {
- F->addLiveIn(FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
- }
- }
-
- // doubles require 4 additional bytes and use 2 GPRs of param space
- ArgOffset += 4;
- if (GPR_remaining > 0) {
- GPR_remaining--;
- GPR_idx++;
- }
- break;
- default:
- assert(0 && "Unhandled argument type!");
- }
- ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
- if (GPR_remaining > 0) {
- GPR_remaining--; // uses up 2 GPRs
- GPR_idx++;
- }
- }
-
- // If the function takes variable number of arguments, add a frame offset for
- // the start of the first vararg value... this is used to expand
- // llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
-
- if (Fn.getReturnType() != Type::VoidTy)
- switch (getClassB(Fn.getReturnType())) {
- case cByte:
- case cShort:
- case cInt:
- F->addLiveOut(PPC::R3);
- break;
- case cLong:
- F->addLiveOut(PPC::R3);
- F->addLiveOut(PPC::R4);
- break;
- case cFP32:
- case cFP64:
- F->addLiveOut(PPC::F1);
- break;
- }
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis. This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void PPC32ISel::SelectPHINodes() {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const Function &LF = *F->getFunction(); // The LLVM function...
-
- MachineBasicBlock::iterator MFLRIt = F->begin()->begin();
- if (GlobalBaseInitialized) {
- // If we emitted a MFLR for the global base reg, get an iterator to an
- // instruction after it.
- while (MFLRIt->getOpcode() != PPC::MFLR)
- ++MFLRIt;
- ++MFLRIt; // step one MI past it.
- }
-
- for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
- const BasicBlock *BB = I;
- MachineBasicBlock &MBB = *MBBMap[I];
-
- // Loop over all of the PHI nodes in the LLVM basic block...
- MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
- for (BasicBlock::const_iterator I = BB->begin();
- PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
- // Create a new machine instr PHI node, and insert it.
- unsigned PHIReg = getReg(*PN);
- MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
- PPC::PHI, PN->getNumOperands(), PHIReg);
-
- MachineInstr *LongPhiMI = 0;
- if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
- LongPhiMI = BuildMI(MBB, PHIInsertPoint,
- PPC::PHI, PN->getNumOperands(), PHIReg+1);
-
- // PHIValues - Map of blocks to incoming virtual registers. We use this
- // so that we only initialize one incoming value for a particular block,
- // even if the block has multiple entries in the PHI node.
- //
- std::map<MachineBasicBlock*, unsigned> PHIValues;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- MachineBasicBlock *PredMBB = 0;
- for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
- PE = MBB.pred_end (); PI != PE; ++PI)
- if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
- PredMBB = *PI;
- break;
- }
- assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
-
- unsigned ValReg;
- std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
- PHIValues.lower_bound(PredMBB);
-
- if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
- // We already inserted an initialization of the register for this
- // predecessor. Recycle it.
- ValReg = EntryIt->second;
- } else {
- // Get the incoming value into a virtual register.
- //
- Value *Val = PN->getIncomingValue(i);
-
- // If this is a constant or GlobalValue, we may have to insert code
- // into the basic block to compute it into a virtual register.
- if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
- isa<GlobalValue>(Val)) {
- // Simple constants get emitted at the end of the basic block,
- // before any terminator instructions. We "know" that the code to
- // move a constant into a register will never clobber any flags.
- ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
- } else {
- // Because we don't want to clobber any values which might be in
- // physical registers with the computation of this constant (which
- // might be arbitrarily complex if it is a constant expression),
- // just insert the computation at the top of the basic block.
- MachineBasicBlock::iterator PI = PredMBB->begin();
-
- // Skip over any PHI nodes though!
- while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
- ++PI;
-
- // If this is the entry block, and if the entry block contains a
- // MFLR instruction, emit this operation after it. This is needed
- // because global addresses use it.
- if (PredMBB == F->begin())
- PI = MFLRIt;
-
- ValReg = getReg(Val, PredMBB, PI);
- }
-
- // Remember that we inserted a value for this PHI for this predecessor
- PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
- }
-
- PhiMI->addRegOperand(ValReg);
- PhiMI->addMachineBasicBlockOperand(PredMBB);
- if (LongPhiMI) {
- LongPhiMI->addRegOperand(ValReg+1);
- LongPhiMI->addMachineBasicBlockOperand(PredMBB);
- }
- }
-
- // Now that we emitted all of the incoming values for the PHI node, make
- // sure to reposition the InsertPoint after the PHI that we just added.
- // This is needed because we might have inserted a constant into this
- // block, right after the PHI's which is before the old insert point!
- PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
- ++PHIInsertPoint;
- }
- }
-}
-
-
-// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
-// it into the conditional branch or select instruction which is the only user
-// of the cc instruction. This is the case if the conditional branch is the
-// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch.
-//
-static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
- if (SCI->hasOneUse()) {
- Instruction *User = cast<Instruction>(SCI->use_back());
- if ((isa<BranchInst>(User) ||
- (isa<SelectInst>(User) && User->getOperand(0) == V)) &&
- SCI->getParent() == User->getParent())
- return SCI;
- }
- return 0;
-}
-
-// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
-// the load or store instruction that is the only user of the GEP.
-//
-static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
- bool AllUsesAreMem = true;
- for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
- I != E; ++I) {
- Instruction *User = cast<Instruction>(*I);
-
- // If the GEP is the target of a store, but not the source, then we are ok
- // to fold it.
- if (isa<StoreInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) != GEPI &&
- User->getOperand(1) == GEPI)
- continue;
-
- // If the GEP is the source of a load, then we're always ok to fold it
- if (isa<LoadInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) == GEPI)
- continue;
-
- // if we got to this point, than the instruction was not a load or store
- // that we are capable of folding the GEP into.
- AllUsesAreMem = false;
- break;
- }
- if (AllUsesAreMem)
- return GEPI;
- }
- return 0;
-}
-
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return 0;
- case Instruction::SetNE: return 1;
- case Instruction::SetLT: return 2;
- case Instruction::SetGE: return 3;
- case Instruction::SetGT: return 4;
- case Instruction::SetLE: return 5;
- }
-}
-
-static unsigned getPPCOpcodeForSetCCOpcode(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return PPC::BEQ;
- case Instruction::SetNE: return PPC::BNE;
- case Instruction::SetLT: return PPC::BLT;
- case Instruction::SetGE: return PPC::BGE;
- case Instruction::SetGT: return PPC::BGT;
- case Instruction::SetLE: return PPC::BLE;
- }
-}
-
-/// emitUCOM - emits an unordered FP compare.
-void PPC32ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- unsigned LHS, unsigned RHS) {
- BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
-}
-
-unsigned PPC32ISel::ExtendOrClear(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0) {
- const Type *CompTy = Op0->getType();
- unsigned Reg = getReg(Op0, MBB, IP);
- unsigned Class = getClassB(CompTy);
-
- // Since we know that boolean values will be either zero or one, we don't
- // have to extend or clear them.
- if (CompTy == Type::BoolTy)
- return Reg;
-
- // Before we do a comparison or SetCC, we have to make sure that we truncate
- // the source registers appropriately.
- if (Class == cByte) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Reg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
- .addImm(24).addImm(31);
- Reg = TmpReg;
- } else if (Class == cShort) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Reg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Reg).addImm(0)
- .addImm(16).addImm(31);
- Reg = TmpReg;
- }
- return Reg;
-}
-
-/// EmitComparison - emits a comparison of the two operands. The result is in
-/// CR0.
-///
-void PPC32ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP) {
- // The arguments are already supposed to be of the same type.
- const Type *CompTy = Op0->getType();
- unsigned Class = getClassB(CompTy);
- unsigned Op0r = ExtendOrClear(MBB, IP, Op0);
-
- // Use crand for lt, gt and crandc for le, ge
- unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
- // ? cr1[lt] : cr1[gt]
- unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 0 : 1;
- // ? cr0[lt] : cr0[gt]
- unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
- unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
- unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
-
- // Special case handling of: cmp R, i
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Class == cByte || Class == cShort || Class == cInt) {
- unsigned Op1v = CI->getRawValue() & 0xFFFF;
- unsigned OpClass = (CompTy->isSigned()) ? 0 : 2;
-
- // Treat compare like ADDI for the purposes of immediate suitability
- if (canUseAsImmediateForOpcode(CI, OpClass, false)) {
- BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
- } else {
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- }
- return;
- } else {
- assert(Class == cLong && "Unknown integer class!");
- unsigned LowCst = CI->getRawValue();
- unsigned HiCst = CI->getRawValue() >> 32;
- if (OpNum < 2) { // seteq, setne
- unsigned LoLow = makeAnotherReg(Type::IntTy);
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- unsigned HiLow = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
-
- BuildMI(*MBB, IP, PPC::XORI, 2, LoLow).addReg(Op0r+1)
- .addImm(LowCst & 0xFFFF);
- BuildMI(*MBB, IP, PPC::XORIS, 2, LoTmp).addReg(LoLow)
- .addImm(LowCst >> 16);
- BuildMI(*MBB, IP, PPC::XORI, 2, HiLow).addReg(Op0r)
- .addImm(HiCst & 0xFFFF);
- BuildMI(*MBB, IP, PPC::XORIS, 2, HiTmp).addReg(HiLow)
- .addImm(HiCst >> 16);
- BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- return;
- } else {
- unsigned ConstReg = makeAnotherReg(CompTy);
- copyConstantToRegister(MBB, IP, CI, ConstReg);
-
- // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r)
- .addReg(ConstReg);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1)
- .addReg(ConstReg+1);
- BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
- .addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
- BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
- .addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
- return;
- }
- }
- }
-
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- switch (Class) {
- default: assert(0 && "Unknown type class!");
- case cByte:
- case cShort:
- case cInt:
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- break;
-
- case cFP32:
- case cFP64:
- emitUCOM(MBB, IP, Op0r, Op1r);
- break;
-
- case cLong:
- if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
- break; // Allow the sete or setne to be generated from flags set by OR
- } else {
- unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
-
- // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR1).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::CRAND, 5, PPC::CR0).addImm(2)
- .addReg(PPC::CR0).addImm(2).addReg(PPC::CR1).addImm(CR1field);
- BuildMI(*MBB, IP, PPC::CROR, 5, PPC::CR0).addImm(CR0field)
- .addReg(PPC::CR0).addImm(CR0field).addReg(PPC::CR0).addImm(2);
- return;
- }
- }
- return;
-}
-
-/// visitSetCondInst - emit code to calculate the condition via
-/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
-///
-void PPC32ISel::visitSetCondInst(SetCondInst &I) {
- if (canFoldSetCCIntoBranchOrSelect(&I))
- return;
-
- MachineBasicBlock::iterator MI = BB->end();
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- const Type *Ty = Op0->getType();
- unsigned Class = getClassB(Ty);
- unsigned Opcode = I.getOpcode();
- unsigned OpNum = getSetCCNumber(Opcode);
- unsigned DestReg = getReg(I);
-
- // If the comparison type is byte, short, or int, then we can emit a
- // branchless version of the SetCC that puts 0 (false) or 1 (true) in the
- // destination register.
