aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/MCTargetDesc
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-04-23 16:57:46 -0700
committerStephen Hines <srhines@google.com>2014-04-24 15:53:16 -0700
commit36b56886974eae4f9c5ebc96befd3e7bfe5de338 (patch)
treee6cfb69fbbd937f450eeb83bfb83b9da3b01275a /lib/Target/X86/MCTargetDesc
parent69a8640022b04415ae9fac62f8ab090601d8f889 (diff)
downloadexternal_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.zip
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.gz
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.bz2
Update to LLVM 3.5a.
Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
Diffstat (limited to 'lib/Target/X86/MCTargetDesc')
-rw-r--r--lib/Target/X86/MCTargetDesc/Android.mk2
-rw-r--r--lib/Target/X86/MCTargetDesc/CMakeLists.txt5
-rw-r--r--lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp85
-rw-r--r--lib/Target/X86/MCTargetDesc/X86BaseInfo.h278
-rw-r--r--lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp35
-rw-r--r--lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp4
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp31
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h18
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp662
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp27
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp12
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp9
-rw-r--r--lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp8
13 files changed, 685 insertions, 491 deletions
diff --git a/lib/Target/X86/MCTargetDesc/Android.mk b/lib/Target/X86/MCTargetDesc/Android.mk
index 65cd8df..ee37c27 100644
--- a/lib/Target/X86/MCTargetDesc/Android.mk
+++ b/lib/Target/X86/MCTargetDesc/Android.mk
@@ -36,6 +36,7 @@ include $(BUILD_HOST_STATIC_LIBRARY)
# For the device only
# =====================================================
+ifneq (true,$(DISABLE_LLVM_DEVICE_BUILDS))
include $(CLEAR_VARS)
include $(CLEAR_TBLGEN_VARS)
@@ -52,3 +53,4 @@ include $(LLVM_DEVICE_BUILD_MK)
include $(LLVM_TBLGEN_RULES_MK)
include $(LLVM_GEN_INTRINSICS_MK)
include $(BUILD_STATIC_LIBRARY)
+endif
diff --git a/lib/Target/X86/MCTargetDesc/CMakeLists.txt b/lib/Target/X86/MCTargetDesc/CMakeLists.txt
index 2eb5f25..3f5a0e2 100644
--- a/lib/Target/X86/MCTargetDesc/CMakeLists.txt
+++ b/lib/Target/X86/MCTargetDesc/CMakeLists.txt
@@ -9,8 +9,3 @@ add_llvm_library(LLVMX86Desc
X86MachORelocationInfo.cpp
X86ELFRelocationInfo.cpp
)
-
-add_dependencies(LLVMX86Desc X86CommonTableGen)
-
-# Hack: we need to include 'main' target directory to grab private headers
-include_directories(${CMAKE_CURRENT_SOURCE_DIR}/.. ${CMAKE_CURRENT_BINARY_DIR}/..)
diff --git a/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp b/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
index f8e359b..23763f7 100644
--- a/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp
@@ -79,11 +79,11 @@ public:
CPU != "c3" && CPU != "c3-2";
}
- unsigned getNumFixupKinds() const {
+ unsigned getNumFixupKinds() const override {
return X86::NumTargetFixupKinds;
}
- const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
+ const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
{ "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
@@ -100,7 +100,7 @@ public:
}
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
- uint64_t Value) const {
+ uint64_t Value, bool IsPCRel) const override {
unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
assert(Fixup.getOffset() + Size <= DataSize &&
@@ -117,16 +117,15 @@ public:
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
- bool mayNeedRelaxation(const MCInst &Inst) const;
+ bool mayNeedRelaxation(const MCInst &Inst) const override;
- bool fixupNeedsRelaxation(const MCFixup &Fixup,
- uint64_t Value,
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
- const MCAsmLayout &Layout) const;
+ const MCAsmLayout &Layout) const override;
- void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
+ void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
- bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
+ bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
};
} // end anonymous namespace
@@ -217,9 +216,9 @@ static unsigned getRelaxedOpcodeArith(unsigned Op) {
case X86::CMP64mi8: return X86::CMP64mi32;
// PUSH
- case X86::PUSHi8: return X86::PUSHi32;
- case X86::PUSHi16: return X86::PUSHi32;
- case X86::PUSH64i8: return X86::PUSH64i32;
+ case X86::PUSH32i8: return X86::PUSHi32;
+ case X86::PUSH16i8: return X86::PUSHi16;
+ case X86::PUSH64i8: return X86::PUSH64i32;
case X86::PUSH64i16: return X86::PUSH64i32;
}
}
@@ -314,7 +313,7 @@ bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
- // This CPU doesnt support long nops. If needed add more.
+ // This CPU doesn't support long nops. If needed add more.
// FIXME: Can we get this from the subtarget somehow?
// FIXME: We could generated something better than plain 0x90.
if (!HasNopl) {
@@ -347,14 +346,7 @@ class ELFX86AsmBackend : public X86AsmBackend {
public:
uint8_t OSABI;
ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
- : X86AsmBackend(T, CPU), OSABI(_OSABI) {
- HasReliableSymbolDifference = true;
- }
-
- virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
- const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
- return ES.getFlags() & ELF::SHF_MERGE;
- }
+ : X86AsmBackend(T, CPU), OSABI(_OSABI) {}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
@@ -362,7 +354,7 @@ public:
ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
}
};
@@ -372,7 +364,7 @@ public:
ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
}
};
@@ -386,7 +378,7 @@ public:
, Is64Bit(is64Bit) {
}
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createX86WinCOFFObjectWriter(OS, Is64Bit);
}
};
@@ -725,15 +717,15 @@ public:
StringRef CPU, bool SupportsCU)
: DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {}
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
MachO::CPU_TYPE_I386,
MachO::CPU_SUBTYPE_I386_ALL);
}
/// \brief Generate the compact unwind encoding for the CFI instructions.
- virtual uint32_t
- generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
+ uint32_t generateCompactUnwindEncoding(
+ ArrayRef<MCCFIInstruction> Instrs) const override {
return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
}
};
@@ -747,15 +739,14 @@ public:
MachO::CPUSubTypeX86 st)
: DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU),
Subtype(st) {
- HasReliableSymbolDifference = true;
}
- MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
+ MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
MachO::CPU_TYPE_X86_64, Subtype);
}
- virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
+ bool doesSectionRequireSymbols(const MCSection &Section) const override {
// Temporary labels in the string literals sections require symbols. The
// issue is that the x86_64 relocation format does not allow symbol +
// offset, and so the linker does not have enough information to resolve the
@@ -765,32 +756,32 @@ public:
//
// See <rdar://problem/4765733>.
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
- return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
+ return SMO.getType() == MachO::S_CSTRING_LITERALS;
}
- virtual bool isSectionAtomizable(const MCSection &Section) const {
+ bool isSectionAtomizable(const MCSection &Section) const override {
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
// Fixed sized data sections are uniqued, they cannot be diced into atoms.
switch (SMO.getType()) {
default:
return true;
- case MCSectionMachO::S_4BYTE_LITERALS:
- case MCSectionMachO::S_8BYTE_LITERALS:
- case MCSectionMachO::S_16BYTE_LITERALS:
- case MCSectionMachO::S_LITERAL_POINTERS:
- case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
- case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
- case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
- case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
- case MCSectionMachO::S_INTERPOSING:
+ case MachO::S_4BYTE_LITERALS:
+ case MachO::S_8BYTE_LITERALS:
+ case MachO::S_16BYTE_LITERALS:
+ case MachO::S_LITERAL_POINTERS:
+ case MachO::S_NON_LAZY_SYMBOL_POINTERS:
+ case MachO::S_LAZY_SYMBOL_POINTERS:
+ case MachO::S_MOD_INIT_FUNC_POINTERS:
+ case MachO::S_MOD_TERM_FUNC_POINTERS:
+ case MachO::S_INTERPOSING:
return false;
}
}
/// \brief Generate the compact unwind encoding for the CFI instructions.
- virtual uint32_t
- generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
+ uint32_t generateCompactUnwindEncoding(
+ ArrayRef<MCCFIInstruction> Instrs) const override {
return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
}
};
@@ -803,12 +794,12 @@ MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
StringRef CPU) {
Triple TheTriple(TT);
- if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
+ if (TheTriple.isOSBinFormatMachO())
return new DarwinX86_32AsmBackend(T, MRI, CPU,
TheTriple.isMacOSX() &&
!TheTriple.isMacOSXVersionLT(10, 7));
- if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
+ if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
return new WindowsX86AsmBackend(T, false, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
@@ -821,7 +812,7 @@ MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
StringRef CPU) {
Triple TheTriple(TT);
- if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
+ if (TheTriple.isOSBinFormatMachO()) {
MachO::CPUSubTypeX86 CS =
StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
.Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
@@ -831,7 +822,7 @@ MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
!TheTriple.isMacOSXVersionLT(10, 7), CS);
}
- if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
+ if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
return new WindowsX86AsmBackend(T, true, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
diff --git a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index 1ef9814..38fab15 100644
--- a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -18,9 +18,9 @@
#define X86BASEINFO_H
#include "X86MCTargetDesc.h"
+#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/MC/MCInstrInfo.h"
namespace llvm {
@@ -255,6 +255,38 @@ namespace X86II {
///
MRMSrcMem = 6,
+ /// RawFrmMemOffs - This form is for instructions that store an absolute
+ /// memory offset as an immediate with a possible segment override.
