diff options
author | Misha Brukman <brukman+llvm@gmail.com> | 2004-07-26 18:43:11 +0000 |
---|---|---|
committer | Misha Brukman <brukman+llvm@gmail.com> | 2004-07-26 18:43:11 +0000 |
commit | c6d398abbb462dc3453e2027886ec01c96d3e651 (patch) | |
tree | 1a3a5c9b78941a8083eb8b7af83e302086f81a07 /lib/Target/X86 | |
parent | b097f216b0fe35303f519fda6cf0dceda0587d44 (diff) | |
download | external_llvm-c6d398abbb462dc3453e2027886ec01c96d3e651.zip external_llvm-c6d398abbb462dc3453e2027886ec01c96d3e651.tar.gz external_llvm-c6d398abbb462dc3453e2027886ec01c96d3e651.tar.bz2 |
Renamed files to have the `X86' prefix for uniqueness purposes.
All CVS history was renamed, the *,v were copied over. No worries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15238 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/X86')
-rw-r--r-- | lib/Target/X86/FloatingPoint.cpp | 721 | ||||
-rw-r--r-- | lib/Target/X86/InstSelectPattern.cpp | 124 | ||||
-rw-r--r-- | lib/Target/X86/InstSelectSimple.cpp | 3907 | ||||
-rw-r--r-- | lib/Target/X86/PeepholeOptimizer.cpp | 515 | ||||
-rw-r--r-- | lib/Target/X86/Printer.cpp | 1033 |
5 files changed, 0 insertions, 6300 deletions
diff --git a/lib/Target/X86/FloatingPoint.cpp b/lib/Target/X86/FloatingPoint.cpp deleted file mode 100644 index fa2632f..0000000 --- a/lib/Target/X86/FloatingPoint.cpp +++ /dev/null @@ -1,721 +0,0 @@ -//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the pass which converts floating point instructions from -// virtual registers into register stack instructions. This pass uses live -// variable information to indicate where the FPn registers are used and their -// lifetimes. -// -// This pass is hampered by the lack of decent CFG manipulation routines for -// machine code. In particular, this wants to be able to split critical edges -// as necessary, traverse the machine basic block CFG in depth-first order, and -// allow there to be multiple machine basic blocks for each LLVM basicblock -// (needed for critical edge splitting). -// -// In particular, this pass currently barfs on critical edges. Because of this, -// it requires the instruction selector to insert FP_REG_KILL instructions on -// the exits of any basic block that has critical edges going from it, or which -// branch to a critical basic block. -// -// FIXME: this is not implemented yet. The stackifier pass only works on local -// basic blocks. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "fp" -#include "X86.h" -#include "X86InstrInfo.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/LiveVariables.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "Support/Debug.h" -#include "Support/DepthFirstIterator.h" -#include "Support/Statistic.h" -#include "Support/STLExtras.h" -#include <algorithm> -#include <set> -using namespace llvm; - -namespace { - Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted"); - Statistic<> NumFP ("x86-codegen", "Number of floating point instructions"); - - struct FPS : public MachineFunctionPass { - virtual bool runOnMachineFunction(MachineFunction &MF); - - virtual const char *getPassName() const { return "X86 FP Stackifier"; } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<LiveVariables>(); - MachineFunctionPass::getAnalysisUsage(AU); - } - private: - LiveVariables *LV; // Live variable info for current function... - MachineBasicBlock *MBB; // Current basic block - unsigned Stack[8]; // FP<n> Registers in each stack slot... - unsigned RegMap[8]; // Track which stack slot contains each register - unsigned StackTop; // The current top of the FP stack. - - void dumpStack() const { - std::cerr << "Stack contents:"; - for (unsigned i = 0; i != StackTop; ++i) { - std::cerr << " FP" << Stack[i]; - assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); - } - std::cerr << "\n"; - } - private: - // getSlot - Return the stack slot number a particular register number is - // in... - unsigned getSlot(unsigned RegNo) const { - assert(RegNo < 8 && "Regno out of range!"); - return RegMap[RegNo]; - } - - // getStackEntry - Return the X86::FP<n> register in register ST(i) - unsigned getStackEntry(unsigned STi) const { - assert(STi < StackTop && "Access past stack top!"); - return Stack[StackTop-1-STi]; - } - - // getSTReg - Return the X86::ST(i) register which contains the specified - // FP<RegNo> register - unsigned getSTReg(unsigned RegNo) const { - return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0; - } - - // pushReg - Push the specified FP<n> register onto the stack - void pushReg(unsigned Reg) { - assert(Reg < 8 && "Register number out of range!"); - assert(StackTop < 8 && "Stack overflow!"); - Stack[StackTop] = Reg; - RegMap[Reg] = StackTop++; - } - - bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } - void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) { - if (!isAtTop(RegNo)) { - unsigned Slot = getSlot(RegNo); - unsigned STReg = getSTReg(RegNo); - unsigned RegOnTop = getStackEntry(0); - - // Swap the slots the regs are in - std::swap(RegMap[RegNo], RegMap[RegOnTop]); - - // Swap stack slot contents - assert(RegMap[RegOnTop] < StackTop); - std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); - - // Emit an fxch to update the runtime processors version of the state - BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg); - NumFXCH++; - } - } - - void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { - unsigned STReg = getSTReg(RegNo); - pushReg(AsReg); // New register on top of stack - - BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg); - } - - // popStackAfter - Pop the current value off of the top of the FP stack - // after the specified instruction. - void popStackAfter(MachineBasicBlock::iterator &I); - - // freeStackSlotAfter - Free the specified register from the register stack, - // so that it is no longer in a register. If the register is currently at - // the top of the stack, we just pop the current instruction, otherwise we - // store the current top-of-stack into the specified slot, then pop the top - // of stack. - void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); - - bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); - - void handleZeroArgFP(MachineBasicBlock::iterator &I); - void handleOneArgFP(MachineBasicBlock::iterator &I); - void handleOneArgFPRW(MachineBasicBlock::iterator &I); - void handleTwoArgFP(MachineBasicBlock::iterator &I); - void handleCompareFP(MachineBasicBlock::iterator &I); - void handleCondMovFP(MachineBasicBlock::iterator &I); - void handleSpecialFP(MachineBasicBlock::iterator &I); - }; -} - -FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } - -/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP -/// register references into FP stack references. -/// -bool FPS::runOnMachineFunction(MachineFunction &MF) { - LV = &getAnalysis<LiveVariables>(); - StackTop = 0; - - // Process the function in depth first order so that we process at least one - // of the predecessors for every reachable block in the function. - std::set<MachineBasicBlock*> Processed; - MachineBasicBlock *Entry = MF.begin(); - - bool Changed = false; - for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> > - I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); - I != E; ++I) - Changed |= processBasicBlock(MF, **I); - - return Changed; -} - -/// processBasicBlock - Loop over all of the instructions in the basic block, -/// transforming FP instructions into their stack form. -/// -bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { - const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); - bool Changed = false; - MBB = &BB; - - for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { - MachineInstr *MI = I; - unsigned Flags = TII.get(MI->getOpcode()).TSFlags; - if ((Flags & X86II::FPTypeMask) == X86II::NotFP) - continue; // Efficiently ignore non-fp insts! - - MachineInstr *PrevMI = 0; - if (I != BB.begin()) - PrevMI = prior(I); - - ++NumFP; // Keep track of # of pseudo instrs - DEBUG(std::cerr << "\nFPInst:\t"; - MI->print(std::cerr, &(MF.getTarget()))); - - // Get dead variables list now because the MI pointer may be deleted as part - // of processing! - LiveVariables::killed_iterator IB = LV->dead_begin(MI); - LiveVariables::killed_iterator IE = LV->dead_end(MI); - - DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo(); - LiveVariables::killed_iterator I = LV->killed_begin(MI); - LiveVariables::killed_iterator E = LV->killed_end(MI); - if (I != E) { - std::cerr << "Killed Operands:"; - for (; I != E; ++I) - std::cerr << " %" << MRI->getName(I->second); - std::cerr << "\n"; - }); - - switch (Flags & X86II::FPTypeMask) { - case X86II::ZeroArgFP: handleZeroArgFP(I); break; - case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) - case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) - case X86II::TwoArgFP: handleTwoArgFP(I); break; - case X86II::CompareFP: handleCompareFP(I); break; - case X86II::CondMovFP: handleCondMovFP(I); break; - case X86II::SpecialFP: handleSpecialFP(I); break; - default: assert(0 && "Unknown FP Type!"); - } - - // Check to see if any of the values defined by this instruction are dead - // after definition. If so, pop them. - for (; IB != IE; ++IB) { - unsigned Reg = IB->second; - if (Reg >= X86::FP0 && Reg <= X86::FP6) { - DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); - freeStackSlotAfter(I, Reg-X86::FP0); - } - } - - // Print out all of the instructions expanded to if -debug - DEBUG( - MachineBasicBlock::iterator PrevI(PrevMI); - if (I == PrevI) { - std::cerr << "Just deleted pseudo instruction\n"; - } else { - MachineBasicBlock::iterator Start = I; - // Rewind to first instruction newly inserted. - while (Start != BB.begin() && prior(Start) != PrevI) --Start; - std::cerr << "Inserted instructions:\n\t"; - Start->print(std::cerr, &MF.getTarget()); - while (++Start != next(I)); - } - dumpStack(); - ); - - Changed = true; - } - - assert(StackTop == 0 && "Stack not empty at end of basic block?"); - return Changed; -} - -//===----------------------------------------------------------------------===// -// Efficient Lookup Table Support -//===----------------------------------------------------------------------===// - -namespace { - struct TableEntry { - unsigned from; - unsigned to; - bool operator<(const TableEntry &TE) const { return from < TE.from; } - bool operator<(unsigned V) const { return from < V; } - }; -} - -static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { - for (unsigned i = 0; i != NumEntries-1; ++i) - if (!(Table[i] < Table[i+1])) return false; - return true; -} - -static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { - const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); - if (I != Table+N && I->from == Opcode) - return I->to; - return -1; -} - -#define ARRAY_SIZE(TABLE) \ - (sizeof(TABLE)/sizeof(TABLE[0])) - -#ifdef NDEBUG -#define ASSERT_SORTED(TABLE) -#else -#define ASSERT_SORTED(TABLE) \ - { static bool TABLE##Checked = false; \ - if (!TABLE##Checked) \ - assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \ - "All lookup tables must be sorted for efficient access!"); \ - } -#endif - - -//===----------------------------------------------------------------------===// -// Helper Methods -//===----------------------------------------------------------------------===// - -// PopTable - Sorted map of instructions to their popping version. The first -// element is an instruction, the second is the version which pops. -// -static const TableEntry PopTable[] = { - { X86::FADDrST0 , X86::FADDPrST0 }, - - { X86::FDIVRrST0, X86::FDIVRPrST0 }, - { X86::FDIVrST0 , X86::FDIVPrST0 }, - - { X86::FIST16m , X86::FISTP16m }, - { X86::FIST32m , X86::FISTP32m }, - - { X86::FMULrST0 , X86::FMULPrST0 }, - - { X86::FST32m , X86::FSTP32m }, - { X86::FST64m , X86::FSTP64m }, - { X86::FSTrr , X86::FSTPrr }, - - { X86::FSUBRrST0, X86::FSUBRPrST0 }, - { X86::FSUBrST0 , X86::FSUBPrST0 }, - - { X86::FUCOMIr , X86::FUCOMIPr }, - - { X86::FUCOMPr , X86::FUCOMPPr }, - { X86::FUCOMr , X86::FUCOMPr }, -}; - -/// popStackAfter - Pop the current value off of the top of the FP stack after -/// the specified instruction. This attempts to be sneaky and combine the pop -/// into the instruction itself if possible. The iterator is left pointing to -/// the last instruction, be it a new pop instruction inserted, or the old -/// instruction if it was modified in place. -/// -void FPS::popStackAfter(MachineBasicBlock::iterator &I) { - ASSERT_SORTED(PopTable); - assert(StackTop > 0 && "Cannot pop empty stack!"); - RegMap[Stack[--StackTop]] = ~0; // Update state - - // Check to see if there is a popping version of this instruction... - int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode()); - if (Opcode != -1) { - I->setOpcode(Opcode); - if (Opcode == X86::FUCOMPPr) - I->RemoveOperand(0); - - } else { // Insert an explicit pop - I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0); - } -} - -/// freeStackSlotAfter - Free the specified register from the register stack, so -/// that it is no longer in a register. If the register is currently at the top -/// of the stack, we just pop the current instruction, otherwise we store the -/// current top-of-stack into the specified slot, then pop the top of stack. -void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { - if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. - popStackAfter(I); - return; - } - - // Otherwise, store the top of stack into the dead slot, killing the operand - // without having to add in an explicit xchg then pop. - // - unsigned STReg = getSTReg(FPRegNo); - unsigned OldSlot = getSlot(FPRegNo); - unsigned TopReg = Stack[StackTop-1]; - Stack[OldSlot] = TopReg; - RegMap[TopReg] = OldSlot; - RegMap[FPRegNo] = ~0; - Stack[--StackTop] = ~0; - I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg); -} - - -static unsigned getFPReg(const MachineOperand &MO) { - assert(MO.isRegister() && "Expected an FP register!"); - unsigned Reg = MO.getReg(); - assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); - return Reg - X86::FP0; -} - - -//===----------------------------------------------------------------------===// -// Instruction transformation implementation -//===----------------------------------------------------------------------===// - -/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> -/// -void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - unsigned DestReg = getFPReg(MI->getOperand(0)); - MI->RemoveOperand(0); // Remove the explicit ST(0) operand - - // Result gets pushed on the stack... - pushReg(DestReg); -} - -/// handleOneArgFP - fst <mem>, ST(0) -/// -void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) && - "Can only handle fst* & ftst instructions!"); - - // Is this the last use of the source register? - unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1)); - bool KillsSrc = false; - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - KillsSrc |= KI->second == X86::FP0+Reg; - - // FSTP80r and FISTP64r are strange because there are no non-popping versions. - // If we have one _and_ we don't want to pop the operand, duplicate the value - // on the stack instead of moving it. This ensure that popping the value is - // always ok. - // - if ((MI->getOpcode() == X86::FSTP80m || - MI->getOpcode() == X86::FISTP64m) && !KillsSrc) { - duplicateToTop(Reg, 7 /*temp register*/, I); - } else { - moveToTop(Reg, I); // Move to the top of the stack... - } - MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand - - if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) { - assert(StackTop > 0 && "Stack empty??"); - --StackTop; - } else if (KillsSrc) { // Last use of operand? - popStackAfter(I); - } -} - - -/// handleOneArgFPRW: Handle instructions that read from the top of stack and -/// replace the value with a newly computed value. These instructions may have -/// non-fp operands after their FP operands. -/// -/// Examples: -/// R1 = fchs R2 -/// R1 = fadd R2, [mem] -/// -void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!"); - - // Is this the last use of the source register? - unsigned Reg = getFPReg(MI->getOperand(1)); - bool KillsSrc = false; - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - KillsSrc |= KI->second == X86::FP0+Reg; - - if (KillsSrc) { - // If this is the last use of the source register, just make sure it's on - // the top of the stack. - moveToTop(Reg, I); - assert(StackTop > 0 && "Stack cannot be empty!"); - --StackTop; - pushReg(getFPReg(MI->getOperand(0))); - } else { - // If this is not the last use of the source register, _copy_ it to the top - // of the stack. - duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); - } - - MI->RemoveOperand(1); // Drop the source operand. - MI->RemoveOperand(0); // Drop the destination operand. -} - - -//===----------------------------------------------------------------------===// -// Define tables of various ways to map pseudo instructions -// - -// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) -static const TableEntry ForwardST0Table[] = { - { X86::FpADD , X86::FADDST0r }, - { X86::FpDIV , X86::FDIVST0r }, - { X86::FpMUL , X86::FMULST0r }, - { X86::FpSUB , X86::FSUBST0r }, -}; - -// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) -static const TableEntry ReverseST0Table[] = { - { X86::FpADD , X86::FADDST0r }, // commutative - { X86::FpDIV , X86::FDIVRST0r }, - { X86::FpMUL , X86::FMULST0r }, // commutative - { X86::FpSUB , X86::FSUBRST0r }, -}; - -// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) -static const TableEntry ForwardSTiTable[] = { - { X86::FpADD , X86::FADDrST0 }, // commutative - { X86::FpDIV , X86::FDIVRrST0 }, - { X86::FpMUL , X86::FMULrST0 }, // commutative - { X86::FpSUB , X86::FSUBRrST0 }, -}; - -// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) -static const TableEntry ReverseSTiTable[] = { - { X86::FpADD , X86::FADDrST0 }, - { X86::FpDIV , X86::FDIVrST0 }, - { X86::FpMUL , X86::FMULrST0 }, - { X86::FpSUB , X86::FSUBrST0 }, -}; - - -/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual -/// instructions which need to be simplified and possibly transformed. -/// -/// Result: ST(0) = fsub ST(0), ST(i) -/// ST(i) = fsub ST(0), ST(i) -/// ST(0) = fsubr ST(0), ST(i) -/// ST(i) = fsubr ST(0), ST(i) -/// -void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { - ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); - ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); - MachineInstr *MI = I; - - unsigned NumOperands = MI->getNumOperands(); - assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); - unsigned Dest = getFPReg(MI->getOperand(0)); - unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); - unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); - bool KillsOp0 = false, KillsOp1 = false; - - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) { - KillsOp0 |= (KI->second == X86::FP0+Op0); - KillsOp1 |= (KI->second == X86::FP0+Op1); - } - - unsigned TOS = getStackEntry(0); - - // One of our operands must be on the top of the stack. If neither is yet, we - // need to move one. - if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? - // We can choose to move either operand to the top of the stack. If one of - // the operands is killed by this instruction, we want that one so that we - // can update right on top of the old version. - if (KillsOp0) { - moveToTop(Op0, I); // Move dead operand to TOS. - TOS = Op0; - } else if (KillsOp1) { - moveToTop(Op1, I); - TOS = Op1; - } else { - // All of the operands are live after this instruction executes, so we - // cannot update on top of any operand. Because of this, we must - // duplicate one of the stack elements to the top. It doesn't matter - // which one we pick. - // - duplicateToTop(Op0, Dest, I); - Op0 = TOS = Dest; - KillsOp0 = true; - } - } else if (!KillsOp0 && !KillsOp1) { - // If we DO have one of our operands at the top of the stack, but we don't - // have a dead operand, we must duplicate one of the operands to a new slot - // on the stack. - duplicateToTop(Op0, Dest, I); - Op0 = TOS = Dest; - KillsOp0 = true; - } - - // Now we know that one of our operands is on the top of the stack, and at - // least one of our operands is killed by this instruction. - assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && - "Stack conditions not set up right!"); - - // We decide which form to use based on what is on the top of the stack, and - // which operand is killed by this instruction. - const TableEntry *InstTable; - bool isForward = TOS == Op0; - bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); - if (updateST0) { - if (isForward) - InstTable = ForwardST0Table; - else - InstTable = ReverseST0Table; - } else { - if (isForward) - InstTable = ForwardSTiTable; - else - InstTable = ReverseSTiTable; - } - - int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode()); - assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); - - // NotTOS - The register which is not on the top of stack... - unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; - - // Replace the old instruction with a new instruction - MBB->remove(I++); - I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS)); - - // If both operands are killed, pop one off of the stack in addition to - // overwriting the other one. - if (KillsOp0 && KillsOp1 && Op0 != Op1) { - assert(!updateST0 && "Should have updated other operand!"); - popStackAfter(I); // Pop the top of stack - } - - // Update stack information so that we know the destination register is now on - // the stack. - unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); - assert(UpdatedSlot < StackTop && Dest < 7); - Stack[UpdatedSlot] = Dest; - RegMap[Dest] = UpdatedSlot; - delete MI; // Remove the old instruction -} - -/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP -/// register arguments and no explicit destinations. -/// -void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { - ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); - ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); - MachineInstr *MI = I; - - unsigned NumOperands = MI->getNumOperands(); - assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); - unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); - unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); - bool KillsOp0 = false, KillsOp1 = false; - - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) { - KillsOp0 |= (KI->second == X86::FP0+Op0); - KillsOp1 |= (KI->second == X86::FP0+Op1); - } - - // Make sure the first operand is on the top of stack, the other one can be - // anywhere. - moveToTop(Op0, I); - - MI->getOperand(0).setReg(getSTReg(Op1)); - MI->RemoveOperand(1); - - // If any of the operands are killed by this instruction, free them. - if (KillsOp0) freeStackSlotAfter(I, Op0); - if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); -} - -/// handleCondMovFP - Handle two address conditional move instructions. These -/// instructions move a st(i) register to st(0) iff a condition is true. These -/// instructions require that the first operand is at the top of the stack, but -/// otherwise don't modify the stack at all. -void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - - unsigned Op0 = getFPReg(MI->getOperand(0)); - unsigned Op1 = getFPReg(MI->getOperand(1)); - - // The first operand *must* be on the top of the stack. - moveToTop(Op0, I); - - // Change the second operand to the stack register that the operand is in. - MI->RemoveOperand(0); - MI->getOperand(0).setReg(getSTReg(Op1)); - - // If we kill the second operand, make sure to pop it from the stack. - if (Op0 != Op1) - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - if (KI->second == X86::FP0+Op1) { - // Get this value off of the register stack. - freeStackSlotAfter(I, Op1); - break; - } -} - - -/// handleSpecialFP - Handle special instructions which behave unlike other -/// floating point instructions. This is primarily intended for use by pseudo -/// instructions. -/// -void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - switch (MI->getOpcode()) { - default: assert(0 && "Unknown SpecialFP instruction!"); - case X86::FpGETRESULT: // Appears immediately after a call returning FP type! - assert(StackTop == 0 && "Stack should be empty after a call!"); - pushReg(getFPReg(MI->getOperand(0))); - break; - case X86::FpSETRESULT: - assert(StackTop == 1 && "Stack should have one element on it to return!"); - --StackTop; // "Forget" we have something on the top of stack! - break; - case X86::FpMOV: { - unsigned SrcReg = getFPReg(MI->getOperand(1)); - unsigned DestReg = getFPReg(MI->getOperand(0)); - bool KillsSrc = false; - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - KillsSrc |= KI->second == X86::FP0+SrcReg; - - if (KillsSrc) { - // If the input operand is killed, we can just change the owner of the - // incoming stack slot into the result. - unsigned Slot = getSlot(SrcReg); - assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); - Stack[Slot] = DestReg; - RegMap[DestReg] = Slot; - - } else { - // For FMOV we just duplicate the specified value to a new stack slot. - // This could be made better, but would require substantial changes. - duplicateToTop(SrcReg, DestReg, I); - } - break; - } - } - - I = MBB->erase(I); // Remove the pseudo instruction - --I; -} diff --git a/lib/Target/X86/InstSelectPattern.cpp b/lib/Target/X86/InstSelectPattern.cpp deleted file mode 100644 index cd79b1d..0000000 --- a/lib/Target/X86/InstSelectPattern.cpp +++ /dev/null @@ -1,124 +0,0 @@ -//===-- InstSelectPattern.cpp - A pattern matching inst selector for X86 --===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a pattern matching instruction selector for X86. -// -// FIXME: we could allocate one big array of unsigneds to use as the backing -// store for all of the nodes costs arrays. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "llvm/Pass.h" -#include "llvm/Function.h" -#include "llvm/DerivedTypes.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "X86RegisterInfo.h" -#include <iostream> - -// Include the generated instruction selector... -#include "X86GenInstrSelector.inc" -using namespace llvm; - -namespace { - struct ISel : public FunctionPass, SelectionDAGTargetBuilder { - TargetMachine &TM; - ISel(TargetMachine &tm) : TM(tm) {} - int VarArgsFrameIndex; // FrameIndex for start of varargs area - - bool runOnFunction(Function &Fn) { - MachineFunction &MF = MachineFunction::construct(&Fn, TM); - SelectionDAG DAG(MF, TM, *this); - - std::cerr << "\n\n\n=== " - << DAG.getMachineFunction().getFunction()->getName() << "\n"; - - DAG.dump(); - X86ISel(DAG).generateCode(); - std::cerr << "\n\n\n"; - return true; - } - - public: // Implementation of the SelectionDAGTargetBuilder class... - /// expandArguments - Add nodes to the DAG to indicate how to load arguments - /// off of the X86 stack. - void expandArguments(SelectionDAG &SD); - void expandCall(SelectionDAG &SD, CallInst &CI); - }; -} - - -void ISel::expandArguments(SelectionDAG &SD) { - - // Add DAG nodes to load the arguments... On entry to a function on the X86, - // the stack frame looks like this: - // - // [ESP] -- return address - // [ESP + 4] -- first argument (leftmost lexically) - // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... - // - MachineFunction &F = SD.getMachineFunction(); - MachineFrameInfo *MFI = F.getFrameInfo(); - const Function &Fn = *F.getFunction(); - - unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot - for (Function::const_aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { - MVT::ValueType ObjectVT = SD.getValueType(I->getType()); - unsigned ArgIncrement = 4; - unsigned ObjSize; - switch (ObjectVT) { - default: assert(0 && "Unhandled argument type!"); - case MVT::i8: ObjSize = 1; break; - case MVT::i16: ObjSize = 2; break; - case MVT::i32: ObjSize = 4; break; - case MVT::i64: ObjSize = ArgIncrement = 8; break; - case MVT::f32: ObjSize = 4; break; - case MVT::f64: ObjSize = ArgIncrement = 8; break; - } - // Create the frame index object for this incoming parameter... - int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); - - // Create the SelectionDAG nodes corresponding to a load from this parameter - SelectionDAGNode *FIN = new SelectionDAGNode(ISD::FrameIndex, MVT::i32); - FIN->addValue(new ReducedValue_FrameIndex_i32(FI)); - - SelectionDAGNode *Arg - = new SelectionDAGNode(ISD::Load, ObjectVT, F.begin(), FIN); - - // Add the SelectionDAGNodes to the SelectionDAG... note that there is no - // reason to add chain nodes here. We know that no loads ore stores will - // ever alias these loads, so we are free to perform the load at any time in - // the function - SD.addNode(FIN); - SD.addNodeForValue(Arg, I); - - ArgOffset += ArgIncrement; // Move on to the next argument... - } - - // If the function takes variable number of arguments, make a frame index for - // the start of the first vararg value... for expansion of llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); -} - -void ISel::expandCall(SelectionDAG &SD, CallInst &CI) { - assert(0 && "ISel::expandCall not implemented!"); -} - -/// createX86PatternInstructionSelector - This pass converts an LLVM function -/// into a machine code representation using pattern matching and a machine -/// description file. -/// -FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) { - return new ISel(TM); -} diff --git a/lib/Target/X86/InstSelectSimple.cpp b/lib/Target/X86/InstSelectSimple.cpp deleted file mode 100644 index 4b43896..0000000 --- a/lib/Target/X86/InstSelectSimple.cpp +++ /dev/null @@ -1,3907 +0,0 @@ -//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a simple peephole instruction selector for the x86 target -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "Support/Statistic.h" -using namespace llvm; - -namespace { - Statistic<> - NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); - - /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 - /// Representation. - /// - enum TypeClass { - cByte, cShort, cInt, cFP, cLong - }; -} - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Int's and pointers are class #2 - - case Type::FloatTyID: - case Type::DoubleTyID: return cFP; // Floating Point is #3 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #4 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as bytes. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cByte; - return getClass(Ty); -} - -namespace { - struct ISel : public FunctionPass, InstVisitor<ISel> { - TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - int ReturnAddressIndex; // FrameIndex for the return address - - std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; - - // AllocaMap - Mapping from fixed sized alloca instructions to the - // FrameIndex for the alloca. - std::map<AllocaInst*, unsigned> AllocaMap; - - ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Set up a frame object for the return address. This is used by the - // llvm.returnaddress & llvm.frameaddress intrinisics. - ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - // Insert the FP_REG_KILL instructions into blocks that need them. - InsertFPRegKills(); - - RegMap.clear(); - MBBMap.clear(); - AllocaMap.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "X86 Simple Instruction Selection"; - } - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks - /// that need them. This only occurs due to the floating point stackifier - /// not being aggressive enough to handle arbitrary global stackification. - /// - void InsertFPRegKills(); - - // Visitation methods for various instructions. These methods simply emit - // fixed X86 code for each instruction. - // - - // Control flow operators - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - void visitSelectInst(SelectInst &SI); - - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVANextInst(VANextInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// getAddressingMode - Get the addressing mode to use to address the - /// specified value. The returned value should be used with addFullAddress. - void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, - unsigned &IndexReg, unsigned &Disp); - - - /// getGEPIndex - This is used to fold GEP instructions into X86 addressing - /// expressions. - void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - std::vector<Value*> &GEPOps, - std::vector<const Type*> &GEPTypes, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp); - - /// isGEPFoldable - Return true if the specified GEP can be completely - /// folded into the addressing mode of a load/store or lea instruction. - bool isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary - /// and constant expression support. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - /// emitBinaryFPOperation - This method handles emission of floating point - /// Add (0), Sub (1), Mul (2), and Div (3) operations. - void emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned TargetReg); - - void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Reg); - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Val); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg); - - /// emitSelectOperation - Common code shared between visitSelectInst and the - /// constant expression support. - void emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg); - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned LHS, unsigned RHS); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - /// Long values are handled somewhat specially. They are always allocated - /// as pairs of 32 bit integer values. The register number returned is the - /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits - /// of the long value. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) && - "Current target doesn't have X86 reg info??"); - const X86RegisterInfo *MRI = - static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); - if (Ty == Type::LongTy || Ty == Type::ULongTy) { - const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); - // Create the lower part - F->getSSARegMap()->createVirtualRegister(RC); - // Create the upper part. - return F->getSSARegMap()->createVirtualRegister(RC)-1; - } - - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt); - - /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca - /// that is to be statically allocated with the initial stack frame - /// adjustment. - unsigned getFixedSizedAllocaFI(AllocaInst *AI); - }; -} - -/// dyn_castFixedAlloca - If the specified value is a fixed size alloca -/// instruction in the entry block, return it. Otherwise, return a null -/// pointer. -static AllocaInst *dyn_castFixedAlloca(Value *V) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - BasicBlock *BB = AI->getParent(); - if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) - return AI; - } - return 0; -} - -/// getReg - This method turns an LLVM value into a register number. -/// -unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - // If this operand is a constant, emit the code to copy the constant into - // the register here... - if (Constant *C = dyn_cast<Constant>(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - copyConstantToRegister(MBB, IPt, C, Reg); - return Reg; - } else if (CastInst *CI = dyn_cast<CastInst>(V)) { - // Do not emit noop casts at all, unless it's a double -> float cast. - if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) && - (CI->getType() != Type::FloatTy || - CI->getOperand(0)->getType() != Type::DoubleTy)) - return getReg(CI->getOperand(0), MBB, IPt); - } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { - // If the alloca address couldn't be folded into the instruction addressing, - // emit an explicit LEA as appropriate. - unsigned Reg = makeAnotherReg(V->getType()); - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI); - return Reg; - } - - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - return Reg; -} - -/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca -/// that is to be statically allocated with the initial stack frame -/// adjustment. -unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) { - // Already computed this? - std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); - if (I != AllocaMap.end() && I->first == AI) return I->second; - - const Type *Ty = AI->getAllocatedType(); - ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - TySize *= CUI->getValue(); // Get total allocated size... - unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - - // Create a new stack object using the frame manager... - int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); - AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); - return FrameIdx; -} - - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - unsigned Class = 0; - switch (CE->getOpcode()) { - case Instruction::GetElementPtr: - emitGEPOperation(MBB, IP, CE->getOperand(0), - CE->op_begin()+1, CE->op_end(), R); - return; - case Instruction::Cast: - emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); - return; - - case Instruction::Xor: ++Class; // FALL THROUGH - case Instruction::Or: ++Class; // FALL THROUGH - case Instruction::And: ++Class; // FALL THROUGH - case Instruction::Sub: ++Class; // FALL THROUGH - case Instruction::Add: - emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - Class, R); - return; - - case Instruction::Mul: - emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R); - return; - - case Instruction::Div: - case Instruction::Rem: - emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode() == Instruction::Div, R); - return; - - case Instruction::SetNE: - case Instruction::SetEQ: - case Instruction::SetLT: - case Instruction::SetGT: - case Instruction::SetLE: - case Instruction::SetGE: - emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode(), R); - return; - - case Instruction::Shl: - case Instruction::Shr: - emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode() == Instruction::Shl, CE->getType(), R); - return; - - case Instruction::Select: - emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOperand(2), R); - return; - - default: - std::cerr << "Offending expr: " << *C << "\n"; - assert(0 && "Constant expression not yet handled!\n"); - } - } - - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - // Copy the value into the register pair. - uint64_t Val = cast<ConstantInt>(C)->getRawValue(); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); - return; - } - - assert(Class <= cInt && "Type not handled yet!"); - - static const unsigned IntegralOpcodeTab[] = { - X86::MOV8ri, X86::MOV16ri, X86::MOV32ri - }; - - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); - } else { - ConstantInt *CI = cast<ConstantInt>(C); - BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); - } - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->isExactlyValue(+0.0)) - BuildMI(*MBB, IP, X86::FLD0, 0, R); - else if (CFP->isExactlyValue(+1.0)) - BuildMI(*MBB, IP, X86::FLD1, 0, R); - else { - // Otherwise we need to spill the constant to memory... - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; - addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); - } - - } else if (isa<ConstantPointerNull>(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV); - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -/// -void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - // Emit instructions to load the arguments... On entry to a function on the - // X86, the stack frame looks like this: - // - // [ESP] -- return address - // [ESP + 4] -- first argument (leftmost lexically) - // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... - // - unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { - bool ArgLive = !I->use_empty(); - unsigned Reg = ArgLive ? getReg(*I) : 0; - int FI; // Frame object index - - switch (getClassB(I->getType())) { - case cByte: - if (ArgLive) { - FI = MFI->CreateFixedObject(1, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); - } - break; - case cShort: - if (ArgLive) { - FI = MFI->CreateFixedObject(2, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); - } - break; - case cInt: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - } - break; - case cLong: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); - } - ArgOffset += 4; // longs require 4 additional bytes - break; - case cFP: - if (ArgLive) { - unsigned Opcode; - if (I->getType() == Type::FloatTy) { - Opcode = X86::FLD32m; - FI = MFI->CreateFixedObject(4, ArgOffset); - } else { - Opcode = X86::FLD64m; - FI = MFI->CreateFixedObject(8, ArgOffset); - } - addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); - } - if (I->getType() == Type::DoubleTy) - ArgOffset += 4; // doubles require 4 additional bytes - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); -} - - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); - PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { - - // Create a new machine instr PHI node, and insert it. - unsigned PHIReg = getReg(*PN); - MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg); - - MachineInstr *LongPhiMI = 0; - if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) - LongPhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg+1); - - // PHIValues - Map of blocks to incoming virtual registers. We use this - // so that we only initialize one incoming value for a particular block, - // even if the block has multiple entries in the PHI node. - // - std::map<MachineBasicBlock*, unsigned> PHIValues; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; - unsigned ValReg; - std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = - PHIValues.lower_bound(PredMBB); - - if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { - // We already inserted an initialization of the register for this - // predecessor. Recycle it. - ValReg = EntryIt->second; - - } else { - // Get the incoming value into a virtual register. - // - Value *Val = PN->getIncomingValue(i); - - // If this is a constant or GlobalValue, we may have to insert code - // into the basic block to compute it into a virtual register. - if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) { - // Simple constants get emitted at the end of the basic block, - // before any terminator instructions. We "know" that the code to - // move a constant into a register will never clobber any flags. - ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); - } else { - // Because we don't want to clobber any values which might be in - // physical registers with the computation of this constant (which - // might be arbitrarily complex if it is a constant expression), - // just insert the computation at the top of the basic block. - MachineBasicBlock::iterator PI = PredMBB->begin(); - - // Skip over any PHI nodes though! - while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) - ++PI; - - ValReg = getReg(Val, PredMBB, PI); - } - - // Remember that we inserted a value for this PHI for this predecessor - PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); - } - - PhiMI->addRegOperand(ValReg); - PhiMI->addMachineBasicBlockOperand(PredMBB); - if (LongPhiMI) { - LongPhiMI->addRegOperand(ValReg+1); - LongPhiMI->addMachineBasicBlockOperand(PredMBB); - } - } - - // Now that we emitted all of the incoming values for the PHI node, make - // sure to reposition the InsertPoint after the PHI that we just added. - // This is needed because we might have inserted a constant into this - // block, right after the PHI's which is before the old insert point! - PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; - ++PHIInsertPoint; - } - } -} - -/// RequiresFPRegKill - The floating point stackifier pass cannot insert -/// compensation code on critical edges. As such, it requires that we kill all -/// FP registers on the exit from any blocks that either ARE critical edges, or -/// branch to a block that has incoming critical edges. -/// -/// Note that this kill instruction will eventually be eliminated when -/// restrictions in the stackifier are relaxed. -/// -static bool RequiresFPRegKill(const MachineBasicBlock *MBB) { -#if 0 - const BasicBlock *BB = MBB->getBasicBlock (); - for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { - const BasicBlock *Succ = *SI; - pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); - ++PI; // Block have at least one predecessory - if (PI != PE) { // If it has exactly one, this isn't crit edge - // If this block has more than one predecessor, check all of the - // predecessors to see if they have multiple successors. If so, then the - // block we are analyzing needs an FPRegKill. - for (PI = pred_begin(Succ); PI != PE; ++PI) { - const BasicBlock *Pred = *PI; - succ_const_iterator SI2 = succ_begin(Pred); - ++SI2; // There must be at least one successor of this block. - if (SI2 != succ_end(Pred)) - return true; // Yes, we must insert the kill on this edge. - } - } - } - // If we got this far, there is no need to insert the kill instruction. - return false; -#else - return true; -#endif -} - -// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that -// need them. This only occurs due to the floating point stackifier not being -// aggressive enough to handle arbitrary global stackification. -// -// Currently we insert an FP_REG_KILL instruction into each block that uses or -// defines a floating point virtual register. -// -// When the global register allocators (like linear scan) finally update live -// variable analysis, we can keep floating point values in registers across -// portions of the CFG that do not involve critical edges. This will be a big -// win, but we are waiting on the global allocators before we can do this. -// -// With a bit of work, the floating point stackifier pass can be enhanced to -// break critical edges as needed (to make a place to put compensation code), -// but this will require some infrastructure improvements as well. -// -void ISel::InsertFPRegKills() { - SSARegMap &RegMap = *F->getSSARegMap(); - - for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { - for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - MachineOperand& MO = I->getOperand(i); - if (MO.isRegister() && MO.getReg()) { - unsigned Reg = MO.getReg(); - if (MRegisterInfo::isVirtualRegister(Reg)) - if (RegMap.getRegClass(Reg)->getSize() == 10) - goto UsesFPReg; - } - } - // If we haven't found an FP register use or def in this basic block, check - // to see if any of our successors has an FP PHI node, which will cause a - // copy to be inserted into this block. - for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), - SE = BB->succ_end(); SI != SE; ++SI) { - MachineBasicBlock *SBB = *SI; - for (MachineBasicBlock::iterator I = SBB->begin(); - I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { - if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) - goto UsesFPReg; - } - } - continue; - UsesFPReg: - // Okay, this block uses an FP register. If the block has successors (ie, - // it's not an unwind/return), insert the FP_REG_KILL instruction. - if (BB->succ_size () && RequiresFPRegKill(BB)) { - BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); - ++NumFPKill; - } - } -} - - -void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, - unsigned &IndexReg, unsigned &Disp) { - BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0; - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) { - if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), - BaseReg, Scale, IndexReg, Disp)) - return; - } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { - if (CE->getOpcode() == Instruction::GetElementPtr) - if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), - BaseReg, Scale, IndexReg, Disp)) - return; - } - - // If it's not foldable, reset addr mode. - BaseReg = getReg(Addr); - Scale = 1; IndexReg = 0; Disp = 0; -} - -// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold -// it into the conditional branch or select instruction which is the only user -// of the cc instruction. This is the case if the conditional branch is the -// only user of the setcc. We also don't handle long arguments below, so we -// reject them here as well. -// -static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { - if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) - if (SCI->hasOneUse()) { - Instruction *User = cast<Instruction>(SCI->use_back()); - if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && - (getClassB(SCI->getOperand(0)->getType()) != cLong || - SCI->getOpcode() == Instruction::SetEQ || - SCI->getOpcode() == Instruction::SetNE)) - return SCI; - } - return 0; -} - -// Return a fixed numbering for setcc instructions which does not depend on the -// order of the opcodes. -// -static unsigned getSetCCNumber(unsigned Opcode) { - switch(Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return 0; - case Instruction::SetNE: return 1; - case Instruction::SetLT: return 2; - case Instruction::SetGE: return 3; - case Instruction::SetGT: return 4; - case Instruction::SetLE: return 5; - } -} - -// LLVM -> X86 signed X86 unsigned -// ----- ---------- ------------ -// seteq -> sete sete -// setne -> setne setne -// setlt -> setl setb -// setge -> setge setae -// setgt -> setg seta -// setle -> setle setbe -// ---- -// sets // Used by comparison with 0 optimization -// setns -static const unsigned SetCCOpcodeTab[2][8] = { - { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, - 0, 0 }, - { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, - X86::SETSr, X86::SETNSr }, -}; - -/// emitUCOMr - In the future when we support processors before the P6, this -/// wraps the logic for emitting an FUCOMr vs FUCOMIr. -void ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - unsigned LHS, unsigned RHS) { - if (0) { // for processors prior to the P6 - BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - } else { - BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS); - } -} - -// EmitComparison - This function emits a comparison of the two operands, -// returning the extended setcc code to use. -unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP) { - // The arguments are already supposed to be of the same type. - const Type *CompTy = Op0->getType(); - unsigned Class = getClassB(CompTy); - unsigned Op0r = getReg(Op0, MBB, IP); - - // Special case handling of: cmp R, i - if (isa<ConstantPointerNull>(Op1)) { - if (OpNum < 2) // seteq/setne -> test - BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r); - else - BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0); - return OpNum; - - } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - if (Class == cByte || Class == cShort || Class == cInt) { - unsigned Op1v = CI->getRawValue(); - - // Mask off any upper bits of the constant, if there are any... - Op1v &= (1ULL << (8 << Class)) - 1; - - // If this is a comparison against zero, emit more efficient code. We - // can't handle unsigned comparisons against zero unless they are == or - // !