- if (Class <= cInt) {
- ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
-
- if (CI && CI->getRawValue() == 0) {
- unsigned Op0Reg = ExtendOrClear(BB, MI, Op0);
-
- // comparisons against constant zero and negative one often have shorter
- // and/or faster sequences than the set-and-branch general case, handled
- // below.
- switch(OpNum) {
- case 0: { // eq0
- unsigned TempReg = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, MI, PPC::CNTLZW, 1, TempReg).addReg(Op0Reg);
- BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(TempReg).addImm(27)
- .addImm(5).addImm(31);
- break;
- }
- case 1: { // ne0
- unsigned TempReg = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, MI, PPC::ADDIC, 2, TempReg).addReg(Op0Reg).addSImm(-1);
- BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(TempReg).addReg(Op0Reg);
- break;
- }
- case 2: { // lt0, always false if unsigned
- if (Ty->isSigned())
- BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(1)
- .addImm(31).addImm(31);
- else
- BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(0);
- break;
- }
- case 3: { // ge0, always true if unsigned
- if (Ty->isSigned()) {
- unsigned TempReg = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, MI, PPC::RLWINM, 4, TempReg).addReg(Op0Reg).addImm(1)
- .addImm(31).addImm(31);
- BuildMI(*BB, MI, PPC::XORI, 2, DestReg).addReg(TempReg).addImm(1);
- } else {
- BuildMI(*BB, MI, PPC::LI, 1, DestReg).addSImm(1);
- }
- break;
- }
- case 4: { // gt0, equivalent to ne0 if unsigned
- unsigned Temp1 = makeAnotherReg(Type::IntTy);
- unsigned Temp2 = makeAnotherReg(Type::IntTy);
- if (Ty->isSigned()) {
- BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
- BuildMI(*BB, MI, PPC::ANDC, 2, Temp2).addReg(Temp1).addReg(Op0Reg);
- BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
- .addImm(31).addImm(31);
- } else {
- BuildMI(*BB, MI, PPC::ADDIC, 2, Temp1).addReg(Op0Reg).addSImm(-1);
- BuildMI(*BB, MI, PPC::SUBFE, 2, DestReg).addReg(Temp1).addReg(Op0Reg);
- }
- break;
- }
- case 5: { // le0, equivalent to eq0 if unsigned
- unsigned Temp1 = makeAnotherReg(Type::IntTy);
- unsigned Temp2 = makeAnotherReg(Type::IntTy);
- if (Ty->isSigned()) {
- BuildMI(*BB, MI, PPC::NEG, 2, Temp1).addReg(Op0Reg);
- BuildMI(*BB, MI, PPC::ORC, 2, Temp2).addReg(Op0Reg).addReg(Temp1);
- BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp2).addImm(1)
- .addImm(31).addImm(31);
- } else {
- BuildMI(*BB, MI, PPC::CNTLZW, 1, Temp1).addReg(Op0Reg);
- BuildMI(*BB, MI, PPC::RLWINM, 4, DestReg).addReg(Temp1).addImm(27)
- .addImm(5).addImm(31);
- }
- break;
- }
- } // switch
- return;
- }
- }
- unsigned PPCOpcode = getPPCOpcodeForSetCCOpcode(Opcode);
-
- // Create an iterator with which to insert the MBB for copying the false value
- // and the MBB to hold the PHI instruction for this SetCC.
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // thisMBB:
- // ...
- // cmpTY cr0, r1, r2
- // %TrueValue = li 1
- // bCC sinkMBB
- EmitComparison(OpNum, Op0, Op1, BB, BB->end());
- unsigned TrueValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- BuildMI(BB, PPCOpcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
- F->getBasicBlockList().insert(It, copy0MBB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy0MBB);
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = li 0
- // fallthrough
- BB = copy0MBB;
- unsigned FalseValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
- .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
-}
-
-void PPC32ISel::visitSelectInst(SelectInst &SI) {
- unsigned DestReg = getReg(SI);
- MachineBasicBlock::iterator MII = BB->end();
- emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
- SI.getFalseValue(), DestReg);
-}
-
-/// emitSelect - Common code shared between visitSelectInst and the constant
-/// expression support.
-void PPC32ISel::emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal,
- Value *FalseVal, unsigned DestReg) {
- unsigned SelectClass = getClassB(TrueVal->getType());
- unsigned Opcode;
-
- // See if we can fold the setcc into the select instruction, or if we have
- // to get the register of the Cond value
- if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
- // We successfully folded the setcc into the select instruction.
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- if (OpNum >= 2 && OpNum <= 5) {
- unsigned SetCondClass = getClassB(SCI->getOperand(0)->getType());
- if ((SetCondClass == cFP32 || SetCondClass == cFP64) &&
- (SelectClass == cFP32 || SelectClass == cFP64)) {
- unsigned CondReg = getReg(SCI->getOperand(0), MBB, IP);
- unsigned TrueReg = getReg(TrueVal, MBB, IP);
- unsigned FalseReg = getReg(FalseVal, MBB, IP);
- // if the comparison of the floating point value used to for the select
- // is against 0, then we can emit an fsel without subtraction.
- ConstantFP *Op1C = dyn_cast<ConstantFP>(SCI->getOperand(1));
- if (Op1C && (Op1C->isExactlyValue(-0.0) || Op1C->isExactlyValue(0.0))) {
- switch(OpNum) {
- case 2: // LT
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
- .addReg(FalseReg).addReg(TrueReg);
- break;
- case 3: // GE == !LT
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(CondReg)
- .addReg(TrueReg).addReg(FalseReg);
- break;
- case 4: { // GT
- unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
- BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
- .addReg(FalseReg).addReg(TrueReg);
- }
- break;
- case 5: { // LE == !GT
- unsigned NegatedReg = makeAnotherReg(SCI->getOperand(0)->getType());
- BuildMI(*MBB, IP, PPC::FNEG, 1, NegatedReg).addReg(CondReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(NegatedReg)
- .addReg(TrueReg).addReg(FalseReg);
- }
- break;
- default:
- assert(0 && "Invalid SetCC opcode to fsel");
- abort();
- break;
- }
- } else {
- unsigned OtherCondReg = getReg(SCI->getOperand(1), MBB, IP);
- unsigned SelectReg = makeAnotherReg(SCI->getOperand(0)->getType());
- switch(OpNum) {
- case 2: // LT
- BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
- .addReg(OtherCondReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
- .addReg(FalseReg).addReg(TrueReg);
- break;
- case 3: // GE == !LT
- BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(CondReg)
- .addReg(OtherCondReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
- .addReg(TrueReg).addReg(FalseReg);
- break;
- case 4: // GT
- BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
- .addReg(CondReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
- .addReg(FalseReg).addReg(TrueReg);
- break;
- case 5: // LE == !GT
- BuildMI(*MBB, IP, PPC::FSUB, 2, SelectReg).addReg(OtherCondReg)
- .addReg(CondReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, DestReg).addReg(SelectReg)
- .addReg(TrueReg).addReg(FalseReg);
- break;
- default:
- assert(0 && "Invalid SetCC opcode to fsel");
- abort();
- break;
- }
- }
- return;
- }
- }
- EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
- Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
- } else {
- unsigned CondReg = getReg(Cond, MBB, IP);
- BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
- Opcode = getPPCOpcodeForSetCCOpcode(Instruction::SetNE);
- }
-
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // thisMBB:
- // ...
- // TrueVal = ...
- // cmpTY cr0, r1, r2
- // bCC copy1MBB
- // fallthrough --> copy0MBB
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- unsigned TrueValue = getReg(TrueVal);
- BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(sinkMBB);
- F->getBasicBlockList().insert(It, copy0MBB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy0MBB);
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = ...
- // # fallthrough to sinkMBB
- BB = copy0MBB;
- unsigned FalseValue = getReg(FalseVal);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
- .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
-
- // For a register pair representing a long value, define the top part.
- if (getClassB(TrueVal->getType()) == cLong)
- BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(FalseValue+1)
- .addMBB(copy0MBB).addReg(TrueValue+1).addMBB(thisMBB);
-}
-
-
-
-/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
-/// operand, in the specified target register.
-///
-void PPC32ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
- bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
-
- Value *Val = VR.Val;
- const Type *Ty = VR.Ty;
- if (Val) {
- if (Constant *C = dyn_cast<Constant>(Val)) {
- Val = ConstantExpr::getCast(C, Type::IntTy);
- if (isa<ConstantExpr>(Val)) // Could not fold
- Val = C;
- else
- Ty = Type::IntTy; // Folded!
- }
-
- // If this is a simple constant, just emit a load directly to avoid the copy
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- copyConstantToRegister(BB, BB->end(), CI, targetReg);
- return;
- }
- }
-
- // Make sure we have the register number for this value...
- unsigned Reg = Val ? getReg(Val) : VR.Reg;
- switch (getClassB(Ty)) {
- case cByte:
- // Extend value into target register (8->32)
- if (Ty == Type::BoolTy)
- BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
- else if (isUnsigned)
- BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
- .addZImm(24).addZImm(31);
- else
- BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
- break;
- case cShort:
- // Extend value into target register (16->32)
- if (isUnsigned)
- BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
- .addZImm(16).addZImm(31);
- else
- BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
- break;
- case cInt:
- // Move value into target register (32->32)
- BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
- break;
- default:
- assert(0 && "Unpromotable operand class in promote32");
- }
-}
-
-/// visitReturnInst - implemented with BLR
-///
-void PPC32ISel::visitReturnInst(ReturnInst &I) {
- // Only do the processing if this is a non-void return
- if (I.getNumOperands() > 0) {
- Value *RetVal = I.getOperand(0);
- switch (getClassB(RetVal->getType())) {
- case cByte: // integral return values: extend or move into r3 and return
- case cShort:
- case cInt:
- promote32(PPC::R3, ValueRecord(RetVal));
- break;
- case cFP32:
- case cFP64: { // Floats & Doubles: Return in f1
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
- break;
- }
- case cLong: {
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(RetReg).addReg(RetReg);
- BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(RetReg+1).addReg(RetReg+1);
- break;
- }
- default:
- visitInstruction(I);
- }
- }
- BuildMI(BB, PPC::BLR, 1).addImm(0);
-}
-
-// getBlockAfter - Return the basic block which occurs lexically after the
-// specified one.
-static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
- Function::iterator I = BB; ++I; // Get iterator to next block
- return I != BB->getParent()->end() ? &*I : 0;
-}
-
-/// visitBranchInst - Handle conditional and unconditional branches here. Note
-/// that since code layout is frozen at this point, that if we are trying to
-/// jump to a block that is the immediate successor of the current block, we can
-/// just make a fall-through (but we don't currently).