+ RawFrmMemOffs = 7,
+
+ /// RawFrmSrc - This form is for instructions that use the source index
+ /// register SI/ESI/RSI with a possible segment override.
+ RawFrmSrc = 8,
+
+ /// RawFrmDst - This form is for instructions that use the destination index
+ /// register DI/EDI/ESI.
+ RawFrmDst = 9,
+
+ /// RawFrmSrc - This form is for instructions that use the the source index
+ /// register SI/ESI/ERI with a possible segment override, and also the
+ /// destination index register DI/ESI/RDI.
+ RawFrmDstSrc = 10,
+
+ /// RawFrmImm8 - This is used for the ENTER instruction, which has two
+ /// immediates, the first of which is a 16-bit immediate (specified by
+ /// the imm encoding) and the second is a 8-bit fixed value.
+ RawFrmImm8 = 11,
+
+ /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
+ /// immediates, the first of which is a 16 or 32-bit immediate (specified by
+ /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
+ /// manual, this operand is described as pntr16:32 and pntr16:16
+ RawFrmImm16 = 12,
+
+ /// MRMX[rm] - The forms are used to represent instructions that use a
+ /// Mod/RM byte, and don't use the middle field for anything.
+ MRMXr = 14, MRMXm = 15,
+
/// MRM[0-7][rm] - These forms are used to represent instructions that use
/// a Mod/RM byte, and use the middle field to hold extended opcode
/// information. In the intel manual these are represented as /0, /1, ...
@@ -268,94 +300,83 @@ namespace X86II {
MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
- // MRMInitReg - This form is used for instructions whose source and
- // destinations are the same register.
- MRMInitReg = 32,
-
//// MRM_XX - A mod/rm byte of exactly 0xXX.
- MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
- MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39, MRM_CB = 40,
- MRM_E8 = 41, MRM_F0 = 42, MRM_F8 = 45, MRM_F9 = 46,
- MRM_D0 = 47, MRM_D1 = 48, MRM_D4 = 49, MRM_D5 = 50,
- MRM_D6 = 51, MRM_D8 = 52, MRM_D9 = 53, MRM_DA = 54,
- MRM_DB = 55, MRM_DC = 56, MRM_DD = 57, MRM_DE = 58,
- MRM_DF = 59,
-
- /// RawFrmImm8 - This is used for the ENTER instruction, which has two
- /// immediates, the first of which is a 16-bit immediate (specified by
- /// the imm encoding) and the second is a 8-bit fixed value.
- RawFrmImm8 = 43,
-
- /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
- /// immediates, the first of which is a 16 or 32-bit immediate (specified by
- /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
- /// manual, this operand is described as pntr16:32 and pntr16:16
- RawFrmImm16 = 44,
-
- FormMask = 63,
+ MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
+ MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39,
+ MRM_CB = 40, MRM_D0 = 41, MRM_D1 = 42, MRM_D4 = 43,
+ MRM_D5 = 44, MRM_D6 = 45, MRM_D8 = 46, MRM_D9 = 47,
+ MRM_DA = 48, MRM_DB = 49, MRM_DC = 50, MRM_DD = 51,
+ MRM_DE = 52, MRM_DF = 53, MRM_E0 = 54, MRM_E1 = 55,
+ MRM_E2 = 56, MRM_E3 = 57, MRM_E4 = 58, MRM_E5 = 59,
+ MRM_E8 = 60, MRM_E9 = 61, MRM_EA = 62, MRM_EB = 63,
+ MRM_EC = 64, MRM_ED = 65, MRM_EE = 66, MRM_F0 = 67,
+ MRM_F1 = 68, MRM_F2 = 69, MRM_F3 = 70, MRM_F4 = 71,
+ MRM_F5 = 72, MRM_F6 = 73, MRM_F7 = 74, MRM_F8 = 75,
+ MRM_F9 = 76, MRM_FA = 77, MRM_FB = 78, MRM_FC = 79,
+ MRM_FD = 80, MRM_FE = 81, MRM_FF = 82,
+
+ FormMask = 127,
//===------------------------------------------------------------------===//
// Actual flags...
- // OpSize - Set if this instruction requires an operand size prefix (0x66),
- // which most often indicates that the instruction operates on 16 bit data
- // instead of 32 bit data.
- OpSize = 1 << 6,
+ // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+ // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+ // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+ // prefix in 16-bit mode.
+ OpSizeShift = 7,
+ OpSizeMask = 0x3 << OpSizeShift,
+
+ OpSize16 = 1,
+ OpSize32 = 2,
// AsSize - Set if this instruction requires an operand size prefix (0x67),
// which most often indicates that the instruction address 16 bit address
// instead of 32 bit address (or 32 bit address in 64 bit mode).
- AdSize = 1 << 7,
+ AdSizeShift = OpSizeShift + 2,
+ AdSize = 1 << AdSizeShift,
//===------------------------------------------------------------------===//
- // Op0Mask - There are several prefix bytes that are used to form two byte
- // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
- // used to obtain the setting of this field. If no bits in this field is
- // set, there is no prefix byte for obtaining a multibyte opcode.
+ // OpPrefix - There are several prefix bytes that are used as opcode
+ // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+ // no prefix.
//
- Op0Shift = 8,
- Op0Mask = 0x1F << Op0Shift,
-
- // TB - TwoByte - Set if this instruction has a two byte opcode, which
- // starts with a 0x0F byte before the real opcode.
- TB = 1 << Op0Shift,
-
- // REP - The 0xF3 prefix byte indicating repetition of the following
- // instruction.
- REP = 2 << Op0Shift,
+ OpPrefixShift = AdSizeShift + 1,
+ OpPrefixMask = 0x7 << OpPrefixShift,
- // D8-DF - These escape opcodes are used by the floating point unit. These
- // values must remain sequential.
- D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
- DA = 5 << Op0Shift, DB = 6 << Op0Shift,
- DC = 7 << Op0Shift, DD = 8 << Op0Shift,
- DE = 9 << Op0Shift, DF = 10 << Op0Shift,
+ // PS, PD - Prefix code for packed single and double precision vector
+ // floating point operations performed in the SSE registers.
+ PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
// XS, XD - These prefix codes are for single and double precision scalar
// floating point operations performed in the SSE registers.
- XD = 11 << Op0Shift, XS = 12 << Op0Shift,
+ XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
- // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
- T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
- A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
+ //===------------------------------------------------------------------===//
+ // OpMap - This field determines which opcode map this instruction
+ // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
+ //
+ OpMapShift = OpPrefixShift + 3,
+ OpMapMask = 0x7 << OpMapShift,
- // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
- T8XD = 17 << Op0Shift,
+ // OB - OneByte - Set if this instruction has a one byte opcode.
+ OB = 0 << OpMapShift,
- // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
- T8XS = 18 << Op0Shift,
+ // TB - TwoByte - Set if this instruction has a two byte opcode, which
+ // starts with a 0x0F byte before the real opcode.
+ TB = 1 << OpMapShift,
- // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
- TAXD = 19 << Op0Shift,
+ // T8, TA - Prefix after the 0x0F prefix.
+ T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
// XOP8 - Prefix to include use of imm byte.
- XOP8 = 20 << Op0Shift,
+ XOP8 = 4 << OpMapShift,
// XOP9 - Prefix to exclude use of imm byte.
- XOP9 = 21 << Op0Shift,
+ XOP9 = 5 << OpMapShift,
// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
- XOPA = 22 << Op0Shift,
+ XOPA = 6 << OpMapShift,
//===------------------------------------------------------------------===//
// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
@@ -363,27 +384,28 @@ namespace X86II {
// etc. We only cares about REX.W and REX.R bits and only the former is
// statically determined.
//
- REXShift = Op0Shift + 5,
+ REXShift = OpMapShift + 3,
REX_W = 1 << REXShift,
//===------------------------------------------------------------------===//
// This three-bit field describes the size of an immediate operand. Zero is
// unused so that we can tell if we forgot to set a value.