=. These should have been strength reduced already anyway. - if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { - static const unsigned TESTTab[] = { - X86::TEST8rr, X86::TEST16rr, X86::TEST32rr - }; - BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); - - if (OpNum == 2) return 6; // Map jl -> js - if (OpNum == 3) return 7; // Map jg -> jns - return OpNum; - } - - static const unsigned CMPTab[] = { - X86::CMP8ri, X86::CMP16ri, X86::CMP32ri - }; - - BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); - return OpNum; - } else { - assert(Class == cLong && "Unknown integer class!"); - unsigned LowCst = CI->getRawValue(); - unsigned HiCst = CI->getRawValue() >> 32; - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = Op0r; - if (LowCst != 0) { - LoTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst); - } - unsigned HiTmp = Op0r+1; - if (HiCst != 0) { - HiTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst); - } - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - return OpNum; - } else { - // Emit a sequence of code which compares the high and low parts once - // each, then uses a conditional move to handle the overflow case. For - // example, a setlt for long would generate code like this: - // - // AL = lo(op1) < lo(op2) // Always unsigned comparison - // BL = hi(op1) < hi(op2) // Signedness depends on operands - // dest = hi(op1) == hi(op2) ? BL : AL; - // - - // FIXME: This would be much better if we had hierarchical register - // classes! Until then, hardcode registers so that we can deal with - // their aliases (because we don't have conditional byte moves). - // - BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst); - BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); - BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst); - BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); - BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) - .addReg(X86::AX); - // NOTE: visitSetCondInst knows that the value is dumped into the BL - // register at this point for long values... - return OpNum; - } - } - } - - // Special case handling of comparison against +/- 0.0 - if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1)) - if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { - BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - return OpNum; - } - - unsigned Op1r = getReg(Op1, MBB, IP); - switch (Class) { - default: assert(0 && "Unknown type class!"); - // Emit: cmp <var1>, <var2> (do the comparison). We can - // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with - // 32-bit. - case cByte: - BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cShort: - BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cInt: - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cFP: - emitUCOMr(MBB, IP, Op0r, Op1r); - break; - - case cLong: - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = makeAnotherReg(Type::IntTy); - unsigned HiTmp = makeAnotherReg(Type::IntTy); - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - break; // Allow the sete or setne to be generated from flags set by OR - } else { - // Emit a sequence of code which compares the high and low parts once - // each, then uses a conditional move to handle the overflow case. For - // example, a setlt for long would generate code like this: - // - // AL = lo(op1) < lo(op2) // Signedness depends on operands - // BL = hi(op1) < hi(op2) // Always unsigned comparison - // dest = hi(op1) == hi(op2) ? BL : AL; - // - - // FIXME: This would be much better if we had hierarchical register - // classes! Until then, hardcode registers so that we can deal with their - // aliases (because we don't have conditional byte moves). - // - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); - BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) - .addReg(X86::AX); - // NOTE: visitSetCondInst knows that the value is dumped into the BL - // register at this point for long values... - return OpNum; - } - } - return OpNum; -} - -/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized -/// register, then move it to wherever the result should be. -/// -void ISel::visitSetCondInst(SetCondInst &I) { - if (canFoldSetCCIntoBranchOrSelect(&I)) - return; // Fold this into a branch or select. - - unsigned DestReg = getReg(I); - MachineBasicBlock::iterator MII = BB->end(); - emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), - DestReg); -} - -/// emitSetCCOperation - Common code shared between visitSetCondInst and -/// constant expression support. -/// -void ISel::emitSetCCOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg) { - unsigned OpNum = getSetCCNumber(Opcode); - OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); - - const Type *CompTy = Op0->getType(); - unsigned CompClass = getClassB(CompTy); - bool isSigned = CompTy->isSigned() && CompClass != cFP; - - if (CompClass != cLong || OpNum < 2) { - // Handle normal comparisons with a setcc instruction... - BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); - } else { - // Handle long comparisons by copying the value which is already in BL into - // the register we want... - BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); - } -} - -void ISel::visitSelectInst(SelectInst &SI) { - unsigned DestReg = getReg(SI); - MachineBasicBlock::iterator MII = BB->end(); - emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), - SI.getFalseValue(), DestReg); -} - -/// emitSelect - Common code shared between visitSelectInst and the constant -/// expression support. -void ISel::emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg) { - unsigned SelectClass = getClassB(TrueVal->getType()); - - // We don't support 8-bit conditional moves. If we have incoming constants, - // transform them into 16-bit constants to avoid having a run-time conversion. - if (SelectClass == cByte) { - if (Constant *T = dyn_cast<Constant>(TrueVal)) - TrueVal = ConstantExpr::getCast(T, Type::ShortTy); - if (Constant *F = dyn_cast<Constant>(FalseVal)) - FalseVal = ConstantExpr::getCast(F, Type::ShortTy); - } - - unsigned TrueReg = getReg(TrueVal, MBB, IP); - unsigned FalseReg = getReg(FalseVal, MBB, IP); - if (TrueReg == FalseReg) { - static const unsigned Opcode[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr - }; - BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg); - if (SelectClass == cLong) - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1); - return; - } - - unsigned Opcode; - if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { - // We successfully folded the setcc into the select instruction. - - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB, - IP); - - const Type *CompTy = SCI->getOperand(0)->getType(); - bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - - // LLVM -> X86 signed X86 unsigned - // ----- ---------- ------------ - // seteq -> cmovNE cmovNE - // setne -> cmovE cmovE - // setlt -> cmovGE cmovAE - // setge -> cmovL cmovB - // setgt -> cmovLE cmovBE - // setle -> cmovG cmovA - // ---- - // cmovNS // Used by comparison with 0 optimization - // cmovS - - switch (SelectClass) { - default: assert(0 && "Unknown value class!"); - case cFP: { - // Annoyingly, we don't have a full set of floating point conditional - // moves. :( - static const unsigned OpcodeTab[2][8] = { - { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB, - X86::FCMOVBE, X86::FCMOVA, 0, 0 }, - { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 }, - }; - Opcode = OpcodeTab[isSigned][OpNum]; - - // If opcode == 0, we hit a case that we don't support. Output a setcc - // and compare the result against zero. - if (Opcode == 0) { - unsigned CompClass = getClassB(CompTy); - unsigned CondReg; - if (CompClass != cLong || OpNum < 2) { - CondReg = makeAnotherReg(Type::BoolTy); - // Handle normal comparisons with a setcc instruction... - BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg); - } else { - // Long comparisons end up in the BL register. - CondReg = X86::BL; - } - - BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); - Opcode = X86::FCMOVE; - } - break; - } - case cByte: - case cShort: { - static const unsigned OpcodeTab[2][8] = { - { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr, - X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 }, - { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr, - X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr }, - }; - Opcode = OpcodeTab[isSigned][OpNum]; - break; - } - case cInt: - case cLong: { - static const unsigned OpcodeTab[2][8] = { - { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr, - X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 }, - { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr, - X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr }, - }; - Opcode = OpcodeTab[isSigned][OpNum]; - break; - } - } - } else { - // Get the value being branched on, and use it to set the condition codes. - unsigned CondReg = getReg(Cond, MBB, IP); - BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); - switch (SelectClass) { - default: assert(0 && "Unknown value class!"); - case cFP: Opcode = X86::FCMOVE; break; - case cByte: - case cShort: Opcode = X86::CMOVE16rr; break; - case cInt: - case cLong: Opcode = X86::CMOVE32rr; break; - } - } - - unsigned RealDestReg = DestReg; - - - // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of - // this, we have to promote the incoming values to 16 bits, perform a 16-bit - // cmove, then truncate the result. - if (SelectClass == cByte) { - DestReg = makeAnotherReg(Type::ShortTy); - if (getClassB(TrueVal->getType()) == cByte) { - // Promote the true value, by storing it into AL, and reading from AX. - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg); - BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0); - TrueReg = makeAnotherReg(Type::ShortTy); - BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX); - } - if (getClassB(FalseVal->getType()) == cByte) { - // Promote the true value, by storing it into CL, and reading from CX. - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg); - BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0); - FalseReg = makeAnotherReg(Type::ShortTy); - BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX); - } - } - - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg); - - switch (SelectClass) { - case cByte: - // We did the computation with 16-bit registers. Truncate back to our - // result by copying into AX then copying out AL. - BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg); - BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL); - break; - case cLong: - // Move the upper half of the value as well. - BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1); - break; - } -} - - - -/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide -/// operand, in the specified target register. -/// -void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { - bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; - - Value *Val = VR.Val; - const Type *Ty = VR.Ty; - if (Val) { - if (Constant *C = dyn_cast<Constant>(Val)) { - Val = ConstantExpr::getCast(C, Type::IntTy); - Ty = Type::IntTy; - } - - // If this is a simple constant, just emit a MOVri directly to avoid the - // copy. - if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { - int TheVal = CI->getRawValue() & 0xFFFFFFFF; - BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal); - return; - } - } - - // Make sure we have the register number for this value... - unsigned Reg = Val ? getReg(Val) : VR.Reg; - - switch (getClassB(Ty)) { - case cByte: - // Extend value into target register (8->32) - if (isUnsigned) - BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); - else - BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); - break; - case cShort: - // Extend value into target register (16->32) - if (isUnsigned) - BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); - else - BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); - break; - case cInt: - // Move value into target register (32->32) - BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); - break; - default: - assert(0 && "Unpromotable operand class in promote32"); - } -} - -/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, -/// we have the following possibilities: -/// -/// ret void: No return value, simply emit a 'ret' instruction -/// ret sbyte, ubyte : Extend value into EAX and return -/// ret short, ushort: Extend value into EAX and return -/// ret int, uint : Move value into EAX and return -/// ret pointer : Move value into EAX and return -/// ret long, ulong : Move value into EAX/EDX and return -/// ret float/double : Top of FP stack -/// -void ISel::visitReturnInst(ReturnInst &I) { - if (I.getNumOperands() == 0) { - BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction - return; - } - - Value *RetVal = I.getOperand(0); - switch (getClassB(RetVal->getType())) { - case cByte: // integral return values: extend or move into EAX and return - case cShort: - case cInt: - promote32(X86::EAX, ValueRecord(RetVal)); - // Declare that EAX is live on exit - BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); - break; - case cFP: { // Floats & Doubles: Return in ST(0) - unsigned RetReg = getReg(RetVal); - BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); - // Declare that top-of-stack is live on exit - BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); - break; - } - case cLong: { - unsigned RetReg = getReg(RetVal); - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); - // Declare that EAX & EDX are live on exit - BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) - .addReg(X86::ESP); - break; - } - default: - visitInstruction(I); - } - // Emit a 'ret' instruction - BuildMI(BB, X86::RET, 0); -} - -// getBlockAfter - Return the basic block which occurs lexically after the -// specified one. -static inline BasicBlock *getBlockAfter(BasicBlock *BB) { - Function::iterator I = BB; ++I; // Get iterator to next block - return I != BB->getParent()->end() ? &*I : 0; -} - -/// visitBranchInst - Handle conditional and unconditional branches here. Note -/// that since code layout is frozen at this point, that if we are trying to -/// jump to a block that is the immediate successor of the current block, we can -/// just make a fall-through (but we don't currently). -/// -void ISel::visitBranchInst(BranchInst &BI) { - // Update machine-CFG edges - BB->addSuccessor (MBBMap[BI.getSuccessor(0)]); - if (BI.isConditional()) - BB->addSuccessor (MBBMap[BI.getSuccessor(1)]); - - BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one - - if (!BI.isConditional()) { // Unconditional branch? - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - return; - } - - // See if we can fold the setcc into the branch itself... - SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); - if (SCI == 0) { - // Nope, cannot fold setcc into this branch. Emit a branch on a condition - // computed some other way... - unsigned condReg = getReg(BI.getCondition()); - BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg); - if (BI.getSuccessor(1) == NextBB) { - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - } else { - BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]); - - if (BI.getSuccessor(0) != NextBB) - BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]); - } - return; - } - - unsigned OpNum = getSetCCNumber(SCI->getOpcode()); - MachineBasicBlock::iterator MII = BB->end(); - OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); - - const Type *CompTy = SCI->getOperand(0)->getType(); - bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; - - - // LLVM -> X86 signed X86 unsigned - // ----- ---------- ------------ - // seteq -> je je - // setne -> jne jne - // setlt -> jl jb - // setge -> jge jae - // setgt -> jg ja - // setle -> jle jbe - // ---- - // js // Used by comparison with 0 optimization - // jns - - static const unsigned OpcodeTab[2][8] = { - { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, - { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, - X86::JS, X86::JNS }, - }; - - if (BI.getSuccessor(0) != NextBB) { - BuildMI(BB, OpcodeTab[isSigned][OpNum], 1) - .addMBB(MBBMap[BI.getSuccessor(0)]); - if (BI.getSuccessor(1) != NextBB) - BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]); - } else { - // Change to the inverse condition... - if (BI.getSuccessor(1) != NextBB) { - OpNum ^= 1; - BuildMI(BB, OpcodeTab[isSigned][OpNum], 1) - .addMBB(MBBMap[BI.getSuccessor(1)]); - } - } -} - - -/// doCall - This emits an abstract call instruction, setting up the arguments -/// and the return value as appropriate. For the actual function call itself, -/// it inserts the specified CallMI instruction into the stream. -/// -void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args) { - - // Count how many bytes are to be pushed on the stack... - unsigned NumBytes = 0; - - if (!Args.empty()) { - for (unsigned i = 0, e = Args.size(); i != e; ++i) - switch (getClassB(Args[i].Ty)) { - case cByte: case cShort: case cInt: - NumBytes += 4; break; - case cLong: - NumBytes += 8; break; - case cFP: - NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; - break; - default: assert(0 && "Unknown class!"); - } - - // Adjust the stack pointer for the new arguments... - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); - - // Arguments go on the stack in reverse order, as specified by the ABI. - unsigned ArgOffset = 0; - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - unsigned ArgReg; - switch (getClassB(Args[i].Ty)) { - case cByte: - if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) { - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) - .addImm(Args[i].Val == ConstantBool::True); - break; - } - // FALL THROUGH - case cShort: - if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { - // Zero/Sign extend constant, then stuff into memory. - ConstantInt *Val = cast<ConstantInt>(Args[i].Val); - Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy)); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) - .addImm(Val->getRawValue() & 0xFFFFFFFF); - } else { - // Promote arg to 32 bits wide into a temporary register... - ArgReg = makeAnotherReg(Type::UIntTy); - promote32(ArgReg, Args[i]); - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } - break; - case cInt: - if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { - unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(Val); - } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) { - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(0); - } else { - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } - break; - case cLong: - if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) { - uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue(); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset).addImm(Val & ~0U); - addRegOffset(BuildMI(BB, X86::MOV32mi, 5), - X86::ESP, ArgOffset+4).addImm(Val >> 32ULL); - } else { - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - addRegOffset(BuildMI(BB, X86::MOV32mr, 5), - X86::ESP, ArgOffset+4).addReg(ArgReg+1); - } - ArgOffset += 4; // 8 byte entry, not 4. - break; - - case cFP: - ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; - if (Args[i].Ty == Type::FloatTy) { - addRegOffset(BuildMI(BB, X86::FST32m, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - } else { - assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); - addRegOffset(BuildMI(BB, X86::FST64m, 5), - X86::ESP, ArgOffset).addReg(ArgReg); - ArgOffset += 4; // 8 byte entry, not 4. - } - break; - - default: assert(0 && "Unknown class!"); - } - ArgOffset += 4; - } - } else { - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); - } - - BB->push_back(CallMI); - - BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes); - - // If there is a return value, scavenge the result from the location the call - // leaves it in... - // - if (Ret.Ty != Type::VoidTy) { - unsigned DestClass = getClassB(Ret.Ty); - switch (DestClass) { - case cByte: - case cShort: - case cInt: { - // Integral results are in %eax, or the appropriate portion - // thereof. - static const unsigned regRegMove[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr - }; - static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; - BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); - break; - } - case cFP: // Floating-point return values live in %ST(0) - BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); - break; - case cLong: // Long values are left in EDX:EAX - BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); - BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); - break; - default: assert(0 && "Unknown class!"); - } - } -} - - -/// visitCallInst - Push args on stack and do a procedure call instruction. -void ISel::visitCallInst(CallInst &CI) { - MachineInstr *TheCall; - if (Function *F = CI.getCalledFunction()) { - // Is it an intrinsic function call? - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { - visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here - return; - } - - // Emit a CALL instruction with PC-relative displacement. - TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); - } else { // Emit an indirect call... - unsigned Reg = getReg(CI.getCalledValue()); - TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); - } - - std::vector<ValueRecord> Args; - for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) - Args.push_back(ValueRecord(CI.getOperand(i))); - - unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; - doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); -} - -/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the -/// function, lowering any