-///
-void PPC32ISel::visitBranchInst(BranchInst &BI) {
- // Update machine-CFG edges
- BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
- if (BI.isConditional())
- BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
-
- BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
-
- if (!BI.isConditional()) { // Unconditional branch?
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- return;
- }
-
- // See if we can fold the setcc into the branch itself...
- SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
- if (SCI == 0) {
- // Nope, cannot fold setcc into this branch. Emit a branch on a condition
- // computed some other way...
- unsigned condReg = getReg(BI.getCondition());
- BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
- .addImm(0);
- if (BI.getSuccessor(1) == NextBB) {
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BNE)
- .addMBB(MBBMap[BI.getSuccessor(0)])
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(PPC::BEQ)
- .addMBB(MBBMap[BI.getSuccessor(1)])
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- return;
- }
-
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- unsigned Opcode = getPPCOpcodeForSetCCOpcode(SCI->getOpcode());
- MachineBasicBlock::iterator MII = BB->end();
- EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
-
- if (BI.getSuccessor(0) != NextBB) {
- BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
- .addMBB(MBBMap[BI.getSuccessor(0)])
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- if (BI.getSuccessor(1) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- // Change to the inverse condition...
- if (BI.getSuccessor(1) != NextBB) {
- Opcode = PPC32InstrInfo::invertPPCBranchOpcode(Opcode);
- BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opcode)
- .addMBB(MBBMap[BI.getSuccessor(1)])
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- }
-}
-
-/// doCall - This emits an abstract call instruction, setting up the arguments
-/// and the return value as appropriate. For the actual function call itself,
-/// it inserts the specified CallMI instruction into the stream.
-///
-/// FIXME: See Documentation at the following URL for "correct" behavior
-/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/PowerPCConventions/chapter_3_section_5.html>
-void PPC32ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg) {
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, and parameter passing area.
- unsigned NumBytes = 24;
- unsigned ArgOffset = 24;
-
- if (!Args.empty()) {
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- switch (getClassB(Args[i].Ty)) {
- case cByte: case cShort: case cInt:
- NumBytes += 4; break;
- case cLong:
- NumBytes += 8; break;
- case cFP32:
- NumBytes += 4; break;
- case cFP64:
- NumBytes += 8; break;
- break;
- default: assert(0 && "Unknown class!");
- }
-
- // Just to be safe, we'll always reserve the full 24 bytes of linkage area
- // plus 32 bytes of argument space in case any called code gets funky on us.
- if (NumBytes < 56) NumBytes = 56;
-
- // Adjust the stack pointer for the new arguments...
- // These operations are automatically eliminated by the prolog/epilog pass
- BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
-
- // Arguments go on the stack in reverse order, as specified by the ABI.
- // Offset to the paramater area on the stack is 24.
- int GPR_remaining = 8, FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
- PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
- PPC::F13
- };
-
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- unsigned ArgReg;
- switch (getClassB(Args[i].Ty)) {
- case cByte:
- case cShort:
- // Promote arg to 32 bits wide into a temporary register...
- ArgReg = makeAnotherReg(Type::UIntTy);
- promote32(ArgReg, Args[i]);
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cInt:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cLong:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
- // Reg or stack? Note that PPC calling conventions state that long args
- // are passed rN = hi, rN+1 = lo, opposite of LLVM.
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
- .addReg(ArgReg+1);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
- }
- if (GPR_remaining <= 1 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
- .addReg(PPC::R1);
- }
-
- ArgOffset += 4; // 8 byte entry, not 4.
- GPR_remaining -= 1; // uses up 2 GPRs
- GPR_idx += 1;
- break;
- case cFP32:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- // Reg or stack?
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
- CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
- FPR_remaining--;
- FPR_idx++;
-
- // If this is a vararg function, and there are GPRs left, also
- // pass the float in an int. Otherwise, put it on the stack.
- if (isVarArg) {
- BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
- .addSImm(ArgOffset).addReg(PPC::R1);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- }
- } else {
- BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cFP64:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- // Reg or stack?
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
- CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
- FPR_remaining--;
- FPR_idx++;
- // For vararg functions, must pass doubles via int regs as well
- if (isVarArg) {
- BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
-
- // Doubles can be split across reg + stack for varargs
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
- .addReg(PPC::R1);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx+1])
- .addSImm(ArgOffset+4).addReg(PPC::R1);
- CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
- }
- }
- } else {
- BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- // Doubles use 8 bytes, and 2 GPRs worth of param space
- ArgOffset += 4;
- GPR_remaining--;
- GPR_idx++;
- break;
-
- default: assert(0 && "Unknown class!");
- }
- ArgOffset += 4;
- GPR_remaining--;
- GPR_idx++;
- }
- } else {
- BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
- }
-
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
- BB->push_back(CallMI);
-
- // These functions are automatically eliminated by the prolog/epilog pass
- BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
-
- // If there is a return value, scavenge the result from the location the call
- // leaves it in...
- //
- if (Ret.Ty != Type::VoidTy) {
- unsigned DestClass = getClassB(Ret.Ty);
- switch (DestClass) {
- case cByte:
- case cShort:
- case cInt:
- // Integral results are in r3
- BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
- break;
- case cFP32: // Floating-point return values live in f1
- case cFP64:
- BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
- break;
- case cLong: // Long values are in r3:r4
- BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
- BuildMI(BB, PPC::OR, 2, Ret.Reg+1).addReg(PPC::R4).addReg(PPC::R4);
- break;
- default: assert(0 && "Unknown class!");
- }
- }
-}
-
-
-/// visitCallInst - Push args on stack and do a procedure call instruction.
-void PPC32ISel::visitCallInst(CallInst &CI) {
- MachineInstr *TheCall;
- Function *F = CI.getCalledFunction();
- if (F) {
- // Is it an intrinsic function call?
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
- visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
- return;
- }
- // Emit a CALL instruction with PC-relative displacement.
- TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
- } else { // Emit an indirect call through the CTR
- unsigned Reg = getReg(CI.getCalledValue());
- BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Reg).addReg(Reg);
- BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
- TheCall = BuildMI(PPC::CALLindirect, 3).addZImm(20).addZImm(0)
- .addReg(PPC::R12);
- }
-
- std::vector<ValueRecord> Args;
- for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
- Args.push_back(ValueRecord(CI.getOperand(i)));
-
- unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
- bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
- doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
-}
-
-
-/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
-///
-static Value *dyncastIsNan(Value *V) {
- if (CallInst *CI = dyn_cast<CallInst>(V))
- if (Function *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::isunordered)
- return CI->getOperand(1);
- return 0;
-}
-
-/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
-/// or's whos operands are all calls to the isnan predicate.
-static bool isOnlyUsedByUnorderedComparisons(Value *V) {
- assert(dyncastIsNan(V) && "The value isn't an isnan call!");
-
- // Check all uses, which will be or's of isnans if this predicate is true.
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
- Instruction *I = cast<Instruction>(*UI);
- if (I->getOpcode() != Instruction::Or) return false;
- if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
- if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
- }
-
- return true;
-}
-
-/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-/// function, lowering any calls to unknown intrinsic functions into the
-/// equivalent LLVM code.
-///
-void PPC32ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- // FIXME: should lower these ourselves
- // case Intrinsic::isunordered:
- // case Intrinsic::memcpy: -> doCall(). system memcpy almost
- // guaranteed to be faster than anything we generate ourselves
- // We directly implement these intrinsics
- break;
- case Intrinsic::readio: {
- // On PPC, memory operations are in-order. Lower this intrinsic
- // into a volatile load.
- LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
- CI->replaceAllUsesWith(LI);
- BB->getInstList().erase(CI);
- break;
- }
- case Intrinsic::writeio: {
- // On PPC, memory operations are in-order. Lower this intrinsic
- // into a volatile store.
- StoreInst *SI = new StoreInst(CI->getOperand(1),
- CI->getOperand(2), true, CI);
- CI->replaceAllUsesWith(SI);
- BB->getInstList().erase(CI);
- break;
- }
- default: {
- // All other intrinsic calls we must lower.
- BasicBlock::iterator me(CI);
- bool atBegin(BB->begin() == me);
- if (!atBegin)
- --me;
- TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
- // Move iterator to instruction after call
- I = atBegin ? BB->begin() : ++me;
- }
- }
-}
-
-void PPC32ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
- unsigned TmpReg1, TmpReg2, TmpReg3;
- switch (ID) {
- case Intrinsic::vastart:
- //FIXME: need to store, not return a value
- // Get the address of the first vararg value...
- TmpReg1 = getReg(CI);
- addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
- 0, false);
- return;
-
- case Intrinsic::vacopy:
- //FIXME: need to store into first arg the value of the second
- TmpReg1 = getReg(CI);
- TmpReg2 = getReg(CI.getOperand(1));
- BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
- return;
- case Intrinsic::vaend: return;
-
- case Intrinsic::returnaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- MachineFrameInfo *MFI = F->getFrameInfo();
- unsigned NumBytes = MFI->getStackSize();
-
- BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
- .addReg(PPC::R1);
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
- }
- return;
-
- case Intrinsic::frameaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
- }
- return;
-
-#if 0
- // This may be useful for supporting isunordered
- case Intrinsic::isnan:
- // If this is only used by 'isunordered' style comparisons, don't emit it.
- if (isOnlyUsedByUnorderedComparisons(&CI)) return;
- TmpReg1 = getReg(CI.getOperand(1));
- emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
- TmpReg2 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::MFCR, TmpReg2);
- TmpReg3 = getReg(CI);
- BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
- return;
-#endif
-
- default: assert(0 && "Error: unknown intrinsics should have been lowered!");
- }
-}
-
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
-/// Xor.
-///
-void PPC32ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
- if (std::find(SkipList.begin(), SkipList.end(), &B) != SkipList.end())
- return;
-
- unsigned DestReg = getReg(B);
- MachineBasicBlock::iterator MI = BB->end();
- RlwimiRec RR = InsertMap[&B];
- if (RR.Target != 0) {
- unsigned TargetReg = getReg(RR.Target, BB, MI);
- unsigned InsertReg = getReg(RR.Insert, BB, MI);
- BuildMI(*BB, MI, PPC::RLWIMI, 5, DestReg).addReg(TargetReg)
- .addReg(InsertReg).addImm(RR.Shift).addImm(RR.MB).addImm(RR.ME);
- return;
- }
-
- unsigned Class = getClassB(B.getType());
- Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
- emitSimpleBinaryOperation(BB, MI, &B, Op0, Op1, OperatorClass, DestReg);
-}
-
-/// emitBinaryFPOperation - This method handles emission of floating point
-/// Add (0), Sub (1), Mul (2), and Div (3) operations.