ImmShift = REXShift + 1,
- ImmMask = 7 << ImmShift,
+ ImmMask = 15 << ImmShift,
Imm8 = 1 << ImmShift,
Imm8PCRel = 2 << ImmShift,
Imm16 = 3 << ImmShift,
Imm16PCRel = 4 << ImmShift,
Imm32 = 5 << ImmShift,
Imm32PCRel = 6 << ImmShift,
- Imm64 = 7 << ImmShift,
+ Imm32S = 7 << ImmShift,
+ Imm64 = 8 << ImmShift,
//===------------------------------------------------------------------===//
// FP Instruction Classification... Zero is non-fp instruction.
// FPTypeMask - Mask for all of the FP types...
- FPTypeShift = ImmShift + 3,
+ FPTypeShift = ImmShift + 4,
FPTypeMask = 7 << FPTypeShift,
// NotFP - The default, set for instructions that do not use FP registers.
@@ -419,51 +441,64 @@ namespace X86II {
LOCKShift = FPTypeShift + 3,
LOCK = 1 << LOCKShift,
- // Segment override prefixes. Currently we just need ability to address
- // stuff in gs and fs segments.
- SegOvrShift = LOCKShift + 1,
- SegOvrMask = 3 << SegOvrShift,
- FS = 1 << SegOvrShift,
- GS = 2 << SegOvrShift,
+ // REP prefix
+ REPShift = LOCKShift + 1,
+ REP = 1 << REPShift,
+
+ // Execution domain for SSE instructions.
+ // 0 means normal, non-SSE instruction.
+ SSEDomainShift = REPShift + 1,
+
+ // Encoding
+ EncodingShift = SSEDomainShift + 2,
+ EncodingMask = 0x3 << EncodingShift,
+
+ // VEX - encoding using 0xC4/0xC5
+ VEX = 1,
+
+ /// XOP - Opcode prefix used by XOP instructions.
+ XOP = 2,
- // Execution domain for SSE instructions in bits 23, 24.
- // 0 in bits 23-24 means normal, non-SSE instruction.
- SSEDomainShift = SegOvrShift + 2,
+ // VEX_EVEX - Specifies that this instruction use EVEX form which provides
+ // syntax support up to 32 512-bit register operands and up to 7 16-bit
+ // mask operands as well as source operand data swizzling/memory operand
+ // conversion, eviction hint, and rounding mode.
+ EVEX = 3,
- OpcodeShift = SSEDomainShift + 2,
+ // Opcode
+ OpcodeShift = EncodingShift + 2,
//===------------------------------------------------------------------===//
/// VEX - The opcode prefix used by AVX instructions
VEXShift = OpcodeShift + 8,
- VEX = 1U << 0,
/// VEX_W - Has a opcode specific functionality, but is used in the same
/// way as REX_W is for regular SSE instructions.
- VEX_W = 1U << 1,
+ VEX_W = 1U << 0,
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
/// and the additional register is encoded in VEX_VVVV prefix.
- VEX_4V = 1U << 2,
+ VEX_4V = 1U << 1,
/// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
/// operand 3 with VEX.vvvv.
- VEX_4VOp3 = 1U << 3,
+ VEX_4VOp3 = 1U << 2,
/// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
/// must be encoded in the i8 immediate field. This usually happens in
/// instructions with 4 operands.
- VEX_I8IMM = 1U << 4,
+ VEX_I8IMM = 1U << 3,
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
/// instruction uses 256-bit wide registers. This is usually auto detected
/// if a VR256 register is used, but some AVX instructions also have this
/// field marked when using a f256 memory references.
- VEX_L = 1U << 5,
+ VEX_L = 1U << 4,
// VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
// prefix. Usually used for scalar instructions. Needed by disassembler.
- VEX_LIG = 1U << 6,
+ VEX_LIG = 1U << 5,
// TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
// with following encoding:
@@ -473,26 +508,20 @@ namespace X86II {
// - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
// this will save 1 tsflag bit
- // VEX_EVEX - Specifies that this instruction use EVEX form which provides
- // syntax support up to 32 512-bit register operands and up to 7 16-bit
- // mask operands as well as source operand data swizzling/memory operand
- // conversion, eviction hint, and rounding mode.
- EVEX = 1U << 7,
-
// EVEX_K - Set if this instruction requires masking
- EVEX_K = 1U << 8,
+ EVEX_K = 1U << 6,
// EVEX_Z - Set if this instruction has EVEX.Z field set.
- EVEX_Z = 1U << 9,
+ EVEX_Z = 1U << 7,
// EVEX_L2 - Set if this instruction has EVEX.L' field set.
- EVEX_L2 = 1U << 10,
+ EVEX_L2 = 1U << 8,
// EVEX_B - Set if this instruction has EVEX.B field set.
- EVEX_B = 1U << 11,
+ EVEX_B = 1U << 9,
// EVEX_CD8E - compressed disp8 form, element-size
- EVEX_CD8EShift = VEXShift + 12,
+ EVEX_CD8EShift = VEXShift + 10,
EVEX_CD8EMask = 3,
// EVEX_CD8V - compressed disp8 form, vector-width
@@ -505,15 +534,14 @@ namespace X86II {
/// storing a classifier in the imm8 field. To simplify our implementation,
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
- Has3DNow0F0FOpcode = 1U << 17,
+ Has3DNow0F0FOpcode = 1U << 15,
/// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
/// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
- MemOp4 = 1U << 18,
-
- /// XOP - Opcode prefix used by XOP instructions.
- XOP = 1U << 19
+ MemOp4 = 1U << 16,
+ /// Explicitly specified rounding control
+ EVEX_RC = 1U << 17
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
@@ -537,6 +565,7 @@ namespace X86II {
case X86II::Imm16:
case X86II::Imm16PCRel: return 2;
case X86II::Imm32:
+ case X86II::Imm32S:
case X86II::Imm32PCRel: return 4;
case X86II::Imm64: return 8;
}
@@ -554,6 +583,25 @@ namespace X86II {
case X86II::Imm8:
case X86II::Imm16:
case X86II::Imm32:
+ case X86II::Imm32S:
+ case X86II::Imm64:
+ return false;
+ }
+ }
+
+ /// isImmSigned - Return true if the immediate of the specified instruction's
+ /// TSFlags indicates that it is signed.
+ inline unsigned isImmSigned(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: llvm_unreachable("Unknown immediate signedness");
+ case X86II::Imm32S:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm8PCRel:
+ case X86II::Imm16:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32:
+ case X86II::Imm32PCRel:
case X86II::Imm64:
return false;
}
@@ -596,9 +644,6 @@ namespace X86II {
///
inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg:
- // FIXME: Remove this form.
- return -1;
default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
case X86II::Pseudo:
case X86II::RawFrm:
@@ -607,14 +652,17 @@ namespace X86II {
case X86II::MRMSrcReg:
case X86II::RawFrmImm8:
case X86II::RawFrmImm16:
+ case X86II::RawFrmMemOffs:
+ case X86II::RawFrmSrc:
+ case X86II::RawFrmDst:
+ case X86II::RawFrmDstSrc:
return -1;
case X86II::MRMDestMem:
return 0;
case X86II::MRMSrcMem: {
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
- bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
- bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+ bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
unsigned FirstMemOp = 1;
if (HasVEX_4V)
++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
@@ -627,11 +675,13 @@ namespace X86II {
// Opcode == X86::LEA16r || Opcode == X86::LEA32r)
return FirstMemOp;
}
+ case X86II::MRMXr:
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r:
return -1;
+ case X86II::MRMXm:
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
@@ -642,15 +692,23 @@ namespace X86II {
++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
return FirstMemOp;
}
- case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
- case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
- case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_E8:
- case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9:
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
- case X86II::MRM_DF:
+ case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
+ case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
+ case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
+ case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
+ case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
+ case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
+ case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
+ case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
return -1;
}
}
diff --git a/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp b/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
index 3ddd865..c44d88d 100644
--- a/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86ELFObjectWriter.cpp
@@ -24,9 +24,8 @@ namespace {
virtual ~X86ELFObjectWriter();
protected:
- virtual unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
- bool IsPCRel, bool IsRelocWithSymbol,
- int64_t Addend) const;
+ unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsPCRel) const override;
};
}
@@ -41,13 +40,10 @@ X86ELFObjectWriter::~X86ELFObjectWriter()
unsigned X86ELFObjectWriter::GetRelocType(const MCValue &Target,
const MCFixup &Fixup,
- bool IsPCRel,
- bool IsRelocWithSymbol,
- int64_t Addend) const {
+ bool IsPCRel) const {
// determine the type of the relocation
- MCSymbolRefExpr::VariantKind Modifier = Target.isAbsolute() ?