calls to unknown intrinsic functions into the -/// equivalent LLVM code. -/// -void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) - if (CallInst *CI = dyn_cast<CallInst>(I++)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - case Intrinsic::vastart: - case Intrinsic::vacopy: - case Intrinsic::vaend: - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - case Intrinsic::memcpy: - case Intrinsic::memset: - case Intrinsic::isunordered: - case Intrinsic::readport: - case Intrinsic::writeport: - // We directly implement these intrinsics - break; - case Intrinsic::readio: { - // On X86, memory operations are in-order. Lower this intrinsic - // into a volatile load. - Instruction *Before = CI->getPrev(); - LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); - CI->replaceAllUsesWith(LI); - BB->getInstList().erase(CI); - break; - } - case Intrinsic::writeio: { - // On X86, memory operations are in-order. Lower this intrinsic - // into a volatile store. - Instruction *Before = CI->getPrev(); - StoreInst *LI = new StoreInst(CI->getOperand(1), - CI->getOperand(2), true, CI); - CI->replaceAllUsesWith(LI); - BB->getInstList().erase(CI); - break; - } - default: - // All other intrinsic calls we must lower. - Instruction *Before = CI->getPrev(); - TM.getIntrinsicLowering().LowerIntrinsicCall(CI); - if (Before) { // Move iterator to instruction after call - I = Before; ++I; - } else { - I = BB->begin(); - } - } -} - -void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { - unsigned TmpReg1, TmpReg2; - switch (ID) { - case Intrinsic::vastart: - // Get the address of the first vararg value... - TmpReg1 = getReg(CI); - addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); - return; - - case Intrinsic::vacopy: - TmpReg1 = getReg(CI); - TmpReg2 = getReg(CI.getOperand(1)); - BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); - return; - case Intrinsic::vaend: return; // Noop on X86 - - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - TmpReg1 = getReg(CI); - if (cast<Constant>(CI.getOperand(1))->isNullValue()) { - if (ID == Intrinsic::returnaddress) { - // Just load the return address - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), - ReturnAddressIndex); - } else { - addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), - ReturnAddressIndex, -4); - } - } else { - // Values other than zero are not implemented yet. - BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); - } - return; - - case Intrinsic::isunordered: - TmpReg1 = getReg(CI.getOperand(1)); - TmpReg2 = getReg(CI.getOperand(2)); - emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1); - TmpReg2 = getReg(CI); - BuildMI(BB, X86::SETPr, 0, TmpReg2); - return; - - case Intrinsic::memcpy: { - assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); - unsigned Align = 1; - if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { - Align = AlignC->getRawValue(); - if (Align == 0) Align = 1; - } - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - switch (Align & 3) { - case 2: // WORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - Opcode = X86::REP_MOVSW; - break; - case 0: // DWORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Opcode = X86::REP_MOVSD; - break; - default: // BYTE aligned - CountReg = getReg(CI.getOperand(3)); - Opcode = X86::REP_MOVSB; - break; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - TmpReg1 = getReg(CI.getOperand(1)); - TmpReg2 = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); - BuildMI(BB, Opcode, 0); - return; - } - case Intrinsic::memset: { - assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); - unsigned Align = 1; - if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) { - Align = AlignC->getRawValue(); - if (Align == 0) Align = 1; - } - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) { - unsigned Val = ValC->getRawValue() & 255; - - // If the value is a constant, then we can potentially use larger copies. - switch (Align & 3) { - case 2: // WORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); - Opcode = X86::REP_STOSW; - break; - case 0: // DWORD aligned - if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) { - CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); - } else { - CountReg = makeAnotherReg(Type::IntTy); - unsigned ByteReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Val = (Val << 8) | Val; - BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); - Opcode = X86::REP_STOSD; - break; - default: // BYTE aligned - CountReg = getReg(CI.getOperand(3)); - BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); - Opcode = X86::REP_STOSB; - break; - } - } else { - // If it's not a constant value we are storing, just fall back. We could - // try to be clever to form 16 bit and 32 bit values, but we don't yet. - unsigned ValReg = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); - CountReg = getReg(CI.getOperand(3)); - Opcode = X86::REP_STOSB; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - TmpReg1 = getReg(CI.getOperand(1)); - //TmpReg2 = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, Opcode, 0); - return; - } - - case Intrinsic::readport: { - // First, determine that the size of the operand falls within the acceptable - // range for this architecture. - // - if (getClassB(CI.getOperand(1)->getType()) != cShort) { - std::cerr << "llvm.readport: Address size is not 16 bits\n"; - exit(1); - } - - // Now, move the I/O port address into the DX register and use the IN - // instruction to get the input data. - // - unsigned Class = getClass(CI.getCalledFunction()->getReturnType()); - unsigned DestReg = getReg(CI); - - // If the port is a single-byte constant, use the immediate form. - if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1))) - if ((C->getRawValue() & 255) == C->getRawValue()) { - switch (Class) { - case cByte: - BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue()); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - return; - case cShort: - BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue()); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); - return; - case cInt: - BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue()); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); - return; - } - } - - unsigned Reg = getReg(CI.getOperand(1)); - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); - switch (Class) { - case cByte: - BuildMI(BB, X86::IN8rr, 0); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - break; - case cShort: - BuildMI(BB, X86::IN16rr, 0); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); - break; - case cInt: - BuildMI(BB, X86::IN32rr, 0); - BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); - break; - default: - std::cerr << "Cannot do input on this data type"; - exit (1); - } - return; - } - - case Intrinsic::writeport: { - // First, determine that the size of the operand falls within the - // acceptable range for this architecture. - if (getClass(CI.getOperand(2)->getType()) != cShort) { - std::cerr << "llvm.writeport: Address size is not 16 bits\n"; - exit(1); - } - - unsigned Class = getClassB(CI.getOperand(1)->getType()); - unsigned ValReg = getReg(CI.getOperand(1)); - switch (Class) { - case cByte: - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); - break; - case cShort: - BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg); - break; - case cInt: - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg); - break; - default: - std::cerr << "llvm.writeport: invalid data type for X86 target"; - exit(1); - } - - - // If the port is a single-byte constant, use the immediate form. - if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2))) - if ((C->getRawValue() & 255) == C->getRawValue()) { - static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir }; - BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue()); - return; - } - - // Otherwise, move the I/O port address into the DX register and the value - // to write into the AL/AX/EAX register. - static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr }; - unsigned Reg = getReg(CI.getOperand(2)); - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); - BuildMI(BB, Opc[Class], 0); - return; - } - - default: assert(0 && "Error: unknown intrinsics should have been lowered!"); - } -} - -static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { - if (LI.getParent() != User.getParent()) - return false; - BasicBlock::iterator It = &LI; - // Check all of the instructions between the load and the user. We should - // really use alias analysis here, but for now we just do something simple. - for (++It; It != BasicBlock::iterator(&User); ++It) { - switch (It->getOpcode()) { - case Instruction::Free: - case Instruction::Store: - case Instruction::Call: - case Instruction::Invoke: - return false; - case Instruction::Load: - if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile()) - return false; - break; - } - } - return true; -} - -/// visitSimpleBinary - Implement simple binary operators for integral types... -/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for -/// Xor. -/// -void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { - unsigned DestReg = getReg(B); - MachineBasicBlock::iterator MI = BB->end(); - Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); - unsigned Class = getClassB(B.getType()); - - // Special case: op Reg, load [mem] - if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong && - Op0->hasOneUse() && - isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) - if (!B.swapOperands()) - std::swap(Op0, Op1); // Make sure any loads are in the RHS. - - if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() && - isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) { - - unsigned Opcode; - if (Class != cFP) { - static const unsigned OpcodeTab[][3] = { - // Arithmetic operators - { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD - { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB - - // Bitwise operators - { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND - { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR - { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR - }; - Opcode = OpcodeTab[OperatorClass][Class]; - } else { - static const unsigned OpcodeTab[][2] = { - { X86::FADD32m, X86::FADD64m }, // ADD - { X86::FSUB32m, X86::FSUB64m }, // SUB - }; - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy]; - } - - unsigned Op0r = getReg(Op0); - if (AllocaInst *AI = - dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI); - - } else { - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg, - Scale, IndexReg, Disp); - - addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), - BaseReg, Scale, IndexReg, Disp); - } - return; - } - - // If this is a floating point subtract, check to see if we can fold the first - // operand in. - if (Class == cFP && OperatorClass == 1 && - isa<LoadInst>(Op0) && - isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m; - - unsigned Op1r = getReg(Op1); - if (AllocaInst *AI = - dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI); - } else { - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg, - Scale, IndexReg, Disp); - - addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), - BaseReg, Scale, IndexReg, Disp); - } - return; - } - - emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); -} - - -/// emitBinaryFPOperation - This method handles emission of floating point -/// Add (0), Sub (1), Mul (2), and Div (3) operations. -void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned DestReg) { - - // Special case: op Reg, <const fp> - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) - if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) { - // Create a constant pool entry for this constant. - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(Op1C); - const Type *Ty = Op1->getType(); - - static const unsigned OpcodeTab[][4] = { - { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float - { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double - }; - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; - unsigned Op0r = getReg(Op0, BB, IP); - addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, - DestReg).addReg(Op0r), CPI); - return; - } - - // Special case: R1 = op <const fp>, R2 - if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) - if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { - // -0.0 - X === -X - unsigned op1Reg = getReg(Op1, BB, IP); - BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); - return; - } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) { - // R1 = op CST, R2 --> R1 = opr R2, CST - - // Create a constant pool entry for this constant. - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - static const unsigned OpcodeTab[][4] = { - { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float - { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double - }; - - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; - unsigned Op1r = getReg(Op1, BB, IP); - addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, - DestReg).addReg(Op1r), CPI); - return; - } - - // General case. - static const unsigned OpcodeTab[4] = { - X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV - }; - - unsigned Opcode = OpcodeTab[OperatorClass]; - unsigned Op0r = getReg(Op0, BB, IP); - unsigned Op1r = getReg(Op1, BB, IP); - BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); -} - -/// emitSimpleBinaryOperation - Implement simple binary operators for integral -/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for -/// Or, 4 for Xor. -/// -/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary -/// and constant expression support. -/// -void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned DestReg) { - unsigned Class = getClassB(Op0->getType()); - - if (Class == cFP) { - assert(OperatorClass < 2 && "No logical ops for FP!"); - emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); - return; - } - - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) - if (OperatorClass == 1) { - static unsigned const NEGTab[] = { - X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r - }; - - // sub 0, X -> neg X - if (CI->isNullValue()) { - unsigned op1Reg = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg); - - if (Class == cLong) { - // We just emitted: Dl = neg Sl - // Now emit : T = addc Sh, 0 - // : Dh = neg T - unsigned T = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0); - BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T); - } - return; - } else if (Op1->hasOneUse() && Class != cLong) { - // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better - // than copying C into a temporary register, because of register - // pressure (tmp and destreg can share a register. - static unsigned const ADDRITab[] = { - X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri - }; - unsigned op1Reg = getReg(Op1, MBB, IP); - unsigned Tmp = makeAnotherReg(Op0->getType()); - BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg); - BuildMI(*MBB, IP, ADDRITab[Class], 2, - DestReg).addReg(Tmp).addImm(CI->getRawValue()); - return; - } - } - - // Special case: op Reg, <const int> - if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { - unsigned Op0r = getReg(Op0, MBB, IP); - - // xor X, -1 -> not X - if (OperatorClass == 4 && Op1C->isAllOnesValue()) { - static unsigned const NOTTab[] = { - X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r - }; - BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); - if (Class == cLong) // Invert the top part too - BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1); - return; - } - - // add X, -1 -> dec X - if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) { - // Note that we can't use dec for 64-bit decrements, because it does not - // set the carry flag! - static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r }; - BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - // add X, 1 -> inc X - if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) { - // Note that we can't use inc for 64-bit increments, because it does not - // set the carry flag! - static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r }; - BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r); - return; - } - - static const unsigned OpcodeTab[][5] = { - // Arithmetic operators - { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD - { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB - - // Bitwise operators - { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND - { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR - { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR - }; - - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue(); - - if (Class != cLong) { - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); - return; - } - - // If this is a long value and the high or low bits have a special - // property, emit some special cases. - unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; - - // If the constant is zero in the low 32-bits, just copy the low part - // across and apply the normal 32-bit operation to the high parts. There - // will be no carry or borrow into the top. - if (Op1l == 0) { - if (OperatorClass != 2) // All but and... - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r); - else - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1) - .addReg(Op0r+1).addImm(Op1h); - return; - } - - // If this is a logical operation and the top 32-bits are zero, just - // operate on the lower 32. - if (Op1h == 0 && OperatorClass > 1) { - BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg) - .addReg(Op0r).addImm(Op1l); - if (OperatorClass != 2) // All but and - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1); - else - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - return; - } - - // TODO: We could handle lots of other special cases here, such as AND'ing - // with 0xFFFFFFFF00000000 -> noop, etc. - - // Otherwise, code generate the full operation with a constant. - static const unsigned TopTab[] = { - X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri - }; - - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); - BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1) - .addReg(Op0r+1).addImm(Op1h); - return; - } - - // Finally, handle the general case now. - static const unsigned OpcodeTab[][5] = { - // Arithmetic operators - { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD - { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB - - // Bitwise operators - { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND - { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR - { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR - }; - - unsigned Opcode = OpcodeTab[OperatorClass][Class]; - unsigned Op0r = getReg(Op0, MBB, IP); - unsigned Op1r = getReg(Op1, MBB, IP); - BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); - - if (Class == cLong) { // Handle the upper 32 bits of long values... - static const unsigned TopTab[] = { - X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr - }; - BuildMI(*MBB, IP, TopTab[OperatorClass], 2, - DestReg+1).addReg(Op0r+1).addReg(Op1r+1); - } -} - -/// doMultiply - Emit appropriate instructions to multiply together the -/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the -/// result should be given as DestTy. -/// -void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned op0Reg, unsigned op1Reg) { - unsigned Class = getClass(DestTy); - switch (Class) { - case cInt: - case cShort: - BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) - .addReg(op0Reg).addReg(op1Reg); - return; - case cByte: - // Must use the MUL instruction, which forces use of AL... - BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); - BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); - BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); - return; - default: - case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); - } -} - -// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It -// returns zero when the input is not exactly a power of two. -static unsigned ExactLog2(unsigned Val) { - if (Val == 0 || (Val & (Val-1))) return 0; - unsigned Count = 0; - while (Val != 1) { - Val >>= 1; - ++Count; - } - return Count+1; -} - - -/// doMultiplyConst - This function is specialized to efficiently codegen an 8, -/// 16, or 32-bit integer multiply by a constant. -void ISel::doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, const Type *DestTy, - unsigned op0Reg, unsigned ConstRHS) { - static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr}; - static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri}; - static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr}; - static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r }; - - unsigned Class = getClass(DestTy); - unsigned TmpReg; - - // Handle special cases here. - switch (ConstRHS) { - case -2: - TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg); - BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg); - return; - case -1: - BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg); - return; - case 0: - BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0); - return; - case 1: - BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg); - return; - case 2: - BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg); - return; - case 3: - case 5: - case 9: - if (Class == cInt) { - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), - op0Reg, ConstRHS-1, op0Reg, 0); - return; - } - case -3: - case -5: - case -9: - if (Class == cInt) { - TmpReg = makeAnotherReg(DestTy); - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), - op0Reg, -ConstRHS-1, op0Reg, 0); - BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg); - return; - } - } - - // If the element size is exactly a power of 2, use a shift to get it. - if (unsigned Shift = ExactLog2(ConstRHS)) { - switch (Class) { - default: assert(0 && "Unknown class for this function!"); - case cByte: - BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); - return; - case cShort: - BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); - return; - case cInt: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); - return; - } - } - - // If the element size is a negative power of 2, use a shift/neg to get it. - if (unsigned Shift = ExactLog2(-ConstRHS)) { - TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg); - switch (Class) { - default: assert(0 && "Unknown class for this function!"); - case cByte: - BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1); - return; - case cShort: - BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1); - return; - case cInt: - BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1); - return; - } - } - - if (Class == cShort) { - BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); - return; - } else if (Class == cInt) { - BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); - return; - } - - // Most general case, emit a normal multiply... - TmpReg = makeAnotherReg(DestTy); - BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); - - // Emit a MUL to multiply the register holding the index by - // elementSize, putting the result in OffsetReg. - doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); -} - -/// visitMul - Multiplies are not simple binary operators because they must deal -/// with the EAX register explicitly. -/// -void ISel::visitMul(BinaryOperator &I) { - unsigned ResultReg = getReg(I); - - Value *Op0 = I.getOperand(0); - Value *Op1 = I.getOperand(1); - - // Fold loads into floating point multiplies. - if (getClass(Op0->getType()) == cFP) { - if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1)) - if (!I.swapOperands()) - std::swap(Op0, Op1); // Make sure any loads are in the RHS. - if (LoadInst *LI = dyn_cast<LoadInst>(Op1)) - if (isSafeToFoldLoadIntoInstruction(*LI, I)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m; - - unsigned Op0r = getReg(Op0); - if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI); - } else { - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(LI->getOperand(0), BaseReg, - Scale, IndexReg, Disp); - - addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), - BaseReg, Scale, IndexReg, Disp); - } - return; - } - } - - MachineBasicBlock::iterator