aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2003-06-05 20:52:06 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2003-06-05 20:52:06 +0000
commitf47d9c28d9b395a0c0b14ceb07124c39ab13e493 (patch)
tree467ed343d7e15dc34279b8325425aea4a193c690 /lib/Target/SparcV9/SparcV9CodeEmitter.cpp
parente77d65a8ed7b0da7bd1c5c4252706f2c1d879f6b (diff)
downloadexternal_llvm-f47d9c28d9b395a0c0b14ceb07124c39ab13e493.zip
external_llvm-f47d9c28d9b395a0c0b14ceb07124c39ab13e493.tar.gz
external_llvm-f47d9c28d9b395a0c0b14ceb07124c39ab13e493.tar.bz2
Added lazy function resolution to the JIT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6633 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/SparcV9/SparcV9CodeEmitter.cpp')
-rw-r--r--lib/Target/SparcV9/SparcV9CodeEmitter.cpp250
1 files changed, 219 insertions, 31 deletions
diff --git a/lib/Target/SparcV9/SparcV9CodeEmitter.cpp b/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
index 00a7e7c..3ec0656 100644
--- a/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
+++ b/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
@@ -54,10 +54,13 @@ namespace {
return SparcV9.getBinaryCodeForInstr(MI);
}
+ inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
+
private:
uint64_t emitStubForFunction(Function *F);
static void CompilationCallback();
uint64_t resolveFunctionReference(uint64_t RetAddr);
+
};
JITResolver *TheJITResolver;
@@ -92,27 +95,175 @@ uint64_t JITResolver::getLazyResolver(Function *F) {
return Stub;
}
-void JITResolver::CompilationCallback() {
- uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0);
- uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0);
-
- std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
- << " SP=0x" << (uint64_t)(intptr_t)StackPtr << std::dec << "\n";
+uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
+
+ static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
+ i7 = SparcIntRegClass::i7,
+ o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0;
+
+ //
+ // Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2
+ //
+
+ // stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp
+ MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
+ delete STX;
+ Addr += 4;
+
+ // stx %i2, [%sp + 2127] ;; save %i2 to the stack
+ STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
+ delete STX;
+ Addr += 4;
+
+ //
+ // Get address to branch into %i2, using %i1 as a temporary
+ //
+
+ // sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1
+ MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
+ delete SH;
+ Addr += 4;
+
+ // or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1
+ MachineInstr *OR = BuildMI(V9::ORi, 3)
+ .addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
+ delete OR;
+ Addr += 4;
+
+ // sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word
+ MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL);
+ delete SL;
+ Addr += 4;
+
+ // sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg
+ SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
+ delete SH;
+ Addr += 4;
+
+ // or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2
+ OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
+ delete OR;
+ Addr += 4;
+
+ // or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2
+ OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
+ delete OR;
+ Addr += 4;
+
+ // ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72
+ MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
+ delete LDX;
+ Addr += 4;
+
+ // jmpl %i2, %g0, %g0 ;; indirect branch on %i2
+ MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J);
+ delete J;
+ Addr += 4;
+
+ // ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80
+ LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2);
+ *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
+ delete LDX;
+ Addr += 4;
+
+ return Addr;
+}
- int64_t NewVal = (int64_t)TheJITResolver->resolveFunctionReference(RetAddr);
+void JITResolver::CompilationCallback() {
+ uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
+ int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
+ std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n";
// Rewrite the call target... so that we don't fault every time we execute
// the call.
+#if 0
int64_t RealCallTarget = (int64_t)
((NewVal - TheJITResolver->getCurrentPCValue()) >> 4);
- MachineInstr *MI = BuildMI(V9::CALL, 1);
- MI->addSignExtImmOperand(RealCallTarget);
- // FIXME: this could be in the wrong byte order!!
- *((unsigned*)(intptr_t)RetAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
+ if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) {
+ std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n";
+ abort();
+ }
+#endif
+
+ //uint64_t CurrPC = TheJITResolver->getCurrentPCValue();
+ // we will insert 9 instructions before we do the actual jump
+ //int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2;
+
+ static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
+ i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6,
+ o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0;
+
+ // Subtract 4 to overwrite the 'save' that's there now
+ uint64_t InstAddr = CameFrom-4;
+
+ InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
+
+ // CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to
+ // the original caller, not here!!
+
+ // FIXME: add call 0 to make sure?!?
+
+ // =============== THE REAL STUB ENDS HERE =========================
+
+ // What follows below is one-time restore code, because this callback may be
+ // changing registers in unpredictible ways. However, since it is executed
+ // only once per function (after the function is resolved, the callback is no
+ // longer in the path), this has to be done only once.
+ //
+ // Thus, it is after the regular stub code. The call back returns to THIS
+ // point, but every other call to the target function will execute the code
+ // above. Hence, this code is one-time use.
+
+ uint64_t OneTimeRestore = InstAddr;
+
+ // restore %g0, 0, %g0
+ //MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
+ // .addMReg(g0, MOTy::Def);
+ //*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R);
+ //delete R;
+
+ // FIXME: BuildMI() above crashes. Encode the instruction directly.
+ // restore %g0, 0, %g0
+ *((unsigned*)(intptr_t)InstAddr) = 0x81e82000U;
+ InstAddr += 4;
+
+ InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
+
+ // FIXME: if the target function is close enough to fit into the 19bit disp of
+ // BA, we should use this version, as its much cheaper to generate.
+ /*
+ MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget);
+ *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
delete MI;
-
+ InstAddr += 4;
+
+ // Add another NOP
+ MachineInstr *Nop = BuildMI(V9::NOP, 0);
+ *((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop);
+ delete Nop;
+ InstAddr += 4;
+
+ MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2);
+ *((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA);
+ delete BA;
+ */
+
// Change the return address to reexecute the call instruction...
- StackPtr[1] -= 4;
+ // The return address is really %o7, but will disappear after this function
+ // returns, and the register windows are rotated away.
+#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
+ __asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8));
+#endif
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
@@ -122,26 +273,31 @@ void JITResolver::CompilationCallback() {
/// directly.
///
uint64_t JITResolver::emitStubForFunction(Function *F) {
-#if 0
MCE.startFunctionStub(*F, 6);
- MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
- uint64_t Address = addFunctionReference(MCE.getCurrentPCValue(), F);
- MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
+ std::cerr << "Emitting stub at addr: 0x"
+ << std::hex << MCE.getCurrentPCValue() << "\n";
- MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
- return (intptr_t)MCE.finishFunctionStub(*F);
-#endif
- MCE.startFunctionStub(*F, 6);
+ unsigned o6 = SparcIntRegClass::o6;
+ // save %sp, -192, %sp
+ MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
+ SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
+ delete SV;
int64_t CurrPC = MCE.getCurrentPCValue();
int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
+
int64_t CallTarget = (Addr-CurrPC) >> 2;
- MachineInstr *Call = BuildMI(V9::CALL, 1);
- Call->addSignExtImmOperand(CallTarget);
+ if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) {
+ std::cerr << "Call target beyond 30 bit limit of CALL: " <<CallTarget<<"\n";
+ abort();
+ }
+ // call CallTarget ;; invoke the callback
+ MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
delete Call;
+ // nop ;; call delay slot
MachineInstr *Nop = BuildMI(V9::NOP, 0);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
delete Nop;
@@ -170,7 +326,25 @@ void SparcV9CodeEmitter::emitWord(unsigned Val) {
}
}
-unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) {
+bool SparcV9CodeEmitter::isFPInstr(MachineInstr &MI) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (MO.isPhysicalRegister()) {
+ unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
+ regType = TM.getRegInfo().getRegType(fakeReg);
+ // At least map fakeReg into its class
+ fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
+ if (regClass == UltraSparcRegInfo::FPSingleRegType ||
+ regClass == UltraSparcRegInfo::FPDoubleRegType)
+ return true;
+ }
+ }
+ return false;
+}
+
+unsigned
+SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, unsigned regClass,
+ MachineInstr &MI) {
switch (regClass) {
case UltraSparcRegInfo::IntRegType: {
// Sparc manual, p31
@@ -199,11 +373,23 @@ unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) {
return fakeReg;
}
case UltraSparcRegInfo::FloatCCRegType: {
+ /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
return fakeReg;
}
case UltraSparcRegInfo::IntCCRegType: {
- return fakeReg;
+ static const unsigned FPInstrIntCCReg[] = { 6 /* xcc */, 4 /* icc */ };
+ static const unsigned IntInstrIntCCReg[] = { 2 /* xcc */, 0 /* icc */ };
+
+ if (isFPInstr(MI)) {
+ assert(fakeReg < sizeof(FPInstrIntCCReg)/sizeof(FPInstrIntCCReg[0])
+ && "Int CC register out of bounds for FPInstr IntCCReg map");
+ return FPInstrIntCCReg[fakeReg];
+ } else {
+ assert(fakeReg < sizeof(IntInstrIntCCReg)/sizeof(IntInstrIntCCReg[0])
+ && "Int CC register out of bounds for IntInstr IntCCReg map");
+ return IntInstrIntCCReg[fakeReg];
+ }
}
default:
assert(0 && "Invalid unified register number in getRegType");
@@ -278,7 +464,9 @@ int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
abort();
}
- } else if (MO.isPhysicalRegister()) {
+ } else if (MO.isPhysicalRegister() ||
+ MO.getType() == MachineOperand::MO_CCRegister)
+ {
// This is necessary because the Sparc doesn't actually lay out registers
// in the real fashion -- it skips those that it chooses not to allocate,
// i.e. those that are the SP, etc.
@@ -287,7 +475,7 @@ int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
// At least map fakeReg into its class
fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
// Find the real register number for use in an instruction
- realReg = getRealRegNum(fakeReg, regClass);
+ realReg = getRealRegNum(fakeReg, regClass, MI);
std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n";
rv = realReg;
} else if (MO.isImmediate()) {
@@ -327,13 +515,13 @@ int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
// are used in SPARC assembly. (Some of these make no sense in combination
// with some of the above; we'll trust that the instruction selector
// will not produce nonsense, and not check for valid combinations here.)
- if (MO.opLoBits32()) { // %lo(val)
+ if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc
return rv & 0x03ff;
- } else if (MO.opHiBits32()) { // %lm(val)
+ } else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc
return (rv >> 10) & 0x03fffff;
- } else if (MO.opLoBits64()) { // %hm(val)
+ } else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc
return (rv >> 32) & 0x03ff;
- } else if (MO.opHiBits64()) { // %hh(val)
+ } else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc
return rv >> 42;
} else { // (unadorned) val
return rv;