diff options
author | Jeff Cohen <jeffc@jolt-lang.org> | 2005-07-27 05:53:44 +0000 |
---|---|---|
committer | Jeff Cohen <jeffc@jolt-lang.org> | 2005-07-27 05:53:44 +0000 |
commit | 9eb59ec548b861d6ede05b4e6dc22aabf645e665 (patch) | |
tree | 97ffa1993e23e29ccabac9646fc950717bd94dda /lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp | |
parent | 50e9ef8792c5c91b7ea6f24f878d1abbcb6024a4 (diff) | |
download | external_llvm-9eb59ec548b861d6ede05b4e6dc22aabf645e665.zip external_llvm-9eb59ec548b861d6ede05b4e6dc22aabf645e665.tar.gz external_llvm-9eb59ec548b861d6ede05b4e6dc22aabf645e665.tar.bz2 |
Eliminate tabs and trailing spaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22520 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp')
-rw-r--r-- | lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp | 2498 |
1 files changed, 1249 insertions, 1249 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp index 01af03d..a9a6b6b 100644 --- a/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp +++ b/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp @@ -74,11 +74,11 @@ namespace llvm { Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks"); Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls"); Statistic<> BBWithCondMov("modulosched-loopCondMov", - "Basic Blocks rejected due to conditional moves"); + "Basic Blocks rejected due to conditional moves"); Statistic<> SBResourceConstraint("modulosched-resourceConstraint", - "Loops constrained by resources"); + "Loops constrained by resources"); Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint", - "Loops constrained by recurrences"); + "Loops constrained by recurrences"); Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II"); Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II"); Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled"); @@ -97,42 +97,42 @@ namespace llvm { static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) { if(!Node->isPredicate()) { - if (Node->getInst()) { - std::stringstream ss; - ss << *(Node->getInst()); - return ss.str(); //((MachineInstr*)Node->getInst()); - } - else - return "No Inst"; + if (Node->getInst()) { + std::stringstream ss; + ss << *(Node->getInst()); + return ss.str(); //((MachineInstr*)Node->getInst()); + } + else + return "No Inst"; } else - return "Pred Node"; + return "Pred Node"; } static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node, - MSchedGraphSBNode::succ_iterator I) { + MSchedGraphSBNode::succ_iterator I) { //Label each edge with the type of dependence std::string edgelabel = ""; switch (I.getEdge().getDepOrderType()) { - + case MSchedGraphSBEdge::TrueDep: - edgelabel = "True"; - break; + edgelabel = "True"; + break; case MSchedGraphSBEdge::AntiDep: - edgelabel = "Anti"; - break; - + edgelabel = "Anti"; + break; + case MSchedGraphSBEdge::OutputDep: - edgelabel = "Output"; - break; - + edgelabel = "Output"; + break; + case MSchedGraphSBEdge::NonDataDep: - edgelabel = "Pred"; - break; + edgelabel = "Pred"; + break; default: - edgelabel = "Unknown"; - break; + edgelabel = "Unknown"; + break; } //FIXME @@ -165,22 +165,22 @@ namespace llvm { //Loop over worklist and ModuloSchedule each SuperBlock for(std::vector<std::vector<const MachineBasicBlock*> >::iterator SB = Worklist.begin(), - SBE = Worklist.end(); SB != SBE; ++SB) { + SBE = Worklist.end(); SB != SBE; ++SB) { //Print out Superblock DEBUG(std::cerr << "ModuloScheduling SB: \n"; - for(std::vector<const MachineBasicBlock*>::const_iterator BI = SB->begin(), - BE = SB->end(); BI != BE; ++BI) { - (*BI)->print(std::cerr);}); + for(std::vector<const MachineBasicBlock*>::const_iterator BI = SB->begin(), + BE = SB->end(); BI != BE; ++BI) { + (*BI)->print(std::cerr);}); if(!CreateDefMap(*SB)) { - defaultInst = 0; - defMap.clear(); - continue; + defaultInst = 0; + defMap.clear(); + continue; } MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA, - machineTollvm[*SB]); + machineTollvm[*SB]); //Write Graph out to file DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG)); @@ -195,9 +195,9 @@ namespace llvm { //Our starting initiation interval is the maximum of RecMII and ResMII if(RecMII < ResMII) - ++SBRecurrenceConstraint; + ++SBRecurrenceConstraint; else - ++SBResourceConstraint; + ++SBResourceConstraint; II = std::max(RecMII, ResMII); int mII = II; @@ -211,11 +211,11 @@ namespace llvm { //Dump node properties if in debug mode DEBUG(for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth - << " Height: " << I->second.height << "\n"; - }); + E = nodeToAttributesMap.end(); I !=E; ++I) { + std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " + << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth + << " Height: " << I->second.height << "\n"; + }); //Put nodes in order to schedule them @@ -223,19 +223,19 @@ namespace llvm { //Dump out partial order DEBUG(for(std::vector<std::set<MSchedGraphSBNode*> >::iterator I = partialOrder.begin(), - E = partialOrder.end(); I !=E; ++I) { - std::cerr << "Start set in PO\n"; - for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) - std::cerr << "PO:" << **J << "\n"; - }); + E = partialOrder.end(); I !=E; ++I) { + std::cerr << "Start set in PO\n"; + for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) + std::cerr << "PO:" << **J << "\n"; + }); //Place nodes in final order orderNodes(); //Dump out order of nodes DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { - std::cerr << "FO:" << **I << "\n"; - }); + std::cerr << "FO:" << **I << "\n"; + }); //Finally schedule nodes @@ -247,18 +247,18 @@ namespace llvm { //Final scheduling step is to reconstruct the loop only if we actual have //stage > 0 if(haveSched) { - //schedule.printSchedule(std::cerr); - reconstructLoop(*SB); - ++SBMSLoops; - //Changed = true; - SBIISum += mII; - SBFinalIISum += II; - + //schedule.printSchedule(std::cerr); + reconstructLoop(*SB); + ++SBMSLoops; + //Changed = true; + SBIISum += mII; + SBFinalIISum += II; + if(schedule.getMaxStage() == 0) - ++SBSameStage; + ++SBSameStage; } else - ++SBNoSched; + ++SBNoSched; //Clear out our maps for the next basic block that is processed nodeToAttributesMap.clear(); @@ -273,7 +273,7 @@ namespace llvm { } void ModuloSchedulingSBPass::FindSuperBlocks(Function &F, LoopInfo &LI, - std::vector<std::vector<const MachineBasicBlock*> > &Worklist) { + std::vector<std::vector<const MachineBasicBlock*> > &Worklist) { //Get MachineFunction MachineFunction &MF = MachineFunction::get(&F); @@ -294,95 +294,95 @@ namespace llvm { //If loop is not single entry, try the next one if(!L->getLoopPreheader()) - continue; + continue; //Check size of this loop, we don't want SBB loops if(L->getBlocks().size() == 1) - continue; + continue; //Check if this loop contains no sub loops if(L->getSubLoops().size() == 0) { - - std::vector<const MachineBasicBlock*> superBlock; - - //Get Loop Headers - BasicBlock *header = L->getHeader(); - - //Follow the header and make sure each BB only has one entry and is valid - BasicBlock *current = header; - assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB\n"); - MachineBasicBlock *currentMBB = bbMap[header]; - bool done = false; - bool success = true; - unsigned offset = 0; - std::map<const MachineInstr*, unsigned> indexMap; - - while(!done) { - //Loop over successors of this BB, they should be in the - //loop block and be valid - BasicBlock *next = 0; - for(succ_iterator I = succ_begin(current), E = succ_end(current); - I != E; ++I) { - if(L->contains(*I)) { - if(!next) - next = *I; - else { - done = true; - success = false; - break; - } - } - } - - if(success) { - superBlock.push_back(currentMBB); - if(next == header) - done = true; - else if(!next->getSinglePredecessor()) { - done = true; - success = false; - } - else { - //Check that the next BB only has one entry - current = next; - assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB"); - currentMBB = bbMap[current]; - } - } - } - - - - - - if(success) { - ++NumSB; - - //Loop over all the blocks in the superblock - for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) { - if(!MachineBBisValid(*currentMBB, indexMap, offset)) { - success = false; - break; - } - } - } - - if(success) { - if(getIndVar(superBlock, bbMap, indexMap)) { - ++SBValid; - Worklist.push_back(superBlock); - SBSize += superBlock.size(); - } - else - ++SBInvalid; - } + + std::vector<const MachineBasicBlock*> superBlock; + + //Get Loop Headers + BasicBlock *header = L->getHeader(); + + //Follow the header and make sure each BB only has one entry and is valid + BasicBlock *current = header; + assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB\n"); + MachineBasicBlock *currentMBB = bbMap[header]; + bool done = false; + bool success = true; + unsigned offset = 0; + std::map<const MachineInstr*, unsigned> indexMap; + + while(!done) { + //Loop over successors of this BB, they should be in the + //loop block and be valid + BasicBlock *next = 0; + for(succ_iterator I = succ_begin(current), E = succ_end(current); + I != E; ++I) { + if(L->contains(*I)) { + if(!next) + next = *I; + else { + done = true; + success = false; + break; + } + } + } + + if(success) { + superBlock.push_back(currentMBB); + if(next == header) + done = true; + else if(!next->getSinglePredecessor()) { + done = true; + success = false; + } + else { + //Check that the next BB only has one entry + current = next; + assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB"); + currentMBB = bbMap[current]; + } + } + } + + + + + + if(success) { + ++NumSB; + + //Loop over all the blocks in the superblock + for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) { + if(!MachineBBisValid(*currentMBB, indexMap, offset)) { + success = false; + break; + } + } + } + + if(success) { + if(getIndVar(superBlock, bbMap, indexMap)) { + ++SBValid; + Worklist.push_back(superBlock); + SBSize += superBlock.size(); + } + else + ++SBInvalid; + } } } } bool ModuloSchedulingSBPass::getIndVar(std::vector<const MachineBasicBlock*> &superBlock, std::map<BasicBlock*, MachineBasicBlock*> &bbMap, - std::map<const MachineInstr*, unsigned> &indexMap) { + std::map<const MachineInstr*, unsigned> &indexMap) { //See if we can get induction var instructions std::set<const BasicBlock*> llvmSuperBlock; @@ -409,14 +409,14 @@ namespace llvm { indVar.insert(b); if(Instruction *I = dyn_cast<Instruction>(cond)) - if(bbMap.count(I->getParent())) { - if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock)) - return false; - } - else - return false; + if(bbMap.count(I->getParent())) { + if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock)) + return false; + } + else + return false; else - return false; + return false; } else { indVar.insert(b); @@ -424,43 +424,43 @@ namespace llvm { //Dump out instructions associate with indvar for debug reasons DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); - N != NE; ++N) { - std::cerr << **N << "\n"; - }); + N != NE; ++N) { + std::cerr << **N << "\n"; + }); //Create map of machine instr to llvm instr std::map<MachineInstr*, Instruction*> mllvm; for(std::vector<const MachineBasicBlock*>::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) { BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock(); for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); - for (unsigned j = 0; j < tempMvec.size(); j++) { - mllvm[tempMvec[j]] = I; - } + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); + for (unsigned j = 0; j < tempMvec.size(); j++) { + mllvm[tempMvec[j]] = I; + } } } //Convert list of LLVM Instructions to list of Machine instructions std::map<const MachineInstr*, unsigned> mIndVar; for(std::set<Instruction*>::iterator N = indVar.begin(), - NE = indVar.end(); N != NE; ++N) { - - //If we have a load, we can't handle this loop because - //there is no way to preserve dependences between loads - //and stores - if(isa<LoadInst>(*N)) - return false; - - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineOpCode OC = (tempMvec[j])->getOpcode(); - if(TMI->isNop(OC)) - continue; - if(!indexMap.count(tempMvec[j])) - continue; - mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; - DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); - } + NE = indVar.end(); N != NE; ++N) { + + //If we have a load, we can't handle this loop because + //there is no way to preserve dependences between loads + //and stores + if(isa<LoadInst>(*N)) + return false; + + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineOpCode OC = (tempMvec[j])->getOpcode(); + if(TMI->isNop(OC)) + continue; + if(!indexMap.count(tempMvec[j])) + continue; + mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; + DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); + } } //Put into a map for future access @@ -472,38 +472,38 @@ namespace llvm { } bool ModuloSchedulingSBPass::assocIndVar(Instruction *I, - std::set<Instruction*> &indVar, - std::vector<Instruction*> &stack, - std::map<BasicBlock*, MachineBasicBlock*> &bbMap, - const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) { + std::set<Instruction*> &indVar, + std::vector<Instruction*> &stack, + std::map<BasicBlock*, MachineBasicBlock*> &bbMap, + const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) { stack.push_back(I); //If this is a phi node, check if its the canonical indvar if(PHINode *PN = dyn_cast<PHINode>(I)) { if(llvmSuperBlock.count(PN->getParent())) { - if (Instruction *Inc = - dyn_cast<Instruction>(PN->getIncomingValueForBlock(last))) - if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) - if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) - if (CI->equalsInt(1)) { - //We have found the indvar, so add the stack, and inc instruction to the set - indVar.insert(stack.begin(), stack.end()); - indVar.insert(Inc); - stack.pop_back(); - return true; - } - return false; + if (Instruction *Inc = + dyn_cast<Instruction>(PN->getIncomingValueForBlock(last))) + if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) + if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) + if (CI->equalsInt(1)) { + //We have found the indvar, so add the stack, and inc instruction to the set + indVar.insert(stack.begin(), stack.end()); + indVar.insert(Inc); + stack.pop_back(); + return true; + } + return false; } } else { //Loop over each of the instructions operands, check if they are an instruction and in this BB for(unsigned i = 0; i < I->getNumOperands(); ++i) { - if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) { - if(bbMap.count(N->getParent())) - if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock)) - return false; - } + if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) { + if(bbMap.count(N->getParent())) + if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock)) + return false; + } } } @@ -517,8 +517,8 @@ namespace llvm { /// calls) in the block. Currently ModuloScheduling only works on /// single basic block loops. bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI, - std::map<const MachineInstr*, unsigned> &indexMap, - unsigned &offset) { + std::map<const MachineInstr*, unsigned> &indexMap, + unsigned &offset) { //Check size of our basic block.. make sure we have more then just the terminator in it if(BI->getBasicBlock()->size() == 1) @@ -534,26 +534,26 @@ namespace llvm { //Look for calls if(TMI->isCall(OC)) { - ++BBWithCalls; - return false; + ++BBWithCalls; + return false; } //Look for conditional move if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi - || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi - || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr - || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr - || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi - || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi - || OC == V9::MOVFNEr || OC == V9::MOVFNEi) { - ++BBWithCondMov; - return false; + || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi + || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr + || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr + || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi + || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi + || OC == V9::MOVFNEr || OC == V9::MOVFNEi) { + ++BBWithCondMov; + return false; } indexMap[I] = count + offset; if(TMI->isNop(OC)) - continue; + continue; ++count; } @@ -568,30 +568,30 @@ bool ModuloSchedulingSBPass::CreateDefMap(std::vector<const MachineBasicBlock*> defaultInst = 0; for(std::vector<const MachineBasicBlock*>::iterator BI = SB.begin(), - BE = SB.end(); BI != BE; ++BI) { + BE = SB.end(); BI != BE; ++BI) { for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) { - const MachineOperand &mOp = I->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - Value *V = mOp.getVRegValue(); - //assert if this is the second def we have seen - if(defMap.count(V) && isa<PHINode>(V)) - DEBUG(std::cerr << "FIXME: Dup def for phi!\n"); - else { - //assert(!defMap.count(V) && "Def already in the map"); - if(defMap.count(V)) - return false; - defMap[V] = (MachineInstr*) &*I; - } - } - - //See if we can use this Value* as our defaultInst - if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { - Value *V = mOp.getVRegValue(); - if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V)) - defaultInst = (Instruction*) V; - } + const MachineOperand &mOp = I->getOperand(opNum); + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { + Value *V = mOp.getVRegValue(); + //assert if this is the second def we have seen + if(defMap.count(V) && isa<PHINode>(V)) + DEBUG(std::cerr << "FIXME: Dup def for phi!\n"); + else { + //assert(!defMap.count(V) && "Def already in the map"); + if(defMap.count(V)) + return false; + defMap[V] = (MachineInstr*) &*I; + } + } + + //See if we can use this Value* as our defaultInst + if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { + Value *V = mOp.getVRegValue(); + if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V)) + defaultInst = (Instruction*) V; + } } } } @@ -629,14 +629,14 @@ int ModuloSchedulingSBPass::calculateResMII(std::vector<const MachineBasicBlock* //Loop over resources in each cycle and increments their usage count for(unsigned i=0; i < resources.size(); ++i) - for(unsigned j=0; j < resources[i].size(); ++j) { - if(!resourceUsageCount.count(resources[i][j])) { - resourceUsageCount[resources[i][j]] = 1; - } - else { - resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; - } - } + for(unsigned j=0; j < resources[i].size(); ++j) { + if(!resourceUsageCount.count(resources[i][j])) { + resourceUsageCount[resources[i][j]] = 1; + } + else { + resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; + } + } } } @@ -692,7 +692,7 @@ int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) { int CircCountSB; void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked, - std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) { + std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) { //Unblock u DEBUG(std::cerr << "Unblocking: " << *u << "\n"); @@ -726,13 +726,13 @@ void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::m for(unsigned i = 0; i < (*N)->succ_size(); ++i) { MSchedGraphSBEdge *edge = (*N)->getSuccessor(i); if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) { - totalDistance += edge->getIteDiff(); - if(edge->getIteDiff() > 0) - if(!start && !end) { - start = *N; - end = edge->getDest(); - } - + totalDistance += edge->getIteDiff(); + if(edge->getIteDiff() > 0) + if(!start && !end) { + start = *N; + end = edge->getDest(); + } + } } @@ -748,7 +748,7 @@ void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::m assert( (start && end) && "Must have start and end node to ignore edge for SCC"); - if(start && end) { + if(start && end) { //Insert reccurrence into the list DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); @@ -762,9 +762,9 @@ void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::m } bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack, - std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC, - MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B, - int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { + std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC, + MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B, + int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { bool f = false; DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); @@ -791,7 +791,7 @@ bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGra } else if(!blocked.count(*I)) { if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes)) - f = true; + f = true; } else DEBUG(std::cerr << "Blocked: " << **I << "\n"); @@ -818,7 +818,7 @@ void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std std::vector<MSchedGraphSBNode*> recc; //Dump recurrence for now DEBUG(std::cerr << "Starting Recc\n"); - + int totalDelay = 0; int totalDistance = 0; MSchedGraphSBNode *lastN = 0; @@ -834,8 +834,8 @@ void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std totalDistance += iteDiff; if(iteDiff > 0) { - start = lastN; - end = *N; + start = lastN; + end = *N; } } //Get the original node @@ -851,7 +851,7 @@ void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std DEBUG(std::cerr << "End Recc\n"); CircCountSB++; - if(start && end) { + if(start && end) { //Insert reccurrence into the list DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); @@ -867,7 +867,7 @@ void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std int value = totalDelay-(RecMII * totalDistance); int lastII = II; while(value < 0) { - + lastII = RecMII; RecMII--; value = totalDelay-(RecMII * totalDistance); @@ -921,64 +921,64 @@ void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) { //Find scc with the least vertex for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI) if (Visited.insert(GI->second).second) { - for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second), - E = scc_end(GI->second); SCCI != E; ++SCCI) { - std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI; - - if (Visited.insert(nextSCC[0]).second) { - Visited.insert(nextSCC.begin()+1, nextSCC.end()); - - if(nextSCC.size() > 1) { - DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n"); - - for(unsigned i = 0; i < nextSCC.size(); ++i) { - //Loop over successor and see if in scc, then count edge - MSchedGraphSBNode *node = nextSCC[i]; - for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { - if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) - numEdges++; - } - } - DEBUG(std::cerr << "Num Edges: " << numEdges << "\n"); - } - - //Ignore self loops - if(nextSCC.size() > 1) { - - //Get least vertex in Vk - if(!s) { - s = nextSCC[0]; - Vk = nextSCC; - } - - for(unsigned i = 0; i < nextSCC.size(); ++i) { - if(nextSCC[i] < s) { - s = nextSCC[i]; - Vk = nextSCC; - } - } - } - } - } + for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second), + E = scc_end(GI->second); SCCI != E; ++SCCI) { + std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI; + + if (Visited.insert(nextSCC[0]).second) { + Visited.insert(nextSCC.begin()+1, nextSCC.end()); + + if(nextSCC.size() > 1) { + DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n"); + + for(unsigned i = 0; i < nextSCC.size(); ++i) { + //Loop over successor and see if in scc, then count edge + MSchedGraphSBNode *node = nextSCC[i]; + for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { + if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) + numEdges++; + } + } + DEBUG(std::cerr << "Num Edges: " << numEdges << "\n"); + } + + //Ignore self loops + if(nextSCC.size() > 1) { + + //Get least vertex in Vk + if(!s) { + s = nextSCC[0]; + Vk = nextSCC; + } + + for(unsigned i = 0; i < nextSCC.size(); ++i) { + if(nextSCC[i] < s) { + s = nextSCC[i]; + Vk = nextSCC; + } + } + } + } + } } //Process SCC DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end(); - N != NE; ++N) { std::cerr << *((*N)->getInst()); }); + N != NE; ++N) { std::cerr << *((*N)->getInst()); }); //Iterate over all nodes in this scc for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end(); - N != NE; ++N) { + N != NE; ++N) { blocked.erase(*N); B[*N].clear(); } if(Vk.size() > 1) { if(numEdges < 98) - circuit(s, stack, blocked, Vk, s, B, II, newNodes); + circuit(s, stack, blocked, Vk, s, B, II, newNodes); else - addSCC(Vk, newNodes); + addSCC(Vk, newNodes); //Delete nodes from the graph @@ -986,12 +986,12 @@ void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) { std::vector<MSchedGraphSBNode*> nodesToRemove; nodesToRemove.push_back(s); for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) { - if(N->second < s ) - nodesToRemove.push_back(N->second); + if(N->second < s ) + nodesToRemove.push_back(N->second); } for(std::vector<MSchedGraphSBNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) { - DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); - MSG->deleteNode(*N); + DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); + MSG->deleteNode(*N); } } else @@ -1015,7 +1015,7 @@ void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int M //Assert if its already in the map assert(nodeToAttributesMap.count(I->second) == 0 && - "Node attributes are already in the map"); + "Node attributes are already in the map"); //Put into the map with default attribute values nodeToAttributesMap[I->second] = MSNodeSBAttributes(); @@ -1101,7 +1101,7 @@ int ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSc int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII, - int maxASAP, MSchedGraphSBNode *srcNode) { + int maxASAP, MSchedGraphSBNode *srcNode) { DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); @@ -1122,28 +1122,28 @@ int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII, //Iterate over all of the predecessors and fine max for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { + E = node->succ_end(); P != E; ++P) { //Only process if we are not ignoring the edge if(!ignoreEdge(node, *P)) { - processedOneEdge = true; - int succALAP = -1; - succALAP = calculateALAP(*P, MII, maxASAP, node); - - assert(succALAP != -1 && "Successors ALAP should have been caclulated"); - - int iteDiff = P.getEdge().getIteDiff(); - - int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; - - DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); - - minSuccValue = std::min(minSuccValue, currentSuccValue); + processedOneEdge = true; + int succALAP = -1; + succALAP = calculateALAP(*P, MII, maxASAP, node); + + assert(succALAP != -1 && "Successors ALAP should have been caclulated"); + + int iteDiff = P.getEdge().getIteDiff(); + + int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; + + DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); + + minSuccValue = std::min(minSuccValue, currentSuccValue); } } if(processedOneEdge) - attributes.ALAP = minSuccValue; + attributes.ALAP = minSuccValue; else attributes.ALAP = maxASAP; @@ -1163,7 +1163,7 @@ int ModuloSchedulingSBPass::findMaxASAP() { int maxASAP = 0; for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) + E = nodeToAttributesMap.end(); I != E; ++I) maxASAP = std::max(maxASAP, I->second.ASAP); return maxASAP; } @@ -1180,7 +1180,7 @@ int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphS //Iterate over all of the predecessors and find max for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { + E = node->succ_end(); P != E; ++P) { if(!ignoreEdge(node, *P)) { @@ -1199,7 +1199,7 @@ int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphS int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node, - MSchedGraphSBNode *destNode) { + MSchedGraphSBNode *destNode) { MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; @@ -1239,24 +1239,24 @@ void ModuloSchedulingSBPass::computePartialOrder() { //along with any nodes that connect this recurrence to recurrences //already in the partial order for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::reverse_iterator - I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { + I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { std::set<MSchedGraphSBNode*> new_recurrence; //Loop through recurrence and remove any nodes already in the partial order for(std::vector<MSchedGraphSBNode*>::const_iterator N = I->second.begin(), - NE = I->second.end(); N != NE; ++N) { + NE = I->second.end(); N != NE; ++N) { bool found = false; for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(*N)) - found = true; + PE = partialOrder.end(); PO != PE; ++PO) { + if(PO->count(*N)) + found = true; } //Check if its a branch, and remove to handle special if(!found) { - new_recurrence.insert(*N); + new_recurrence.insert(*N); } } @@ -1274,21 +1274,21 @@ void ModuloSchedulingSBPass::computePartialOrder() { //Add nodes that connect this recurrence to recurrences in the partial path for(std::set<MSchedGraphSBNode*>::iterator N = new_recurrence.begin(), NE = new_recurrence.end(); N != NE; ++N) - searchPath(*N, path, nodesToAdd, new_recurrence); + searchPath(*N, path, nodesToAdd, new_recurrence); //Add nodes to this recurrence if they are not already in the partial order for(std::set<MSchedGraphSBNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); - N != NE; ++N) { - bool found = false; - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(*N)) - found = true; - } - if(!found) { - assert("FOUND CONNECTOR"); - new_recurrence.insert(*N); - } + N != NE; ++N) { + bool found = false; + for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), + PE = partialOrder.end(); PO != PE; ++PO) { + if(PO->count(*N)) + found = true; + } + if(!found) { + assert("FOUND CONNECTOR"); + new_recurrence.insert(*N); + } } partialOrder.push_back(new_recurrence); @@ -1300,15 +1300,15 @@ void ModuloSchedulingSBPass::computePartialOrder() { std::set<MSchedGraphSBNode*> lastNodes; std::set<MSchedGraphSBNode*> noPredNodes; for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) { + E = nodeToAttributesMap.end(); I != E; ++I) { bool found = false; //Check if its already in our partial order, if not add it to the final vector for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { + PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(I->first)) - found = true; + found = true; } if(!found) lastNodes.insert(I->first); @@ -1320,7 +1320,7 @@ void ModuloSchedulingSBPass::computePartialOrder() { N != NE; ++N) { DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { + PE = partialOrder.end(); PO != PE; ++PO) { std::vector<MSchedGraphSBNode*> path; pathToRecc(*N, path, *PO, lastNodes); } @@ -1333,7 +1333,7 @@ void ModuloSchedulingSBPass::computePartialOrder() { std::set<MSchedGraphSBNode*> ccSet; connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes); if(ccSet.size() > 0) - partialOrder.push_back(ccSet); + partialOrder.push_back(ccSet); } } @@ -1356,9 +1356,9 @@ void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std: } void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node, - std::vector<MSchedGraphSBNode*> &path, - std::set<MSchedGraphSBNode*> &nodesToAdd, - std::set<MSchedGraphSBNode*> &new_reccurrence) { + std::vector<MSchedGraphSBNode*> &path, + std::set<MSchedGraphSBNode*> &nodesToAdd, + std::set<MSchedGraphSBNode*> &new_reccurrence) { //Push node onto the path path.push_back(node); @@ -1381,11 +1381,11 @@ void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node, //final vector bool found = false; for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { + PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(*S)) { - found = true; - break; + found = true; + break; } } @@ -1420,8 +1420,8 @@ void ModuloSchedulingSBPass::orderNodes() { /*for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { for(std::set<MSchedGraphSBNode*>::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N) if((*N)->isPredicate()) { - FinalNodeOrder.push_back(*N); - CurrentSet->erase(*N); + FinalNodeOrder.push_back(*N); + CurrentSet->erase(*N); } }*/ @@ -1452,28 +1452,28 @@ void ModuloSchedulingSBPass::orderNodes() { //sort top-down if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); - order = TOP_DOWN; + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); + order = TOP_DOWN; } else { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); - //Find node with max ASAP in current Set - MSchedGraphSBNode *node; - int maxASAP = 0; - DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); - for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { - //Get node attributes - MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; - //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - - if(maxASAP <= nodeAttr.ASAP) { - maxASAP = nodeAttr.ASAP; - node = *J; - } - } - assert(node != 0 && "In node ordering node should not be null"); - IntersectCurrent.insert(node); - order = BOTTOM_UP; + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); + //Find node with max ASAP in current Set + MSchedGraphSBNode *node; + int maxASAP = 0; + DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); + for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { + //Get node attributes + MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; + //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); + + if(maxASAP <= nodeAttr.ASAP) { + maxASAP = nodeAttr.ASAP; + node = *J; + } + } + assert(node != 0 && "In node ordering node should not be null"); + IntersectCurrent.insert(node); + order = BOTTOM_UP; } } @@ -1481,138 +1481,138 @@ void ModuloSchedulingSBPass::orderNodes() { while(IntersectCurrent.size() > 0) { if(order == TOP_DOWN) { - DEBUG(std::cerr << "Order is TOP DOWN\n"); - - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); - - int MOB = 0; - int height = 0; - MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin()); - - //Find node in intersection with highest heigh and lowest MOB - for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - - //Get current nodes properties - MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(height < nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - else if(height == nodeAttr.height) { - if(MOB > nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - } - } - - //Append our node with greatest height