IP = BB->end(); - emitMultiply(BB, IP, Op0, Op1, ResultReg); -} - -void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned DestReg) { - MachineBasicBlock &BB = *MBB; - TypeClass Class = getClass(Op0->getType()); - - // Simple scalar multiply? - unsigned Op0Reg = getReg(Op0, &BB, IP); - switch (Class) { - case cByte: - case cShort: - case cInt: - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant - doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val); - } else { - unsigned Op1Reg = getReg(Op1, &BB, IP); - doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg); - } - return; - case cFP: - emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); - return; - case cLong: - break; - } - - // Long value. We have to do things the hard way... - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - unsigned CLow = CI->getRawValue(); - unsigned CHi = CI->getRawValue() >> 32; - - if (CLow == 0) { - // If the low part of the constant is all zeros, things are simple. - BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); - return; - } - - // Multiply the two low parts... capturing carry into EDX - unsigned OverflowReg = 0; - if (CLow == 1) { - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg); - } else { - unsigned Op1RegL = makeAnotherReg(Type::UIntTy); - OverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow); - BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); - BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL - - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL - BuildMI(BB, IP, X86::MOV32rr, 1, - OverflowReg).addReg(X86::EDX); // AL*BL >> 32 - } - - unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL - doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); - - unsigned AHBLplusOverflowReg; - if (OverflowReg) { - AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) - AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); - } else { - AHBLplusOverflowReg = AHBLReg; - } - - if (CHi == 0) { - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg); - } else { - unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH - doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); - - BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) - DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); - } - return; - } - - // General 64x64 multiply - - unsigned Op1Reg = getReg(Op1, &BB, IP); - // Multiply the two low parts... capturing carry into EDX - BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); - BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL - - unsigned OverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL - BuildMI(BB, IP, X86::MOV32rr, 1, - OverflowReg).addReg(X86::EDX); // AL*BL >> 32 - - unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL - BuildMI(BB, IP, X86::IMUL32rr, 2, - AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); - - unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) - AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); - - unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH - BuildMI(BB, IP, X86::IMUL32rr, 2, - ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); - - BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) - DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); -} - - -/// visitDivRem - Handle division and remainder instructions... these -/// instruction both require the same instructions to be generated, they just -/// select the result from a different register. Note that both of these -/// instructions work differently for signed and unsigned operands. -/// -void ISel::visitDivRem(BinaryOperator &I) { - unsigned ResultReg = getReg(I); - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - - // Fold loads into floating point divides. - if (getClass(Op0->getType()) == cFP) { - if (LoadInst *LI = dyn_cast<LoadInst>(Op1)) - if (isSafeToFoldLoadIntoInstruction(*LI, I)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m; - - unsigned Op0r = getReg(Op0); - if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI); - } else { - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(LI->getOperand(0), BaseReg, - Scale, IndexReg, Disp); - - addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), - BaseReg, Scale, IndexReg, Disp); - } - return; - } - - if (LoadInst *LI = dyn_cast<LoadInst>(Op0)) - if (isSafeToFoldLoadIntoInstruction(*LI, I)) { - const Type *Ty = Op0->getType(); - assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m; - - unsigned Op1r = getReg(Op1); - if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI); - } else { - unsigned BaseReg, Scale, IndexReg, Disp; - getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp); - addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), - BaseReg, Scale, IndexReg, Disp); - } - return; - } - } - - - MachineBasicBlock::iterator IP = BB->end(); - emitDivRemOperation(BB, IP, Op0, Op1, - I.getOpcode() == Instruction::Div, ResultReg); -} - -void ISel::emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned ResultReg) { - const Type *Ty = Op0->getType(); - unsigned Class = getClass(Ty); - switch (Class) { - case cFP: // Floating point divide - if (isDiv) { - emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); - return; - } else { // Floating point remainder... - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned Op1Reg = getReg(Op1, BB, IP); - MachineInstr *TheCall = - BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); - Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); - doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); - } - return; - case cLong: { - static const char *FnName[] = - { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned Op1Reg = getReg(Op1, BB, IP); - unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; - MachineInstr *TheCall = - BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); - - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); - Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); - doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); - return; - } - case cByte: case cShort: case cInt: - break; // Small integrals, handled below... - default: assert(0 && "Unknown class!"); - } - - static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; - static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r }; - static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; - static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }; - static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr }; - - // Special case signed division by power of 2. - if (isDiv) - if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) { - assert(Class != cLong && "This doesn't handle 64-bit divides!"); - int V = CI->getValue(); - - if (V == 1) { // X /s 1 => X - unsigned Op0Reg = getReg(Op0, BB, IP); - BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg); - return; - } - - if (V == -1) { // X /s -1 => -X - unsigned Op0Reg = getReg(Op0, BB, IP); - BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg); - return; - } - - bool isNeg = false; - if (V < 0) { // Not a positive power of 2? - V = -V; - isNeg = true; // Maybe it's a negative power of 2. - } - if (unsigned Log = ExactLog2(V)) { - --Log; - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned TmpReg = makeAnotherReg(Op0->getType()); - if (Log != 1) - BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg) - .addReg(Op0Reg).addImm(Log-1); - else - BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg); - unsigned TmpReg2 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2) - .addReg(TmpReg).addImm(32-Log); - unsigned TmpReg3 = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3) - .addReg(Op0Reg).addReg(TmpReg2); - - unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg; - BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4) - .addReg(Op0Reg).addImm(Log); - if (isNeg) - BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4); - return; - } - } - - static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; - static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; - static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; - - static const unsigned DivOpcode[][4] = { - { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division - { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division - }; - - unsigned Reg = Regs[Class]; - unsigned ExtReg = ExtRegs[Class]; - - // Put the first operand into one of the A registers... - unsigned Op0Reg = getReg(Op0, BB, IP); - unsigned Op1Reg = getReg(Op1, BB, IP); - BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); - - if (Ty->isSigned()) { - // Emit a sign extension instruction... - unsigned ShiftResult = makeAnotherReg(Op0->getType()); - BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31); - BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); - - // Emit the appropriate divide or remainder instruction... - BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg); - } else { - // If unsigned, emit a zeroing instruction... (reg = 0) - BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); - - // Emit the appropriate divide or remainder instruction... - BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg); - } - - // Figure out which register we want to pick the result out of... - unsigned DestReg = isDiv ? Reg : ExtReg; - - // Put the result into the destination register... - BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); -} - - -/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here -/// for constant immediate shift values, and for constant immediate -/// shift values equal to 1. Even the general case is sort of special, -/// because the shift amount has to be in CL, not just any old register. -/// -void ISel::visitShiftInst(ShiftInst &I) { - MachineBasicBlock::iterator IP = BB->end (); - emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), - I.getOpcode () == Instruction::Shl, I.getType (), - getReg (I)); -} - -/// emitShiftOperation - Common code shared between visitShiftInst and -/// constant expression support. -void ISel::emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg) { - unsigned SrcReg = getReg (Op, MBB, IP); - bool isSigned = ResultTy->isSigned (); - unsigned Class = getClass (ResultTy); - - static const unsigned ConstantOperand[][4] = { - { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR - { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR - { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL - { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL - }; - - static const unsigned NonConstantOperand[][4] = { - { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR - { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR - { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL - { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL - }; - - // Longs, as usual, are handled specially... - if (Class == cLong) { - // If we have a constant shift, we can generate much more efficient code - // than otherwise... - // - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { - unsigned Amount = CUI->getValue(); - if (Amount < 32) { - const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; - if (isLeftShift) { - BuildMI(*MBB, IP, Opc[3], 3, - DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount); - BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); - } else { - BuildMI(*MBB, IP, Opc[3], 3, - DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount); - BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); - } - } else { // Shifting more than 32 bits - Amount -= 32; - if (isLeftShift) { - if (Amount != 0) { - BuildMI(*MBB, IP, X86::SHL32ri, 2, - DestReg + 1).addReg(SrcReg).addImm(Amount); - } else { - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg); - } - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); - } else { - if (Amount != 0) { - BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2, - DestReg).addReg(SrcReg+1).addImm(Amount); - } else { - BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1); - } - BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - } - } - } else { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - - if (!isLeftShift && isSigned) { - // If this is a SHR of a Long, then we need to do funny sign extension - // stuff. TmpReg gets the value to use as the high-part if we are - // shifting more than 32 bits. - BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); - } else { - // Other shifts use a fixed zero value if the shift is more than 32 - // bits. - BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); - } - - // Initialize CL with the shift amount... - unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - unsigned TmpReg2 = makeAnotherReg(Type::IntTy); - unsigned TmpReg3 = makeAnotherReg(Type::IntTy); - if (isLeftShift) { - // TmpReg2 = shld inHi, inLo - BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) - .addReg(SrcReg); - // TmpReg3 = shl inLo, CL - BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestHi = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg+1).addReg(TmpReg2).addReg(TmpReg3); - // DestLo = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg).addReg(TmpReg3).addReg(TmpReg); - } else { - // TmpReg2 = shrd inLo, inHi - BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) - .addReg(SrcReg+1); - // TmpReg3 = s[ah]r inHi, CL - BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) - .addReg(SrcReg+1); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestLo = (>32) ? TmpReg3 : TmpReg2; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg).addReg(TmpReg2).addReg(TmpReg3); - - // DestHi = (>32) ? TmpReg : TmpReg3; - BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, - DestReg+1).addReg(TmpReg3).addReg(TmpReg); - } - } - return; - } - - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { - // The shift amount is constant, guaranteed to be a ubyte. Get its value. - assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); - - const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; - BuildMI(*MBB, IP, Opc[Class], 2, - DestReg).addReg(SrcReg).addImm(CUI->getValue()); - } else { // The shift amount is non-constant. - unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); - BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; - BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); - } -} - - -/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' -/// instruction. The load and store instructions are the only place where we -/// need to worry about the memory layout of the target machine. -/// -void ISel::visitLoadInst(LoadInst &I) { - // Check to see if this load instruction is going to be folded into a binary - // instruction, like add. If so, we don't want to emit it. Wouldn't a real - // pattern matching instruction selector be nice? - unsigned Class = getClassB(I.getType()); - if (I.hasOneUse()) { - Instruction *User = cast<Instruction>(I.use_back()); - switch (User->getOpcode()) { - case Instruction::Cast: - // If this is a cast from a signed-integer type to a floating point type, - // fold the cast here. - if (getClassB(User->getType()) == cFP && - (I.getType() == Type::ShortTy || I.getType() == Type::IntTy || - I.getType() == Type::LongTy)) { - unsigned DestReg = getReg(User); - static const unsigned Opcode[] = { - 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m - }; - - if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI); - } else { - unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; - getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); - addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), - BaseReg, Scale, IndexReg, Disp); - } - return; - } else { - User = 0; - } - break; - - case Instruction::Add: - case Instruction::Sub: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - if (Class == cLong) User = 0; - break; - case Instruction::Mul: - case Instruction::Div: - if (Class != cFP) User = 0; - break; // Folding only implemented for floating point. - default: User = 0; break; - } - - if (User) { - // Okay, we found a user. If the load is the first operand and there is - // no second operand load, reverse the operand ordering. Note that this - // can fail for a subtract (ie, no change will be made). - bool Swapped = false; - if (!isa<LoadInst>(User->getOperand(1))) - Swapped = !cast<BinaryOperator>(User)->swapOperands(); - - // Okay, now that everything is set up, if this load is used by the second - // operand, and if there are no instructions that invalidate the load - // before the binary operator, eliminate the load. - if (User->getOperand(1) == &I && - isSafeToFoldLoadIntoInstruction(I, *User)) - return; // Eliminate the load! - - // If this is a floating point sub or div, we won't be able to swap the - // operands, but we will still be able to eliminate the load. - if (Class == cFP && User->getOperand(0) == &I && - !isa<LoadInst>(User->getOperand(1)) && - (User->getOpcode() == Instruction::Sub || - User->getOpcode() == Instruction::Div) && - isSafeToFoldLoadIntoInstruction(I, *User)) - return; // Eliminate the load! - - // If we swapped the operands to the instruction, but couldn't fold the - // load anyway, swap them back. We don't want to break add X, int - // folding. - if (Swapped) cast<BinaryOperator>(User)->swapOperands(); - } - } - - static const unsigned Opcodes[] = { - X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm - }; - unsigned Opcode = Opcodes[Class]; - if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; - - unsigned DestReg = getReg(I); - - if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { - unsigned FI = getFixedSizedAllocaFI(AI); - if (Class == cLong) { - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4); - } else { - addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI); - } - } else { - unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; - getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); - - if (Class == cLong) { - addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), - BaseReg, Scale, IndexReg, Disp); - addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), - BaseReg, Scale, IndexReg, Disp+4); - } else { - addFullAddress(BuildMI(BB, Opcode, 4, DestReg), - BaseReg, Scale, IndexReg, Disp); - } - } -} - -/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' -/// instruction. -/// -void ISel::visitStoreInst(StoreInst &I) { - unsigned BaseReg = ~0U, Scale = ~0U, IndexReg = ~0U, Disp = ~0U; - unsigned AllocaFrameIdx = ~0U; - - if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(1))) - AllocaFrameIdx = getFixedSizedAllocaFI(AI); - else - getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp); - - const Type *ValTy = I.getOperand(0)->getType(); - unsigned Class = getClassB(ValTy); - - if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) { - uint64_t Val = CI->getRawValue(); - if (Class == cLong) { - if (AllocaFrameIdx != ~0U) { - addFrameReference(BuildMI(BB, X86::MOV32mi, 5), - AllocaFrameIdx).addImm(Val & ~0U); - addFrameReference(BuildMI(BB, X86::MOV32mi, 5), - AllocaFrameIdx, 4).addImm(Val>>32); - } else { - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U); - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32); - } - } else { - static const unsigned Opcodes[] = { - X86::MOV8mi, X86::MOV16mi, X86::MOV32mi - }; - unsigned Opcode = Opcodes[Class]; - if (AllocaFrameIdx != ~0U) - addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addImm(Val); - else - addFullAddress(BuildMI(BB, Opcode, 5), - BaseReg, Scale, IndexReg, Disp).addImm(Val); - } - } else if (isa<ConstantPointerNull>(I.getOperand(0))) { - if (AllocaFrameIdx != ~0U) - addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(0); - else - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm(0); - - } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) { - if (AllocaFrameIdx != ~0U) - addFrameReference(BuildMI(BB, X86::MOV8mi, 5), - AllocaFrameIdx).addImm(CB->getValue()); - else - addFullAddress(BuildMI(BB, X86::MOV8mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue()); - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) { - // Store constant FP values with integer instructions to avoid having to - // load the constants from the constant pool then do a store. - if (CFP->getType() == Type::FloatTy) { - union { - unsigned I; - float F; - } V; - V.F = CFP->getValue(); - if (AllocaFrameIdx != ~0U) - addFrameReference(BuildMI(BB, X86::MOV32mi, 5), - AllocaFrameIdx).addImm(V.I); - else - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm(V.I); - } else { - union { - uint64_t I; - double F; - } V; - V.F = CFP->getValue(); - if (AllocaFrameIdx != ~0U) { - addFrameReference(BuildMI(BB, X86::MOV32mi, 5), - AllocaFrameIdx).addImm((unsigned)V.I); - addFrameReference(BuildMI(BB, X86::MOV32mi, 5), - AllocaFrameIdx, 4).addImm(unsigned(V.I >> 32)); - } else { - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I); - addFullAddress(BuildMI(BB, X86::MOV32mi, 5), - BaseReg, Scale, IndexReg, Disp+4).addImm( - unsigned(V.I >> 32)); - } - } - - } else if (Class == cLong) { - unsigned ValReg = getReg(I.getOperand(0)); - if (AllocaFrameIdx != ~0U) { - addFrameReference(BuildMI(BB, X86::MOV32mr, 5), - AllocaFrameIdx).addReg(ValReg); - addFrameReference(BuildMI(BB, X86::MOV32mr, 5), - AllocaFrameIdx, 4).addReg(ValReg+1); - } else { - addFullAddress(BuildMI(BB, X86::MOV32mr, 5), - BaseReg, Scale, IndexReg, Disp).addReg(ValReg); - addFullAddress(BuildMI(BB, X86::MOV32mr, 5), - BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1); - } - } else { - unsigned ValReg = getReg(I.getOperand(0)); - static const unsigned Opcodes[] = { - X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m - }; - unsigned Opcode = Opcodes[Class]; - if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; - - if (AllocaFrameIdx != ~0U) - addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addReg(ValReg); - else - addFullAddress(BuildMI(BB, Opcode, 1+4), - BaseReg, Scale, IndexReg, Disp).addReg(ValReg); - } -} - - -/// visitCastInst - Here we have various kinds of copying with or without sign -/// extension going on. -/// -void ISel::visitCastInst(CastInst &CI) { - Value *Op = CI.getOperand(0); - - unsigned SrcClass = getClassB(Op->getType()); - unsigned DestClass = getClassB(CI.getType()); - // Noop casts are not emitted: getReg will return the source operand as the - // register to use for any uses of the noop cast. - if (DestClass == SrcClass) { - // The only detail in this plan is that casts from double -> float are - // truncating operations that we have to codegen through memory (despite - // the fact that the source/dest registers are the same class). - if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy) - return; - } - - // If this is a cast from a 32-bit integer to a Long type, and the only uses - // of the case are GEP instructions, then the cast does not need to be - // generated explicitly, it will be folded into the GEP. - if (DestClass == cLong && SrcClass == cInt) { - bool AllUsesAreGEPs = true; - for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) - if (!isa<GetElementPtrInst>(*I)) { - AllUsesAreGEPs = false; - break; - } - - // No need to codegen this cast if all users are getelementptr instrs... - if (AllUsesAreGEPs) return; - } - - // If this cast converts a load from a short,int, or long integer to a FP - // value, we will have folded this cast away. - if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() && - (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy || - Op->getType() == Type::LongTy)) - return; - - - unsigned DestReg = getReg(CI); - MachineBasicBlock::iterator MI = BB->end(); - emitCastOperation(BB, MI, Op, CI.getType(), DestReg); -} - -/// emitCastOperation - Common code shared between visitCastInst and constant -/// expression cast support. -/// -void ISel::emitCastOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, - unsigned DestReg) { - const Type *SrcTy = Src->getType(); - unsigned SrcClass = getClassB(SrcTy); - unsigned DestClass = getClassB(DestTy); - unsigned SrcReg = getReg(Src, BB, IP); - - // Implement casts to bool by using compare on the operand followed by set if - // not zero on the result. - if (DestTy == Type::BoolTy) { - switch (SrcClass) { - case cByte: - BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cShort: - BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cInt: - BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); - break; - case cLong: { - unsigned TmpReg = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); - break; - } - case cFP: - BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); - BuildMI(*BB, IP, X86::FNSTSW8r, 0); - BuildMI(*BB, IP, X86::SAHF, 1); - break; - } - - // If the zero flag is not set, then the value is true, set the byte to - // true. - BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); - return; - } - - static const unsigned RegRegMove[] = { - X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr - }; - - // Implement casts between values of the same type class (as determined by - // getClass) by using a register-to-register move. - if (SrcClass == DestClass) { - if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { - BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); - } else if (SrcClass == cFP) { - if (SrcTy == Type::FloatTy) { // double -> float - assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); - BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); - } else { // float -> double - assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && - "Unknown cFP member!"); - // Truncate from double to float by storing to memory as short, then - // reading it back. - unsigned FltAlign = TM.getTargetData().getFloatAlignment(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); - addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg); - addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); - } - } else if (SrcClass == cLong) { - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); - } else { - assert(0 && "Cannot handle this type of cast instruction!"); - abort(); - } - return; - } - - // Handle cast of SMALLER int to LARGER int using a move with sign extension - // or zero extension, depending on whether the source type was signed. - if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && - SrcClass < DestClass) { - bool isLong = DestClass == cLong; - if (isLong) DestClass = cInt; - - static const unsigned Opc[][4] = { - { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s - { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u - }; - - bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; - BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, - DestReg).addReg(SrcReg); - - if (isLong) { // Handle upper 32 bits as appropriate... - if (isUnsigned) // Zero out top bits... - BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); - else // Sign extend bottom half... - BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); - } - return; - } - - // Special case long -> int ... - if (SrcClass == cLong && DestClass == cInt) { - BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); - return; - } - - // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a - // move out of AX or AL. - if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt - && SrcClass > DestClass) { - static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; - BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); - BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); - return; - } - - // Handle casts from integer to floating point now... - if (DestClass == cFP) { - // Promote the integer to a type supported by FLD. We do this because there - // are no unsigned FLD instructions, so we must promote an unsigned value to - // a larger signed value, then use FLD on the larger value. - // - const Type *PromoteType = 0; - unsigned PromoteOpcode = 0; - unsigned RealDestReg = DestReg; - switch (SrcTy->getTypeID()) { - case Type::BoolTyID: - case Type::SByteTyID: - // We don't have the facilities for directly loading byte sized data from - // memory (even signed). Promote it to 16 bits. - PromoteType = Type::ShortTy; - PromoteOpcode = X86::MOVSX16rr8; - break; - case Type::UByteTyID: - PromoteType = Type::ShortTy; - PromoteOpcode = X86::MOVZX16rr8; - break; - case Type::UShortTyID: - PromoteType = Type::IntTy; - PromoteOpcode = X86::MOVZX32rr16; - break; - case Type::UIntTyID: { - // Make a 64 bit temporary... and zero out the top of it... - unsigned TmpReg = makeAnotherReg(Type::LongTy); - BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg); - BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0); - SrcTy = Type::LongTy; - SrcClass = cLong; - SrcReg = TmpReg; - break; - } - case Type::ULongTyID: - // Don't fild into the read destination. - DestReg = makeAnotherReg(Type::DoubleTy); - break; - default: // No promotion needed... - break; - } - - if (PromoteType) { - unsigned TmpReg = makeAnotherReg(PromoteType); - BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg); - SrcTy = PromoteType; - SrcClass = getClass(PromoteType); - SrcReg = TmpReg; - } - - // Spill the integer to memory and reload it from there... - int FrameIdx = - F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); - - if (SrcClass == cLong) { - addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), - FrameIdx).addReg(SrcReg); - addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), - FrameIdx, 4).addReg(SrcReg+1); - } else { - static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; - addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), - FrameIdx).addReg(SrcReg); - } - - static const unsigned Op2[] = - { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; - addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); - - // We need special handling for unsigned 64-bit integer sources. If the - // input number has the "sign bit" set, then we loaded it incorrectly as a - // negative 64-bit number. In this case, add an offset value. - if (SrcTy == Type::ULongTy) { - // Emit a test instruction to see if the dynamic input value was signed. - BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); - - // If the sign bit is set, get a pointer to an offset, otherwise get a - // pointer to a zero. - MachineConstantPool *CP = F->getConstantPool(); - unsigned Zero = makeAnotherReg(Type::IntTy); - Constant *Null = Constant::getNullValue(Type::UIntTy); - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), - CP->getConstantPoolIndex(Null)); - unsigned Offset = makeAnotherReg(Type::IntTy); - Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); - - addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), - CP->getConstantPoolIndex(OffsetCst)); - unsigned Addr = makeAnotherReg(Type::IntTy); - BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); - - // Load the constant for an add. FIXME: this could make an 'fadd' that - // reads directly from memory, but we don't support these yet. - unsigned ConstReg = makeAnotherReg(Type::DoubleTy); - addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); - - BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) - .addReg(ConstReg).addReg(DestReg); - } - - return; - } - - // Handle casts from floating point to integer now... - if (SrcClass == cFP) { - // Change the floating point control register to use "round towards zero" - // mode when truncating to an integer value. - // - int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); - addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); - - // Load the old value of the high byte of the control word... - unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); - addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), - CWFrameIdx, 1); - - // Set the high part to be round to zero... - addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), - CWFrameIdx, 1).addImm(12); - - // Reload the modified control word now... - addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - - // Restore the memory image of control word to original value - addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), - CWFrameIdx, 1).addReg(HighPartOfCW); - - // We don't have the facilities for directly storing byte sized data to - // memory. Promote it to 16 bits. We also must promote unsigned values to - // larger classes because we only have signed FP stores. - unsigned StoreClass = DestClass; - const Type *StoreTy = DestTy; - if (StoreClass == cByte || DestTy->isUnsigned()) - switch (StoreClass) { - case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break; - case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break; - case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break; - // The following treatment of cLong may not be perfectly right, - // but it survives chains of casts of the form - // double->ulong->double. - case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break; - default: assert(0 && "Unknown store class!"); - } - - // Spill the integer to memory and reload it from there... - int FrameIdx = - F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); - - static const unsigned Op1[] = - { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; - addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), - FrameIdx).addReg(SrcReg); - - if (DestClass == cLong) { - addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); - addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), - FrameIdx, 4); - } else { - static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; - addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); - } - - // Reload the original control word now... - addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); - return; - } - - // Anything we haven't handled already, we can't (yet) handle at all. - assert(0 && "Unhandled cast instruction!"); - abort(); -} - -/// visitVANextInst - Implement the va_next instruction... -/// -void ISel::visitVANextInst(VANextInst &I) { - unsigned VAList = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - - unsigned Size; - switch (I.getArgType()->getTypeID()) { - default: - std::cerr << I; - assert(0 && "Error: bad type for va_next instruction!"); - return; - case Type::PointerTyID: - case Type::UIntTyID: - case Type::IntTyID: - Size = 4; - break; - case Type::ULongTyID: - case Type::LongTyID: - case Type::DoubleTyID: - Size = 8; - break; - } - - // Increment the VAList pointer... - BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size); -} - -void ISel::visitVAArgInst(VAArgInst &I) { - unsigned VAList = getReg(I.getOperand(0)); - unsigned DestReg = getReg(I); - - switch (I.getType()->getTypeID()) { - default: - std::cerr << I; - assert(0 && "Error: bad type for va_next instruction!"); - return; - case Type::PointerTyID: - case Type::UIntTyID: - case Type::IntTyID: - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); - break; - case Type::ULongTyID: - case Type::LongTyID: - addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); - addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); - break; - case Type::DoubleTyID: - addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); - break; - } -} - -/// visitGetElementPtrInst - instruction-select GEP instructions -/// -void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { - // If this GEP instruction will be folded into all of its users, we don't need - // to explicitly calculate it! - unsigned A, B, C, D; - if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) { - // Check all of the users of the instruction to see if they are loads and - // stores. - bool AllWillFold = true; - for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) - if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load) - if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store || - cast<Instruction>(*UI)->getOperand(0) == &I) { - AllWillFold = false; - break; - } - - // If the instruction is foldable, and will be folded into all users, don't - // emit it! - if (AllWillFold) return; - } - - unsigned outputReg = getReg(I); - emitGEPOperation(BB, BB->end(), I.getOperand(0), - I.op_begin()+1, I.op_end(), outputReg); -} - -/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and -/// GEPTypes (the derived types being stepped through at each level). On return -/// from this function, if some indexes of the instruction are representable as -/// an X86 lea instruction, the machine operands are put into the Ops -/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes -/// lists. Otherwise, GEPOps.size() is returned. If this returns a an -/// addressing mode that only partially consumes the input, the BaseReg input of -/// the addressing mode must be left free. -/// -/// Note that there is one fewer entry in GEPTypes than there is in GEPOps. -/// -void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - std::vector<Value*> &GEPOps, - std::vector<const Type*> &GEPTypes, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { - const TargetData &TD = TM.getTargetData(); - - // Clear out the state we are working with... - BaseReg = 0; // No base register - Scale = 1; // Unit scale - IndexReg = 0; // No index register - Disp = 0; // No displacement - - // While there are GEP indexes that can be folded into the current address, - // keep processing them. - while (!GEPTypes.empty()) { - if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) { - // It's a struct access. CUI is the index into the structure, - // which names the field. This index must have unsigned type. - const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back()); - - // Use the TargetData structure to pick out what the layout of the - // structure is in memory. Since the structure index must be constant, we - // can get its value and use it to find the right byte offset from the - // StructLayout class's list of structure member offsets. - Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - } else { - // It's an array or pointer access: [ArraySize x ElementType]. - const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); - Value *idx = GEPOps.back(); - - // idx is the index into the array. Unlike with structure - // indices, we may not know its actual value at code-generation - // time. - - // If idx is a constant, fold it into the offset. - unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); - if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) { - Disp += TypeSize*CSI->getValue(); - } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) { - Disp += TypeSize*CUI->getValue(); - } else { - // If the index reg is already taken, we can't handle this index. - if (IndexReg) return; - - // If this is a size that we can handle, then add the index as - switch (TypeSize) { - case 1: case 2: case 4: case 8: - // These are all acceptable scales on X86. - Scale = TypeSize; - break; - default: - // Otherwise, we can't handle this scale - return; - } - - if (CastInst *CI = dyn_cast<CastInst>(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - IndexReg = MBB ? getReg(idx, MBB, IP) : 1; - } - - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - } - } - - // GEPTypes is empty, which means we have a single operand left. Set it as - // the base register. - // - assert(BaseReg == 0); - -#if 0 // FIXME: TODO! - if (AllocaInst *AI = dyn_castFixedAlloca(V)) { - // FIXME: When we can add FrameIndex values as the first operand, we can - // make GEP's of allocas MUCH more efficient! - unsigned FI = getFixedSizedAllocaFI(AI); - GEPOps.pop_back(); - return; - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // FIXME: When addressing modes are more powerful/correct, we could load - // global addresses directly as 32-bit immediates. - } -#endif - - BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; - GEPOps.pop_back(); // Consume the last GEP operand -} - - -/// isGEPFoldable - Return true if the specified GEP can be completely -/// folded into the addressing mode of a load/store or lea instruction. -bool ISel::isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { - - std::vector<Value*> GEPOps; - GEPOps.resize(IdxEnd-IdxBegin+1); - GEPOps[0] = Src; - std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - - std::vector<const Type*> - GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), - gep_type_end(Src->getType(), IdxBegin, IdxEnd)); - - MachineBasicBlock::iterator IP; - if (MBB) IP = MBB->end(); - getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); - - // We can fold it away iff the getGEPIndex call eliminated all operands. - return GEPOps.empty(); -} - -void ISel::emitGEPOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg) { - const TargetData &TD = TM.getTargetData(); - - // If this is a getelementptr null, with all constant integer indices, just - // replace it with TargetReg = 42. - if (isa<ConstantPointerNull>(Src)) { - User::op_iterator I = IdxBegin; - for (; I != IdxEnd; ++I) - if (!isa<ConstantInt>(*I)) - break; - if (I == IdxEnd) { // All constant indices - unsigned Offset = TD.getIndexedOffset(Src->getType(), - std::vector<Value*>(IdxBegin, IdxEnd)); - BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset); - return; - } - } - - std::vector<Value*> GEPOps; - GEPOps.resize(IdxEnd-IdxBegin+1); - GEPOps[0] = Src; - std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); - - std::vector<const Type*> GEPTypes; - GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), - gep_type_end(Src->getType(), IdxBegin, IdxEnd)); - - // Keep emitting instructions until we consume the entire GEP instruction. - while (!GEPOps.empty()) { - unsigned OldSize = GEPOps.size(); - unsigned BaseReg, Scale, IndexReg, Disp; - getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); - - if (GEPOps.size() != OldSize) { - // getGEPIndex consumed some of the input. Build an LEA instruction here. - unsigned NextTarget = 0; - if (!GEPOps.empty()) { - assert(BaseReg == 0 && - "getGEPIndex should have left the base register open for chaining!"); - NextTarget = BaseReg = makeAnotherReg(Type::UIntTy); - } - - if (IndexReg == 0 && Disp == 0) - BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); - else - addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), - BaseReg, Scale, IndexReg, Disp); - --IP; - TargetReg = NextTarget; - } else if (GEPTypes.empty()) { - // The getGEPIndex operation didn't want to build an LEA. Check to see if - // all operands are consumed but the base pointer. If so, just load it - // into the register. - if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); - } else { - unsigned BaseReg = getReg(GEPOps[0], MBB, IP); - BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); - } - break; // we are now done - - } else { - // It's an array or pointer access: [ArraySize x ElementType]. - const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); - Value *idx = GEPOps.back(); - GEPOps.pop_back(); // Consume a GEP operand - GEPTypes.pop_back(); - - // Many GEP instructions use a [cast (int/uint) to LongTy] as their - // operand on X86. Handle this case directly now... - if (CastInst *CI = dyn_cast<CastInst>(idx)) - if (CI->getOperand(0)->getType() == Type::IntTy || - CI->getOperand(0)->getType() == Type::UIntTy) - idx = CI->getOperand(0); - - // We want to add BaseReg to(idxReg * sizeof ElementType). First, we - // must find the size of the pointed-to type (Not coincidentally, the next - // type is the type of the elements in the array). - const Type *ElTy = SqTy->getElementType(); - unsigned elementSize = TD.getTypeSize(ElTy); - - // If idxReg is a constant, we don't need to perform the multiply! - if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) { - if (!CSI->isNullValue()) { - unsigned Offset = elementSize*CSI->getRawValue(); - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) - .addReg(Reg).addImm(Offset); - --IP; // Insert the next instruction before this one. - TargetReg = Reg; // Codegen the rest of the GEP into this - } - } else if (elementSize == 1) { - // If the element size is 1, we don't have to multiply, just add - unsigned idxReg = getReg(idx, MBB, IP); - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); - --IP; // Insert the next instruction before this one. - TargetReg = Reg; // Codegen the rest of the GEP into this - } else { - unsigned idxReg = getReg(idx, MBB, IP); - unsigned OffsetReg = makeAnotherReg(Type::UIntTy); - - // Make sure we can back the iterator up to point to the first - // instruction emitted. - MachineBasicBlock::iterator BeforeIt = IP; - if (IP == MBB->begin()) - BeforeIt = MBB->end(); - else - --BeforeIt; - doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); - - // Emit an ADD to add OffsetReg to the basePtr. - unsigned Reg = makeAnotherReg(Type::UIntTy); - BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) - .addReg(Reg).addReg(OffsetReg); - - // Step to the first instruction of the multiply. - if (BeforeIt == MBB->end()) - IP = MBB->begin(); - else - IP = ++BeforeIt; - - TargetReg = Reg; // Codegen the rest of the GEP into this - } - } - } -} - -/// visitAllocaInst - If this is a fixed size alloca, allocate space from the -/// frame manager, otherwise do it the hard way. -/// -void ISel::visitAllocaInst(AllocaInst &I) { - // If this is a fixed size alloca in the entry block for the function, we - // statically stack allocate the space, so we don't need to do anything here. - // - if (dyn_castFixedAlloca(&I)) return; - - // Find the data size of the alloca inst's getAllocatedType. - const Type *Ty = I.getAllocatedType(); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - - // Create a register to hold the temporary result of multiplying the type size - // constant by the variable amount. - unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); - unsigned SrcReg1 = getReg(I.getArraySize()); - - // TotalSizeReg = mul <numelements>, <TypeSize> - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); - - // AddedSize = add <TotalSizeReg>, 15 - unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); - - // AlignedSize = and <AddedSize>, ~15 - unsigned AlignedSize = makeAnotherReg(Type::UIntTy); - BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); - - // Subtract size from stack pointer, thereby allocating some space. - BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); - - // Put a pointer to the space into the result register, by copying - // the stack pointer. - BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); - - // Inform the Frame Information that we have just allocated a variable-sized - // object. - F->getFrameInfo()->CreateVariableSizedObject(); -} - -/// visitMallocInst - Malloc instructions are code generated into direct calls -/// to the library malloc. -/// -void ISel::visitMallocInst(MallocInst &I) { - unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); - unsigned Arg; - - if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { - Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); - } else { - Arg = makeAnotherReg(Type::UIntTy); - unsigned Op0Reg = getReg(I.getOperand(0)); - MachineBasicBlock::iterator MBBI = BB->end(); - doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); - } - - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(Arg, Type::UIntTy)); - MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, - 1).addExternalSymbol("malloc", true); - doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); -} - - -/// visitFreeInst - Free instructions are code gen'd to call the free libc -/// function. -/// -void ISel::visitFreeInst(FreeInst &I) { - std::vector<ValueRecord> Args; - Args.push_back(ValueRecord(I.getOperand(0))); - MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, - 1).addExternalSymbol("free", true); - doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); -} - -/// createX86SimpleInstructionSelector - This pass converts an LLVM function -/// into a machine code representation is a very simple peep-hole fashion. The -/// generated code sucks but the implementation is nice and simple. -/// -FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) { - return new ISel(TM); -} diff --git a/lib/Target/X86/PeepholeOptimizer.cpp b/lib/Target/X86/PeepholeOptimizer.cpp deleted file mode 100644 index 8e3b831..0000000 --- a/lib/Target/X86/PeepholeOptimizer.cpp +++ /dev/null @@ -1,515 +0,0 @@ -//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains a peephole optimizer for the X86. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "Support/Statistic.h" -#include "Support/STLExtras.h" - -using namespace llvm; - -namespace { - Statistic<> NumPHOpts("x86-peephole", - "Number of peephole optimization performed"); - Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded"); - struct PH : public MachineFunctionPass { - virtual bool runOnMachineFunction(MachineFunction &MF); - - bool PeepholeOptimize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &I); - - virtual const char *getPassName() const { return "X86 Peephole Optimizer"; } - }; -} - -FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); } - -bool PH::runOnMachineFunction(MachineFunction &MF) { - bool Changed = false; - - for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI) - for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ) - if (PeepholeOptimize(*BI, I)) { - Changed = true; - ++NumPHOpts; - } else - ++I; - - return Changed; -} - - -bool PH::PeepholeOptimize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &I) { - assert(I != MBB.end()); - MachineBasicBlock::iterator NextI = next(I); - - MachineInstr *MI = I; - MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0; - unsigned Size = 0; - switch (MI->getOpcode()) { - case X86::MOV8rr: - case X86::MOV16rr: - case X86::MOV32rr: // Destroy X = X copies... - if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { - I = MBB.erase(I); - return true; - } - return false; - - // A large number of X86 instructions have forms which take an 8-bit - // immediate despite the fact that the operands are 16 or 32 bits. Because - // this can save three bytes of code size (and icache space), we want to - // shrink them if possible. - case X86::IMUL16rri: case X86::IMUL32rri: - assert(MI->getNumOperands() == 3 && "These should all have 3 operands!"); - if (MI->getOperand(2).isImmediate()) { - int Val = MI->getOperand(2).getImmedValue(); - // If the value is the same when signed extended from 8 bits... - if (Val == (signed int)(signed char)Val) { - unsigned Opcode; - switch (MI->getOpcode()) { - default: assert(0 && "Unknown opcode value!"); - case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break; - case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break; - } - unsigned R0 = MI->getOperand(0).getReg(); - unsigned R1 = MI->getOperand(1).getReg(); - I = MBB.insert(MBB.erase(I), - BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val)); - return true; - } - } - return false; - -#if 0 - case X86::IMUL16rmi: case X86::IMUL32rmi: - assert(MI->getNumOperands() == 6 && "These should all have 6 operands!"); - if (MI->getOperand(5).isImmediate()) { - int Val = MI->getOperand(5).getImmedValue(); - // If the value is the same when signed extended from 8 bits... - if (Val == (signed int)(signed char)Val) { - unsigned Opcode; - switch (MI->getOpcode()) { - default: assert(0 && "Unknown opcode value!"); - case X86::IMUL16rmi: Opcode = X86::IMUL16rmi8; break; - case X86::IMUL32rmi: Opcode = X86::IMUL32rmi8; break; - } - unsigned R0 = MI->getOperand(0).getReg(); - unsigned R1 = MI->getOperand(1).getReg(); - unsigned Scale = MI->getOperand(2).getImmedValue(); - unsigned R2 = MI->getOperand(3).getReg(); - unsigned Offset = MI->getOperand(4).getImmedValue(); - I = MBB.insert(MBB.erase(I), - BuildMI(Opcode, 5, R0).addReg(R1).addZImm(Scale). - addReg(R2).addSImm(Offset).addZImm((char)Val)); - return true; - } - } - return false; -#endif - - case X86::ADD16ri: case X86::ADD32ri: case X86::ADC32ri: - case X86::SUB16ri: case X86::SUB32ri: case X86::SBB32ri: - case X86::AND16ri: case X86::AND32ri: - case X86::OR16ri: case X86::OR32ri: - case X86::XOR16ri: case X86::XOR32ri: - assert(MI->getNumOperands() == 2 && "These should all have 2 operands!"); - if (MI->getOperand(1).isImmediate()) { - int Val = MI->getOperand(1).getImmedValue(); - // If the value is the same when signed extended from 8 bits... - if (Val == (signed int)(signed char)Val) { - unsigned Opcode; - switch (MI->getOpcode()) { - default: assert(0 && "Unknown opcode value!"); - case X86::ADD16ri: Opcode = X86::ADD16ri8; break; - case X86::ADD32ri: Opcode = X86::ADD32ri8; break; - case X86::ADC32ri: Opcode = X86::ADC32ri8; break; - case X86::SUB16ri: Opcode = X86::SUB16ri8; break; - case X86::SUB32ri: Opcode = X86::SUB32ri8; break; - case X86::SBB32ri: Opcode = X86::SBB32ri8; break; - case X86::AND16ri: Opcode = X86::AND16ri8; break; - case X86::AND32ri: Opcode = X86::AND32ri8; break; - case X86::OR16ri: Opcode = X86::OR16ri8; break; - case X86::OR32ri: Opcode = X86::OR32ri8; break; - case X86::XOR16ri: Opcode = X86::XOR16ri8; break; - case X86::XOR32ri: Opcode = X86::XOR32ri8; break; - } - unsigned R0 = MI->getOperand(0).getReg(); - I = MBB.insert(MBB.erase(I), - BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef) - .addZImm((char)Val)); - return true; - } - } - return false; - - case X86::ADD16mi: case X86::ADD32mi: case X86::ADC32mi: - case X86::SUB16mi: case X86::SUB32mi: case X86::SBB32mi: - case X86::AND16mi: case X86::AND32mi: - case X86::OR16mi: case X86::OR32mi: - case X86::XOR16mi: case X86::XOR32mi: - assert(MI->getNumOperands() == 5 && "These should all have 5 operands!"); - if (MI->getOperand(4).isImmediate()) { - int Val = MI->getOperand(4).getImmedValue(); - // If the value is the same when signed extended from 8 bits... - if (Val == (signed int)(signed char)Val) { - unsigned Opcode; - switch (MI->getOpcode()) { - default: assert(0 && "Unknown opcode value!"); - case X86::ADD16mi: Opcode = X86::ADD16mi8; break; - case X86::ADD32mi: Opcode = X86::ADD32mi8; break; - case X86::ADC32mi: Opcode = X86::ADC32mi8; break; - case X86::SUB16mi: Opcode = X86::SUB16mi8; break; - case X86::SUB32mi: Opcode = X86::SUB32mi8; break; - case X86::SBB32mi: Opcode = X86::SBB32mi8; break; - case X86::AND16mi: Opcode = X86::AND16mi8; break; - case X86::AND32mi: Opcode = X86::AND32mi8; break; - case X86::OR16mi: Opcode = X86::OR16mi8; break; - case X86::OR32mi: Opcode = X86::OR32mi8; break; - case X86::XOR16mi: Opcode = X86::XOR16mi8; break; - case X86::XOR32mi: Opcode = X86::XOR32mi8; break; - } - unsigned R0 = MI->getOperand(0).getReg(); - unsigned Scale = MI->getOperand(1).getImmedValue(); - unsigned R1 = MI->getOperand(2).getReg(); - unsigned Offset = MI->getOperand(3).getImmedValue(); - I = MBB.insert(MBB.erase(I), - BuildMI(Opcode, 5).addReg(R0).addZImm(Scale). - addReg(R1).addSImm(Offset).addZImm((char)Val)); - return true; - } - } - return false; - -#if 0 - case X86::MOV32ri: Size++; - case X86::MOV16ri: Size++; - case X86::MOV8ri: - // FIXME: We can only do this transformation if we know that flags are not - // used here, because XOR clobbers the flags! - if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value> - int Val = MI->getOperand(1).getImmedValue(); - if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX - static const unsigned Opcode[] ={X86::XOR8rr,X86::XOR16rr,X86::XOR32rr}; - unsigned Reg = MI->getOperand(0).getReg(); - I = MBB.insert(MBB.erase(I), - BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg)); - return true; - } else if (Val == -1) { // mov EAX, -1 -> or EAX, -1 - // TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1' - } - } - return false; -#endif - case X86::BSWAP32r: // Change bswap EAX, bswap EAX into nothing - if (Next->getOpcode() == X86::BSWAP32r && - MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) { - I = MBB.erase(MBB.erase(I)); - return true; - } - return false; - default: - return false; - } -} - -namespace { - class UseDefChains : public MachineFunctionPass { - std::vector<MachineInstr*> DefiningInst; - public: - // getDefinition - Return the machine instruction that defines the specified - // SSA virtual register. - MachineInstr *getDefinition(unsigned Reg) { - assert(MRegisterInfo::isVirtualRegister(Reg) && - "use-def chains only exist for SSA registers!"); - assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() && - "Unknown register number!"); - assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] && - "Unknown register number!"); - return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister]; - } - - // setDefinition - Update the use-def chains to indicate that MI defines - // register Reg. - void setDefinition(unsigned Reg, MachineInstr *MI) { - if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size()) - DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1); - DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI; - } - - // removeDefinition - Update the use-def chains to forget about Reg - // entirely. - void removeDefinition(unsigned Reg) { - assert(getDefinition(Reg)); // Check validity - DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0; - } - - virtual bool runOnMachineFunction(MachineFunction &MF) { - for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI) - for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) { - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - MachineOperand &MO = I->getOperand(i); - if (MO.isRegister() && MO.isDef() && !MO.isUse() && - MRegisterInfo::isVirtualRegister(MO.getReg())) - setDefinition(MO.getReg(), I); - } - } - return false; - } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - MachineFunctionPass::getAnalysisUsage(AU); - } - - virtual void releaseMemory() { - std::vector<MachineInstr*>().swap(DefiningInst); - } - }; - - RegisterAnalysis<UseDefChains> X("use-def-chains", - "use-def chain construction for machine code"); -} - - -namespace { - Statistic<> NumSSAPHOpts("x86-ssa-peephole", - "Number of SSA peephole optimization performed"); - - /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This - /// pass is really a bad idea: a better instruction selector should completely - /// supersume it. However, that will take some time to develop, and the - /// simple things this can do are important now. - class SSAPH : public MachineFunctionPass { - UseDefChains *UDC; - public: - virtual bool runOnMachineFunction(MachineFunction &MF); - - bool PeepholeOptimize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &I); - - virtual const char *getPassName() const { - return "X86 SSA-based Peephole Optimizer"; - } - - /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the - /// opcode of the instruction, then return true. - bool Propagate(MachineInstr *MI, unsigned DestOpNo, - MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){ - MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo); - if (NewOpcode) MI->setOpcode(NewOpcode); - return true; - } - - /// OptimizeAddress - If we can fold the addressing arithmetic for this - /// memory instruction into the instruction itself, do so and return true. - bool OptimizeAddress(MachineInstr *MI, unsigned OpNo); - - /// getDefininingInst - If the specified operand is a read of an SSA - /// register, return the machine instruction defining it, otherwise, return - /// null. - MachineInstr *getDefiningInst(MachineOperand &MO) { - if (MO.isDef() || !MO.isRegister() || - !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0; - return UDC->getDefinition(MO.getReg()); - } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<UseDefChains>(); - AU.addPreserved<UseDefChains>(); - MachineFunctionPass::getAnalysisUsage(AU); - } - }; -} - -FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); } - -bool SSAPH::runOnMachineFunction(MachineFunction &MF) { - bool Changed = false; - bool LocalChanged; - - UDC = &getAnalysis<UseDefChains>(); - - do { - LocalChanged = false; - - for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI) - for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ) - if (PeepholeOptimize(*BI, I)) { - LocalChanged = true; - ++NumSSAPHOpts; - } else - ++I; - Changed |= LocalChanged; - } while (LocalChanged); - - return Changed; -} - -static bool isValidScaleAmount(unsigned Scale) { - return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8; -} - -/// OptimizeAddress - If we can fold the addressing arithmetic for this -/// memory instruction into the instruction itself, do so and return true. -bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) { - MachineOperand &BaseRegOp = MI->getOperand(OpNo+0); - MachineOperand &ScaleOp = MI->getOperand(OpNo+1); - MachineOperand &IndexRegOp = MI->getOperand(OpNo+2); - MachineOperand &DisplacementOp = MI->getOperand(OpNo+3); - - unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0; - unsigned Scale = ScaleOp.getImmedValue(); - unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0; - - bool Changed = false; - - // If the base register is unset, and the index register is set with a scale - // of 1, move it to be the base register. - if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 && - Scale == 1 && IndexReg != 0) { - BaseRegOp.setReg(IndexReg); - IndexRegOp.setReg(0); - return true; - } - - // Attempt to fold instructions used by the base register into the instruction - if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) { - switch (DefInst->getOpcode()) { - case X86::MOV32ri: - // If there is no displacement set for this instruction set one now. - // FIXME: If we can fold two immediates together, we should do so! - if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) { - if (DefInst->getOperand(1).isImmediate()) { - BaseRegOp.setReg(0); - return Propagate(MI, OpNo+3, DefInst, 1); - } - } - break; - - case X86::ADD32rr: - // If the source is a register-register add, and we do not yet have an - // index register, fold the add into the memory address. - if (IndexReg == 0) { - BaseRegOp = DefInst->getOperand(1); - IndexRegOp = DefInst->getOperand(2); - ScaleOp.setImmedValue(1); - return true; - } - break; - - case X86::SHL32ri: - // If this shift could be folded into the index portion of the address if - // it were the index register, move it to the index register operand now, - // so it will be folded in below. - if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) && - DefInst->getOperand(2).getImmedValue() < 4) { - std::swap(BaseRegOp, IndexRegOp); - ScaleOp.setImmedValue(1); Scale = 1; - std::swap(IndexReg, BaseReg); - Changed = true; - break; - } - } - } - - // Attempt to fold instructions used by the index into the instruction - if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) { - switch (DefInst->getOpcode()) { - case X86::SHL32ri: { - // Figure out what the resulting scale would be if we folded this shift. - unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue()); - if (isValidScaleAmount(ResScale)) { - IndexRegOp = DefInst->getOperand(1); - ScaleOp.setImmedValue(ResScale); - return true; - } - break; - } - } - } - - return Changed; -} - -bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &I) { - MachineBasicBlock::iterator NextI = next(I); - - MachineInstr *MI = I; - MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0; - - bool Changed = false; - - const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo(); - - // Scan the operands of this instruction. If any operands are - // register-register copies, replace the operand with the source. - for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) - // Is this an SSA register use? - if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i))) { - // If the operand is a vreg-vreg copy, it is always safe to replace the - // source value with the input operand. - unsigned Source, Dest; - if (TII.isMoveInstr(*DefInst, Source, Dest)) { - // Don't propagate physical registers into any instructions. - if (DefInst->getOperand(1).isRegister() && - MRegisterInfo::isVirtualRegister(Source)) { - MI->getOperand(i).setReg(Source); - Changed = true; - ++NumPHMoves; - } - } - } - - - // Perform instruction specific optimizations. - switch (MI->getOpcode()) { - - // Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg - case X86::MOV32mr: case X86::MOV16mr: case X86::MOV8mr: - case X86::MOV32mi: case X86::MOV16mi: case X86::MOV8mi: - // Check to see if we can fold the source instruction into this one... - if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) { - switch (SrcInst->getOpcode()) { - // Fold the immediate value into the store, if possible. - case X86::MOV8ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV8mi); - case X86::MOV16ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV16mi); - case X86::MOV32ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV32mi); - default: break; - } - } - - // If we can optimize the addressing expression, do so now. - if (OptimizeAddress(MI, 0)) - return true; - break; - - case X86::MOV32rm: - case X86::MOV16rm: - case X86::MOV8rm: - // If we can optimize the addressing expression, do so now. - if (OptimizeAddress(MI, 1)) - return true; - break; - - default: break; - } - - return Changed; -} diff --git a/lib/Target/X86/Printer.cpp b/lib/Target/X86/Printer.cpp deleted file mode 100644 index 9ac981f..0000000 --- a/lib/Target/X86/Printer.cpp +++ /dev/null @@ -1,1033 +0,0 @@ -//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains a printer that converts from our internal representation -// of machine-dependent LLVM code to Intel-format assembly language. This -// printer is the output mechanism used by `llc' and `lli -print-machineinstrs' -// on X86. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrInfo.h" -#include "X86TargetMachine.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/CodeGen/MachineCodeEmitter.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/Mangler.h" -#include "Support/Statistic.h" -#include "Support/StringExtras.h" -#include "Support/CommandLine.h" -using namespace llvm; - -namespace { - Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); - - // FIXME: This should be automatically picked up by autoconf from the C - // frontend - cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden, - cl::desc("Emit X86 assembly code suitable for consumption by cygwin")); - - struct GasBugWorkaroundEmitter : public MachineCodeEmitter { - GasBugWorkaroundEmitter(std::ostream& o) - : O(o), OldFlags(O.flags()), firstByte(true) { - O << std::hex; - } - - ~GasBugWorkaroundEmitter() { - O.flags(OldFlags); - O << "\t# "; - } - - virtual void emitByte(unsigned char B) { - if (!firstByte) O << "\n\t"; - firstByte = false; - O << ".byte 0x" << (unsigned) B; - } - - // These should never be called - virtual void emitWord(unsigned W) { assert(0); } - virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); } - virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); } - virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); } - virtual uint64_t getCurrentPCValue() { abort(); } - virtual uint64_t forceCompilationOf(Function *F) { abort(); } - - private: - std::ostream& O; - std::ios::fmtflags OldFlags; - bool firstByte; - }; - - struct Printer : public MachineFunctionPass { - /// Output stream on which we're printing assembly code. - /// - std::ostream &O; - - /// Target machine description which we query for reg. names, data - /// layout, etc. - /// - TargetMachine &TM; - - /// Name-mangler for global names. - /// - Mangler *Mang; - - Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } - - /// Cache of mangled name for current function. This is - /// recalculated at the beginning of each call to - /// runOnMachineFunction(). - /// - std::string CurrentFnName; - - virtual const char *getPassName() const { - return "X86 Assembly Printer"; - } - - void printImplUsesBefore(const TargetInstrDescriptor &Desc); - bool printImplDefsBefore(const TargetInstrDescriptor &Desc); - bool printImplUsesAfter(const TargetInstrDescriptor &Desc, const bool LC); - bool printImplDefsAfter(const TargetInstrDescriptor &Desc, const bool LC); - void printMachineInstruction(const MachineInstr *MI); - void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false); - void printMemReference(const MachineInstr *MI, unsigned Op); - void printConstantPool(MachineConstantPool *MCP); - bool runOnMachineFunction(MachineFunction &F); - bool doInitialization(Module &M); - bool doFinalization(Module &M); - void emitGlobalConstant(const Constant* CV); - void emitConstantValueOnly(const Constant *CV); - }; -} // end of anonymous namespace - -/// createX86CodePrinterPass - Returns a pass that prints the X86 -/// assembly code for a MachineFunction to the given output stream, -/// using the given target machine description. This should work -/// regardless of whether the function is in SSA form. -/// -FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){ - return new Printer(o, tm); -} - -/// toOctal - Convert the low order bits of X into an octal digit. -/// -static inline char toOctal(int X) { - return (X&7)+'0'; -} - -/// getAsCString - Return the specified array as a C compatible -/// string, only if the predicate isStringCompatible is true. -/// -static void printAsCString(std::ostream &O, const ConstantArray *CVA) { - assert(CVA->isString() && "Array is not string compatible!"); - - O << "\""; - for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { - unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue(); - - if (C == '"') { - O << "\\\""; - } else if (C == '\\') { - O << "\\\\"; - } else if (isprint(C)) { - O << C; - } else { - switch(C) { - case '\b': O << "\\b"; break; - case '\f': O << "\\f"; break; - case '\n': O << "\\n"; break; - case '\r': O << "\\r"; break; - case '\t': O << "\\t"; break; - default: - O << '\\'; - O << toOctal(C >> 6); - O << toOctal(C >> 3); - O << toOctal(C >> 0); - break; - } - } - } - O << "\""; -} - -// Print out the specified constant, without a storage class. Only the -// constants valid in constant expressions can occur here. -void Printer::emitConstantValueOnly(const Constant *CV) { - if (CV->isNullValue()) - O << "0"; - else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { - assert(CB == ConstantBool::True); - O << "1"; - } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) - if (((CI->getValue() << 32) >> 32) == CI->getValue()) - O << CI->getValue(); - else - O << (unsigned long long)CI->getValue(); - else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) - O << CI->getValue(); - else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) - // This is a constant address for a global variable or function. Use the - // name of the variable or function as the address value. - O << Mang->getValueName(GV); - else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { - const TargetData &TD = TM.getTargetData(); - switch(CE->getOpcode()) { - case Instruction::GetElementPtr: { - // generate a symbolic expression for the byte address - const Constant *ptrVal = CE->getOperand(0); - std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end()); - if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { - O << "("; - emitConstantValueOnly(ptrVal); - O << ") + " << Offset; - } else { - emitConstantValueOnly(ptrVal); - } - break; - } - case Instruction::Cast: { - // Support only non-converting or widening casts for now, that is, ones - // that do not involve a change in value. This assertion is really gross, - // and may not even be a complete check. - Constant *Op = CE->getOperand(0); - const Type *OpTy = Op->getType(), *Ty = CE->getType(); - - // Remember, kids, pointers on x86 can be losslessly converted back and - // forth into 32-bit or wider integers, regardless of signedness. :-P - assert(((isa<PointerType>(OpTy) - && (Ty == Type::LongTy || Ty == Type::ULongTy - || Ty == Type::IntTy || Ty == Type::UIntTy)) - || (isa<PointerType>(Ty) - && (OpTy == Type::LongTy || OpTy == Type::ULongTy - || OpTy == Type::IntTy || OpTy == Type::UIntTy)) - || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) - && OpTy->isLosslesslyConvertibleTo(Ty)))) - && "FIXME: Don't yet support this kind of constant cast expr"); - O << "("; - emitConstantValueOnly(Op); - O << ")"; - break; - } - case Instruction::Add: - O << "("; - emitConstantValueOnly(CE->getOperand(0)); - O << ") + ("; - emitConstantValueOnly(CE->getOperand(1)); - O << ")"; - break; - default: - assert(0 && "Unsupported operator!"); - } - } else { - assert(0 && "Unknown constant value!"); - } -} - -// Print a constant value or values, with the appropriate storage class as a -// prefix. -void Printer::emitGlobalConstant(const Constant *CV) { - const TargetData &TD = TM.getTargetData(); - - if (CV->isNullValue()) { - O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n"; - return; - } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { - if (CVA->isString()) { - O << "\t.ascii\t"; - printAsCString(O, CVA); - O << "\n"; - } else { // Not a string. Print the values in successive locations - const std::vector<Use> &constValues = CVA->getValues(); - for (unsigned i=0; i < constValues.size(); i++) - emitGlobalConstant(cast<Constant>(constValues[i].get())); - } - return; - } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { - // Print the fields in successive locations. Pad to align if needed! - const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); - const std::vector<Use>& constValues = CVS->getValues(); - unsigned sizeSoFar = 0; - for (unsigned i=0, N = constValues.size(); i < N; i++) { - const Constant* field = cast<Constant>(constValues[i].get()); - - // Check if padding is needed and insert one or more 0s. - unsigned fieldSize = TD.getTypeSize(field->getType()); - unsigned padSize = ((i == N-1? cvsLayout->StructSize - : cvsLayout->MemberOffsets[i+1]) - - cvsLayout->MemberOffsets[i]) - fieldSize; - sizeSoFar += fieldSize + padSize; - - // Now print the actual field value - emitGlobalConstant(field); - - // Insert the field padding unless it's zero bytes... - if (padSize) - O << "\t.zero\t " << padSize << "\n"; - } - assert(sizeSoFar == cvsLayout->StructSize && - "Layout of constant struct may be incorrect!"); - return; - } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { - // FP Constants are printed as integer constants to avoid losing - // precision... - double Val = CFP->getValue(); - switch (CFP->getType()->getTypeID()) { - default: assert(0 && "Unknown floating point type!"); - case Type::FloatTyID: { - union FU { // Abide by C TBAA rules - float FVal; - unsigned UVal; - } U; - U.FVal = Val; - O << ".long\t" << U.UVal << "\t# float " << Val << "\n"; - return; - } - case Type::DoubleTyID: { - union DU { // Abide by C TBAA rules - double FVal; - uint64_t UVal; - } U; - U.FVal = Val; - O << ".quad\t" << U.UVal << "\t# double " << Val << "\n"; - return; - } - } - } - - const Type *type = CV->getType(); - O << "\t"; - switch (type->getTypeID()) { - case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: - O << ".byte"; - break; - case Type::UShortTyID: case Type::ShortTyID: - O << ".word"; - break; - case Type::FloatTyID: case Type::PointerTyID: - case Type::UIntTyID: case Type::IntTyID: - O << ".long"; - break; - case Type::DoubleTyID: - case Type::ULongTyID: case Type::LongTyID: - O << ".quad"; - break; - default: - assert (0 && "Can't handle printing this type of thing"); - break; - } - O << "\t"; - emitConstantValueOnly(CV); - O << "\n"; -} - -/// printConstantPool - Print to the current output stream assembly -/// representations of the constants in the constant pool MCP. This is -/// used to print out constants which have been "spilled to memory" by -/// the code generator. -/// -void Printer::printConstantPool(MachineConstantPool *MCP) { - const std::vector<Constant*> &CP = MCP->getConstants(); - const TargetData &TD = TM.getTargetData(); - - if (CP.empty()) return; - - for (unsigned i = 0, e = CP.size(); i != e; ++i) { - O << "\t.section .rodata\n"; - O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) - << "\n"; - O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#" - << *CP[i] << "\n"; - emitGlobalConstant(CP[i]); - } -} - -/// runOnMachineFunction - This uses the printMachineInstruction() -/// method to print assembly for each instruction. -/// -bool Printer::runOnMachineFunction(MachineFunction &MF) { - O << "\n\n"; - // What's my mangled name? - CurrentFnName = Mang->getValueName(MF.getFunction()); - - // Print out constants referenced by the function - printConstantPool(MF.getConstantPool()); - - // Print out labels for the function. - O << "\t.text\n"; - O << "\t.align 16\n"; - O << "\t.globl\t" << CurrentFnName << "\n"; - if (!EmitCygwin) - O << "\t.type\t" << CurrentFnName << ", @function\n"; - O << CurrentFnName << ":\n"; - - // Print out code for the function. - for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); - I != E; ++I) { - // Print a label for the basic block. - O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# " - << I->getBasicBlock()->getName() << "\n"; - for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); - II != E; ++II) { - // Print the assembly for the instruction. - O << "\t"; - printMachineInstruction(II); - } - } - - // We didn't modify anything. - return false; -} - -static bool isScale(const MachineOperand &MO) { - return MO.isImmediate() && - (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 || - MO.getImmedValue() == 4 || MO.getImmedValue() == 8); -} - -static bool isMem(const MachineInstr *MI, unsigned Op) { - if (MI->getOperand(Op).isFrameIndex()) return true; - if (MI->getOperand(Op).isConstantPoolIndex()) return true; - return Op+4 <= MI->getNumOperands() && - MI->getOperand(Op ).isRegister() &&isScale(MI->getOperand(Op+1)) && - MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate(); -} - - - -void Printer::printOp(const MachineOperand &MO, - bool elideOffsetKeyword /* = false */) { - const MRegisterInfo &RI = *TM.getRegisterInfo(); - switch (MO.getType()) { - case MachineOperand::MO_VirtualRegister: - if (Value *V = MO.getVRegValueOrNull()) { - O << "<" << V->getName() << ">"; - return; - } - // FALLTHROUGH - case MachineOperand::MO_MachineRegister: - if (MRegisterInfo::isPhysicalRegister(MO.getReg())) - // Bug Workaround: See note in Printer::doInitialization about %. - O << "%" << RI.get(MO.getReg()).Name; - else - O << "%reg" << MO.getReg(); - return; - - case MachineOperand::MO_SignExtendedImmed: - case MachineOperand::MO_UnextendedImmed: - O << (int)MO.getImmedValue(); - return; - case MachineOperand::MO_MachineBasicBlock: { - MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); - O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) - << "_" << MBBOp->getNumber () << "\t# " - << MBBOp->getBasicBlock ()->getName (); - return; - } - case MachineOperand::MO_PCRelativeDisp: - std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs"; - abort (); - return; - case MachineOperand::MO_GlobalAddress: - if (!elideOffsetKeyword) - O << "OFFSET "; - O << Mang->getValueName(MO.getGlobal()); - return; - case MachineOperand::MO_ExternalSymbol: - O << MO.getSymbolName(); - return; - default: - O << "<unknown operand type>"; return; - } -} - -static const char* const sizePtr(const TargetInstrDescriptor &Desc) { - switch (Desc.TSFlags & X86II::MemMask) { - default: assert(0 && "Unknown arg size!"); - case X86II::Mem8: return "BYTE PTR"; - case X86II::Mem16: return "WORD PTR"; - case X86II::Mem32: return "DWORD PTR"; - case X86II::Mem64: return "QWORD PTR"; - case X86II::Mem80: return "XWORD PTR"; - } -} - -void Printer::printMemReference(const MachineInstr *MI, unsigned Op) { - assert(isMem(MI, Op) && "Invalid memory reference!"); - - if (MI->getOperand(Op).isFrameIndex()) { - O << "[frame slot #" << MI->getOperand(Op).getFrameIndex(); - if (MI->getOperand(Op+3).getImmedValue()) - O << " + " << MI->getOperand(Op+3).getImmedValue(); - O << "]"; - return; - } else if (MI->getOperand(Op).isConstantPoolIndex()) { - O << "[.CPI" << CurrentFnName << "_" - << MI->getOperand(Op).getConstantPoolIndex(); - if (MI->getOperand(Op+3).getImmedValue()) - O << " + " << MI->getOperand(Op+3).getImmedValue(); - O << "]"; - return; - } - - const MachineOperand &BaseReg = MI->getOperand(Op); - int ScaleVal = MI->getOperand(Op+1).getImmedValue(); - const MachineOperand &IndexReg = MI->getOperand(Op+2); - int DispVal = MI->getOperand(Op+3).getImmedValue(); - - O << "["; - bool NeedPlus = false; - if (BaseReg.getReg()) { - printOp(BaseReg); - NeedPlus = true; - } - - if (IndexReg.getReg()) { - if (NeedPlus) O << " + "; - if (ScaleVal != 1) - O << ScaleVal << "*"; - printOp(IndexReg); - NeedPlus = true; - } - - if (DispVal) { - if (NeedPlus) - if (DispVal > 0) - O << " + "; - else { - O << " - "; - DispVal = -DispVal; - } - O << DispVal; - } - O << "]"; -} - - -/// printImplUsesBefore - Emit the implicit-use registers for the instruction -/// described by DESC, if its PrintImplUsesBefore flag is set. -/// -void Printer::printImplUsesBefore(const TargetInstrDescriptor &Desc) { - const MRegisterInfo &RI = *TM.getRegisterInfo(); - if (Desc.TSFlags & X86II::PrintImplUsesBefore) { - for (const unsigned *p = Desc.ImplicitUses; *p; ++p) { - // Bug Workaround: See note in Printer::doInitialization about %. - O << "%" << RI.get(*p).Name << ", "; - } - } -} - -/// printImplDefsBefore - Emit the implicit-def registers for the instruction -/// described by DESC, if its PrintImplUsesBefore flag is set. Return true if -/// we printed any registers. -/// -bool Printer::printImplDefsBefore(const TargetInstrDescriptor &Desc) { - bool Printed = false; - const MRegisterInfo &RI = *TM.getRegisterInfo(); - if (Desc.TSFlags & X86II::PrintImplDefsBefore) { - const unsigned *p = Desc.ImplicitDefs; - if (*p) { - O << (Printed ? ", %" : "%") << RI.get (*p).Name; - Printed = true; - ++p; - } - while (*p) { - // Bug Workaround: See note in Printer::doInitialization about %. - O << ", %" << RI.get(*p).Name; - ++p; - } - } - return Printed; -} - - -/// printImplUsesAfter - Emit the implicit-use registers for the instruction -/// described by DESC, if its PrintImplUsesAfter flag is set. -/// -/// Inputs: -/// Comma - List of registers will need a leading comma. -/// Desc - Description of the Instruction. -/// -/// Return value: -/// true - Emitted one or more registers. -/// false - Emitted no registers. -/// -bool Printer::printImplUsesAfter(const TargetInstrDescriptor &Desc, - const bool Comma = true) { - const MRegisterInfo &RI = *TM.getRegisterInfo(); - if (Desc.TSFlags & X86II::PrintImplUsesAfter) { - bool emitted = false; - const unsigned *p = Desc.ImplicitUses; - if (*p) { - O << (Comma ? ", %" : "%") << RI.get (*p).Name; - emitted = true; - ++p; - } - while (*p) { - // Bug Workaround: See note in Printer::doInitialization about %. - O << ", %" << RI.get(*p).Name; - ++p; - } - return emitted; - } - return false; -} - -/// printImplDefsAfter - Emit the implicit-definition registers for the -/// instruction described by DESC, if its PrintImplDefsAfter flag is set. -/// -/// Inputs: -/// Comma - List of registers will need a leading comma. -/// Desc - Description of the Instruction -/// -/// Return value: -/// true - Emitted one or more registers. -/// false - Emitted no registers. -/// -bool Printer::printImplDefsAfter(const TargetInstrDescriptor &Desc, - const bool Comma = true) { - const MRegisterInfo &RI = *TM.getRegisterInfo(); - if (Desc.TSFlags & X86II::PrintImplDefsAfter) { - bool emitted = false; - const unsigned *p = Desc.ImplicitDefs; - if (*p) { - O << (Comma ? ", %" : "%") << RI.get (*p).Name; - emitted = true; - ++p; - } - while (*p) { - // Bug Workaround: See note in Printer::doInitialization about %. - O << ", %" << RI.get(*p).Name; - ++p; - } - return emitted; - } - return false; -} - -/// printMachineInstruction -- Print out a single X86 LLVM instruction -/// MI in Intel syntax to the current output stream. -/// -void Printer::printMachineInstruction(const MachineInstr *MI) { - unsigned Opcode = MI->getOpcode(); - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const TargetInstrDescriptor &Desc = TII.get(Opcode); - - ++EmittedInsts; - switch (Desc.TSFlags & X86II::FormMask) { - case X86II::Pseudo: - // Print pseudo-instructions as comments; either they should have been - // turned into real instructions by now, or they don't need to be - // seen by the assembler (e.g., IMPLICIT_USEs.) - O << "# "; - if (Opcode == X86::PHI) { - printOp(MI->getOperand(0)); - O << " = phi "; - for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { - if (i != 1) O << ", "; - O << "["; - printOp(MI->getOperand(i)); - O << ", "; - printOp(MI->getOperand(i+1)); - O << "]"; - } - } else { - unsigned i = 0; - if (MI->getNumOperands() && MI->getOperand(0).isDef()) { - printOp(MI->getOperand(0)); - O << " = "; - ++i; - } - O << TII.getName(MI->getOpcode()); - - for (unsigned e = MI->getNumOperands(); i != e; ++i) { - O << " "; - if (MI->getOperand(i).isDef()) O << "*"; - printOp(MI->getOperand(i)); - if (MI->getOperand(i).isDef()) O << "*"; - } - } - O << "\n"; - return; - - case X86II::RawFrm: - { - // The accepted forms of Raw instructions are: - // 1. nop - No operand required - // 2. jmp foo - MachineBasicBlock operand - // 3. call bar - GlobalAddress Operand or External Symbol Operand - // 4. in AL, imm - Immediate operand - // - assert(MI->getNumOperands() == 0 || - (MI->getNumOperands() == 1 && - (MI->getOperand(0).isMachineBasicBlock() || - MI->getOperand(0).isGlobalAddress() || - MI->getOperand(0).isExternalSymbol() || - MI->getOperand(0).isImmediate())) && - "Illegal raw instruction!"); - O << TII.getName(MI->getOpcode()) << " "; - - bool LeadingComma = printImplDefsBefore(Desc); - - if (MI->getNumOperands() == 1) { - if (LeadingComma) O << ", "; - printOp(MI->getOperand(0), true); // Don't print "OFFSET"... - LeadingComma = true; - } - LeadingComma = printImplDefsAfter(Desc, LeadingComma) || LeadingComma; - printImplUsesAfter(Desc, LeadingComma); - O << "\n"; - return; - } - - case X86II::AddRegFrm: { - // There are currently two forms of acceptable AddRegFrm instructions. - // Either the instruction JUST takes a single register (like inc, dec, etc), - // or it takes a register and an immediate of the same size as the register - // (move immediate f.e.). Note that this immediate value might be stored as - // an LLVM value, to represent, for example, loading the address of a global - // into a register. The initial register might be duplicated if this is a - // M_2_ADDR_REG instruction - // - assert(MI->getOperand(0).isRegister() && - (MI->getNumOperands() == 1 || - (MI->getNumOperands() == 2 && - (MI->getOperand(1).getVRegValueOrNull() || - MI->getOperand(1).isImmediate() || - MI->getOperand(1).isRegister() || - MI->getOperand(1).isGlobalAddress() || - MI->getOperand(1).isExternalSymbol()))) && - "Illegal form for AddRegFrm instruction!"); - - unsigned Reg = MI->getOperand(0).getReg(); - - O << TII.getName(MI->getOpcode()) << " "; - - printImplUsesBefore(Desc); // fcmov* - - printOp(MI->getOperand(0)); - if (MI->getNumOperands() == 2 && - (!MI->getOperand(1).isRegister() || - MI->getOperand(1).getVRegValueOrNull() || - MI->getOperand(1).isGlobalAddress() || - MI->getOperand(1).isExternalSymbol())) { - O << ", "; - printOp(MI->getOperand(1)); - } - printImplUsesAfter(Desc); - O << "\n"; - return; - } - case X86II::MRMDestReg: { - // There are three forms of MRMDestReg instructions, those with 2 - // or 3 operands: - // - // 2 Operands: this is for things like mov that do not read a - // second input. - // - // 2 Operands: two address instructions which def&use the first - // argument and use the second as input. - // - // 3 Operands: in this form, two address instructions are the same - // as in 2 but have a constant argument as well. - // - bool isTwoAddr = TII.isTwoAddrInstr(Opcode); - assert(MI->getOperand(0).isRegister() && - (MI->getNumOperands() == 2 || - (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate())) - && "Bad format for MRMDestReg!"); - - O << TII.getName(MI->getOpcode()) << " "; - printOp(MI->getOperand(0)); - O << ", "; - printOp(MI->getOperand(1)); - if (MI->getNumOperands() == 3) { - O << ", "; - printOp(MI->getOperand(2)); - } - printImplUsesAfter(Desc); - O << "\n"; - return; - } - - case X86II::MRMDestMem: { - // These instructions are the same as MRMDestReg, but instead of having a - // register reference for the mod/rm field, it's a memory reference. - // - assert(isMem(MI, 0) && - (MI->getNumOperands() == 4+1 || - (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate())) - && "Bad format for MRMDestMem!"); - - O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " "; - printMemReference(MI, 0); - O << ", "; - printOp(MI->getOperand(4)); - if (MI->getNumOperands() == 4+2) { - O << ", "; - printOp(MI->getOperand(5)); - } - printImplUsesAfter(Desc); - O << "\n"; - return; - } - - case X86II::MRMSrcReg: { - // There are three forms that are acceptable for MRMSrcReg - // instructions, those with 2 or 3 operands: - // - // 2 Operands: this is for things like mov that do not read a - // second input. - // - // 2 Operands: in this form, the last register is the ModR/M - // input. The first operand is a def&use. This is for things - // like: add r32, r/m32 - // - // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used - // for instructions like the IMULrri instructions. - // - // - assert(MI->getOperand(0).isRegister() && - MI->getOperand(1).isRegister() && - (MI->getNumOperands() == 2 || - (MI->getNumOperands() == 3 && - (MI->getOperand(2).isImmediate()))) - && "Bad format for MRMSrcReg!"); - - O << TII.getName(MI->getOpcode()) << " "; - printOp(MI->getOperand(0)); - O << ", "; - printOp(MI->getOperand(1)); - if (MI->getNumOperands() == 3) { - O << ", "; - printOp(MI->getOperand(2)); - } - O << "\n"; - return; - } - - case X86II::MRMSrcMem: { - // These instructions are the same as MRMSrcReg, but instead of having a - // register reference for the mod/rm field, it's a memory reference. - // - assert(MI->getOperand(0).isRegister() && - ((MI->getNumOperands() == 1+4 && isMem(MI, 1)) || - (MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() && - isMem(MI, 1))) - && "Bad format for MRMSrcMem!"); - O << TII.getName(MI->getOpcode()) << " "; - printOp(MI->getOperand(0)); - O << ", " << sizePtr(Desc) << " "; - printMemReference(MI, 1); - if (MI->getNumOperands() == 2+4) { - O << ", "; - printOp(MI->getOperand(5)); - } - O << "\n"; - return; - } - - case X86II::MRM0r: case X86II::MRM1r: - case X86II::MRM2r: case X86II::MRM3r: - case X86II::MRM4r: case X86II::MRM5r: - case X86II::MRM6r: case X86II::MRM7r: { - // In this form, the following are valid formats: - // 1. sete r - // 2. cmp reg, immediate - // 2. shl rdest, rinput <implicit CL or 1> - // 3. sbb rdest, rinput, immediate [rdest = rinput] - // - assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 && - MI->getOperand(0).isRegister() && "Bad MRMSxR format!"); - assert((MI->getNumOperands() != 2 || - MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&& - "Bad MRMSxR format!"); - assert((MI->getNumOperands() < 3 || - (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) && - "Bad MRMSxR format!"); - - if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && - MI->getOperand(0).getReg() != MI->getOperand(1).getReg()) - O << "**"; - - O << TII.getName(MI->getOpcode()) << " "; - printOp(MI->getOperand(0)); - if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) { - O << ", "; - printOp(MI->getOperand(MI->getNumOperands()-1)); - } - printImplUsesAfter(Desc); - O << "\n"; - - return; - } - - case X86II::MRM0m: case X86II::MRM1m: - case X86II::MRM2m: case X86II::MRM3m: - case X86II::MRM4m: case X86II::MRM5m: - case X86II::MRM6m: case X86II::MRM7m: { - // In this form, the following are valid formats: - // 1. sete [m] - // 2. cmp [m], immediate - // 2. shl [m], rinput <implicit CL or 1> - // 3. sbb [m], immediate - // - assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 && - isMem(MI, 0) && "Bad MRMSxM format!"); - assert((MI->getNumOperands() != 5 || - (MI->getOperand(4).isImmediate() || - MI->getOperand(4).isGlobalAddress())) && - "Bad MRMSxM format!"); - - const MachineOperand &Op3 = MI->getOperand(3); - - // gas bugs: - // - // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]" - // is misassembled by gas in intel_syntax mode as its 32-bit - // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw - // opcode bytes instead of the instruction. - // - // The 80-bit FP load instruction "fld XWORD PTR [...]" is - // misassembled by gas in intel_syntax mode as its 32-bit - // equivalent "fld DWORD PTR [...]". Workaround: Output the raw - // opcode bytes instead of the instruction. - // - // gas intel_syntax mode treats "fild QWORD PTR [...]" as an - // invalid opcode, saying "64 bit operations are only supported in - // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR - // [...]", which is wrong. Workaround: Output the raw opcode bytes - // instead of the instruction. - // - // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an - // invalid opcode, saying "64 bit operations are only supported in - // 64 bit modes." libopcodes disassembles it as "fistpll DWORD PTR - // [...]", which is wrong. Workaround: Output the raw opcode bytes - // instead of the instruction. - if (MI->getOpcode() == X86::FSTP80m || - MI->getOpcode() == X86::FLD80m || - MI->getOpcode() == X86::FILD64m || - MI->getOpcode() == X86::FISTP64m) { - GasBugWorkaroundEmitter gwe(O); - X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI); - } - - O << TII.getName(MI->getOpcode()) << " "; - O << sizePtr(Desc) << " "; - printMemReference(MI, 0); - if (MI->getNumOperands() == 5) { - O << ", "; - printOp(MI->getOperand(4)); - } - printImplUsesAfter(Desc); - O << "\n"; - return; - } - default: - O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, &TM); break; - } -} - -bool Printer::doInitialization(Module &M) { - // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly. - // - // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an - // instruction as a reference to the register named sp, and if you try to - // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased - // before being looked up in the symbol table. This creates spurious - // `undefined symbol' errors when linking. Workaround: Do not use `noprefix' - // mode, and decorate all register names with percent signs. - O << "\t.intel_syntax\n"; - Mang = new Mangler(M, EmitCygwin); - return false; // success -} - -// SwitchSection - Switch to the specified section of the executable if we are -// not already in it! -// -static void SwitchSection(std::ostream &OS, std::string &CurSection, - const char *NewSection) { - if (CurSection != NewSection) { - CurSection = NewSection; - if (!CurSection.empty()) - OS << "\t" << NewSection << "\n"; - } -} - -bool Printer::doFinalization(Module &M) { - const TargetData &TD = TM.getTargetData(); - std::string CurSection; - - // Print out module-level global variables here. - for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) - if (I->hasInitializer()) { // External global require no code - O << "\n\n"; - std::string name = Mang->getValueName(I); - Constant *C = I->getInitializer(); - unsigned Size = TD.getTypeSize(C->getType()); - unsigned Align = TD.getTypeAlignment(C->getType()); - - if (C->isNullValue() && - (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || - I->hasWeakLinkage() /* FIXME: Verify correct */)) { - SwitchSection(O, CurSection, ".data"); - if (I->hasInternalLinkage()) - O << "\t.local " << name << "\n"; - - O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) - << "," << (unsigned)TD.getTypeAlignment(C->getType()); - O << "\t\t# "; - WriteAsOperand(O, I, true, true, &M); - O << "\n"; - } else { - switch (I->getLinkage()) { - case GlobalValue::LinkOnceLinkage: - case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. - // Nonnull linkonce -> weak - O << "\t.weak " << name << "\n"; - SwitchSection(O, CurSection, ""); - O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; - break; - - case GlobalValue::AppendingLinkage: - // FIXME: appending linkage variables should go into a section of - // their name or something. For now, just emit them as external. - case GlobalValue::ExternalLinkage: - // If external or appending, declare as a global symbol - O << "\t.globl " << name << "\n"; - // FALL THROUGH - case GlobalValue::InternalLinkage: - if (C->isNullValue()) - SwitchSection(O, CurSection, ".bss"); - else - SwitchSection(O, CurSection, ".data"); - break; - } - - O << "\t.align " << Align << "\n"; - O << "\t.type " << name << ",@object\n"; - O << "\t.size " << name << "," << Size << "\n"; - O << name << ":\t\t\t\t# "; - WriteAsOperand(O, I, true, true, &M); - O << " = "; - WriteAsOperand(O, C, false, false, &M); - O << "\n"; - emitGlobalConstant(C); - } - } - - delete Mang; - return false; // success -} |