- MCSymbolRefExpr::VK_None : Target.getSymA()->getKind();
+ MCSymbolRefExpr::VariantKind Modifier = Fixup.getAccessVariant();
unsigned Type;
if (getEMachine() == ELF::EM_X86_64) {
if (IsPCRel) {
@@ -57,6 +53,7 @@ unsigned X86ELFObjectWriter::GetRelocType(const MCValue &Target,
case FK_Data_8: Type = ELF::R_X86_64_PC64; break;
case FK_Data_4: Type = ELF::R_X86_64_PC32; break;
case FK_Data_2: Type = ELF::R_X86_64_PC16; break;
+ case FK_Data_1: Type = ELF::R_X86_64_PC8; break;
case FK_PCRel_8:
assert(Modifier == MCSymbolRefExpr::VK_None);
@@ -160,6 +157,28 @@ unsigned X86ELFObjectWriter::GetRelocType(const MCValue &Target,
Type = ELF::R_386_GOTPC;
break;
+ case FK_PCRel_1:
+ case FK_Data_1:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_386_PC8;
+ break;
+ }
+ break;
+
+ case FK_PCRel_2:
+ case FK_Data_2:
+ switch (Modifier) {
+ default:
+ llvm_unreachable("Unimplemented");
+ case MCSymbolRefExpr::VK_None:
+ Type = ELF::R_386_PC16;
+ break;
+ }
+ break;
+
case X86::reloc_signed_4byte:
case FK_PCRel_4:
case FK_Data_4:
diff --git a/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp b/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp
index a3eb4fb..4fa519c 100644
--- a/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86ELFRelocationInfo.cpp
@@ -11,8 +11,8 @@
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
-#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCRelocationInfo.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ELF.h"
@@ -25,7 +25,7 @@ class X86_64ELFRelocationInfo : public MCRelocationInfo {
public:
X86_64ELFRelocationInfo(MCContext &Ctx) : MCRelocationInfo(Ctx) {}
- const MCExpr *createExprForRelocation(RelocationRef Rel) {
+ const MCExpr *createExprForRelocation(RelocationRef Rel) override {
uint64_t RelType; Rel.getType(RelType);
symbol_iterator SymI = Rel.getSymbol();
diff --git a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
index 3861e1c..6561804 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
@@ -65,6 +65,19 @@ X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const Triple &T) {
// Exceptions handling
ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ // old assembler lacks some directives
+ // FIXME: this should really be a check on the assembler characteristics
+ // rather than OS version
+ if (T.isMacOSX() && T.isMacOSXVersionLT(10, 6))
+ HasWeakDefCanBeHiddenDirective = false;
+
+ // FIXME: this should not depend on the target OS version, but on the ld64
+ // version in use. From at least >= ld64-97.17 (Xcode 3.2.6) the abs-ified
+ // FDE relocs may be used.
+ DwarfFDESymbolsUseAbsDiff = T.isMacOSX() && !T.isMacOSXVersionLT(10, 6);
+
+ UseIntegratedAssembler = true;
}
X86_64MCAsmInfoDarwin::X86_64MCAsmInfoDarwin(const Triple &Triple)
@@ -89,8 +102,6 @@ X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) {
TextAlignFillValue = 0x90;
- PrivateGlobalPrefix = ".L";
-
// Set up DWARF directives
HasLEB128 = true; // Target asm supports leb128 directives (little-endian)
@@ -105,6 +116,10 @@ X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) {
if ((T.getOS() == Triple::OpenBSD || T.getOS() == Triple::Bitrig) &&
T.getArch() == Triple::x86)
Data64bitsDirective = 0;
+
+ // Always enable the integrated assembler by default.
+ // Clang also enabled it when the OS is Solaris but that is redundant here.
+ UseIntegratedAssembler = true;
}
const MCExpr *
@@ -127,25 +142,23 @@ getNonexecutableStackSection(MCContext &Ctx) const {
void X86MCAsmInfoMicrosoft::anchor() { }
X86MCAsmInfoMicrosoft::X86MCAsmInfoMicrosoft(const Triple &Triple) {
- if (Triple.getArch() == Triple::x86_64) {
- GlobalPrefix = "";
+ if (Triple.getArch() == Triple::x86_64)
PrivateGlobalPrefix = ".L";
- }
AssemblerDialect = AsmWriterFlavor;
TextAlignFillValue = 0x90;
AllowAtInName = true;
+
+ UseIntegratedAssembler = true;
}
void X86MCAsmInfoGNUCOFF::anchor() { }
X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const Triple &Triple) {
- if (Triple.getArch() == Triple::x86_64) {
- GlobalPrefix = "";
+ if (Triple.getArch() == Triple::x86_64)
PrivateGlobalPrefix = ".L";
- }
AssemblerDialect = AsmWriterFlavor;
@@ -153,4 +166,6 @@ X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const Triple &Triple) {
// Exceptions handling
ExceptionsType = ExceptionHandling::DwarfCFI;
+
+ UseIntegratedAssembler = true;
}
diff --git a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
index 80979dd..a7509b0 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
+++ b/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.h
@@ -23,34 +23,34 @@ namespace llvm {
class Triple;
class X86MCAsmInfoDarwin : public MCAsmInfoDarwin {
- virtual void anchor();
+ void anchor() override;
public:
explicit X86MCAsmInfoDarwin(const Triple &Triple);
};
struct X86_64MCAsmInfoDarwin : public X86MCAsmInfoDarwin {
explicit X86_64MCAsmInfoDarwin(const Triple &Triple);
- virtual const MCExpr *
- getExprForPersonalitySymbol(const MCSymbol *Sym,
- unsigned Encoding,
- MCStreamer &Streamer) const;
+ const MCExpr *
+ getExprForPersonalitySymbol(const MCSymbol *Sym, unsigned Encoding,
+ MCStreamer &Streamer) const override;
};
class X86ELFMCAsmInfo : public MCAsmInfoELF {
- virtual void anchor();
+ void anchor() override;
public:
explicit X86ELFMCAsmInfo(const Triple &Triple);
- virtual const MCSection *getNonexecutableStackSection(MCContext &Ctx) const;
+ const MCSection *
+ getNonexecutableStackSection(MCContext &Ctx) const override;
};
class X86MCAsmInfoMicrosoft : public MCAsmInfoMicrosoft {
- virtual void anchor();
+ void anchor() override;
public:
explicit X86MCAsmInfoMicrosoft(const Triple &Triple);
};
class X86MCAsmInfoGNUCOFF : public MCAsmInfoGNUCOFF {
- virtual void anchor();
+ void anchor() override;
public:
explicit X86MCAsmInfoGNUCOFF(const Triple &Triple);
};
diff --git a/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
index 7952607..e6fb037 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
@@ -32,24 +32,43 @@ class X86MCCodeEmitter : public MCCodeEmitter {
X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
const MCInstrInfo &MCII;
- const MCSubtargetInfo &STI;
MCContext &Ctx;
public:
- X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
- MCContext &ctx)
- : MCII(mcii), STI(sti), Ctx(ctx) {
+ X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
+ : MCII(mcii), Ctx(ctx) {
}
~X86MCCodeEmitter() {}
- bool is64BitMode() const {
- // FIXME: Can tablegen auto-generate this?
+ bool is64BitMode(const MCSubtargetInfo &STI) const {
return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
}
- bool is32BitMode() const {
- // FIXME: Can tablegen auto-generate this?
- return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
+ bool is32BitMode(const MCSubtargetInfo &STI) const {
+ return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
+ }
+
+ bool is16BitMode(const MCSubtargetInfo &STI) const {
+ return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
+ }
+
+ /// Is16BitMemOperand - Return true if the specified instruction has
+ /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
+ bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+ const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
+
+ if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
+ Disp.isImm() && Disp.getImm() < 0x10000)
+ return true;
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
}
unsigned GetX86RegNum(const MCOperand &MO) const {
@@ -126,21 +145,23 @@ public:
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const;
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const;
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
const MCInst &MI, const MCInstrDesc &Desc,
raw_ostream &OS) const;
- void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
- int MemOperand, const MCInst &MI,
- raw_ostream &OS) const;
+ void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
+ const MCInst &MI, raw_ostream &OS) const;
void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
const MCInst &MI, const MCInstrDesc &Desc,
+ const MCSubtargetInfo &STI,
raw_ostream &OS) const;
};
@@ -151,7 +172,7 @@ MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
- return new X86MCCodeEmitter(MCII, STI, Ctx);
+ return new X86MCCodeEmitter(MCII, Ctx);
}
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
@@ -163,7 +184,7 @@ static bool isDisp8(int Value) {
/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
/// compressed dispacement field.
static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
- assert(((TSFlags >> X86II::VEXShift) & X86II::EVEX) &&
+ assert((TSFlags & X86II::EncodingMask) >> X86II::EncodingShift == X86II::EVEX &&
"Compressed 8-bit displacement is only valid for EVEX inst.");
unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
@@ -198,7 +219,7 @@ static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
if (Value & MemObjMask) // Unaligned offset
return false;
- Value /= MemObjSize;
+ Value /= (int)MemObjSize;
bool Ret = (Value == (signed char)Value);
if (Ret)
@@ -212,6 +233,12 @@ static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
unsigned Size = X86II::getSizeOfImm(TSFlags);
bool isPCRel = X86II::isImmPCRel(TSFlags);
+ if (X86II::isImmSigned(TSFlags)) {
+ switch (Size) {
+ default: llvm_unreachable("Unsupported signed fixup size!");
+ case 4: return MCFixupKind(X86::reloc_signed_4byte);
+ }
+ }
return MCFixup::getKindForSize(Size, isPCRel);
}
@@ -245,20 +272,6 @@ static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
}
#endif
-/// Is16BitMemOperand - Return true if the specified instruction has
-/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
-static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
- const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-
/// StartsWithGlobalOffsetTable - Check if this expression starts with
/// _GLOBAL_OFFSET_TABLE_ and if it is of the form
/// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
@@ -366,17 +379,20 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
uint64_t TSFlags, unsigned &CurByte,
raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const{
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const{
const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
unsigned BaseReg = Base.getReg();
- bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+ bool HasEVEX = (Encoding == X86II::EVEX);
// Handle %rip relative addressing.
if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
- assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
+ assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
@@ -402,6 +418,66 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
+ // 16-bit addressing forms of the ModR/M byte have a different encoding for
+ // the R/M field and are far more limited in which registers can be used.