to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); - FinalNodeOrder.push_back(highestHeightNode); - } - - //Remove V from IntersectOrder - IntersectCurrent.erase(std::find(IntersectCurrent.begin(), - IntersectCurrent.end(), highestHeightNode)); - - - //Intersect V's successors with CurrentSet - for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(), - E = highestHeightNode->succ_end(); P != E; ++P) { - //if(lower_bound(CurrentSet->begin(), - // CurrentSet->end(), *P) != CurrentSet->end()) { - if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { - if(ignoreEdge(highestHeightNode, *P)) - continue; - //If not already in Intersect, add - if(!IntersectCurrent.count(*P)) - IntersectCurrent.insert(*P); - } - } - } //End while loop over Intersect Size - - //Change direction - order = BOTTOM_UP; - - //Reset Intersect to reflect changes in OrderNodes - IntersectCurrent.clear(); - predIntersect(*CurrentSet, IntersectCurrent); - + DEBUG(std::cerr << "Order is TOP DOWN\n"); + + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); + + int MOB = 0; + int height = 0; + MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin()); + + //Find node in intersection with highest heigh and lowest MOB + for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + + //Get current nodes properties + MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; + + if(height < nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; + } + else if(height == nodeAttr.height) { + if(MOB > nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; + } + } + } + + //Append our node with greatest height to the NodeOrder + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); + FinalNodeOrder.push_back(highestHeightNode); + } + + //Remove V from IntersectOrder + IntersectCurrent.erase(std::find(IntersectCurrent.begin(), + IntersectCurrent.end(), highestHeightNode)); + + + //Intersect V's successors with CurrentSet + for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(), + E = highestHeightNode->succ_end(); P != E; ++P) { + //if(lower_bound(CurrentSet->begin(), + // CurrentSet->end(), *P) != CurrentSet->end()) { + if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + if(ignoreEdge(highestHeightNode, *P)) + continue; + //If not already in Intersect, add + if(!IntersectCurrent.count(*P)) + IntersectCurrent.insert(*P); + } + } + } //End while loop over Intersect Size + + //Change direction + order = BOTTOM_UP; + + //Reset Intersect to reflect changes in OrderNodes + IntersectCurrent.clear(); + predIntersect(*CurrentSet, IntersectCurrent); + } //End If TOP_DOWN - - //Begin if BOTTOM_UP + + //Begin if BOTTOM_UP else { - DEBUG(std::cerr << "Order is BOTTOM UP\n"); - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); - - //dump intersection - DEBUG(dumpIntersection(IntersectCurrent)); - //Get node with highest depth, if a tie, use one with lowest - //MOB - int MOB = 0; - int depth = 0; - MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin()); - - for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - //Find node attribute in graph - MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(depth < nodeAttr.depth) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - else if(depth == nodeAttr.depth) { - if(MOB > nodeAttr.MOB) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - } - } - - - - //Append highest depth node to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); - FinalNodeOrder.push_back(highestDepthNode); - } - //Remove heightestDepthNode from IntersectOrder - IntersectCurrent.erase(highestDepthNode); - - - //Intersect heightDepthNode's pred with CurrentSet - for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(), - E = highestDepthNode->pred_end(); P != E; ++P) { - if(CurrentSet->count(*P)) { - if(ignoreEdge(*P, highestDepthNode)) - continue; - - //If not already in Intersect, add - if(!IntersectCurrent.count(*P)) - IntersectCurrent.insert(*P); - } - } - - } //End while loop over Intersect Size - - //Change order - order = TOP_DOWN; - - //Reset IntersectCurrent to reflect changes in OrderNodes - IntersectCurrent.clear(); - succIntersect(*CurrentSet, IntersectCurrent); - } //End if BOTTOM_DOWN - + DEBUG(std::cerr << "Order is BOTTOM UP\n"); + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); + + //dump intersection + DEBUG(dumpIntersection(IntersectCurrent)); + //Get node with highest depth, if a tie, use one with lowest + //MOB + int MOB = 0; + int depth = 0; + MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin()); + + for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + //Find node attribute in graph + MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; + + if(depth < nodeAttr.depth) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + else if(depth == nodeAttr.depth) { + if(MOB > nodeAttr.MOB) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + } + } + + + + //Append highest depth node to the NodeOrder + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); + FinalNodeOrder.push_back(highestDepthNode); + } + //Remove heightestDepthNode from IntersectOrder + IntersectCurrent.erase(highestDepthNode); + + + //Intersect heightDepthNode's pred with CurrentSet + for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(), + E = highestDepthNode->pred_end(); P != E; ++P) { + if(CurrentSet->count(*P)) { + if(ignoreEdge(*P, highestDepthNode)) + continue; + + //If not already in Intersect, add + if(!IntersectCurrent.count(*P)) + IntersectCurrent.insert(*P); + } + } + + } //End while loop over Intersect Size + + //Change order + order = TOP_DOWN; + + //Reset IntersectCurrent to reflect changes in OrderNodes + IntersectCurrent.clear(); + succIntersect(*CurrentSet, IntersectCurrent); + } //End if BOTTOM_DOWN + DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); } //End Wrapping while loop @@ -1638,15 +1638,15 @@ void ModuloSchedulingSBPass::predIntersect(std::set<MSchedGraphSBNode*> &Current for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), - E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { + E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not if(ignoreEdge(*P,FinalNodeOrder[j])) - continue; - + continue; + if(CurrentSet.count(*P)) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.insert(*P); + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.insert(*P); } } } @@ -1655,15 +1655,15 @@ void ModuloSchedulingSBPass::succIntersect(std::set<MSchedGraphSBNode*> &Current for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), - E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { + E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not if(ignoreEdge(FinalNodeOrder[j],*P)) - continue; + continue; if(CurrentSet.count(*P)) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.insert(*P); + if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.insert(*P); } } } @@ -1687,7 +1687,7 @@ bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock //Loop over the final node order and process each node for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), - E = FinalNodeOrder.end(); I != E; ++I) { + E = FinalNodeOrder.end(); I != E; ++I) { //CalculateEarly and Late start bool initialLSVal = false; @@ -1699,59 +1699,59 @@ bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock bool sched; if((*I)->isBranch()) - if((*I)->hasPredecessors()) - sched = true; - else - sched = false; + if((*I)->hasPredecessors()) + sched = true; + else + sched = false; else - sched = true; + sched = true; if(sched) { - //Loop over nodes in the schedule and determine if they are predecessors - //or successors of the node we are trying to schedule - for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); - nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { - - //For this cycle, get the vector of nodes schedule and loop over it - for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { - - if((*I)->isPredecessor(*schedNode)) { - int diff = (*I)->getInEdge(*schedNode).getIteDiff(); - int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); - DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); - if(initialESVal) - EarlyStart = std::max(EarlyStart, ES_Temp); - else { - EarlyStart = ES_Temp; - initialESVal = true; - } - hasPred = true; - } - if((*I)->isSuccessor(*schedNode)) { - int diff = (*schedNode)->getInEdge(*I).getIteDiff(); - int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); - DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); - if(initialLSVal) - LateStart = std::min(LateStart, LS_Temp); - else { - LateStart = LS_Temp; - initialLSVal = true; - } - hasSucc = true; - } - } - } + //Loop over nodes in the schedule and determine if they are predecessors + //or successors of the node we are trying to schedule + for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); + nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { + + //For this cycle, get the vector of nodes schedule and loop over it + for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { + + if((*I)->isPredecessor(*schedNode)) { + int diff = (*I)->getInEdge(*schedNode).getIteDiff(); + int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); + DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); + if(initialESVal) + EarlyStart = std::max(EarlyStart, ES_Temp); + else { + EarlyStart = ES_Temp; + initialESVal = true; + } + hasPred = true; + } + if((*I)->isSuccessor(*schedNode)) { + int diff = (*schedNode)->getInEdge(*I).getIteDiff(); + int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); + DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); + if(initialLSVal) + LateStart = std::min(LateStart, LS_Temp); + else { + LateStart = LS_Temp; + initialLSVal = true; + } + hasSucc = true; + } + } + } } else { - branches.push_back(*I); - continue; + branches.push_back(*I); + continue; } //Check if the node has no pred or successors and set Early Start to its ASAP if(!hasSucc && !hasPred) - EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; + EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); @@ -1759,25 +1759,25 @@ bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock //Now, try to schedule this node depending upon its pred and successor in the schedule //already if(!hasSucc && hasPred) - success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); + success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); else if(!hasPred && hasSucc) - success = scheduleNode(*I, LateStart, (LateStart - II +1)); + success = scheduleNode(*I, LateStart, (LateStart - II +1)); else if(hasPred && hasSucc) { - if(EarlyStart > LateStart) { - success = false; - //LateStart = EarlyStart; - DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); - } - else - success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); + if(EarlyStart > LateStart) { + success = false; + //LateStart = EarlyStart; + DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); + } + else + success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); } else - success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); + success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); if(!success) { - ++II; - schedule.clear(); - break; + ++II; + schedule.clear(); + break; } } @@ -1787,8 +1787,8 @@ bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock success = schedule.constructKernel(II, branches, indVarInstrs[SB]); DEBUG(std::cerr << "Done Constructing