-void PPC32ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg){
-
- static const unsigned OpcodeTab[][4] = {
- { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
- { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
- };
-
- // Special case: R1 = op <const fp>, R2
- if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
- if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
- // -0.0 - X === -X
- unsigned op1Reg = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
- return;
- }
-
- unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
- unsigned Op0r = getReg(Op0, BB, IP);
- unsigned Op1r = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-}
-
-/// isInsertAndHalf - Helper function for emitBitfieldInsert. Returns true if
-/// OpUser has one use, is used by an or instruction, and is itself an and whose
-/// second operand is a constant int. Optionally, set OrI to the Or instruction
-/// that is the sole user of OpUser, and Op1User to the other operand of the Or
-/// instruction.
-static bool isInsertAndHalf(User *OpUser, Instruction **Op1User,
- Instruction **OrI, unsigned &Mask) {
- // If this instruction doesn't have one use, then return false.
- if (!OpUser->hasOneUse())
- return false;
-
- Mask = 0xFFFFFFFF;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(OpUser))
- if (BO->getOpcode() == Instruction::And) {
- Value *AndUse = *(OpUser->use_begin());
- if (BinaryOperator *Or = dyn_cast<BinaryOperator>(AndUse)) {
- if (Or->getOpcode() == Instruction::Or) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(OpUser->getOperand(1))) {
- if (OrI) *OrI = Or;
- if (Op1User) {
- if (Or->getOperand(0) == OpUser)
- *Op1User = dyn_cast<Instruction>(Or->getOperand(1));
- else
- *Op1User = dyn_cast<Instruction>(Or->getOperand(0));
- }
- Mask &= CI->getRawValue();
- return true;
- }
- }
- }
- }
- return false;
-}
-
-/// isInsertShiftHalf - Helper function for emitBitfieldInsert. Returns true if
-/// OpUser has one use, is used by an or instruction, and is itself a shift
-/// instruction that is either used directly by the or instruction, or is used
-/// by an and instruction whose second operand is a constant int, and which is
-/// used by the or instruction.
-static bool isInsertShiftHalf(User *OpUser, Instruction **Op1User,
- Instruction **OrI, Instruction **OptAndI,
- unsigned &Shift, unsigned &Mask) {
- // If this instruction doesn't have one use, then return false.
- if (!OpUser->hasOneUse())
- return false;
-
- Mask = 0xFFFFFFFF;
- if (ShiftInst *SI = dyn_cast<ShiftInst>(OpUser)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getOperand(1))) {
- Shift = CI->getRawValue();
- if (SI->getOpcode() == Instruction::Shl)
- Mask <<= Shift;
- else if (!SI->getOperand(0)->getType()->isSigned()) {
- Mask >>= Shift;
- Shift = 32 - Shift;
- }
-
- // Now check to see if the shift instruction is used by an or.
- Value *ShiftUse = *(OpUser->use_begin());
- Value *OptAndICopy = 0;
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ShiftUse)) {
- if (BO->getOpcode() == Instruction::And && BO->hasOneUse()) {
- if (ConstantInt *ACI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- if (OptAndI) *OptAndI = BO;
- OptAndICopy = BO;
- Mask &= ACI->getRawValue();
- BO = dyn_cast<BinaryOperator>(*(BO->use_begin()));
- }
- }
- if (BO && BO->getOpcode() == Instruction::Or) {
- if (OrI) *OrI = BO;
- if (Op1User) {
- if (BO->getOperand(0) == OpUser || BO->getOperand(0) == OptAndICopy)
- *Op1User = dyn_cast<Instruction>(BO->getOperand(1));
- else
- *Op1User = dyn_cast<Instruction>(BO->getOperand(0));
- }
- return true;
- }
- }
- }
- }
- return false;
-}
-
-/// emitBitfieldInsert - turn a shift used only by an and with immediate into
-/// the rotate left word immediate then mask insert (rlwimi) instruction.
-/// Patterns matched:
-/// 1. or shl, and 5. or (shl-and), and 9. or and, and
-/// 2. or and, shl 6. or and, (shl-and)
-/// 3. or shr, and 7. or (shr-and), and
-/// 4. or and, shr 8. or and, (shr-and)
-bool PPC32ISel::emitBitfieldInsert(User *OpUser, unsigned DestReg) {
- // Instructions to skip if we match any of the patterns
- Instruction *Op0User, *Op1User = 0, *OptAndI = 0, *OrI = 0;
- unsigned TgtMask, InsMask, Amount = 0;
- bool matched = false;
-
- // We require OpUser to be an instruction to continue
- Op0User = dyn_cast<Instruction>(OpUser);
- if (0 == Op0User)
- return false;
-
- // Look for cases 2, 4, 6, 8, and 9
- if (isInsertAndHalf(Op0User, &Op1User, &OrI, TgtMask))
- if (Op1User)
- if (isInsertAndHalf(Op1User, 0, 0, InsMask))
- matched = true;
- else if (isInsertShiftHalf(Op1User, 0, 0, &OptAndI, Amount, InsMask))
- matched = true;
-
- // Look for cases 1, 3, 5, and 7. Force the shift argument to be the one
- // inserted into the target, since rlwimi can only rotate the value inserted,
- // not the value being inserted into.
- if (matched == false)
- if (isInsertShiftHalf(Op0User, &Op1User, &OrI, &OptAndI, Amount, InsMask))
- if (Op1User && isInsertAndHalf(Op1User, 0, 0, TgtMask)) {
- std::swap(Op0User, Op1User);
- matched = true;
- }
-
- // We didn't succeed in matching one of the patterns, so return false
- if (matched == false)
- return false;
-
- // If the masks xor to -1, and the insert mask is a run of ones, then we have
- // succeeded in matching one of the cases for generating rlwimi. Update the
- // skip lists and users of the Instruction::Or.
- unsigned MB, ME;
- if (((TgtMask ^ InsMask) == 0xFFFFFFFF) && IsRunOfOnes(InsMask, MB, ME)) {
- SkipList.push_back(Op0User);
- SkipList.push_back(Op1User);
- SkipList.push_back(OptAndI);
- InsertMap[OrI] = RlwimiRec(Op0User->getOperand(0), Op1User->getOperand(0),
- Amount, MB, ME);
- return true;
- }
- return false;
-}
-
-/// emitBitfieldExtract - turn a shift used only by an and with immediate into the
-/// rotate left word immediate then and with mask (rlwinm) instruction.
-bool PPC32ISel::emitBitfieldExtract(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- User *OpUser, unsigned DestReg) {
- return false;
- /*
- // Instructions to skip if we match any of the patterns
- Instruction *Op0User, *Op1User = 0;
- unsigned ShiftMask, AndMask, Amount = 0;
- bool matched = false;
-
- // We require OpUser to be an instruction to continue
- Op0User = dyn_cast<Instruction>(OpUser);
- if (0 == Op0User)
- return false;
-
- if (isExtractShiftHalf)
- if (isExtractAndHalf)
- matched = true;
-
- if (matched == false && isExtractAndHalf)
- if (isExtractShiftHalf)
- matched = true;
-
- if (matched == false)
- return false;
-
- if (IsRunOfOnes(Imm, MB, ME)) {
- unsigned SrcReg = getReg(Op, MBB, IP);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Rotate)
- .addImm(MB).addImm(ME);
- Op1User->replaceAllUsesWith(Op0User);
- SkipList.push_back(BO);
- return true;
- }
- */
-}
-
-/// emitBinaryConstOperation - Implement simple binary operators for integral
-/// types with a constant operand. Opcode is one of: 0 for Add, 1 for Sub,
-/// 2 for And, 3 for Or, 4 for Xor, and 5 for Subtract-From.
-///
-void PPC32ISel::emitBinaryConstOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned Op0Reg, ConstantInt *Op1,
- unsigned Opcode, unsigned DestReg) {
- static const unsigned OpTab[] = {
- PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR, PPC::SUBF
- };
- static const unsigned ImmOpTab[2][6] = {
- { PPC::ADDI, PPC::ADDI, PPC::ANDIo, PPC::ORI, PPC::XORI, PPC::SUBFIC },
- { PPC::ADDIS, PPC::ADDIS, PPC::ANDISo, PPC::ORIS, PPC::XORIS, PPC::SUBFIC }
- };
-
- // Handle subtract now by inverting the constant value: X-4 == X+(-4)
- if (Opcode == 1) {
- Op1 = cast<ConstantInt>(ConstantExpr::getNeg(Op1));
- Opcode = 0;
- }
-
- // xor X, -1 -> not X
- if (Opcode == 4 && Op1->isAllOnesValue()) {
- BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
- return;
- }
-
- if (Opcode == 2 && !Op1->isNullValue()) {
- unsigned MB, ME, mask = Op1->getRawValue();
- if (IsRunOfOnes(mask, MB, ME)) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(Op0Reg).addImm(0)
- .addImm(MB).addImm(ME);
- return;
- }
- }
-
- // PowerPC 16 bit signed immediates are sign extended before use by the
- // instruction. Therefore, we can only split up an add of a reg with a 32 bit
- // immediate into addis and addi if the sign bit of the low 16 bits is cleared
- // so that for register A, const imm X, we don't end up with
- // A + XXXX0000 + FFFFXXXX.
- bool WontSignExtend = (0 == (Op1->getRawValue() & 0x8000));
-
- // For Add, Sub, and SubF the instruction takes a signed immediate. For And,
- // Or, and Xor, the instruction takes an unsigned immediate. There is no
- // shifted immediate form of SubF so disallow its opcode for those constants.
- if (canUseAsImmediateForOpcode(Op1, Opcode, false)) {
- if (Opcode < 2 || Opcode == 5)
- BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
- .addSImm(Op1->getRawValue());
- else
- BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(Op0Reg)
- .addZImm(Op1->getRawValue());
- } else if (canUseAsImmediateForOpcode(Op1, Opcode, true) && (Opcode < 5)) {
- if (Opcode < 2)
- BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
- .addSImm(Op1->getRawValue() >> 16);
- else
- BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, DestReg).addReg(Op0Reg)
- .addZImm(Op1->getRawValue() >> 16);
- } else if ((Opcode < 2 && WontSignExtend) || Opcode == 3 || Opcode == 4) {
- unsigned TmpReg = makeAnotherReg(Op1->getType());
- if (Opcode < 2) {
- BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
- .addSImm(Op1->getRawValue() >> 16);
- BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
- .addSImm(Op1->getRawValue());
- } else {
- BuildMI(*MBB, IP, ImmOpTab[1][Opcode], 2, TmpReg).addReg(Op0Reg)
- .addZImm(Op1->getRawValue() >> 16);
- BuildMI(*MBB, IP, ImmOpTab[0][Opcode], 2, DestReg).addReg(TmpReg)
- .addZImm(Op1->getRawValue());
- }
- } else {
- unsigned Op1Reg = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, OpTab[Opcode], 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
- }
-}
-
-/// emitSimpleBinaryOperation - Implement simple binary operators for integral
-/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
-/// Or, 4 for Xor.