+ if (Is16BitMemOperand(MI, Op, STI)) {
+ if (BaseReg) {
+ // For 32-bit addressing, the row and column values in Table 2-2 are
+ // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
+ // some special cases. And GetX86RegNum reflects that numbering.
+ // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
+ // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
+ // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
+ // while values 0-3 indicate the allowed combinations (base+index) of
+ // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
+ //
+ // R16Table[] is a lookup from the normal RegNo, to the row values from
+ // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
+ static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
+ unsigned RMfield = R16Table[BaseRegNo];
+
+ assert(RMfield && "invalid 16-bit base register");
+
+ if (IndexReg.getReg()) {
+ unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
+
+ assert(IndexReg16 && "invalid 16-bit index register");
+ // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
+ assert(((IndexReg16 ^ RMfield) & 2) &&
+ "invalid 16-bit base/index register combination");
+ assert(Scale.getImm() == 1 &&
+ "invalid scale for 16-bit memory reference");
+
+ // Allow base/index to appear in either order (although GAS doesn't).
+ if (IndexReg16 & 2)
+ RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
+ else
+ RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
+ }
+
+ if (Disp.isImm() && isDisp8(Disp.getImm())) {
+ if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
+ // There is no displacement; just the register.
+ EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
+ return;
+ }
+ // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
+ EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
+ return;
+ }
+ // This is the [REG]+disp16 case.
+ EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
+ } else {
+ // There is no BaseReg; this is the plain [disp16] case.
+ EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
+ }
+
+ // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
+ EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
+ return;
+ }
+
// Determine whether a SIB byte is needed.
// If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
@@ -415,7 +491,7 @@ void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
BaseRegNo != N86::ESP &&
// If there is no base register and we're in 64-bit mode, we need a SIB
// byte to emit an addr that is just 'disp32' (the non-RIP relative form).
- (!is64BitMode() || BaseReg != 0)) {
+ (!is64BitMode(STI) || BaseReg != 0)) {
if (BaseReg == 0) { // [disp32] in X86-32 mode
EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
@@ -530,11 +606,13 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
int MemOperand, const MCInst &MI,
const MCInstrDesc &Desc,
raw_ostream &OS) const {
- bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
- bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
+ bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ bool HasEVEX_RC = (TSFlags >> X86II::VEXShift) & X86II::EVEX_RC;
// VEX_R: opcode externsion equivalent to REX.R in
// 1's complement (inverted) form
@@ -563,9 +641,6 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// opcode extension, or ignored, depending on the opcode byte)
unsigned char VEX_W = 0;
- // XOP: Use XOP prefix byte 0x8f instead of VEX.
- bool XOP = false;
-
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
@@ -576,7 +651,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// 0b01000: XOP map select - 08h instructions with imm byte
// 0b01001: XOP map select - 09h instructions with no imm byte
// 0b01010: XOP map select - 0Ah instructions with imm dword
- unsigned char VEX_5M = 0x1;
+ unsigned char VEX_5M = 0;
// VEX_4V (VEX vvvv field): a register specifier
// (in 1's complement form) or 1111 if unused.
@@ -610,91 +685,53 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// EVEX_b
unsigned char EVEX_b = 0;
+ // EVEX_rc
+ unsigned char EVEX_rc = 0;
+
// EVEX_aaa
unsigned char EVEX_aaa = 0;
- // Encode the operand size opcode prefix as needed.
- if (TSFlags & X86II::OpSize)
- VEX_PP = 0x01;
+ bool EncodeRC = false;
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
VEX_W = 1;
- if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
- XOP = true;
-
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
VEX_L = 1;
- if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
+ if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
EVEX_L2 = 1;
if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
EVEX_z = 1;
- if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
+ if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
EVEX_b = 1;
- switch (TSFlags & X86II::Op0Mask) {
- default: llvm_unreachable("Invalid prefix!");
- case X86II::T8: // 0F 38
- VEX_5M = 0x2;
- break;
- case X86II::TA: // 0F 3A
- VEX_5M = 0x3;
- break;
- case X86II::T8XS: // F3 0F 38
- VEX_PP = 0x2;
- VEX_5M = 0x2;
- break;
- case X86II::T8XD: // F2 0F 38
- VEX_PP = 0x3;
- VEX_5M = 0x2;
- break;
- case X86II::TAXD: // F2 0F 3A
- VEX_PP = 0x3;
- VEX_5M = 0x3;
- break;
- case X86II::XS: // F3 0F
- VEX_PP = 0x2;
- break;
- case X86II::XD: // F2 0F
- VEX_PP = 0x3;
- break;
- case X86II::XOP8:
- VEX_5M = 0x8;
- break;
- case X86II::XOP9:
- VEX_5M = 0x9;
- break;
- case X86II::XOPA:
- VEX_5M = 0xA;
- break;
- case X86II::TB: // VEX_5M/VEX_PP already correct
- break;
+ switch (TSFlags & X86II::OpPrefixMask) {
+ default: break; // VEX_PP already correct
+ case X86II::PD: VEX_PP = 0x1; break; // 66
+ case X86II::XS: VEX_PP = 0x2; break; // F3
+ case X86II::XD: VEX_PP = 0x3; break; // F2
}
+ switch (TSFlags & X86II::OpMapMask) {
+ default: llvm_unreachable("Invalid prefix!");
+ case X86II::TB: VEX_5M = 0x1; break; // 0F
+ case X86II::T8: VEX_5M = 0x2; break; // 0F 38
+ case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
+ case X86II::XOP8: VEX_5M = 0x8; break;
+ case X86II::XOP9: VEX_5M = 0x9; break;
+ case X86II::XOPA: VEX_5M = 0xA; break;
+ }
// Classify VEX_B, VEX_4V, VEX_R, VEX_X
unsigned NumOps = Desc.getNumOperands();
- unsigned CurOp = 0;
- if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
- ++CurOp;
- else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
- Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
- // Special case for AVX-512 GATHER with 2 TIED_TO operands
- // Skip the first 2 operands: dst, mask_wb
- CurOp += 2;
- else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
- Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
- // Special case for GATHER with 2 TIED_TO operands
- // Skip the first 2 operands: dst, mask_wb
- CurOp += 2;
- else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
- // SCATTER
- ++CurOp;
+ unsigned CurOp = X86II::getOperandBias(Desc);
switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
+ default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
+ case X86II::RawFrm:
+ break;
case X86II::MRMDestMem: {
// MRMDestMem instructions forms:
// MemAddr, src1(ModR/M)
@@ -707,7 +744,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
X86::AddrIndexReg).getReg()))
VEX_X = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+ if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
X86::AddrIndexReg).getReg()))
EVEX_V2 = 0x0;
@@ -718,7 +755,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@@ -727,7 +764,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (MO.isReg()) {
if (X86II::isX86_64ExtendedReg(MO.getReg()))
VEX_R = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MO.getReg()))
+ if (X86II::is32ExtendedReg(MO.getReg()))
EVEX_R2 = 0x0;
}
break;
@@ -744,7 +781,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_R2 = 0x0;
CurOp++;
@@ -753,7 +790,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@@ -764,8 +801,8 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (X86II::isX86_64ExtendedReg(
MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
VEX_X = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
- X86::AddrIndexReg).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
EVEX_V2 = 0x0;
if (HasVEX_4VOp3)
@@ -785,7 +822,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// src1(VEX_4V), MemAddr
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@@ -812,7 +849,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_R2 = 0x0;
CurOp++;
@@ -821,7 +858,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@@ -831,11 +868,19 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_X = 0x0;
CurOp++;
if (HasVEX_4VOp3)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+ if (EVEX_b) {
+ if (HasEVEX_RC) {
+ unsigned RcOperand = NumOps-1;
+ assert(RcOperand >= CurOp);
+ EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
+ }
+ EncodeRC = true;
+ }
break;
case X86II::MRMDestReg:
// MRMDestReg instructions forms:
@@ -844,7 +889,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(ModR/M), src1(VEX_4V), src2(ModR/M)
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_X = 0x0;
CurOp++;
@@ -853,15 +898,17 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_R2 = 0x0;
+ if (EVEX_b)
+ EncodeRC = true;
break;
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
@@ -871,26 +918,21 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(VEX_4V), src(ModR/M), imm8
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
- }
+ }
if (HasEVEX_K)
EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0x0;
- if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_X = 0x0;
break;
- default: // RawFrm
- break;
}
- // Emit segment override opcode prefix as needed.
- EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
-
- if (!HasEVEX) {
+ if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
// VEX opcode prefix can have 2 or 3 bytes
//
// 3 bytes:
@@ -902,19 +944,25 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// | C5h | | R | vvvv | L | pp |
// +-----+ +-------------------+
//
+ // XOP uses a similar prefix:
+ // +-----+ +--------------+ +-------------------+
+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
- if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
+ // Can we use the 2 byte VEX prefix?
+ if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
EmitByte(0xC5, CurByte, OS);
EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
return;
}
// 3 byte VEX prefix
- EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
+ EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
} else {
+ assert(Encoding == X86II::EVEX && "unknown encoding!");
// EVEX opcode prefix can have 4 bytes
//
// +-----+ +--------------+ +-------------------+ +------------------------+
@@ -935,12 +983,19 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
(VEX_4V << 3) |
(EVEX_U << 2) |
VEX_PP, CurByte, OS);
- EmitByte((EVEX_z << 7) |
- (EVEX_L2 << 6) |
- (VEX_L << 5) |
- (EVEX_b << 4) |
- (EVEX_V2 << 3) |
- EVEX_aaa, CurByte, OS);
+ if (EncodeRC)
+ EmitByte((EVEX_z << 7) |
+ (EVEX_rc << 5) |
+ (EVEX_b << 4) |
+ (EVEX_V2 << 3) |
+ EVEX_aaa, CurByte, OS);
+ else
+ EmitByte((EVEX_z << 7) |
+ (EVEX_L2 << 6) |
+ (VEX_L << 5) |
+ (EVEX_b << 4) |
+ (EVEX_V2 << 3) |
+ EVEX_aaa, CurByte, OS);
}
}
@@ -974,7 +1029,6 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
}
switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
case X86II::MRMSrcReg:
if (MI.getOperand(0).isReg() &&
X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
@@ -1002,6 +1056,7 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
}
break;
}
+ case X86II::MRMXm:
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
@@ -1039,33 +1094,20 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
}
/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
-void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
- unsigned &CurByte, int MemOperand,
- const MCInst &MI,
- raw_ostream &OS) const {
- switch (TSFlags & X86II::SegOvrMask) {
- default: llvm_unreachable("Invalid segment!");
- case 0:
- // No segment override, check for explicit one on memory operand.
- if (MemOperand != -1) { // If the instruction has a memory operand.
- switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
- default: llvm_unreachable("Unknown segment register!");
- case 0: break;
- case X86::CS: EmitByte(0x2E, CurByte, OS); break;
- case X86::SS: EmitByte(0x36, CurByte, OS); break;
- case X86::DS: EmitByte(0x3E, CurByte, OS); break;
- case X86::ES: EmitByte(0x26, CurByte, OS); break;
- case X86::FS: EmitByte(0x64, CurByte, OS); break;
- case X86::GS: EmitByte(0x65, CurByte, OS); break;
- }
- }
- break;
- case X86II::FS:
- EmitByte(0x64, CurByte, OS);
- break;
- case X86II::GS:
- EmitByte(0x65, CurByte, OS);
- break;
+void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
+ unsigned SegOperand,
+ const MCInst &MI,
+ raw_ostream &OS) const {
+ // Check for explicit segment override on memory operand.
+ switch (MI.getOperand(SegOperand).getReg()) {
+ default: llvm_unreachable("Unknown segment register!");
+ case 0: break;
+ case X86::CS: EmitByte(0x2E, CurByte, OS); break;
+ case X86::SS: EmitByte(0x36, CurByte, OS); break;
+ case X86::DS: EmitByte(0x3E, CurByte, OS); break;
+ case X86::ES: EmitByte(0x26, CurByte, OS); break;
+ case X86::FS: EmitByte(0x64, CurByte, OS); break;
+ case X86::GS: EmitByte(0x65, CurByte, OS); break;
}
}
@@ -1076,118 +1118,56 @@ void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
int MemOperand, const MCInst &MI,
const MCInstrDesc &Desc,
+ const MCSubtargetInfo &STI,
raw_ostream &OS) const {
- // Emit the lock opcode prefix as needed.
- if (TSFlags & X86II::LOCK)
- EmitByte(0xF0, CurByte, OS);
-
- // Emit segment override opcode prefix as needed.
- EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
-
- // Emit the repeat opcode prefix as needed.
- if ((TSFlags & X86II::Op0Mask) == X86II::REP)
- EmitByte(0xF3, CurByte, OS);
-
- // Emit the address size opcode prefix as needed.
- bool need_address_override;
- if (TSFlags & X86II::AdSize) {
- need_address_override = true;
- } else if (MemOperand == -1) {
- need_address_override = false;
- } else if (is64BitMode()) {
- assert(!Is16BitMemOperand(MI, MemOperand));
- need_address_override = Is32BitMemOperand(MI, MemOperand);
- } else if (is32BitMode()) {
- assert(!Is64BitMemOperand(MI, MemOperand));
- need_address_override = Is16BitMemOperand(MI, MemOperand);
- } else {
- need_address_override = false;
- }
-
- if (need_address_override)
- EmitByte(0x67, CurByte, OS);
-
// Emit the operand size opcode prefix as needed.
- if (TSFlags & X86II::OpSize)
+ unsigned char OpSize = (TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift;
+ if (OpSize == (is16BitMode(STI) ? X86II::OpSize32 : X86II::OpSize16))
EmitByte(0x66, CurByte, OS);
- bool Need0FPrefix = false;
- switch (TSFlags & X86II::Op0Mask) {
- default: llvm_unreachable("Invalid prefix!");
- case 0: break; // No prefix!
- case X86II::REP: break; // already handled.
- case X86II::TB: // Two-byte opcode prefix
- case X86II::T8: // 0F 38
- case X86II::TA: // 0F 3A
- case X86II::A6: // 0F A6
- case X86II::A7: // 0F A7
- Need0FPrefix = true;
- break;
- case X86II::T8XS: // F3 0F 38
- EmitByte(0xF3, CurByte, OS);
- Need0FPrefix = true;
- break;
- case X86II::T8XD: // F2 0F 38
- EmitByte(0xF2, CurByte, OS);
- Need0FPrefix = true;
- break;
- case X86II::TAXD: // F2 0F 3A
- EmitByte(0xF2, CurByte, OS);
- Need0FPrefix = true;
+ switch (TSFlags & X86II::OpPrefixMask) {
+ case X86II::PD: // 66
+ EmitByte(0x66, CurByte, OS);
break;
- case X86II::XS: // F3 0F
+ case X86II::XS: // F3
EmitByte(0xF3, CurByte, OS);
- Need0FPrefix = true;
break;
- case X86II::XD: // F2 0F
+ case X86II::XD: // F2
EmitByte(0xF2, CurByte, OS);
- Need0FPrefix = true;
break;
- case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
- case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
- case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
- case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
- case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
- case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
- case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
- case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
}
// Handle REX prefix.
// FIXME: Can this come before F2 etc to simplify emission?
- if (is64BitMode()) {
+ if (is64BitMode(STI)) {
if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
EmitByte(0x40 | REX, CurByte, OS);
}
// 0x0F escape code must be emitted just before the opcode.
- if (Need0FPrefix)
+ switch (TSFlags & X86II::OpMapMask) {
+ case X86II::TB: // Two-byte opcode map
+ case X86II::T8: // 0F 38
+ case X86II::TA: // 0F 3A
EmitByte(0x0F, CurByte, OS);
+ break;
+ }
- // FIXME: Pull this up into previous switch if REX can be moved earlier.
- switch (TSFlags & X86II::Op0Mask) {
- case X86II::T8XS: // F3 0F 38
- case X86II::T8XD: // F2 0F 38
+ switch (TSFlags & X86II::OpMapMask) {
case X86II::T8: // 0F 38
EmitByte(0x38, CurByte, OS);
break;
- case X86II::TAXD: // F2 0F 3A
case X86II::TA: // 0F 3A
EmitByte(0x3A, CurByte, OS);
break;
- case X86II::A6: // 0F A6
- EmitByte(0xA6, CurByte, OS);
- break;
- case X86II::A7: // 0F A7
- EmitByte(0xA7, CurByte, OS);
- break;
}
}
void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
- SmallVectorImpl<MCFixup> &Fixups) const {
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
@@ -1202,8 +1182,9 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// Keep track of the current byte being emitted.
unsigned CurByte = 0;
- // Is this instruction encoded using the AVX VEX prefix?
- bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
+ // Encoding type for this instruction.
+ unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
+ X86II::EncodingShift;
// It uses the VEX.VVVV field?
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
@@ -1212,15 +1193,58 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
const unsigned MemOp4_I8IMMOperand = 2;
// It uses the EVEX.aaa field?
- bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
- bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
-
+ bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
+ bool HasEVEX_RC = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
+
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
if (MemoryOperand != -1) MemoryOperand += CurOp;
- if (!HasVEXPrefix)
- EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+ // Emit the lock opcode prefix as needed.
+ if (TSFlags & X86II::LOCK)
+ EmitByte(0xF0, CurByte, OS);
+
+ // Emit segment override opcode prefix as needed.
+ if (MemoryOperand >= 0)
+ EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
+ MI, OS);
+
+ // Emit the repeat opcode prefix as needed.
+ if (TSFlags & X86II::REP)
+ EmitByte(0xF3, CurByte, OS);
+
+ // Emit the address size opcode prefix as needed.
+ bool need_address_override;
+ // The AdSize prefix is only for 32-bit and 64-bit modes. Hm, perhaps we
+ // should introduce an AdSize16 bit instead of having seven special cases?
+ if ((!is16BitMode(STI) && TSFlags & X86II::AdSize) ||
+ (is16BitMode(STI) && (MI.getOpcode() == X86::JECXZ_32 ||
+ MI.getOpcode() == X86::MOV8o8a ||
+ MI.getOpcode() == X86::MOV16o16a ||
+ MI.getOpcode() == X86::MOV32o32a ||
+ MI.getOpcode() == X86::MOV8ao8 ||
+ MI.getOpcode() == X86::MOV16ao16 ||
+ MI.getOpcode() == X86::MOV32ao32))) {
+ need_address_override = true;
+ } else if (MemoryOperand < 0) {
+ need_address_override = false;
+ } else if (is64BitMode(STI)) {
+ assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
+ need_address_override = Is32BitMemOperand(MI, MemoryOperand);
+ } else if (is32BitMode(STI)) {
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
+ } else {
+ assert(is16BitMode(STI));
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
+ }
+
+ if (need_address_override)
+ EmitByte(0x67, CurByte, OS);
+
+ if (Encoding == 0)
+ EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
else
EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
@@ -1231,15 +1255,62 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
unsigned SrcRegNum = 0;
switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg:
- llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
case X86II::Pseudo:
llvm_unreachable("Pseudo instruction shouldn't be emitted");
+ case X86II::RawFrmDstSrc: {
+ unsigned siReg = MI.getOperand(1).getReg();
+ assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
+ (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
+ (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
+ "SI and DI register sizes do not match");
+ // Emit segment override opcode prefix as needed (not for %ds).
+ if (MI.getOperand(2).getReg() != X86::DS)
+ EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::ESI) ||
+ (is32BitMode(STI) && siReg == X86::SI))
+ EmitByte(0x67, CurByte, OS);
+ CurOp += 3; // Consume operands.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrmSrc: {
+ unsigned siReg = MI.getOperand(0).getReg();
+ // Emit segment override opcode prefix as needed (not for %ds).
+ if (MI.getOperand(1).getReg() != X86::DS)
+ EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::ESI) ||
+ (is32BitMode(STI) && siReg == X86::SI))
+ EmitByte(0x67, CurByte, OS);
+ CurOp += 2; // Consume operands.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrmDst: {
+ unsigned siReg = MI.getOperand(0).getReg();
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::EDI) ||
+ (is32BitMode(STI) && siReg == X86::DI))
+ EmitByte(0x67, CurByte, OS);
+ ++CurOp; // Consume operand.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
case X86II::RawFrm:
EmitByte(BaseOpcode, CurByte, OS);
break;
+ case X86II::RawFrmMemOffs:
+ // Emit segment override opcode prefix as needed.
+ EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ ++CurOp; // skip segment operand
+ break;
case X86II::RawFrmImm8:
EmitByte(BaseOpcode, CurByte, OS);
EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
@@ -1288,7 +1359,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitMemModRMByte(MI, CurOp,
GetX86RegNum(MI.getOperand(SrcRegNum)),
- TSFlags, CurByte, OS, Fixups);
+ TSFlags, CurByte, OS, Fixups, STI);
CurOp = SrcRegNum + 1;
break;
@@ -1312,6 +1383,9 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
if (HasVEX_4VOp3)
++CurOp;
+ // do not count the rounding control operand
+ if (HasEVEX_RC)
+ NumOps--;
break;
case X86II::MRMSrcMem: {
@@ -1333,49 +1407,65 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitByte(BaseOpcode, CurByte, OS);
EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
- TSFlags, CurByte, OS, Fixups);
+ TSFlags, CurByte, OS, Fixups, STI);
CurOp += AddrOperands + 1;
if (HasVEX_4VOp3)
++CurOp;
break;
}
+ case X86II::MRMXr:
case X86II::MRM0r: case X86II::MRM1r:
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
+ case X86II::MRM6r: case X86II::MRM7r: {
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
++CurOp;
EmitByte(BaseOpcode, CurByte, OS);
+ uint64_t Form = TSFlags & X86II::FormMask;
EmitRegModRMByte(MI.getOperand(CurOp++),
- (TSFlags & X86II::FormMask)-X86II::MRM0r,
+ (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
CurByte, OS);
break;
+ }
+
+ case X86II::MRMXm:
case X86II::MRM0m: case X86II::MRM1m:
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
+ case X86II::MRM6m: case X86II::MRM7m: {
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
++CurOp;
EmitByte(BaseOpcode, CurByte, OS);
- EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
- TSFlags, CurByte, OS, Fixups);
+ uint64_t Form = TSFlags & X86II::FormMask;
+ EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
+ TSFlags, CurByte, OS, Fixups, STI);
CurOp += X86::AddrNumOperands;
break;
- case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
- case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
- case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0:
- case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5:
- case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9:
- case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
- case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
- case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8:
- case X86II::MRM_F9:
+ }
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
+ case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
+ case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
+ case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
+ case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
+ case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
+ case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
+ case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
+ case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
+ case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
+ case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
+ case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
+ case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
EmitByte(BaseOpcode, CurByte, OS);
unsigned char MRM;
switch (TSFlags & X86II::FormMask) {
default: llvm_unreachable("Invalid Form");
+ case X86II::MRM_C0: MRM = 0xC0; break;
case X86II::MRM_C1: MRM = 0xC1; break;
case X86II::MRM_C2: MRM = 0xC2; break;
case X86II::MRM_C3: MRM = 0xC3; break;
@@ -1397,10 +1487,35 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
case X86II::MRM_DD: MRM = 0xDD; break;
case X86II::MRM_DE: MRM = 0xDE; break;
case X86II::MRM_DF: MRM = 0xDF; break;
+ case X86II::MRM_E0: MRM = 0xE0; break;
+ case X86II::MRM_E1: MRM = 0xE1; break;
+ case X86II::MRM_E2: MRM = 0xE2; break;
+ case X86II::MRM_E3: MRM = 0xE3; break;
+ case X86II::MRM_E4: MRM = 0xE4; break;
+ case X86II::MRM_E5: MRM = 0xE5; break;
case X86II::MRM_E8: MRM = 0xE8; break;
+ case X86II::MRM_E9: MRM = 0xE9; break;
+ case X86II::MRM_EA: MRM = 0xEA; break;
+ case X86II::MRM_EB: MRM = 0xEB; break;
+ case X86II::MRM_EC: MRM = 0xEC; break;
+ case X86II::MRM_ED: MRM = 0xED; break;
+ case X86II::MRM_EE: MRM = 0xEE; break;
case X86II::MRM_F0: MRM = 0xF0; break;
+ case X86II::MRM_F1: MRM = 0xF1; break;
+ case X86II::MRM_F2: MRM = 0xF2; break;
+ case X86II::MRM_F3: MRM = 0xF3; break;
+ case X86II::MRM_F4: MRM = 0xF4; break;
+ case X86II::MRM_F5: MRM = 0xF5; break;
+ case X86II::MRM_F6: MRM = 0xF6; break;
+ case X86II::MRM_F7: MRM = 0xF7; break;
case X86II::MRM_F8: MRM = 0xF8; break;
case X86II::MRM_F9: MRM = 0xF9; break;
+ case X86II::MRM_FA: MRM = 0xFA; break;
+ case X86II::MRM_FB: MRM = 0xFB; break;
+ case X86II::MRM_FC: MRM = 0xFC; break;
+ case X86II::MRM_FD: MRM = 0xFD; break;
+ case X86II::MRM_FE: MRM = 0xFE; break;
+ case X86II::MRM_FF: MRM = 0xFF; break;
}
EmitByte(MRM, CurByte, OS);
break;
@@ -1432,17 +1547,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
CurByte, OS, Fixups);
} else {
- unsigned FixupKind;
- // FIXME: Is there a better way to know that we need a signed relocation?