Schedule Kernel\n"); if(!success) { - ++II; - schedule.clear(); + ++II; + schedule.clear(); } DEBUG(std::cerr << "Final II: " << II << "\n"); @@ -1806,7 +1806,7 @@ bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node, - int start, int end) { + int start, int end) { bool success = false; DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); @@ -1841,13 +1841,13 @@ bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node, ++cycle; DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); if(cycle > end) - return false; + return false; } else { --cycle; DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); if(cycle < end) - return false; + return false; } } @@ -1885,46 +1885,46 @@ void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock lastInstrs[inst] = I->second; for(unsigned i=0; i < inst->getNumOperands(); ++i) { - //get machine operand - const MachineOperand &mOp = inst->getOperand(i); - - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - //find the value in the map - if (const Value* srcI = mOp.getVRegValue()) { - - if(isa<Constant>(srcI) || isa<Argument>(srcI)) - continue; - - //Before we declare this Value* one that we should save - //make sure its def is not of the same stage as this instruction - //because it will be consumed before its used - Instruction *defInst = (Instruction*) srcI; - - //Should we save this value? - bool save = true; - - //Continue if not in the def map, loop invariant code does not need to be saved - if(!defMap.count(srcI)) - continue; - - MachineInstr *defInstr = defMap[srcI]; - - - if(lastInstrs.count(defInstr)) { - if(lastInstrs[defInstr] == I->second) { - save = false; - - } - } - - if(save) - valuesToSave[srcI] = std::make_pair(I->first, i); - } - } - - if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { - assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); - } + //get machine operand + const MachineOperand &mOp = inst->getOperand(i); + + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + //find the value in the map + if (const Value* srcI = mOp.getVRegValue()) { + + if(isa<Constant>(srcI) || isa<Argument>(srcI)) + continue; + + //Before we declare this Value* one that we should save + //make sure its def is not of the same stage as this instruction + //because it will be consumed before its used + Instruction *defInst = (Instruction*) srcI; + + //Should we save this value? + bool save = true; + + //Continue if not in the def map, loop invariant code does not need to be saved + if(!defMap.count(srcI)) + continue; + + MachineInstr *defInstr = defMap[srcI]; + + + if(lastInstrs.count(defInstr)) { + if(lastInstrs[defInstr] == I->second) { + save = false; + + } + } + + if(save) + valuesToSave[srcI] = std::make_pair(I->first, i); + } + } + + if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { + assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); + } } } @@ -1992,10 +1992,10 @@ void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock //Print out epilogues and prologue DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end(); PI != PE; ++PI) { - std::cerr << "PROLOGUE\n"; - for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) - (*I)->print(std::cerr); - }); + std::cerr << "PROLOGUE\n"; + for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) + (*I)->print(std::cerr); + }); DEBUG(std::cerr << "KERNEL\n"); DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); @@ -2014,10 +2014,10 @@ void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock //Print out epilogues and prologue DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end(); PI != PE; ++PI) { - std::cerr << "PROLOGUE\n"; - for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) - (*I)->print(std::cerr); - }); + std::cerr << "PROLOGUE\n"; + for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) + (*I)->print(std::cerr); + }); DEBUG(std::cerr << "KERNEL\n"); DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); @@ -2046,7 +2046,7 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo bool sawFirst = false; for(succ_iterator I = succ_begin(last), - E = succ_end(last); I != E; ++I) { + E = succ_end(last); I != E; ++I) { if (*I != SB[0]->getBasicBlock()) { kernel_exit = *I; break; @@ -2066,71 +2066,71 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo for(unsigned j = 0; j < prologues[i].size(); ++j) { - MachineBasicBlock *currentMBB = prologues[i][j]; + MachineBasicBlock *currentMBB = prologues[i][j]; - //Find terminator since getFirstTerminator does not work! - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we are branching to the kernel, if not branch to epilogue - if(mOp.getVRegValue() == SB[0]->getBasicBlock()) { - if(i >= prologues.size()-1) - mOp.setValueReg(llvmKernelBB[0]); - else - mOp.setValueReg(llvm_prologues[i+1][0]); - } - else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) { - mOp.setValueReg(llvm_epilogues[i][0]); - } - else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) { - mOp.setValueReg(llvm_prologues[i][j+1]); - } - - } - } - - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); - } - } - - //Update llvm basic block with our new branch instr - DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n"); - - const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator()); - - //Check for inner branch - if(j < prologues[i].size()-1) { - //Find our side exit LLVM basic block - BasicBlock *sideExit = 0; - for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { - if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) - sideExit = branchVal->getSuccessor(s); - } - assert(sideExit && "Must have side exit llvm basic block"); - TerminatorInst *newBranch = new BranchInst(sideExit, - llvm_prologues[i][j+1], - branchVal->getCondition(), - llvm_prologues[i][j]); - } - else { - //If last prologue - if(i == prologues.size()-1) { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], - llvm_epilogues[i][0], - branchVal->getCondition(), - llvm_prologues[i][j]); - } - else { - TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0], - llvm_epilogues[i][0], - branchVal->getCondition(), - llvm_prologues[i][j]); - } - } + //Find terminator since getFirstTerminator does not work! + for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { + MachineOpCode OC = mInst->getOpcode(); + //If its a branch update its branchto + if(TMI->isBranch(OC)) { + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + //Check if we are branching to the kernel, if not branch to epilogue + if(mOp.getVRegValue() == SB[0]->getBasicBlock()) { + if(i >= prologues.size()-1) + mOp.setValueReg(llvmKernelBB[0]); + else + mOp.setValueReg(llvm_prologues[i+1][0]); + } + else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) { + mOp.setValueReg(llvm_epilogues[i][0]); + } + else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) { + mOp.setValueReg(llvm_prologues[i][j+1]); + } + + } + } + + DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); + } + } + + //Update llvm basic block with our new branch instr + DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n"); + + const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator()); + + //Check for inner branch + if(j < prologues[i].size()-1) { + //Find our side exit LLVM basic block + BasicBlock *sideExit = 0; + for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { + if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) + sideExit = branchVal->getSuccessor(s); + } + assert(sideExit && "Must have side exit llvm basic block"); + TerminatorInst *newBranch = new BranchInst(sideExit, + llvm_prologues[i][j+1], + branchVal->getCondition(), + llvm_prologues[i][j]); + } + else { + //If last prologue + if(i == prologues.size()-1) { + TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], + llvm_epilogues[i][0], + branchVal->getCondition(), + llvm_prologues[i][j]); + } + else { + TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0], + llvm_epilogues[i][0], + branchVal->getCondition(), + llvm_prologues[i][j]); + } + } } } } @@ -2142,29 +2142,29 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - - if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Deal with inner kernel branches - if(i < machineKernelBB.size()-1) { - if(mOp.getVRegValue() == SB[i+1]->getBasicBlock()) - mOp.setValueReg(llvmKernelBB[i+1]); - //Side exit! - else { - sideExits[SB[i]] = mOp.getVRegValue(); - } - } - else { - if(mOp.getVRegValue() == SB[0]->getBasicBlock()) - mOp.setValueReg(llvmKernelBB[0]); - else { - if(llvm_epilogues.size() > 0) - mOp.setValueReg(llvm_epilogues[0][0]); - } - } - } - } + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + + if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + //Deal with inner kernel branches + if(i < machineKernelBB.size()-1) { + if(mOp.getVRegValue() == SB[i+1]->getBasicBlock()) + mOp.setValueReg(llvmKernelBB[i+1]); + //Side exit! + else { + sideExits[SB[i]] = mOp.getVRegValue(); + } + } + else { + if(mOp.getVRegValue() == SB[0]->getBasicBlock()) + mOp.setValueReg(llvmKernelBB[0]); + else { + if(llvm_epilogues.size() > 0) + mOp.setValueReg(llvm_epilogues[0][0]); + } + } + } + } } } @@ -2177,28 +2177,28 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo //Find our side exit LLVM basic block BasicBlock *sideExit = 0; for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { - if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) - sideExit = branchVal->getSuccessor(s); + if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) + sideExit = branchVal->getSuccessor(s); } assert(sideExit && "Must have side exit llvm basic block"); TerminatorInst *newBranch = new BranchInst(sideExit, - llvmKernelBB[i+1], - branchVal->getCondition(), - llvmKernelBB[i]); + llvmKernelBB[i+1], + branchVal->getCondition(), + llvmKernelBB[i]); } else { //Deal with outter branches if(epilogues.size() > 0) { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], - llvm_epilogues[0][0], - branchVal->getCondition(), - llvmKernelBB[i]); + TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], + llvm_epilogues[0][0], + branchVal->getCondition(), + llvmKernelBB[i]); } else { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], - kernel_exit, - branchVal->getCondition(), - llvmKernelBB[i]); + TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], + kernel_exit, + branchVal->getCondition(), + llvmKernelBB[i]); } } } @@ -2209,73 +2209,73 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo for(unsigned i = 0; i < epilogues.size(); ++i) { for(unsigned j=0; j < epilogues[i].size(); ++j) { - //Now since we don't have fall throughs, add a unconditional - //branch to the next prologue - - //Before adding these, we need to check if the epilogue already has - //a branch in it - bool hasBranch = false; - /*if(j < epilogues[i].size()-1) { - MachineBasicBlock *currentMBB = epilogues[i][j]; - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - - MachineOpCode OC = mInst->getOpcode(); - - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - hasBranch = true; - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - - if(mOp.getVRegValue() != sideExits[SB[j]]) { - mOp.setValueReg(llvm_epilogues[i][j+1]); - } - - } - } - - - DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n"); - } - } - if(hasBranch) { - const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator()); - TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]], - llvm_epilogues[i][j+1], - branchVal->getCondition(), - llvm_epilogues[i][j]); - } - }*/ - - if(!hasBranch) { - - //Handle inner branches - if(j < epilogues[i].size()-1) { - BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]); - TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1], - llvm_epilogues[i][j]); - } - else { - - //Check if this is the last epilogue - if(i != epilogues.size()-1) { - BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]); - //Add unconditional branch to end of epilogue - TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0], - llvm_epilogues[i][j]); - - } - else { - BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit); - TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]); - } - } - - //Add one more nop! - BuildMI(epilogues[i][j], V9::NOP, 0); - - } + //Now since we don't have fall throughs, add a unconditional + //branch to the next prologue + + //Before adding these, we need to check if the epilogue already has + //a branch in it + bool hasBranch = false; + /*if(j < epilogues[i].size()-1) { + MachineBasicBlock *currentMBB = epilogues[i][j]; + for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { + + MachineOpCode OC = mInst->getOpcode(); + + //If its a branch update its branchto + if(TMI->isBranch(OC)) { + hasBranch = true; + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + + if(mOp.getVRegValue() != sideExits[SB[j]]) { + mOp.setValueReg(llvm_epilogues[i][j+1]); + } + + } + } + + + DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n"); + } + } + if(hasBranch) { + const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator()); + TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]], + llvm_epilogues[i][j+1], + branchVal->getCondition(), + llvm_epilogues[i][j]); + } + }*/ + + if(!hasBranch) { + + //Handle inner branches + if(j < epilogues[i].size()-1) { + BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]); + TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1], + llvm_epilogues[i][j]); + } + else { + + //Check if this is the last epilogue + if(i != epilogues.size()-1) { + BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]); + //Add unconditional branch to end of epilogue + TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0], + llvm_epilogues[i][j]); + + } + else { + BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit); + TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]); + } + } + + //Add one more nop! + BuildMI(epilogues[i][j], V9::NOP, 0); + + } } } } @@ -2287,7 +2287,7 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB)); for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), - PE = Preds.end(); P != PE; ++P) { + PE = Preds.end(); P != PE; ++P) { if(*P == SB[SB.size()-1]->getBasicBlock()) continue; else { @@ -2299,55 +2299,55 @@ void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlo //Update the terminator TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); for(unsigned i=0; i < term->getNumSuccessors(); ++i) { - if(term->getSuccessor(i) == llvmBB) { - DEBUG(std::cerr << "Replacing successor bb\n"); - if(llvm_prologues.size() > 0) { - term->setSuccessor(i, llvm_prologues[0][0]); - - DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n"); - - //Also update its corresponding machine instruction - MachineCodeForInstruction & tempMvec = - MachineCodeForInstruction::get(term); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineInstr *temp = tempMvec[j]; - MachineOpCode opc = temp->getOpcode(); - if(TMI->isBranch(opc)) { - DEBUG(std::cerr << *temp << "\n"); - //Update branch - for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { - MachineOperand &mOp = temp->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == llvmBB) - mOp.setValueReg(llvm_prologues[0][0]); - } - } - } - } - } - else { - term->setSuccessor(i, llvmKernelBB[0]); - - //Also update its corresponding machine instruction - MachineCodeForInstruction & tempMvec = - MachineCodeForInstruction::get(term); - for(unsigned j = 0; j < tempMvec.size(); j++) { - MachineInstr *temp = tempMvec[j]; - MachineOpCode opc = temp->getOpcode(); - if(TMI->isBranch(opc)) { - DEBUG(std::cerr << *temp << "\n"); - //Update branch - for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { - MachineOperand &mOp = temp->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == llvmBB) - mOp.setValueReg(llvmKernelBB[0]); - } - } - } - } - } - } + if(term->getSuccessor(i) == llvmBB) { + DEBUG(std::cerr << "Replacing successor bb\n"); + if(llvm_prologues.size() > 0) { + term->setSuccessor(i, llvm_prologues[0][0]); + + DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n"); + + //Also update its corresponding machine instruction + MachineCodeForInstruction & tempMvec = + MachineCodeForInstruction::get(term); + for (unsigned j = 0; j < tempMvec.size(); j++) { + MachineInstr *temp = tempMvec[j]; + MachineOpCode opc = temp->getOpcode(); + if(TMI->isBranch(opc)) { + DEBUG(std::cerr << *temp << "\n"); + //Update branch + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mOp = temp->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + if(mOp.getVRegValue() == llvmBB) + mOp.setValueReg(llvm_prologues[0][0]); + } + } + } + } + } + else { + term->setSuccessor(i, llvmKernelBB[0]); + + //Also update its corresponding machine instruction + MachineCodeForInstruction & tempMvec = + MachineCodeForInstruction::get(term); + for(unsigned j = 0; j < tempMvec.size(); j++) { + MachineInstr *temp = tempMvec[j]; + MachineOpCode opc = temp->getOpcode(); + if(TMI->isBranch(opc)) { + DEBUG(std::cerr << *temp << "\n"); + //Update branch + for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { + MachineOperand &mOp = temp->getOperand(opNum); + if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + if(mOp.getVRegValue() == llvmBB) + mOp.setValueReg(llvmKernelBB[0]); + } + } + } + } + } + } } break; } @@ -2384,7 +2384,7 @@ void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasic std::vector<BasicBlock*> current_llvm_prologue; for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), - MBE = origSB.end(); MB != MBE; ++MB) { + MBE = origSB.end(); MB != MBE; ++MB) { const MachineBasicBlock *MBB = *MB; //Create new llvm and machine bb BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent())); @@ -2393,91 +2393,91 @@ void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasic DEBUG(std::cerr << "i=" << i << "\n"); for(int j = i; j >= 0; --j) { - //iterate over instructions in original bb - for(MachineBasicBlock::const_iterator MI = MBB->begin(), - ME = MBB->end(); ME != MI; ++MI) { - if(inKernel[j].count(&*MI)) { - MachineInstr *instClone = MI->clone(); - machineBB->push_back(instClone); - - //If its a branch, insert a nop - if(mii->isBranch(instClone->getOpcode())) - BuildMI(machineBB, V9::NOP, 0); - - - DEBUG(std::cerr << "Cloning: " << *MI << "\n"); - - //After cloning, we may need to save the value that this instruction defines - for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { - Instruction *tmp; - - //get machine operand - MachineOperand &mOp = instClone->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_VirtualRegister - && mOp.isDef()) { - - //Check if this is a value we should save - if(valuesToSave.count(mOp.getVRegValue())) { - //Save copy in tmpInstruction - tmp = new TmpInstruction(mOp.getVRegValue()); - - //Add TmpInstruction to safe LLVM Instruction MCFI - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) - << " New Value: " << *tmp << " Stage: " << i << "\n"); - - newValues[mOp.getVRegValue()][i]= tmp; - newValLocation[tmp] = machineBB; - - DEBUG(std::cerr << "Machine Instr Operands: " - << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); - - //Create machine instruction and put int machineBB - MachineInstr *saveValue; - if(mOp.getVRegValue()->getType() == Type::FloatTy) - saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); - } - } - - //We may also need to update the value that we use if - //its from an earlier prologue - if(j != 0) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - if(newValues.count(mOp.getVRegValue())) { - if(newValues[mOp.getVRegValue()].count(i-1)) { - Value *oldV = mOp.getVRegValue(); - DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); - //Update the operand with the right value - mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); - - //Remove this value since we have consumed it - //NOTE: Should this only be done if j != maxStage? - consumedValues[oldV][i-1] = (newValues[oldV][i-1]); - DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); - newValues[oldV].erase(i-1); - } - } - else - if(consumedValues.count(mOp.getVRegValue())) - assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); - } - } - } - } - } + //iterate over instructions in original bb + for(MachineBasicBlock::const_iterator MI = MBB->begin(), + ME = MBB->end(); ME != MI; ++MI) { + if(inKernel[j].count(&*MI)) { + MachineInstr *instClone = MI->clone(); + machineBB->push_back(instClone); + + //If its a branch, insert a nop + if(mii->isBranch(instClone->getOpcode())) + BuildMI(machineBB, V9::NOP, 0); + + + DEBUG(std::cerr << "Cloning: " << *MI << "\n"); + + //After cloning, we may need to save the value that this instruction defines + for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { + Instruction *tmp; + + //get machine operand + MachineOperand &mOp = instClone->getOperand(opNum); + if(mOp.getType() == MachineOperand::MO_VirtualRegister + && mOp.isDef()) { + + //Check if this is a value we should save + if(valuesToSave.count(mOp.getVRegValue())) { + //Save copy in tmpInstruction + tmp = new TmpInstruction(mOp.getVRegValue()); + + //Add TmpInstruction to safe LLVM Instruction MCFI + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) + << " New Value: " << *tmp << " Stage: " << i << "\n"); + + newValues[mOp.getVRegValue()][i]= tmp; + newValLocation[tmp] = machineBB; + + DEBUG(std::cerr << "Machine Instr Operands: " + << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); + + //Create machine instruction and put int machineBB + MachineInstr *saveValue; + if(mOp.getVRegValue()->getType() == Type::FloatTy) + saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + + DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); + } + } + + //We may also need to update the value that we use if + //its from an earlier prologue + if(j != 0) { + if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { + if(newValues.count(mOp.getVRegValue())) { + if(newValues[mOp.getVRegValue()].count(i-1)) { + Value *oldV = mOp.getVRegValue(); + DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); + //Update the operand with the right value + mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); + + //Remove this value since we have consumed it + //NOTE: Should this only be done if j != maxStage? + consumedValues[oldV][i-1] = (newValues[oldV][i-1]); + DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); + newValues[oldV].erase(i-1); + } + } + else + if(consumedValues.count(mOp.getVRegValue())) + assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); + } + } + } + } + } } - (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); - current_prologue.push_back(machineBB); - current_llvm_prologue.push_back(llvmBB); + (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); + current_prologue.push_back(machineBB); + current_llvm_prologue.push_back(llvmBB); } prologues.push_back(current_prologue); llvm_prologues.push_back(current_llvm_prologue); @@ -2523,58 +2523,58 @@ void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasic std::map<Value*, int> inEpilogue; for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) { - for(int j=schedule.getMaxStage(); j > i; --j) { - if(inKernel[j].count(&*MI)) { - DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); - MachineInstr *clone = MI->clone(); - - //Update operands that need to use the result from the phi - for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { - //get machine operand - const MachineOperand &mOp = clone->getOperand(opNum); - - if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { - - DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); - - //If this is the last instructions for the max iterations ago, don't update operands - if(inEpilogue.count(mOp.getVRegValue())) - if(inEpilogue[mOp.getVRegValue()] == i) - continue; - - //Quickly write appropriate phis for this operand - if(newValues.count(mOp.getVRegValue())) { - if(newValues[mOp.getVRegValue()].count(i)) { - Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - //assert of no kernelPHI for this value - assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); - - MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - valPHIs[mOp.getVRegValue()] = tmp; - } - } - - if(valPHIs.count(mOp.getVRegValue())) { - //Update the operand in the cloned instruction - clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); - } - } - else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { - inEpilogue[mOp.getVRegValue()] = i; - } - - } - machineBB->push_back(clone); - //if(MTI->isBranch(clone->getOpcode())) - //BuildMI(machineBB, V9::NOP, 0); - } - } + for(int j=schedule.getMaxStage(); j > i; --j) { + if(inKernel[j].count(&*MI)) { + DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); + MachineInstr *clone = MI->clone(); + + //Update operands that need to use the result from the phi + for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { + //get machine operand + const MachineOperand &mOp = clone->getOperand(opNum); + + if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { + + DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); + + //If this is the last instructions for the max iterations ago, don't update operands + if(inEpilogue.count(mOp.getVRegValue())) + if(inEpilogue[mOp.getVRegValue()] == i) + continue; + + //Quickly write appropriate phis for this operand + if(newValues.count(mOp.getVRegValue())) { + if(newValues[mOp.getVRegValue()].count(i)) { + Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + //assert of no kernelPHI for this value + assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); + + MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + valPHIs[mOp.getVRegValue()] = tmp; + } + } + + if(valPHIs.count(mOp.getVRegValue())) { + //Update the operand in the cloned instruction + clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); + } + } + else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { + inEpilogue[mOp.getVRegValue()] = i; + } + + } + machineBB->push_back(clone); + //if(MTI->isBranch(clone->getOpcode())) + //BuildMI(machineBB, V9::NOP, 0); + } + } } (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); current_epilogue.push_back(machineBB); @@ -2583,7 +2583,7 @@ void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasic DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); DEBUG(for(std::vector<MachineBasicBlock*>::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) { - (*B)->print(std::cerr);}); + (*B)->print(std::cerr);}); epilogues.push_back(current_epilogue); llvm_epilogues.push_back(current_llvm_epilogue); @@ -2646,64 +2646,64 @@ void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std:: if(I->second != 0) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - //Check to see where this operand is defined if this instruction is from max stage - if(I->second == schedule.getMaxStage()) { - DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); - } - - //If its in the value saved, we need to create a temp instruction and use that instead - if(valuesToSave.count(mOp.getVRegValue())) { - - //Check if we already have a final PHI value for this - if(!finalPHIValue.count(mOp.getVRegValue())) { - //Only create phi if the operand def is from a stage before this one - if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { - TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - //Update the operand in the cloned instruction - instClone->getOperand(i).setValueReg(tmp); - - //save this as our final phi - finalPHIValue[mOp.getVRegValue()] = tmp; - newValLocation[tmp] = machineBB[index]; - } - } - else { - //Use the previous final phi value - instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); - } - } + //Check to see where this operand is defined if this instruction is from max stage + if(I->second == schedule.getMaxStage()) { + DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); + } + + //If its in the value saved, we need to create a temp instruction and use that instead + if(valuesToSave.count(mOp.getVRegValue())) { + + //Check if we already have a final PHI value for this + if(!finalPHIValue.count(mOp.getVRegValue())) { + //Only create phi if the operand def is from a stage before this one + if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + //Update the operand in the cloned instruction + instClone->getOperand(i).setValueReg(tmp); + + //save this as our final phi + finalPHIValue[mOp.getVRegValue()] = tmp; + newValLocation[tmp] = machineBB[index]; + } + } + else { + //Use the previous final phi value + instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); + } + } } } if(I->second != schedule.getMaxStage()) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - if(valuesToSave.count(mOp.getVRegValue())) { - - TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - - //Get machine code for this instruction - MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); - tempVec.addTemp((Value*) tmp); - - //Create new machine instr and put in MBB - MachineInstr *saveValue; - if(mOp.getVRegValue()->getType() == Type::FloatTy) - saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - //Save for future cleanup - kernelValue[mOp.getVRegValue()] = tmp; - newValLocation[tmp] = machineBB[index]; - kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; - } + if(valuesToSave.count(mOp.getVRegValue())) { + + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); + + //Get machine code for this instruction + MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); + tempVec.addTemp((Value*) tmp); + + //Create new machine instr and put in MBB + MachineInstr *saveValue; + if(mOp.getVRegValue()->getType() == Type::FloatTy) + saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + + //Save for future cleanup + kernelValue[mOp.getVRegValue()] = tmp; + newValLocation[tmp] = machineBB[index]; + kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; + } } } } @@ -2718,7 +2718,7 @@ void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std:: DEBUG(std::cerr << "Writing phi for" << *(V->first)); DEBUG(std::cerr << "\nMap of Value* for this phi\n"); DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), - IE = V->second.end(); I != IE; ++I) { + IE = V->second.end(); I != IE; ++I) { std::cerr << "Stage: " << I->first; std::cerr << " Value: " << *(I->second) << "\n"; }); @@ -2740,42 +2740,42 @@ void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std:: unsigned count = 1; //Loop over the the map backwards to generate phis for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); - I != IE; ++I) { + I != IE; ++I) { if(count < (V->second).size()) { - if(lastPhi == 0) { - lastPhi = new TmpInstruction(I->second); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) lastPhi); - - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - newValLocation[lastPhi] = machineBB[0]; - } - else { - Instruction *tmp = new TmpInstruction(I->second); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - lastPhi = tmp; - kernelPHIs[V->first][I->first] = lastPhi; - newValLocation[lastPhi] = machineBB[0]; - } + if(lastPhi == 0) { + lastPhi = new TmpInstruction(I->second); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) lastPhi); + + MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + newValLocation[lastPhi] = machineBB[0]; + } + else { + Instruction *tmp = new TmpInstruction(I->second); + + //Get machine code for this instruction + MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); + tempMvec.addTemp((Value*) tmp); + + + MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + lastPhi = tmp; + kernelPHIs[V->first][I->first] = lastPhi; + newValLocation[lastPhi] = machineBB[0]; + } } //Final phi value else { - //The resulting value must be the Value* we created earlier - assert(lastPhi != 0 && "Last phi is NULL!\n"); - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; + //The resulting value must be the Value* we created earlier + assert(lastPhi != 0 && "Last phi is NULL!\n"); + MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); + DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); + kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; } ++count; @@ -2814,58 +2814,58 @@ void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &S Instruction *tmp = 0; for(unsigned i = 0; i < I->getNumOperands(); ++i) { - - //Get Operand - const MachineOperand &mOp = I->getOperand(i); - assert(mOp.getType() == MachineOperand::MO_VirtualRegister - && "Should be a Value*\n"); - - if(!tmp) { - tmp = new TmpInstruction(mOp.getVRegValue()); - addToMCFI.push_back(tmp); - } - - //Now for all our arguments we read, OR to the new - //TmpInstruction that we created - if(mOp.isUse()) { - DEBUG(std::cerr << "Use: " << mOp << "\n"); - //Place a copy at the end of its BB but before the branches - assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); - //Reverse iterate to find the branches, we can safely assume no instructions have been - //put in the nop positions - for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { - MachineOpCode opc = inst->getOpcode(); - if(TMI->isBranch(opc) || TMI->isNop(opc)) - continue; - else { - if(mOp.getVRegValue()->getType() == Type::FloatTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - break; - } - - } - - } - else { - //Remove the phi and replace it with an OR - DEBUG(std::cerr << "Def: " << mOp << "\n"); - //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); - if(tmp->getType() == Type::FloatTy) - BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else if(tmp->getType() == Type::DoubleTy) - BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else - BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - - worklist.push_back(std::make_pair(kernelBB[0], I)); - } - + + //Get Operand + const MachineOperand &mOp = I->getOperand(i); + assert(mOp.getType() == MachineOperand::MO_VirtualRegister + && "Should be a Value*\n"); + + if(!tmp) { + tmp = new TmpInstruction(mOp.getVRegValue()); + addToMCFI.push_back(tmp); + } + + //Now for all our arguments we read, OR to the new + //TmpInstruction that we created + if(mOp.isUse()) { + DEBUG(std::cerr << "Use: " << mOp << "\n"); + //Place a copy at the end of its BB but before the branches + assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); + //Reverse iterate to find the branches, we can safely assume no instructions have been + //put in the nop positions + for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { + MachineOpCode opc = inst->getOpcode(); + if(TMI->isBranch(opc) || TMI->isNop(opc)) + continue; + else { + if(mOp.getVRegValue()->getType() == Type::FloatTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + break; + } + + } + + } + else { + //Remove the phi and replace it with an OR + DEBUG(std::cerr << "Def: " << mOp << "\n"); + //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); + if(tmp->getType() == Type::FloatTy) + BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else if(tmp->getType() == Type::DoubleTy) + BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else + BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); + + + worklist.push_back(std::make_pair(kernelBB[0], I)); + } + } } @@ -2885,68 +2885,68 @@ void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &S //Remove phis from epilogue for(std::vector<std::vector<MachineBasicBlock*> >::iterator MB = epilogues.begin(), - ME = epilogues.end(); MB != ME; ++MB) { + ME = epilogues.end(); MB != ME; ++MB) { for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) { for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), - E = (*currentMBB)->end(); I != E; ++I) { - - DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); - //Get op code and check if its a phi - if(I->getOpcode() == V9::PHI) { - Instruction *tmp = 0; - - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - //Get Operand - const MachineOperand &mOp = I->getOperand(i); - assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); - - if(!tmp) { - tmp = new TmpInstruction(mOp.getVRegValue()); - addToMCFI.push_back(tmp); - } - - //Now for all our arguments we read, OR to the new TmpInstruction that we created - if(mOp.isUse()) { - DEBUG(std::cerr << "Use: " << mOp << "\n"); - //Place a copy at the end of its BB but before the branches - assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); - //Reverse iterate to find the branches, we can safely assume no instructions have been - //put in the nop positions - for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { - MachineOpCode opc = inst->getOpcode(); - if(TMI->isBranch(opc) || TMI->isNop(opc)) - continue; - else { - if(mOp.getVRegValue()->getType() == Type::FloatTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - break; - } - - } - - } - else { - //Remove the phi and replace it with an OR - DEBUG(std::cerr << "Def: " << mOp << "\n"); - if(tmp->getType() == Type::FloatTy) - BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else if(tmp->getType() == Type::DoubleTy) - BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else - BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - worklist.push_back(std::make_pair(*currentMBB,I)); - } - } - } + E = (*currentMBB)->end(); I != E; ++I) { + + DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); + //Get op code and check if its a phi + if(I->getOpcode() == V9::PHI) { + Instruction *tmp = 0; + + for(unsigned i = 0; i < I->getNumOperands(); ++i) { + //Get Operand + const MachineOperand &mOp = I->getOperand(i); + assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); + + if(!tmp) { + tmp = new TmpInstruction(mOp.getVRegValue()); + addToMCFI.push_back(tmp); + } + + //Now for all our arguments we read, OR to the new TmpInstruction that we created + if(mOp.isUse()) { + DEBUG(std::cerr << "Use: " << mOp << "\n"); + //Place a copy at the end of its BB but before the branches + assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); + //Reverse iterate to find the branches, we can safely assume no instructions have been + //put in the nop positions + for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { + MachineOpCode opc = inst->getOpcode(); + if(TMI->isBranch(opc) || TMI->isNop(opc)) + continue; + else { + if(mOp.getVRegValue()->getType() == Type::FloatTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else if(mOp.getVRegValue()->getType() == Type::DoubleTy) + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); + else + BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); + + + break; + } + + } + + } + else { + //Remove the phi and replace it with an OR + DEBUG(std::cerr << "Def: " << mOp << "\n"); + if(tmp->getType() == Type::FloatTy) + BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else if(tmp->getType() == Type::DoubleTy) + BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); + else + BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); + + worklist.push_back(std::make_pair(*currentMBB,I)); + } + } + } } } } @@ -2964,7 +2964,7 @@ void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &S for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); I->first->erase(I->second); - + } @@ -3001,8 +3001,8 @@ void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasic if(instrsMovedDown.count(mbb)) { for(std::vector<std::pair<MachineInstr*, int> >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) { - if(branchStage[mbb] == I->second) - sideMBB->push_back((I->first)->clone()); + if(branchStage[mbb] == I->second) + sideMBB->push_back((I->first)->clone()); } //Add unconditional branches to original exits @@ -3024,36 +3024,36 @@ void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasic std::vector<BasicBlock*> newLLVMEp; for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB.begin(), - lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) { - BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent()); - MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB); + lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) { + BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent()); + MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB); - //Clone instructions and insert into new MBB - for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), - E = (*currentMBB)->end(); I != E; ++I) { - - MachineInstr *clone = I->clone(); - if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) { - //update branch to side exit - for(unsigned i = 0; i < clone->getNumOperands(); ++i) { - MachineOperand &mOp = clone->getOperand(i); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - mOp.setValueReg(sideBB); - } - } - } - - tmp->push_back(clone); - - } + //Clone instructions and insert into new MBB + for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), + E = (*currentMBB)->end(); I != E; ++I) { + + MachineInstr *clone = I->clone(); + if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) { + //update branch to side exit + for(unsigned i = 0; i < clone->getNumOperands(); ++i) { + MachineOperand &mOp = clone->getOperand(i); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + mOp.setValueReg(sideBB); + } + } + } + + tmp->push_back(clone); + + } - //Add llvm branch - TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB); + //Add llvm branch + TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB); - newEp.push_back(tmp); - (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp); + newEp.push_back(tmp); + (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp); - newLLVMEp.push_back(tmpBB); + newLLVMEp.push_back(tmpBB); } side_llvm_epilogues.push_back(newLLVMEp); @@ -3069,44 +3069,44 @@ void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasic //Get BB side exit we are dealing with MachineBasicBlock *currentMBB = prologues[P][sideExitNum]; if(P >= (unsigned) stage) { - //Iterate backwards of machine instructions to find the branch we need to update - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we branch to side exit - if(mOp.getVRegValue() == sideExits[mbb]) { - mOp.setValueReg(side_llvm_epilogues[P][0]); - } - } - } - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); - } - } - - //Update llvm branch - TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator(); - DEBUG(std::cerr << *branchVal << "\n"); - - for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { - if(branchVal->getSuccessor(i) == sideExits[mbb]) { - DEBUG(std::cerr << "Replacing successor bb\n"); - branchVal->setSuccessor(i, side_llvm_epilogues[P][0]); - } - } + //Iterate backwards of machine instructions to find the branch we need to update + for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { + MachineOpCode OC = mInst->getOpcode(); + + //If its a branch update its branchto + if(TMI->isBranch(OC)) { + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + //Check if we branch to side exit + if(mOp.getVRegValue() == sideExits[mbb]) { + mOp.setValueReg(side_llvm_epilogues[P][0]); + } + } + } + DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); + } + } + + //Update llvm branch + TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator(); + DEBUG(std::cerr << *branchVal << "\n"); + + for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { + if(branchVal->getSuccessor(i) == sideExits[mbb]) { + DEBUG(std::cerr << "Replacing successor bb\n"); + branchVal->setSuccessor(i, side_llvm_epilogues[P][0]); + } + } } else { - //must add BA branch because another prologue or kernel has the actual side exit branch - //Add unconditional branches to original exits - assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to"); - BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock()); - BuildMI(prologues[P][sideExitNum], V9::NOP, 0); + //must add BA branch because another prologue or kernel has the actual side exit branch + //Add unconditional branches to original exits + assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to"); + BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock()); + BuildMI(prologues[P][sideExitNum], V9::NOP, 0); - TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock()); + TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock()); } } @@ -3120,19 +3120,19 @@ void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasic //If its a branch update its branchto if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we branch to side exit - if(mOp.getVRegValue() == sideExits[mbb]) { - if(side_llvm_epilogues.size() > 0) - mOp.setValueReg(side_llvm_epilogues[0][0]); - else - mOp.setValueReg(sideBB); - } - } - } - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); + for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { + MachineOperand &mOp = mInst->getOperand(opNum); + if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { + //Check if we branch to side exit + if(mOp.getVRegValue() == sideExits[mbb]) { + if(side_llvm_epilogues.size() > 0) + mOp.setValueReg(side_llvm_epilogues[0][0]); + else + mOp.setValueReg(sideBB); + } + } + } + DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); } } @@ -3143,11 +3143,11 @@ void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasic for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { if(branchVal->getSuccessor(i) == sideExits[mbb]) { - DEBUG(std::cerr << "Replacing successor bb\n"); - if(side_llvm_epilogues.size() > 0) - branchVal->setSuccessor(i, side_llvm_epilogues[0][0]); - else - branchVal->setSuccessor(i, sideBB); + DEBUG(std::cerr << "Replacing successor bb\n"); + if(side_llvm_epilogues.size() > 0) + branchVal->setSuccessor(i, side_llvm_epilogues[0][0]); + else + branchVal->setSuccessor(i, sideBB); } } } |