-///
-void PPC32ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- BinaryOperator *BO,
- Value *Op0, Value *Op1,
- unsigned OperatorClass,
- unsigned DestReg) {
- // Arithmetic and Bitwise operators
- static const unsigned OpcodeTab[] = {
- PPC::ADD, PPC::SUBF, PPC::AND, PPC::OR, PPC::XOR
- };
- static const unsigned LongOpTab[2][5] = {
- { PPC::ADDC, PPC::SUBFC, PPC::AND, PPC::OR, PPC::XOR },
- { PPC::ADDE, PPC::SUBFE, PPC::AND, PPC::OR, PPC::XOR }
- };
-
- unsigned Class = getClassB(Op0->getType());
-
- if (Class == cFP32 || Class == cFP64) {
- assert(OperatorClass < 2 && "No logical ops for FP!");
- emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
- return;
- }
-
- if (Op0->getType() == Type::BoolTy) {
- if (OperatorClass == 3)
- // If this is an or of two isnan's, emit an FP comparison directly instead
- // of or'ing two isnan's together.
- if (Value *LHS = dyncastIsNan(Op0))
- if (Value *RHS = dyncastIsNan(Op1)) {
- unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- emitUCOM(MBB, IP, Op0Reg, Op1Reg);
- BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
- .addImm(31).addImm(31);
- return;
- }
- }
-
- // Special case: op <const int>, Reg
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
- if (Class != cLong) {
- unsigned Opcode = (OperatorClass == 1) ? 5 : OperatorClass;
- unsigned Op1r = getReg(Op1, MBB, IP);
- emitBinaryConstOperation(MBB, IP, Op1r, CI, Opcode, DestReg);
- return;
- }
- // Special case: op Reg, <const int>
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
- if (Class != cLong) {
- if (emitBitfieldInsert(BO, DestReg))
- return;
-
- unsigned Op0r = getReg(Op0, MBB, IP);
- emitBinaryConstOperation(MBB, IP, Op0r, CI, OperatorClass, DestReg);
- return;
- }
-
- // We couldn't generate an immediate variant of the op, load both halves into
- // registers and emit the appropriate opcode.
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- // Subtracts have their operands swapped
- if (OperatorClass == 1) {
- if (Class != cLong) {
- BuildMI(*MBB, IP, PPC::SUBF, 2, DestReg).addReg(Op1r).addReg(Op0r);
- } else {
- BuildMI(*MBB, IP, PPC::SUBFC, 2, DestReg+1).addReg(Op1r+1).addReg(Op0r+1);
- BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(Op1r).addReg(Op0r);
- }
- return;
- }
-
- if (Class != cLong) {
- unsigned Opcode = OpcodeTab[OperatorClass];
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
- } else {
- BuildMI(*MBB, IP, LongOpTab[0][OperatorClass], 2, DestReg+1).addReg(Op0r+1)
- .addReg(Op1r+1);
- BuildMI(*MBB, IP, LongOpTab[1][OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- }
- return;
-}
-
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// Values Op0 and Op1, and put the result in DestReg.
-///
-void PPC32ISel::doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1) {
- unsigned Class0 = getClass(Op0->getType());
- unsigned Class1 = getClass(Op1->getType());
-
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- // 64 x 64 -> 64
- if (Class0 == cLong && Class1 == cLong) {
- unsigned Tmp1 = makeAnotherReg(Type::IntTy);
- unsigned Tmp2 = makeAnotherReg(Type::IntTy);
- unsigned Tmp3 = makeAnotherReg(Type::IntTy);
- unsigned Tmp4 = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
- return;
- }
-
- // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
- if (Class0 == cLong && Class1 <= cInt) {
- unsigned Tmp0 = makeAnotherReg(Type::IntTy);
- unsigned Tmp1 = makeAnotherReg(Type::IntTy);
- unsigned Tmp2 = makeAnotherReg(Type::IntTy);
- unsigned Tmp3 = makeAnotherReg(Type::IntTy);
- unsigned Tmp4 = makeAnotherReg(Type::IntTy);
- if (Op1->getType()->isSigned())
- BuildMI(*MBB, IP, PPC::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
- else
- BuildMI(*MBB, IP, PPC::LI, 2, Tmp0).addSImm(0);
- BuildMI(*MBB, IP, PPC::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
- BuildMI(*MBB, IP, PPC::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
- BuildMI(*MBB, IP, PPC::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, PPC::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
- return;
- }
-
- // 32 x 32 -> 32
- if (Class0 <= cInt && Class1 <= cInt) {
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- assert(0 && "doMultiply cannot operate on unknown type!");
-}
-
-/// doMultiplyConst - This method will multiply the value in Op0 by the
-/// value of the ContantInt *CI
-void PPC32ISel::doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI) {
- unsigned Class = getClass(Op0->getType());
-
- // Mul op0, 0 ==> 0
- if (CI->isNullValue()) {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- if (Class == cLong)
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
- return;
- }
-
- // Mul op0, 1 ==> op0
- if (CI->equalsInt(1)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- if (Class == cLong)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
- return;
- }
-
- // If the element size is exactly a power of 2, use a shift to get it.
- uint64_t C = CI->getRawValue();
- if (isPowerOf2_64(C)) {
- unsigned Shift = Log2_64(C);
- ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
- emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), 0, DestReg);
- return;
- }
-
- // If 32 bits or less and immediate is in right range, emit mul by immediate
- if (Class == cByte || Class == cShort || Class == cInt) {
- if (canUseAsImmediateForOpcode(CI, 0, false)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned imm = CI->getRawValue() & 0xFFFF;
- BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
- return;
- }
- }
-
- doMultiply(MBB, IP, DestReg, Op0, CI);
-}
-
-void PPC32ISel::visitMul(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
-
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitMultiply(BB, IP, Op0, Op1, ResultReg);
-}
-
-void PPC32ISel::emitMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned DestReg) {
- TypeClass Class = getClass(Op0->getType());
-
- switch (Class) {
- case cByte:
- case cShort:
- case cInt:
- case cLong:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- doMultiplyConst(MBB, IP, DestReg, Op0, CI);
- } else {
- doMultiply(MBB, IP, DestReg, Op0, Op1);
- }
- return;
- case cFP32:
- case cFP64:
- emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
- return;
- break;
- }
-}
-
-
-/// visitDivRem - Handle division and remainder instructions... these
-/// instruction both require the same instructions to be generated, they just
-/// select the result from a different register. Note that both of these
-/// instructions work differently for signed and unsigned operands.
-///
-void PPC32ISel::visitDivRem(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
- ResultReg);
-}
-
-void PPC32ISel::emitDivRemOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned ResultReg) {
- const Type *Ty = Op0->getType();
- unsigned Class = getClass(Ty);
- switch (Class) {
- case cFP32:
- if (isDiv) {
- // Floating point divide...
- emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else {
- // Floating point remainder via fmodf(float x, float y);
- unsigned Op0Reg = getReg(Op0, MBB, IP);
- unsigned Op1Reg = getReg(Op1, MBB, IP);
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
- Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
- doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
- }
- return;
- case cFP64:
- if (isDiv) {
- // Floating point divide...
- emitBinaryFPOperation(MBB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else {
- // Floating point remainder via fmod(double x, double y);
- unsigned Op0Reg = getReg(Op0, MBB, IP);
- unsigned Op1Reg = getReg(Op1, MBB, IP);
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
- Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
- doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
- }
- return;
- case cLong: {
- static Function* const Funcs[] =
- { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
- unsigned Op0Reg = getReg(Op0, MBB, IP);
- unsigned Op1Reg = getReg(Op1, MBB, IP);
- unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
- Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
- doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
- return;
- }
- case cByte: case cShort: case cInt:
- break; // Small integrals, handled below...
- default: assert(0 && "Unknown class!");
- }
-
- // Special case signed division by power of 2.
- if (isDiv)
- if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
- assert(Class != cLong && "This doesn't handle 64-bit divides!");
- int V = CI->getValue();
-
- if (V == 1) { // X /s 1 => X
- unsigned Op0Reg = getReg(Op0, MBB, IP);
- BuildMI(*MBB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
- return;
- }
-
- if (V == -1) { // X /s -1 => -X
- unsigned Op0Reg = getReg(Op0, MBB, IP);
- BuildMI(*MBB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
- return;
- }
-
- if (isPowerOf2_32(V) && Ty->isSigned()) {
- unsigned log2V = Log2_32(V);
- unsigned Op0Reg = getReg(Op0, MBB, IP);
- unsigned TmpReg = makeAnotherReg(Op0->getType());
-
- BuildMI(*MBB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
- BuildMI(*MBB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
- return;
- }
- }
-
- unsigned Op0Reg = getReg(Op0, MBB, IP);
-
- if (isDiv) {
- unsigned Op1Reg = getReg(Op1, MBB, IP);
- unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
- BuildMI(*MBB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
- } else { // Remainder
- // FIXME: don't load the CI part of a CI divide twice
- ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
- unsigned TmpReg1 = makeAnotherReg(Op0->getType());
- unsigned TmpReg2 = makeAnotherReg(Op0->getType());
- emitDivRemOperation(MBB, IP, Op0, Op1, true, TmpReg1);
- if (CI && canUseAsImmediateForOpcode(CI, 0, false)) {
- BuildMI(*MBB, IP, PPC::MULLI, 2, TmpReg2).addReg(TmpReg1)
- .addSImm(CI->getRawValue());
- } else {
- unsigned Op1Reg = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
- }
- BuildMI(*MBB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
- }
-}
-
-
-/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
-/// for constant immediate shift values, and for constant immediate
-/// shift values equal to 1. Even the general case is sort of special,
-/// because the shift amount has to be in CL, not just any old register.
-///
-void PPC32ISel::visitShiftInst(ShiftInst &I) {
- if (std::find(SkipList.begin(), SkipList.end(), &I) != SkipList.end())
- return;
-
- MachineBasicBlock::iterator IP = BB->end();
- emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
- I.getOpcode() == Instruction::Shl, I.getType(),
- &I, getReg(I));
-}
-
-/// emitShiftOperation - Common code shared between visitShiftInst and
-/// constant expression support.
-///
-void PPC32ISel::emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount,
- bool isLeftShift, const Type *ResultTy,
- ShiftInst *SI, unsigned DestReg) {
- bool isSigned = ResultTy->isSigned ();
- unsigned Class = getClass (ResultTy);
-
- // Longs, as usual, are handled specially...
- if (Class == cLong) {
- unsigned SrcReg = getReg (Op, MBB, IP);
- // If we have a constant shift, we can generate much more efficient code
- // than for a variable shift by using the rlwimi instruction.
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- unsigned Amount = CUI->getValue();
- if (Amount == 0) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1)
- .addReg(SrcReg+1).addReg(SrcReg+1);
-
- } else if (Amount < 32) {
- unsigned TempReg = makeAnotherReg(ResultTy);
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg).addReg(TempReg)
- .addReg(SrcReg+1).addImm(Amount).addImm(32-Amount).addImm(31);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TempReg).addReg(SrcReg+1)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- BuildMI(*MBB, IP, PPC::RLWIMI, 5, DestReg+1).addReg(TempReg)
- .addReg(SrcReg).addImm(32-Amount).addImm(0).addImm(Amount-1);
- if (isSigned) {
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
- .addImm(Amount);
- } else {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- }
- }
- } else { // Shifting more than 32 bits
- Amount -= 32;
- if (isLeftShift) {
- if (Amount != 0) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg+1)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg+1)
- .addReg(SrcReg+1);
- }
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg+1).addSImm(0);
- } else {
- if (Amount != 0) {
- if (isSigned)
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg+1).addReg(SrcReg)
- .addImm(Amount);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg+1).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- } else {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- }
- if (isSigned)
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg)
- .addImm(31);
- else
- BuildMI(*MBB, IP,PPC::LI, 1, DestReg).addSImm(0);
- }
- }
- } else {
- unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
- unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addSImm(32);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg2).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg3).addReg(SrcReg+1)
- .addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
- BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addSImm(-32);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg6).addReg(SrcReg+1)
- .addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(TmpReg4)
- .addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC::SLW, 2, DestReg+1).addReg(SrcReg+1)
- .addReg(ShiftAmountReg);
- } else {
- if (isSigned) { // shift right algebraic
- MachineBasicBlock *TmpMBB =new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *PhiMBB =new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *OldMBB = BB;
- ilist<MachineBasicBlock>::iterator It = BB; ++It;
- F->getBasicBlockList().insert(It, TmpMBB);
- F->getBasicBlockList().insert(It, PhiMBB);
- BB->addSuccessor(TmpMBB);
- BB->addSuccessor(PhiMBB);
-
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addSImm(32);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
- .addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
- .addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
- .addReg(TmpReg3);
- BuildMI(*MBB, IP, PPC::ADDICo, 2, TmpReg5).addReg(ShiftAmountReg)
- .addSImm(-32);
- BuildMI(*MBB, IP, PPC::SRAW, 2, TmpReg6).addReg(SrcReg)
- .addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC::SRAW, 2, DestReg).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB);
-
- // OrMBB:
- // Select correct least significant half if the shift amount > 32
- BB = TmpMBB;
- unsigned OrReg = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::OR, 2, OrReg).addReg(TmpReg6).addReg(TmpReg6);
- TmpMBB->addSuccessor(PhiMBB);
-
- BB = PhiMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg+1).addReg(TmpReg4).addMBB(OldMBB)
- .addReg(OrReg).addMBB(TmpMBB);
- } else { // shift right logical
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addSImm(32);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg2).addReg(SrcReg+1)
- .addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC::SLW, 2, TmpReg3).addReg(SrcReg)
- .addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC::OR, 2, TmpReg4).addReg(TmpReg2)
- .addReg(TmpReg3);
- BuildMI(*MBB, IP, PPC::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addSImm(-32);
- BuildMI(*MBB, IP, PPC::SRW, 2, TmpReg6).addReg(SrcReg)
- .addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(TmpReg4)
- .addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC::SRW, 2, DestReg).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- }
- }
- }
- return;
- }
-
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- // The shift amount is constant, guaranteed to be a ubyte. Get its value.
- assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
- unsigned Amount = CUI->getValue();
-
- // If this is a shift with one use, and that use is an And instruction,
- // then attempt to emit a bitfield operation.
- if (SI && emitBitfieldInsert(SI, DestReg))
- return;
-
- unsigned SrcReg = getReg (Op, MBB, IP);
- if (Amount == 0) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- } else if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- if (isSigned) {
- BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- }
- }
- } else { // The shift amount is non-constant.
- unsigned SrcReg = getReg (Op, MBB, IP);
- unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- } else {
- BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
- .addReg(SrcReg).addReg(ShiftAmountReg);
- }
- }
-}
-
-/// LoadNeedsSignExtend - On PowerPC, there is no load byte with sign extend.
-/// Therefore, if this is a byte load and the destination type is signed, we
-/// would normally need to also emit a sign extend instruction after the load.
-/// However, store instructions don't care whether a signed type was sign
-/// extended across a whole register. Also, a SetCC instruction will emit its
-/// own sign extension to force the value into the appropriate range, so we
-/// need not emit it here. Ideally, this kind of thing wouldn't be necessary
-/// once LLVM's type system is improved.
-static bool LoadNeedsSignExtend(LoadInst &LI) {
- if (cByte == getClassB(LI.getType()) && LI.getType()->isSigned()) {
- bool AllUsesAreStoresOrSetCC = true;
- for (Value::use_iterator I = LI.use_begin(), E = LI.use_end(); I != E; ++I){
- if (isa<SetCondInst>(*I))
- continue;
- if (StoreInst *SI = dyn_cast<StoreInst>(*I))
- if (cByte == getClassB(SI->getOperand(0)->getType()))
- continue;
- AllUsesAreStoresOrSetCC = false;
- break;
- }
- if (!AllUsesAreStoresOrSetCC)
- return true;
- }
- return false;
-}
-
-/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
-/// mapping of LLVM classes to PPC load instructions, with the exception of
-/// signed byte loads, which need a sign extension following them.
-///
-void PPC32ISel::visitLoadInst(LoadInst &I) {
- // Immediate opcodes, for reg+imm addressing
- static const unsigned ImmOpcodes[] = {
- PPC::LBZ, PPC::LHZ, PPC::LWZ,
- PPC::LFS, PPC::LFD, PPC::LWZ
- };
- // Indexed opcodes, for reg+reg addressing
- static const unsigned IdxOpcodes[] = {
- PPC::LBZX, PPC::LHZX, PPC::LWZX,
- PPC::LFSX, PPC::LFDX, PPC::LWZX
- };
-
- unsigned Class = getClassB(I.getType());
- unsigned ImmOpcode = ImmOpcodes[Class];
- unsigned IdxOpcode = IdxOpcodes[Class];
- unsigned DestReg = getReg(I);
- Value *SourceAddr = I.getOperand(0);
-
- if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
- if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
-
- // If this is a fixed size alloca, emit a load directly from the stack slot
- // corresponding to it.
- if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- if (Class == cLong) {
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
- } else if (LoadNeedsSignExtend(I)) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
- }
- return;
- }
-
- // If the offset fits in 16 bits, we can emit a reg+imm load, otherwise, we
- // use the index from the FoldedGEP struct and use reg+reg addressing.
- if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
-
- // Generate the code for the GEP and get the components of the folded GEP
- emitGEPOperation(BB, BB->end(), GEPI, true);
- unsigned baseReg = GEPMap[GEPI].base;
- unsigned indexReg = GEPMap[GEPI].index;
- ConstantSInt *offset = GEPMap[GEPI].offset;
-
- if (Class != cLong) {
- unsigned TmpReg = LoadNeedsSignExtend(I) ? makeAnotherReg(I.getType())
- : DestReg;
- if (indexReg == 0)
- BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
- .addReg(baseReg);
- else
- BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
- if (LoadNeedsSignExtend(I))
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- indexReg = (indexReg != 0) ? indexReg : getReg(offset);
- unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
- BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
- BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
- }
- return;
- }
-
- // The fallback case, where the load was from a source that could not be
- // folded into the load instruction.
- unsigned SrcAddrReg = getReg(SourceAddr);
-
- if (Class == cLong) {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
- BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
- } else if (LoadNeedsSignExtend(I)) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
- }
-}
-
-/// visitStoreInst - Implement LLVM store instructions
-///
-void PPC32ISel::visitStoreInst(StoreInst &I) {
- // Immediate opcodes, for reg+imm addressing
- static const unsigned ImmOpcodes[] = {
- PPC::STB, PPC::STH, PPC::STW,
- PPC::STFS, PPC::STFD, PPC::STW
- };
- // Indexed opcodes, for reg+reg addressing
- static const unsigned IdxOpcodes[] = {
- PPC::STBX, PPC::STHX, PPC::STWX,
- PPC::STFSX, PPC::STFDX, PPC::STWX
- };
-
- Value *SourceAddr = I.getOperand(1);
- const Type *ValTy = I.getOperand(0)->getType();
- unsigned Class = getClassB(ValTy);
- unsigned ImmOpcode = ImmOpcodes[Class];
- unsigned IdxOpcode = IdxOpcodes[Class];
- unsigned ValReg = getReg(I.getOperand(0));
-
- // If this is a fixed size alloca, emit a store directly to the stack slot
- // corresponding to it.
- if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg), FI);
- if (Class == cLong)
- addFrameReference(BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1), FI, 4);
- return;
- }
-
- // If the offset fits in 16 bits, we can emit a reg+imm store, otherwise, we
- // use the index from the FoldedGEP struct and use reg+reg addressing.
- if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
- // Generate the code for the GEP and get the components of the folded GEP
- emitGEPOperation(BB, BB->end(), GEPI, true);
- unsigned baseReg = GEPMap[GEPI].base;
- unsigned indexReg = GEPMap[GEPI].index;
- ConstantSInt *offset = GEPMap[GEPI].offset;
-
- if (Class != cLong) {
- if (indexReg == 0)
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
- .addReg(baseReg);
- else
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg)
- .addReg(baseReg);
- } else {
- indexReg = (indexReg != 0) ? indexReg : getReg(offset);
- unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
- .addReg(baseReg);
- }
- return;
- }
-
- // If the store address wasn't the only use of a GEP, we fall back to the
- // standard path: store the ValReg at the value in AddressReg.
- unsigned AddressReg = getReg(I.getOperand(1));
- if (Class == cLong) {
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
- return;
- }
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
-}
-
-
-/// visitCastInst - Here we have various kinds of copying with or without sign
-/// extension going on.
-///
-void PPC32ISel::visitCastInst(CastInst &CI) {
- Value *Op = CI.getOperand(0);
-
- unsigned SrcClass = getClassB(Op->getType());
- unsigned DestClass = getClassB(CI.getType());
-
- // Noop casts are not emitted: getReg will return the source operand as the
- // register to use for any uses of the noop cast.
- if (DestClass == SrcClass) return;
-
- // If this is a cast from a 32-bit integer to a Long type, and the only uses
- // of the cast are GEP instructions, then the cast does not need to be
- // generated explicitly, it will be folded into the GEP.
- if (DestClass == cLong && SrcClass == cInt) {
- bool AllUsesAreGEPs = true;
- for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
- if (!isa<GetElementPtrInst>(*I)) {
- AllUsesAreGEPs = false;
- break;
- }
- if (AllUsesAreGEPs) return;
- }
-
- unsigned DestReg = getReg(CI);
- MachineBasicBlock::iterator MI = BB->end();
-
- // If this is a cast from an integer type to a ubyte, with one use where the
- // use is the shift amount argument of a shift instruction, just emit a move
- // instead (since the shift instruction will only look at the low 5 bits
- // regardless of how it is sign extended)
- if (CI.getType() == Type::UByteTy && SrcClass <= cInt && CI.hasOneUse()) {
- ShiftInst *SI = dyn_cast<ShiftInst>(*(CI.use_begin()));
- if (SI && (SI->getOperand(1) == &CI)) {
- unsigned SrcReg = getReg(Op, BB, MI);
- BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- }
- }
-
- // If this is a cast from an byte, short, or int to an integer type of equal
- // or lesser width, and all uses of the cast are store instructions then dont
- // emit them, as the store instruction will implicitly not store the zero or
- // sign extended bytes.
- if (SrcClass <= cInt && SrcClass >= DestClass) {
- bool AllUsesAreStores = true;
- for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
- if (!isa<StoreInst>(*I)) {
- AllUsesAreStores = false;
- break;
- }
- // Turn this cast directly into a move instruction, which the register
- // allocator will deal with.
- if (AllUsesAreStores) {
- unsigned SrcReg = getReg(Op, BB, MI);
- BuildMI(*BB, MI, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- }
- }
- emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
-}
-
-/// emitCastOperation - Common code shared between visitCastInst and constant
-/// expression cast support.
-///
-void PPC32ISel::emitCastOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy,
- unsigned DestReg) {
- const Type *SrcTy = Src->getType();
- unsigned SrcClass = getClassB(SrcTy);
- unsigned DestClass = getClassB(DestTy);
- unsigned SrcReg = getReg(Src, MBB, IP);
-
- // Implement casts from bool to integer types as a move operation
- if (SrcTy == Type::BoolTy) {
- switch (DestClass) {
- case cByte:
- case cShort:
- case cInt:
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- case cLong:
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addImm(0);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
- return;
- default:
- break;
- }
- }
-
- // Implement casts to bool by using compare on the operand followed by set if
- // not zero on the result.
- if (DestTy == Type::BoolTy) {
- switch (SrcClass) {
- case cByte:
- case cShort:
- case cInt: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
- BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
- break;
- }
- case cLong: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
- BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
- BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg)
- .addReg(SrcReg2);
- break;
- }
- case cFP32:
- case cFP64:
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- unsigned ConstZero = getReg(ConstantFP::get(Type::DoubleTy, 0.0), BB, IP);
- BuildMI(*MBB, IP, PPC::FCMPU, PPC::CR7).addReg(SrcReg).addReg(ConstZero);
- BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
- BuildMI(*MBB, IP, PPC::RLWINM, DestReg).addReg(TmpReg).addImm(31)
- .addImm(31).addImm(31);
- }
- return;
- }
-
- // Handle cast of Float -> Double
- if (SrcClass == cFP32 && DestClass == cFP64) {
- BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle cast of Double -> Float
- if (SrcClass == cFP64 && DestClass == cFP32) {
- BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle casts from integer to floating point now...
- if (DestClass == cFP32 || DestClass == cFP64) {
-
- // Emit a library call for long to float conversion
- if (SrcClass == cLong) {
- Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
- if (SrcTy->isSigned()) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(SrcReg, SrcTy));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
- } else {
- std::vector<ValueRecord> CmpArgs, ClrArgs, SetArgs;
- unsigned ZeroLong = getReg(ConstantUInt::get(SrcTy, 0));
- unsigned CondReg = makeAnotherReg(Type::IntTy);
-
- // Update machine-CFG edges
- MachineBasicBlock *ClrMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *SetMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *OldMBB = BB;
- ilist<MachineBasicBlock>::iterator It = BB; ++It;
- F->getBasicBlockList().insert(It, ClrMBB);
- F->getBasicBlockList().insert(It, SetMBB);
- F->getBasicBlockList().insert(It, PhiMBB);
- BB->addSuccessor(ClrMBB);
- BB->addSuccessor(SetMBB);
-
- CmpArgs.push_back(ValueRecord(SrcReg, SrcTy));
- CmpArgs.push_back(ValueRecord(ZeroLong, SrcTy));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(__cmpdi2Fn, true);
- doCall(ValueRecord(CondReg, Type::IntTy), TheCall, CmpArgs, false);
- BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
- BuildMI(*MBB, IP, PPC::BLE, 2).addReg(PPC::CR0).addMBB(SetMBB);
-
- // ClrMBB
- BB = ClrMBB;
- unsigned ClrReg = makeAnotherReg(DestTy);
- ClrArgs.push_back(ValueRecord(SrcReg, SrcTy));
- TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(ClrReg, DestTy), TheCall, ClrArgs, false);
- BuildMI(BB, PPC::B, 1).addMBB(PhiMBB);
- BB->addSuccessor(PhiMBB);
-
- // SetMBB
- BB = SetMBB;
- unsigned SetReg = makeAnotherReg(DestTy);
- unsigned CallReg = makeAnotherReg(DestTy);
- unsigned ShiftedReg = makeAnotherReg(SrcTy);
- ConstantSInt *Const1 = ConstantSInt::get(Type::IntTy, 1);
- emitShiftOperation(BB, BB->end(), Src, Const1, false, SrcTy, 0,
- ShiftedReg);
- SetArgs.push_back(ValueRecord(ShiftedReg, SrcTy));
- TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(CallReg, DestTy), TheCall, SetArgs, false);
- unsigned SetOpcode = (DestClass == cFP32) ? PPC::FADDS : PPC::FADD;
- BuildMI(BB, SetOpcode, 2, SetReg).addReg(CallReg).addReg(CallReg);
- BB->addSuccessor(PhiMBB);
-
- // PhiMBB
- BB = PhiMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(ClrReg).addMBB(ClrMBB)
- .addReg(SetReg).addMBB(SetMBB);
- }
- return;
- }
-
- // Make sure we're dealing with a full 32 bits
- if (SrcClass < cInt) {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
- SrcReg = TmpReg;
- }
-
- // Spill the integer to memory and reload it from there.
- // Also spill room for a special conversion constant
- int ValueFrameIdx =
- F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
-
- unsigned constantHi = makeAnotherReg(Type::IntTy);
- unsigned TempF = makeAnotherReg(Type::DoubleTy);
-
- if (!SrcTy->isSigned()) {
- ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000000p52);
- unsigned ConstF = getReg(CFP, BB, IP);
- BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
- addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
- ValueFrameIdx);
- addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(SrcReg),
- ValueFrameIdx, 4);
- addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
- BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
- } else {
- ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
- unsigned ConstF = getReg(CFP, BB, IP);
- unsigned TempLo = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
- addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(constantHi),
- ValueFrameIdx);
- BuildMI(*MBB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
- addFrameReference(BuildMI(*MBB, IP, PPC::STW, 3).addReg(TempLo),
- ValueFrameIdx, 4);
- addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
- BuildMI(*MBB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
- }
- return;
- }
-
- // Handle casts from floating point to integer now...
- if (SrcClass == cFP32 || SrcClass == cFP64) {
- static Function* const Funcs[] =
- { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
- // emit library call
- if (DestClass == cLong) {
- bool isDouble = SrcClass == cFP64;
- unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(SrcReg, SrcTy));
- Function *floatFn = Funcs[nameIndex];
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
- return;
- }
-
- int ValueFrameIdx =
- F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
-
- if (DestTy->isSigned()) {
- unsigned TempReg = makeAnotherReg(Type::DoubleTy);
-
- // Convert to integer in the FP reg and store it to a stack slot
- BuildMI(*MBB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
- addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3)
- .addReg(TempReg), ValueFrameIdx);
-
- // There is no load signed byte opcode, so we must emit a sign extend for
- // that particular size. Make sure to source the new integer from the
- // correct offset.
- if (DestClass == cByte) {
- unsigned TempReg2 = makeAnotherReg(DestTy);
- addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, TempReg2),
- ValueFrameIdx, 7);
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(TempReg2);
- } else {
- int offset = (DestClass == cShort) ? 6 : 4;
- unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
- addFrameReference(BuildMI(*MBB, IP, LoadOp, 2, DestReg),
- ValueFrameIdx, offset);
- }
- } else {
- unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
- double maxInt = (1LL << 32) - 1;
- unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
- double border = 1LL << 31;
- unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
- unsigned UseZero = makeAnotherReg(Type::DoubleTy);
- unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
- unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
- unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
- unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
- unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
- unsigned IntTmp = makeAnotherReg(Type::IntTy);
- unsigned XorReg = makeAnotherReg(Type::IntTy);
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
- // Update machine-CFG edges
- MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *OldMBB = BB;
- ilist<MachineBasicBlock>::iterator It = BB; ++It;
- F->getBasicBlockList().insert(It, XorMBB);
- F->getBasicBlockList().insert(It, PhiMBB);
- BB->addSuccessor(XorMBB);
- BB->addSuccessor(PhiMBB);
-
- // Convert from floating point to unsigned 32-bit value
- // Use 0 if incoming value is < 0.0
- BuildMI(*MBB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
- .addReg(Zero);
- // Use 2**32 - 1 if incoming value is >= 2**32
- BuildMI(*MBB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
- BuildMI(*MBB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
- .addReg(UseZero).addReg(MaxInt);
- // Subtract 2**31
- BuildMI(*MBB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
- // Use difference if >= 2**31
- BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
- .addReg(Border);
- BuildMI(*MBB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
- .addReg(UseChoice);
- // Convert to integer
- BuildMI(*MBB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
- addFrameReference(BuildMI(*MBB, IP, PPC::STFD, 3).addReg(ConvReg),
- FrameIdx);
- if (DestClass == cByte) {
- addFrameReference(BuildMI(*MBB, IP, PPC::LBZ, 2, DestReg),
- FrameIdx, 7);
- } else if (DestClass == cShort) {
- addFrameReference(BuildMI(*MBB, IP, PPC::LHZ, 2, DestReg),
- FrameIdx, 6);
- } if (DestClass == cInt) {
- addFrameReference(BuildMI(*MBB, IP, PPC::LWZ, 2, IntTmp),
- FrameIdx, 4);
- BuildMI(*MBB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
- BuildMI(*MBB, IP, PPC::B, 1).addMBB(XorMBB);
-
- // XorMBB:
- // add 2**31 if input was >= 2**31
- BB = XorMBB;
- BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
- XorMBB->addSuccessor(PhiMBB);
-
- // PhiMBB:
- // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
- BB = PhiMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
- .addReg(XorReg).addMBB(XorMBB);
- }
- }
- return;
- }
-
- // Check our invariants
- assert((SrcClass <= cInt || SrcClass == cLong) &&
- "Unhandled source class for cast operation!");
- assert((DestClass <= cInt || DestClass == cLong) &&
- "Unhandled destination class for cast operation!");
-
- bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
- bool destUnsigned = DestTy->isUnsigned();
-
- // Unsigned -> Unsigned, clear if larger,
- if (sourceUnsigned && destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- return;
- }
-
- // handle u{ byte, short, int } x u{ byte, short, int }
- unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
- switch (SrcClass) {
- case cByte:
- case cShort:
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- }
- return;
- }
-
- // Signed -> Signed
- if (!sourceUnsigned && !destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- return;
- }
-
- // handle { byte, short, int } x { byte, short, int }
- switch (SrcClass) {
- case cByte:
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- }
- return;
- }
-
- // Unsigned -> Signed
- if (sourceUnsigned && !destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- return;
- }
-
- // handle u{ byte, short, int } -> { byte, short, int }
- switch (SrcClass) {
- case cByte:
- // uByte 255 -> signed short/int == 255
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
- .addImm(24).addImm(31);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
- .addImm(16).addImm(31);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- }
- return;
- }
-
- // Signed -> Unsigned
- if (!sourceUnsigned && destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
- return;
- }
-
- // handle { byte, short, int } -> u{ byte, short, int }
- unsigned clearBits = (DestClass == cByte) ? 24 : 16;
- switch (SrcClass) {
- case cByte:
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- else
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- break;
- case cLong:
- ++SrcReg;
- // Fall through
- case cInt:
- if (DestClass == cInt)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- }
- return;
- }
-
- // Anything we haven't handled already, we can't (yet) handle at all.
- std::cerr << "Unhandled cast from " << SrcTy->getDescription()
- << "to " << DestTy->getDescription() << '\n';
- abort();
-}
-
-void PPC32ISel::visitVAArgInst(VAArgInst &I) {
- unsigned VAListPtr = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
- unsigned VAList = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::LWZ, 2, VAList).addSImm(0).addReg(VAListPtr);
- int Size;
-
- switch (I.getType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- Size = 4;
- BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- Size = 8;
- BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
- BuildMI(BB, PPC::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
- break;
- case Type::FloatTyID:
- Size = 4; //?? Bad value?
- BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::DoubleTyID:
- Size = 8;
- BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- }
- // Increment the VAList pointer...
- unsigned NP = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::ADDI, 2, NP).addReg(VAList).addSImm(Size);
- BuildMI(BB, PPC::STW, 3).addReg(NP).addSImm(0).addReg(VAListPtr);
-}
-
-/// visitGetElementPtrInst - instruction-select GEP instructions
-///
-void PPC32ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
- if (canFoldGEPIntoLoadOrStore(&I))
- return;
-
- emitGEPOperation(BB, BB->end(), &I, false);
-}
-
-/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
-/// constant expression GEP support.
-///
-void PPC32ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- GetElementPtrInst *GEPI, bool GEPIsFolded) {
- // If we've already emitted this particular GEP, just return to avoid
- // multiple definitions of the base register.
- if (GEPIsFolded && (GEPMap[GEPI].base != 0))
- return;
-
- Value *Src = GEPI->getOperand(0);
- User::op_iterator IdxBegin = GEPI->op_begin()+1;
- User::op_iterator IdxEnd = GEPI->op_end();
- const TargetData &TD = TM.getTargetData();
- const Type *Ty = Src->getType();
- int32_t constValue = 0;
-
- // Record the operations to emit the GEP in a vector so that we can emit them
- // after having analyzed the entire instruction.
- std::vector<CollapsedGepOp> ops;
-
- // GEPs have zero or more indices; we must perform a struct access
- // or array access for each one.
- for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
- ++oi) {
- Value *idx = *oi;
- if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
- // It's a struct access. idx is the index into the structure,
- // which names the field. Use the TargetData structure to
- // pick out what the layout of the structure is in memory.
- // Use the (constant) structure index's value to find the
- // right byte offset from the StructLayout class's list of
- // structure member offsets.
- unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
-
- // StructType member offsets are always constant values. Add it to the
- // running total.
- constValue += TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
-
- // The next type is the member of the structure selected by the index.
- Ty = StTy->getElementType (fieldIndex);
- } else if (const SequentialType *SqTy = dyn_cast<SequentialType>(Ty)) {
- // Many GEP instructions use a [cast (int/uint) to LongTy] as their
- // operand. Handle this case directly now...
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- // It's an array or pointer access: [ArraySize x ElementType].
- // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- Ty = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(Ty);
-
- if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
- if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
- constValue += CS->getValue() * elementSize;
- else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
- constValue += CU->getValue() * elementSize;
- else
- assert(0 && "Invalid ConstantInt GEP index type!");
- } else {
- // Push current gep state to this point as an add and multiply
- ops.push_back(CollapsedGepOp(
- ConstantSInt::get(Type::IntTy, constValue),
- idx, ConstantUInt::get(Type::UIntTy, elementSize)));
-
- constValue = 0;
- }
- }
- }
- // Emit instructions for all the collapsed ops
- unsigned indexReg = 0;
- for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
- cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
- CollapsedGepOp& cgo = *cgo_i;
-
- // Avoid emitting known move instructions here for the register allocator
- // to deal with later. val * 1 == val. val + 0 == val.
- unsigned TmpReg1;
- if (cgo.size->getValue() == 1) {
- TmpReg1 = getReg(cgo.index, MBB, IP);
- } else {
- TmpReg1 = makeAnotherReg(Type::IntTy);
- doMultiplyConst(MBB, IP, TmpReg1, cgo.index, cgo.size);
- }
-
- unsigned TmpReg2;
- if (cgo.offset->isNullValue()) {
- TmpReg2 = TmpReg1;
- } else {
- TmpReg2 = makeAnotherReg(Type::IntTy);
- emitBinaryConstOperation(MBB, IP, TmpReg1, cgo.offset, 0, TmpReg2);
- }
-
- if (indexReg == 0)
- indexReg = TmpReg2;
- else {
- unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg3).addReg(indexReg).addReg(TmpReg2);
- indexReg = TmpReg3;
- }
- }
-
- // We now have a base register, an index register, and possibly a constant
- // remainder. If the GEP is going to be folded, we try to generate the
- // optimal addressing mode.
- ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
-
- // If we are emitting this during a fold, copy the current base register to
- // the target, and save the current constant offset so the folding load or
- // store can try and use it as an immediate.
- if (GEPIsFolded) {
- if (indexReg == 0) {
- if (!canUseAsImmediateForOpcode(remainder, 0, false)) {
- indexReg = getReg(remainder, MBB, IP);
- remainder = 0;
- }
- } else if (!remainder->isNullValue()) {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- emitBinaryConstOperation(MBB, IP, indexReg, remainder, 0, TmpReg);
- indexReg = TmpReg;
- remainder = 0;
- }
- unsigned basePtrReg = getReg(Src, MBB, IP);
- GEPMap[GEPI] = FoldedGEP(basePtrReg, indexReg, remainder);
- return;
- }
-
- // We're not folding, so collapse the base, index, and any remainder into the
- // destination register.
- unsigned TargetReg = getReg(GEPI, MBB, IP);
- unsigned basePtrReg = getReg(Src, MBB, IP);
-
- if ((indexReg == 0) && remainder->isNullValue()) {
- BuildMI(*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- return;
- }
- if (!remainder->isNullValue()) {
- unsigned TmpReg = (indexReg == 0) ? TargetReg : makeAnotherReg(Type::IntTy);
- emitBinaryConstOperation(MBB, IP, basePtrReg, remainder, 0, TmpReg);
- basePtrReg = TmpReg;
- }
- if (indexReg != 0)
- BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(indexReg)
- .addReg(basePtrReg);
-}
-
-/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
-/// frame manager, otherwise do it the hard way.
-///
-void PPC32ISel::visitAllocaInst(AllocaInst &I) {
- // If this is a fixed size alloca in the entry block for the function, we
- // statically stack allocate the space, so we don't need to do anything here.
- //
- if (dyn_castFixedAlloca(&I)) return;
-
- // Find the data size of the alloca inst's getAllocatedType.
- const Type *Ty = I.getAllocatedType();
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-
- // Create a register to hold the temporary result of multiplying the type size
- // constant by the variable amount.
- unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
-
- // TotalSizeReg = mul <numelements>, <TypeSize>
- MachineBasicBlock::iterator MBBI = BB->end();
- ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
- doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
-
- // AddedSize = add <TotalSizeReg>, 15
- unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
-
- // AlignedSize = and <AddedSize>, ~15
- unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
- .addImm(0).addImm(27);
-
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(AlignedSize).addReg(PPC::R1);
-
- // Put a pointer to the space into the result register, by copying
- // the stack pointer.
- BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
-
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- F->getFrameInfo()->CreateVariableSizedObject();
-}
-
-/// visitMallocInst - Malloc instructions are code generated into direct calls
-/// to the library malloc.
-///
-void PPC32ISel::visitMallocInst(MallocInst &I) {
- unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
- unsigned Arg;
-
- if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
- Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
- } else {
- Arg = makeAnotherReg(Type::UIntTy);
- MachineBasicBlock::iterator MBBI = BB->end();
- ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
- doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
- }
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Arg, Type::UIntTy));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
- doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
-}
-
-/// visitFreeInst - Free instructions are code gen'd to call the free libc
-/// function.
-///
-void PPC32ISel::visitFreeInst(FreeInst &I) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(I.getOperand(0)));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
- doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
-}
-
-/// createPPC32ISelSimple - This pass converts an LLVM function into a machine
-/// code representation is a very simple peep-hole fashion.
-///
-FunctionPass *llvm::createPPC32ISelSimple(TargetMachine &TM) {
- return new PPC32ISel(TM);
-}
diff --git a/lib/Target/PowerPC/PPCTargetMachine.cpp b/lib/Target/PowerPC/PPCTargetMachine.cpp
index 18c7fdc..936629a 100644
--- a/lib/Target/PowerPC/PPCTargetMachine.cpp
+++ b/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -85,13 +85,9 @@ bool PowerPCTargetMachine::addPassesToEmitFile(PassManager &PM,
PM.add(createUnreachableBlockEliminationPass());
// Install an instruction selector.
- if (EnablePPCDAGDAG) {
+ if (EnablePPCDAGDAG)
PM.add(createPPC32ISelDag(*this));
-
- } else if (PatternISelTriState == 0) {
- PM.add(createLowerConstantExpressionsPass());
- PM.add(createPPC32ISelSimple(*this));
- } else
+ else
PM.add(createPPC32ISelPattern(*this));
if (PrintMachineCode)
@@ -143,13 +139,8 @@ void PowerPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
// Make sure that no unreachable blocks are instruction selected.
PM.add(createUnreachableBlockEliminationPass());
- // Default to pattern ISel
- if (PatternISelTriState == 0) {
- PM.add(createLowerConstantExpressionsPass());
- PM.add(createPPC32ISelSimple(TM));
- } else {
- PM.add(createPPC32ISelPattern(TM));
- }
+ // Install an instruction selector.
+ PM.add(createPPC32ISelPattern(TM));
PM.add(createRegisterAllocator());
PM.add(createPrologEpilogCodeInserter());