- if (MI.getOpcode() == X86::ADD64ri32 ||
- MI.getOpcode() == X86::MOV64ri32 ||
- MI.getOpcode() == X86::MOV64mi32 ||
- MI.getOpcode() == X86::PUSH64i32)
- FixupKind = X86::reloc_signed_4byte;
- else
- FixupKind = getImmFixupKind(TSFlags);
EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
- X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
CurByte, OS, Fixups);
}
}
diff --git a/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp b/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
index 1cbdafd..09fdb9c 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp
@@ -47,9 +47,12 @@ std::string X86_MC::ParseX86Triple(StringRef TT) {
Triple TheTriple(TT);
std::string FS;
if (TheTriple.getArch() == Triple::x86_64)
- FS = "+64bit-mode";
+ FS = "+64bit-mode,-32bit-mode,-16bit-mode";
+ else if (TheTriple.getEnvironment() != Triple::CODE16)
+ FS = "-64bit-mode,+32bit-mode,-16bit-mode";
else
- FS = "-64bit-mode";
+ FS = "-64bit-mode,-32bit-mode,+16bit-mode";
+
return FS;
}
@@ -202,8 +205,7 @@ unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
if (TheTriple.isOSDarwin())
return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
- if (TheTriple.getOS() == Triple::MinGW32 ||
- TheTriple.getOS() == Triple::Cygwin)
+ if (TheTriple.isOSCygMing())
// Unsupported by now, just quick fallback
return DWARFFlavour::X86_32_Generic;
return DWARFFlavour::X86_32_Generic;
@@ -268,17 +270,17 @@ static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) {
bool is64Bit = TheTriple.getArch() == Triple::x86_64;
MCAsmInfo *MAI;
- if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
+ if (TheTriple.isOSBinFormatMachO()) {
if (is64Bit)
MAI = new X86_64MCAsmInfoDarwin(TheTriple);
else
MAI = new X86MCAsmInfoDarwin(TheTriple);
- } else if (TheTriple.getEnvironment() == Triple::ELF) {
+ } else if (TheTriple.isOSBinFormatELF()) {
// Force the use of an ELF container.
MAI = new X86ELFMCAsmInfo(TheTriple);
- } else if (TheTriple.getOS() == Triple::Win32) {
+ } else if (TheTriple.isWindowsMSVCEnvironment()) {
MAI = new X86MCAsmInfoMicrosoft(TheTriple);
- } else if (TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin) {
+ } else if (TheTriple.isOSCygMing()) {
MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
} else {
// The default is ELF.
@@ -358,17 +360,18 @@ static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
raw_ostream &_OS,
MCCodeEmitter *_Emitter,
+ const MCSubtargetInfo &STI,
bool RelaxAll,
bool NoExecStack) {
Triple TheTriple(TT);
- if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
+ if (TheTriple.isOSBinFormatMachO())
return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
- if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
+ if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
- return createELFStreamer(Ctx, 0, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
+ return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
}
static MCInstPrinter *createX86MCInstPrinter(const Target &T,
@@ -387,7 +390,7 @@ static MCInstPrinter *createX86MCInstPrinter(const Target &T,
static MCRelocationInfo *createX86MCRelocationInfo(StringRef TT,
MCContext &Ctx) {
Triple TheTriple(TT);
- if (TheTriple.isEnvironmentMachO() && TheTriple.getArch() == Triple::x86_64)
+ if (TheTriple.isOSBinFormatMachO() && TheTriple.getArch() == Triple::x86_64)
return createX86_64MachORelocationInfo(Ctx);
else if (TheTriple.isOSBinFormatELF())
return createX86_64ELFRelocationInfo(Ctx);
diff --git a/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp b/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp
index 209b1d0..f2023e3 100644
--- a/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MachORelocationInfo.cpp
@@ -11,8 +11,8 @@
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
-#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCRelocationInfo.h"
+#include "llvm/MC/MCSymbol.h"
#include "llvm/Object/MachO.h"
using namespace llvm;
@@ -24,7 +24,7 @@ class X86_64MachORelocationInfo : public MCRelocationInfo {
public:
X86_64MachORelocationInfo(MCContext &Ctx) : MCRelocationInfo(Ctx) {}
- const MCExpr *createExprForRelocation(RelocationRef Rel) {
+ const MCExpr *createExprForRelocation(RelocationRef Rel) override {
const MachOObjectFile *Obj = cast<MachOObjectFile>(Rel.getObjectFile());
uint64_t RelType; Rel.getType(RelType);
@@ -72,9 +72,9 @@ public:
break;
case X86_64_RELOC_SUBTRACTOR:
{
- RelocationRef RelNext;
- Obj->getRelocationNext(Rel.getRawDataRefImpl(), RelNext);
- any_relocation_info RENext = Obj->getRelocation(RelNext.getRawDataRefImpl());
+ Rel.moveNext();
+ any_relocation_info RENext =
+ Obj->getRelocation(Rel.getRawDataRefImpl());
// X86_64_SUBTRACTOR must be followed by a relocation of type
// X86_64_RELOC_UNSIGNED.
@@ -86,7 +86,7 @@ public:
const MCExpr *LHS = MCSymbolRefExpr::Create(Sym, Ctx);
- symbol_iterator RSymI = RelNext.getSymbol();
+ symbol_iterator RSymI = Rel.getSymbol();
uint64_t RSymAddr;
RSymI->getAddress(RSymAddr);
StringRef RSymName;
diff --git a/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp b/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
index eb7c0b1..1a35ced 100644
--- a/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp
@@ -63,7 +63,7 @@ public:
void RecordRelocation(MachObjectWriter *Writer,
const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
- MCValue Target, uint64_t &FixedValue) {
+ MCValue Target, uint64_t &FixedValue) override {
if (Writer->is64Bit())
RecordX86_64Relocation(Writer, Asm, Layout, Fragment, Fixup, Target,
FixedValue);
@@ -230,7 +230,7 @@ void X86MachObjectWriter::RecordX86_64Relocation(MachObjectWriter *Writer,
if (Symbol->isInSection()) {
const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
Fragment->getParent()->getSection());
- if (Section.hasAttribute(MCSectionMachO::S_ATTR_DEBUG))
+ if (Section.hasAttribute(MachO::S_ATTR_DEBUG))
Base = 0;
}
@@ -362,6 +362,7 @@ bool X86MachObjectWriter::RecordScatteredRelocation(MachObjectWriter *Writer,
MCValue Target,
unsigned Log2Size,
uint64_t &FixedValue) {
+ uint64_t OriginalFixedValue = FixedValue;
uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
unsigned IsPCRel = Writer->isFixupKindPCRel(Asm, Fixup.getKind());
unsigned Type = MachO::GENERIC_RELOC_VANILLA;
@@ -431,8 +432,10 @@ bool X86MachObjectWriter::RecordScatteredRelocation(MachObjectWriter *Writer,
// symbol, things can go badly.
//
// Required for 'as' compatibility.
- if (FixupOffset > 0xffffff)
+ if (FixupOffset > 0xffffff) {
+ FixedValue = OriginalFixedValue;
return false;
+ }
}
MachO::any_relocation_info MRE;
diff --git a/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp b/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp
index 6da4142..ffc9e8d 100644
--- a/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp
+++ b/lib/Target/X86/MCTargetDesc/X86WinCOFFObjectWriter.cpp
@@ -29,9 +29,8 @@ namespace {
X86WinCOFFObjectWriter(bool Is64Bit_);
virtual ~X86WinCOFFObjectWriter();
- virtual unsigned getRelocType(const MCValue &Target,
- const MCFixup &Fixup,
- bool IsCrossSection) const LLVM_OVERRIDE;
+ unsigned getRelocType(const MCValue &Target, const MCFixup &Fixup,
+ bool IsCrossSection) const override;
};
}
@@ -65,6 +64,9 @@ unsigned X86WinCOFFObjectWriter::getRelocType(const MCValue &Target,
if (Is64Bit)
return COFF::IMAGE_REL_AMD64_ADDR64;
llvm_unreachable("unsupported relocation type");
+ case FK_SecRel_2:
+ return Is64Bit ? COFF::IMAGE_REL_AMD64_SECTION
+ : COFF::IMAGE_REL_I386_SECTION;
case FK_SecRel_4:
return Is64Bit ? COFF::IMAGE_REL_AMD64_SECREL : COFF::IMAGE_REL_I386_SECREL;
default: