diff options
author | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
---|---|---|
committer | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
commit | f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch) | |
tree | ebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/Transforms/IPO/SimplifyLibCalls.cpp | |
download | external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2 |
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/IPO/SimplifyLibCalls.cpp')
-rw-r--r-- | lib/Transforms/IPO/SimplifyLibCalls.cpp | 2021 |
1 files changed, 2021 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/SimplifyLibCalls.cpp b/lib/Transforms/IPO/SimplifyLibCalls.cpp new file mode 100644 index 0000000..b0f9128 --- /dev/null +++ b/lib/Transforms/IPO/SimplifyLibCalls.cpp @@ -0,0 +1,2021 @@ +//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by Reid Spencer and is distributed under the +// University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a module pass that applies a variety of small +// optimizations for calls to specific well-known function calls (e.g. runtime +// library functions). For example, a call to the function "exit(3)" that +// occurs within the main() function can be transformed into a simple "return 3" +// instruction. Any optimization that takes this form (replace call to library +// function with simpler code that provides the same result) belongs in this +// file. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "simplify-libcalls" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/ADT/hash_map" +#include "llvm/ADT/Statistic.h" +#include "llvm/Config/config.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/IPO.h" +using namespace llvm; + +/// This statistic keeps track of the total number of library calls that have +/// been simplified regardless of which call it is. +STATISTIC(SimplifiedLibCalls, "Number of library calls simplified"); + +namespace { + // Forward declarations + class LibCallOptimization; + class SimplifyLibCalls; + +/// This list is populated by the constructor for LibCallOptimization class. +/// Therefore all subclasses are registered here at static initialization time +/// and this list is what the SimplifyLibCalls pass uses to apply the individual +/// optimizations to the call sites. +/// @brief The list of optimizations deriving from LibCallOptimization +static LibCallOptimization *OptList = 0; + +/// This class is the abstract base class for the set of optimizations that +/// corresponds to one library call. The SimplifyLibCalls pass will call the +/// ValidateCalledFunction method to ask the optimization if a given Function +/// is the kind that the optimization can handle. If the subclass returns true, +/// then SImplifyLibCalls will also call the OptimizeCall method to perform, +/// or attempt to perform, the optimization(s) for the library call. Otherwise, +/// OptimizeCall won't be called. Subclasses are responsible for providing the +/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization +/// constructor. This is used to efficiently select which call instructions to +/// optimize. The criteria for a "lib call" is "anything with well known +/// semantics", typically a library function that is defined by an international +/// standard. Because the semantics are well known, the optimizations can +/// generally short-circuit actually calling the function if there's a simpler +/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global). +/// @brief Base class for library call optimizations +class VISIBILITY_HIDDEN LibCallOptimization { + LibCallOptimization **Prev, *Next; + const char *FunctionName; ///< Name of the library call we optimize +#ifndef NDEBUG + Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls) +#endif +public: + /// The \p fname argument must be the name of the library function being + /// optimized by the subclass. + /// @brief Constructor that registers the optimization. + LibCallOptimization(const char *FName, const char *Description) + : FunctionName(FName) { + +#ifndef NDEBUG + occurrences.construct("simplify-libcalls", Description); +#endif + // Register this optimizer in the list of optimizations. + Next = OptList; + OptList = this; + Prev = &OptList; + if (Next) Next->Prev = &Next; + } + + /// getNext - All libcall optimizations are chained together into a list, + /// return the next one in the list. + LibCallOptimization *getNext() { return Next; } + + /// @brief Deregister from the optlist + virtual ~LibCallOptimization() { + *Prev = Next; + if (Next) Next->Prev = Prev; + } + + /// The implementation of this function in subclasses should determine if + /// \p F is suitable for the optimization. This method is called by + /// SimplifyLibCalls::runOnModule to short circuit visiting all the call + /// sites of such a function if that function is not suitable in the first + /// place. If the called function is suitabe, this method should return true; + /// false, otherwise. This function should also perform any lazy + /// initialization that the LibCallOptimization needs to do, if its to return + /// true. This avoids doing initialization until the optimizer is actually + /// going to be called upon to do some optimization. + /// @brief Determine if the function is suitable for optimization + virtual bool ValidateCalledFunction( + const Function* F, ///< The function that is the target of call sites + SimplifyLibCalls& SLC ///< The pass object invoking us + ) = 0; + + /// The implementations of this function in subclasses is the heart of the + /// SimplifyLibCalls algorithm. Sublcasses of this class implement + /// OptimizeCall to determine if (a) the conditions are right for optimizing + /// the call and (b) to perform the optimization. If an action is taken + /// against ci, the subclass is responsible for returning true and ensuring + /// that ci is erased from its parent. + /// @brief Optimize a call, if possible. + virtual bool OptimizeCall( + CallInst* ci, ///< The call instruction that should be optimized. + SimplifyLibCalls& SLC ///< The pass object invoking us + ) = 0; + + /// @brief Get the name of the library call being optimized + const char *getFunctionName() const { return FunctionName; } + + bool ReplaceCallWith(CallInst *CI, Value *V) { + if (!CI->use_empty()) + CI->replaceAllUsesWith(V); + CI->eraseFromParent(); + return true; + } + + /// @brief Called by SimplifyLibCalls to update the occurrences statistic. + void succeeded() { +#ifndef NDEBUG + DEBUG(++occurrences); +#endif + } +}; + +/// This class is an LLVM Pass that applies each of the LibCallOptimization +/// instances to all the call sites in a module, relatively efficiently. The +/// purpose of this pass is to provide optimizations for calls to well-known +/// functions with well-known semantics, such as those in the c library. The +/// class provides the basic infrastructure for handling runOnModule. Whenever +/// this pass finds a function call, it asks the appropriate optimizer to +/// validate the call (ValidateLibraryCall). If it is validated, then +/// the OptimizeCall method is also called. +/// @brief A ModulePass for optimizing well-known function calls. +class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass { +public: + static char ID; // Pass identification, replacement for typeid + SimplifyLibCalls() : ModulePass((intptr_t)&ID) {} + + /// We need some target data for accurate signature details that are + /// target dependent. So we require target data in our AnalysisUsage. + /// @brief Require TargetData from AnalysisUsage. + virtual void getAnalysisUsage(AnalysisUsage& Info) const { + // Ask that the TargetData analysis be performed before us so we can use + // the target data. + Info.addRequired<TargetData>(); + } + + /// For this pass, process all of the function calls in the module, calling + /// ValidateLibraryCall and OptimizeCall as appropriate. + /// @brief Run all the lib call optimizations on a Module. + virtual bool runOnModule(Module &M) { + reset(M); + + bool result = false; + hash_map<std::string, LibCallOptimization*> OptznMap; + for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext()) + OptznMap[Optzn->getFunctionName()] = Optzn; + + // The call optimizations can be recursive. That is, the optimization might + // generate a call to another function which can also be optimized. This way + // we make the LibCallOptimization instances very specific to the case they + // handle. It also means we need to keep running over the function calls in + // the module until we don't get any more optimizations possible. + bool found_optimization = false; + do { + found_optimization = false; + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) { + // All the "well-known" functions are external and have external linkage + // because they live in a runtime library somewhere and were (probably) + // not compiled by LLVM. So, we only act on external functions that + // have external or dllimport linkage and non-empty uses. + if (!FI->isDeclaration() || + !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) || + FI->use_empty()) + continue; + + // Get the optimization class that pertains to this function + hash_map<std::string, LibCallOptimization*>::iterator OMI = + OptznMap.find(FI->getName()); + if (OMI == OptznMap.end()) continue; + + LibCallOptimization *CO = OMI->second; + + // Make sure the called function is suitable for the optimization + if (!CO->ValidateCalledFunction(FI, *this)) + continue; + + // Loop over each of the uses of the function + for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end(); + UI != UE ; ) { + // If the use of the function is a call instruction + if (CallInst* CI = dyn_cast<CallInst>(*UI++)) { + // Do the optimization on the LibCallOptimization. + if (CO->OptimizeCall(CI, *this)) { + ++SimplifiedLibCalls; + found_optimization = result = true; + CO->succeeded(); + } + } + } + } + } while (found_optimization); + + return result; + } + + /// @brief Return the *current* module we're working on. + Module* getModule() const { return M; } + + /// @brief Return the *current* target data for the module we're working on. + TargetData* getTargetData() const { return TD; } + + /// @brief Return the size_t type -- syntactic shortcut + const Type* getIntPtrType() const { return TD->getIntPtrType(); } + + /// @brief Return a Function* for the putchar libcall + Constant *get_putchar() { + if (!putchar_func) + putchar_func = + M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL); + return putchar_func; + } + + /// @brief Return a Function* for the puts libcall + Constant *get_puts() { + if (!puts_func) + puts_func = M->getOrInsertFunction("puts", Type::Int32Ty, + PointerType::get(Type::Int8Ty), + NULL); + return puts_func; + } + + /// @brief Return a Function* for the fputc libcall + Constant *get_fputc(const Type* FILEptr_type) { + if (!fputc_func) + fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty, + FILEptr_type, NULL); + return fputc_func; + } + + /// @brief Return a Function* for the fputs libcall + Constant *get_fputs(const Type* FILEptr_type) { + if (!fputs_func) + fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty, + PointerType::get(Type::Int8Ty), + FILEptr_type, NULL); + return fputs_func; + } + + /// @brief Return a Function* for the fwrite libcall + Constant *get_fwrite(const Type* FILEptr_type) { + if (!fwrite_func) + fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(), + PointerType::get(Type::Int8Ty), + TD->getIntPtrType(), + TD->getIntPtrType(), + FILEptr_type, NULL); + return fwrite_func; + } + + /// @brief Return a Function* for the sqrt libcall + Constant *get_sqrt() { + if (!sqrt_func) + sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy, + Type::DoubleTy, NULL); + return sqrt_func; + } + + /// @brief Return a Function* for the strcpy libcall + Constant *get_strcpy() { + if (!strcpy_func) + strcpy_func = M->getOrInsertFunction("strcpy", + PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + NULL); + return strcpy_func; + } + + /// @brief Return a Function* for the strlen libcall + Constant *get_strlen() { + if (!strlen_func) + strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(), + PointerType::get(Type::Int8Ty), + NULL); + return strlen_func; + } + + /// @brief Return a Function* for the memchr libcall + Constant *get_memchr() { + if (!memchr_func) + memchr_func = M->getOrInsertFunction("memchr", + PointerType::get(Type::Int8Ty), + PointerType::get(Type::Int8Ty), + Type::Int32Ty, TD->getIntPtrType(), + NULL); + return memchr_func; + } + + /// @brief Return a Function* for the memcpy libcall + Constant *get_memcpy() { + if (!memcpy_func) { + const Type *SBP = PointerType::get(Type::Int8Ty); + const char *N = TD->getIntPtrType() == Type::Int32Ty ? + "llvm.memcpy.i32" : "llvm.memcpy.i64"; + memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP, + TD->getIntPtrType(), Type::Int32Ty, + NULL); + } + return memcpy_func; + } + + Constant *getUnaryFloatFunction(const char *Name, Constant *&Cache) { + if (!Cache) + Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL); + return Cache; + } + + Constant *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);} + Constant *get_ceilf() { return getUnaryFloatFunction( "ceilf", ceilf_func);} + Constant *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);} + Constant *get_rintf() { return getUnaryFloatFunction( "rintf", rintf_func);} + Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf", + nearbyintf_func); } +private: + /// @brief Reset our cached data for a new Module + void reset(Module& mod) { + M = &mod; + TD = &getAnalysis<TargetData>(); + putchar_func = 0; + puts_func = 0; + fputc_func = 0; + fputs_func = 0; + fwrite_func = 0; + memcpy_func = 0; + memchr_func = 0; + sqrt_func = 0; + strcpy_func = 0; + strlen_func = 0; + floorf_func = 0; + ceilf_func = 0; + roundf_func = 0; + rintf_func = 0; + nearbyintf_func = 0; + } + +private: + /// Caches for function pointers. + Constant *putchar_func, *puts_func; + Constant *fputc_func, *fputs_func, *fwrite_func; + Constant *memcpy_func, *memchr_func; + Constant *sqrt_func; + Constant *strcpy_func, *strlen_func; + Constant *floorf_func, *ceilf_func, *roundf_func; + Constant *rintf_func, *nearbyintf_func; + Module *M; ///< Cached Module + TargetData *TD; ///< Cached TargetData +}; + +char SimplifyLibCalls::ID = 0; +// Register the pass +RegisterPass<SimplifyLibCalls> +X("simplify-libcalls", "Simplify well-known library calls"); + +} // anonymous namespace + +// The only public symbol in this file which just instantiates the pass object +ModulePass *llvm::createSimplifyLibCallsPass() { + return new SimplifyLibCalls(); +} + +// Classes below here, in the anonymous namespace, are all subclasses of the +// LibCallOptimization class, each implementing all optimizations possible for a +// single well-known library call. Each has a static singleton instance that +// auto registers it into the "optlist" global above. +namespace { + +// Forward declare utility functions. +static bool GetConstantStringInfo(Value *V, std::string &Str); +static Value *CastToCStr(Value *V, Instruction *IP); + +/// This LibCallOptimization will find instances of a call to "exit" that occurs +/// within the "main" function and change it to a simple "ret" instruction with +/// the same value passed to the exit function. When this is done, it splits the +/// basic block at the exit(3) call and deletes the call instruction. +/// @brief Replace calls to exit in main with a simple return +struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization { + ExitInMainOptimization() : LibCallOptimization("exit", + "Number of 'exit' calls simplified") {} + + // Make sure the called function looks like exit (int argument, int return + // type, external linkage, not varargs). + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger(); + } + + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { + // To be careful, we check that the call to exit is coming from "main", that + // main has external linkage, and the return type of main and the argument + // to exit have the same type. + Function *from = ci->getParent()->getParent(); + if (from->hasExternalLinkage()) + if (from->getReturnType() == ci->getOperand(1)->getType()) + if (from->getName() == "main") { + // Okay, time to actually do the optimization. First, get the basic + // block of the call instruction + BasicBlock* bb = ci->getParent(); + + // Create a return instruction that we'll replace the call with. + // Note that the argument of the return is the argument of the call + // instruction. + new ReturnInst(ci->getOperand(1), ci); + + // Split the block at the call instruction which places it in a new + // basic block. + bb->splitBasicBlock(ci); + + // The block split caused a branch instruction to be inserted into + // the end of the original block, right after the return instruction + // that we put there. That's not a valid block, so delete the branch + // instruction. + bb->getInstList().pop_back(); + + // Now we can finally get rid of the call instruction which now lives + // in the new basic block. + ci->eraseFromParent(); + + // Optimization succeeded, return true. + return true; + } + // We didn't pass the criteria for this optimization so return false + return false; + } +} ExitInMainOptimizer; + +/// This LibCallOptimization will simplify a call to the strcat library +/// function. The simplification is possible only if the string being +/// concatenated is a constant array or a constant expression that results in +/// a constant string. In this case we can replace it with strlen + llvm.memcpy +/// of the constant string. Both of these calls are further reduced, if possible +/// on subsequent passes. +/// @brief Simplify the strcat library function. +struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization { +public: + /// @brief Default constructor + StrCatOptimization() : LibCallOptimization("strcat", + "Number of 'strcat' calls simplified") {} + +public: + + /// @brief Make sure that the "strcat" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 2 && + FT->getReturnType() == PointerType::get(Type::Int8Ty) && + FT->getParamType(0) == FT->getReturnType() && + FT->getParamType(1) == FT->getReturnType(); + } + + /// @brief Optimize the strcat library function + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // Extract some information from the instruction + Value *Dst = CI->getOperand(1); + Value *Src = CI->getOperand(2); + + // Extract the initializer (while making numerous checks) from the + // source operand of the call to strcat. + std::string SrcStr; + if (!GetConstantStringInfo(Src, SrcStr)) + return false; + + // Handle the simple, do-nothing case + if (SrcStr.empty()) + return ReplaceCallWith(CI, Dst); + + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen. + CallInst *DstLen = new CallInst(SLC.get_strlen(), Dst, + Dst->getName()+".len", CI); + + // Now that we have the destination's length, we must index into the + // destination's pointer to get the actual memcpy destination (end of + // the string .. we're concatenating). + Dst = new GetElementPtrInst(Dst, DstLen, Dst->getName()+".indexed", CI); + + // We have enough information to now generate the memcpy call to + // do the concatenation for us. + Value *Vals[] = { + Dst, Src, + ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte. + ConstantInt::get(Type::Int32Ty, 1) // alignment + }; + new CallInst(SLC.get_memcpy(), Vals, 4, "", CI); + + return ReplaceCallWith(CI, Dst); + } +} StrCatOptimizer; + +/// This LibCallOptimization will simplify a call to the strchr library +/// function. It optimizes out cases where the arguments are both constant +/// and the result can be determined statically. +/// @brief Simplify the strcmp library function. +struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization { +public: + StrChrOptimization() : LibCallOptimization("strchr", + "Number of 'strchr' calls simplified") {} + + /// @brief Make sure that the "strchr" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 2 && + FT->getReturnType() == PointerType::get(Type::Int8Ty) && + FT->getParamType(0) == FT->getReturnType() && + isa<IntegerType>(FT->getParamType(1)); + } + + /// @brief Perform the strchr optimizations + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // Check that the first argument to strchr is a constant array of sbyte. + std::string Str; + if (!GetConstantStringInfo(CI->getOperand(1), Str)) + return false; + + // If the second operand is not constant, just lower this to memchr since we + // know the length of the input string. + ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2)); + if (!CSI) { + Value *Args[3] = { + CI->getOperand(1), + CI->getOperand(2), + ConstantInt::get(SLC.getIntPtrType(), Str.size()+1) + }; + return ReplaceCallWith(CI, new CallInst(SLC.get_memchr(), Args, 3, + CI->getName(), CI)); + } + + // strchr can find the nul character. + Str += '\0'; + + // Get the character we're looking for + char CharValue = CSI->getSExtValue(); + + // Compute the offset + uint64_t i = 0; + while (1) { + if (i == Str.size()) // Didn't find the char. strchr returns null. + return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); + // Did we find our match? + if (Str[i] == CharValue) + break; + ++i; + } + + // strchr(s+n,c) -> gep(s+n+i,c) + // (if c is a constant integer and s is a constant string) + Value *Idx = ConstantInt::get(Type::Int64Ty, i); + Value *GEP = new GetElementPtrInst(CI->getOperand(1), Idx, + CI->getOperand(1)->getName() + + ".strchr", CI); + return ReplaceCallWith(CI, GEP); + } +} StrChrOptimizer; + +/// This LibCallOptimization will simplify a call to the strcmp library +/// function. It optimizes out cases where one or both arguments are constant +/// and the result can be determined statically. +/// @brief Simplify the strcmp library function. +struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization { +public: + StrCmpOptimization() : LibCallOptimization("strcmp", + "Number of 'strcmp' calls simplified") {} + + /// @brief Make sure that the "strcmp" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 && + FT->getParamType(0) == FT->getParamType(1) && + FT->getParamType(0) == PointerType::get(Type::Int8Ty); + } + + /// @brief Perform the strcmp optimization + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // First, check to see if src and destination are the same. If they are, + // then the optimization is to replace the CallInst with a constant 0 + // because the call is a no-op. + Value *Str1P = CI->getOperand(1); + Value *Str2P = CI->getOperand(2); + if (Str1P == Str2P) // strcmp(x,x) -> 0 + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); + + std::string Str1; + if (!GetConstantStringInfo(Str1P, Str1)) + return false; + if (Str1.empty()) { + // strcmp("", x) -> *x + Value *V = new LoadInst(Str2P, CI->getName()+".load", CI); + V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); + return ReplaceCallWith(CI, V); + } + + std::string Str2; + if (!GetConstantStringInfo(Str2P, Str2)) + return false; + if (Str2.empty()) { + // strcmp(x,"") -> *x + Value *V = new LoadInst(Str1P, CI->getName()+".load", CI); + V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); + return ReplaceCallWith(CI, V); + } + + // strcmp(x, y) -> cnst (if both x and y are constant strings) + int R = strcmp(Str1.c_str(), Str2.c_str()); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R)); + } +} StrCmpOptimizer; + +/// This LibCallOptimization will simplify a call to the strncmp library +/// function. It optimizes out cases where one or both arguments are constant +/// and the result can be determined statically. +/// @brief Simplify the strncmp library function. +struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization { +public: + StrNCmpOptimization() : LibCallOptimization("strncmp", + "Number of 'strncmp' calls simplified") {} + + /// @brief Make sure that the "strncmp" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 && + FT->getParamType(0) == FT->getParamType(1) && + FT->getParamType(0) == PointerType::get(Type::Int8Ty) && + isa<IntegerType>(FT->getParamType(2)); + return false; + } + + /// @brief Perform the strncmp optimization + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // First, check to see if src and destination are the same. If they are, + // then the optimization is to replace the CallInst with a constant 0 + // because the call is a no-op. + Value *Str1P = CI->getOperand(1); + Value *Str2P = CI->getOperand(2); + if (Str1P == Str2P) // strncmp(x,x, n) -> 0 + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); + + // Check the length argument, if it is Constant zero then the strings are + // considered equal. + uint64_t Length; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3))) + Length = LengthArg->getZExtValue(); + else + return false; + + if (Length == 0) // strncmp(x,y,0) -> 0 + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); + + std::string Str1; + if (!GetConstantStringInfo(Str1P, Str1)) + return false; + if (Str1.empty()) { + // strncmp("", x, n) -> *x + Value *V = new LoadInst(Str2P, CI->getName()+".load", CI); + V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); + return ReplaceCallWith(CI, V); + } + + std::string Str2; + if (!GetConstantStringInfo(Str2P, Str2)) + return false; + if (Str2.empty()) { + // strncmp(x, "", n) -> *x + Value *V = new LoadInst(Str1P, CI->getName()+".load", CI); + V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); + return ReplaceCallWith(CI, V); + } + + // strncmp(x, y, n) -> cnst (if both x and y are constant strings) + int R = strncmp(Str1.c_str(), Str2.c_str(), Length); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R)); + } +} StrNCmpOptimizer; + +/// This LibCallOptimization will simplify a call to the strcpy library +/// function. Two optimizations are possible: +/// (1) If src and dest are the same and not volatile, just return dest +/// (2) If the src is a constant then we can convert to llvm.memmove +/// @brief Simplify the strcpy library function. +struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization { +public: + StrCpyOptimization() : LibCallOptimization("strcpy", + "Number of 'strcpy' calls simplified") {} + + /// @brief Make sure that the "strcpy" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 2 && + FT->getParamType(0) == FT->getParamType(1) && + FT->getReturnType() == FT->getParamType(0) && + FT->getParamType(0) == PointerType::get(Type::Int8Ty); + } + + /// @brief Perform the strcpy optimization + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // First, check to see if src and destination are the same. If they are, + // then the optimization is to replace the CallInst with the destination + // because the call is a no-op. Note that this corresponds to the + // degenerate strcpy(X,X) case which should have "undefined" results + // according to the C specification. However, it occurs sometimes and + // we optimize it as a no-op. + Value *Dst = CI->getOperand(1); + Value *Src = CI->getOperand(2); + if (Dst == Src) { + // strcpy(x, x) -> x + return ReplaceCallWith(CI, Dst); + } + + // Get the length of the constant string referenced by the Src operand. + std::string SrcStr; + if (!GetConstantStringInfo(Src, SrcStr)) + return false; + + // If the constant string's length is zero we can optimize this by just + // doing a store of 0 at the first byte of the destination + if (SrcStr.size() == 0) { + new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI); + return ReplaceCallWith(CI, Dst); + } + + // We have enough information to now generate the memcpy call to + // do the concatenation for us. + Value *MemcpyOps[] = { + Dst, Src, // Pass length including nul byte. + ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), + ConstantInt::get(Type::Int32Ty, 1) // alignment + }; + new CallInst(SLC.get_memcpy(), MemcpyOps, 4, "", CI); + + return ReplaceCallWith(CI, Dst); + } +} StrCpyOptimizer; + +/// This LibCallOptimization will simplify a call to the strlen library +/// function by replacing it with a constant value if the string provided to +/// it is a constant array. +/// @brief Simplify the strlen library function. +struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization { + StrLenOptimization() : LibCallOptimization("strlen", + "Number of 'strlen' calls simplified") {} + + /// @brief Make sure that the "strlen" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 1 && + FT->getParamType(0) == PointerType::get(Type::Int8Ty) && + isa<IntegerType>(FT->getReturnType()); + } + + /// @brief Perform the strlen optimization + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // Make sure we're dealing with an sbyte* here. + Value *Src = CI->getOperand(1); + + // Does the call to strlen have exactly one use? + if (CI->hasOneUse()) { + // Is that single use a icmp operator? + if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back())) + // Is it compared against a constant integer? + if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) { + // If its compared against length 0 with == or != + if (Cst->getZExtValue() == 0 && Cmp->isEquality()) { + // strlen(x) != 0 -> *x != 0 + // strlen(x) == 0 -> *x == 0 + Value *V = new LoadInst(Src, Src->getName()+".first", CI); + V = new ICmpInst(Cmp->getPredicate(), V, + ConstantInt::get(Type::Int8Ty, 0), + Cmp->getName()+".strlen", CI); + Cmp->replaceAllUsesWith(V); + Cmp->eraseFromParent(); + return ReplaceCallWith(CI, 0); // no uses. + } + } + } + + // Get the length of the constant string operand + std::string Str; + if (!GetConstantStringInfo(Src, Str)) + return false; + + // strlen("xyz") -> 3 (for example) + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size())); + } +} StrLenOptimizer; + +/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value +/// is equal or not-equal to zero. +static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) { + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) + if (IC->isEquality()) + if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + // Unknown instruction. + return false; + } + return true; +} + +/// This memcmpOptimization will simplify a call to the memcmp library +/// function. +struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization { + /// @brief Default Constructor + memcmpOptimization() + : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {} + + /// @brief Make sure that the "memcmp" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) { + Function::const_arg_iterator AI = F->arg_begin(); + if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false; + if (!isa<PointerType>((++AI)->getType())) return false; + if (!(++AI)->getType()->isInteger()) return false; + if (!F->getReturnType()->isInteger()) return false; + return true; + } + + /// Because of alignment and instruction information that we don't have, we + /// leave the bulk of this to the code generators. + /// + /// Note that we could do much more if we could force alignment on otherwise + /// small aligned allocas, or if we could indicate that loads have a small + /// alignment. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) { + Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2); + + // If the two operands are the same, return zero. + if (LHS == RHS) { + // memcmp(s,s,x) -> 0 + return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); + } + + // Make sure we have a constant length. + ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3)); + if (!LenC) return false; + uint64_t Len = LenC->getZExtValue(); + + // If the length is zero, this returns 0. + switch (Len) { + case 0: + // memcmp(s1,s2,0) -> 0 + return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); + case 1: { + // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2 + const Type *UCharPtr = PointerType::get(Type::Int8Ty); + CastInst *Op1Cast = CastInst::create( + Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI); + CastInst *Op2Cast = CastInst::create( + Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI); + Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI); + Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI); + Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI); + if (RV->getType() != CI->getType()) + RV = CastInst::createIntegerCast(RV, CI->getType(), false, + RV->getName(), CI); + return ReplaceCallWith(CI, RV); + } + case 2: + if (IsOnlyUsedInEqualsZeroComparison(CI)) { + // TODO: IF both are aligned, use a short load/compare. + + // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters + const Type *UCharPtr = PointerType::get(Type::Int8Ty); + CastInst *Op1Cast = CastInst::create( + Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI); + CastInst *Op2Cast = CastInst::create( + Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI); + Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI); + Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI); + Value *D1 = BinaryOperator::createSub(S1V1, S2V1, + CI->getName()+".d1", CI); + Constant *One = ConstantInt::get(Type::Int32Ty, 1); + Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI); + Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI); + Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI); + Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI); + Value *D2 = BinaryOperator::createSub(S1V2, S2V2, + CI->getName()+".d1", CI); + Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI); + if (Or->getType() != CI->getType()) + Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/, + Or->getName(), CI); + return ReplaceCallWith(CI, Or); + } + break; + default: + break; + } + + return false; + } +} memcmpOptimizer; + + +/// This LibCallOptimization will simplify a call to the memcpy library +/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 +/// bytes depending on the length of the string and the alignment. Additional +/// optimizations are possible in code generation (sequence of immediate store) +/// @brief Simplify the memcpy library function. +struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization { + LLVMMemCpyMoveOptzn(const char* fname, const char* desc) + : LibCallOptimization(fname, desc) {} + + /// @brief Make sure that the "memcpy" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) { + // Just make sure this has 4 arguments per LLVM spec. + return (f->arg_size() == 4); + } + + /// Because of alignment and instruction information that we don't have, we + /// leave the bulk of this to the code generators. The optimization here just + /// deals with a few degenerate cases where the length of the string and the + /// alignment match the sizes of our intrinsic types so we can do a load and + /// store instead of the memcpy call. + /// @brief Perform the memcpy optimization. + virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) { + // Make sure we have constant int values to work with + ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3)); + if (!LEN) + return false; + ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4)); + if (!ALIGN) + return false; + + // If the length is larger than the alignment, we can't optimize + uint64_t len = LEN->getZExtValue(); + uint64_t alignment = ALIGN->getZExtValue(); + if (alignment == 0) + alignment = 1; // Alignment 0 is identity for alignment 1 + if (len > alignment) + return false; + + // Get the type we will cast to, based on size of the string + Value* dest = ci->getOperand(1); + Value* src = ci->getOperand(2); + const Type* castType = 0; + switch (len) { + case 0: + // memcpy(d,s,0,a) -> d + return ReplaceCallWith(ci, 0); + case 1: castType = Type::Int8Ty; break; + case 2: castType = Type::Int16Ty; break; + case 4: castType = Type::Int32Ty; break; + case 8: castType = Type::Int64Ty; break; + default: + return false; + } + + // Cast source and dest to the right sized primitive and then load/store + CastInst* SrcCast = CastInst::create(Instruction::BitCast, + src, PointerType::get(castType), src->getName()+".cast", ci); + CastInst* DestCast = CastInst::create(Instruction::BitCast, + dest, PointerType::get(castType),dest->getName()+".cast", ci); + LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci); + new StoreInst(LI, DestCast, ci); + return ReplaceCallWith(ci, 0); + } +}; + +/// This LibCallOptimization will simplify a call to the memcpy/memmove library +/// functions. +LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32", + "Number of 'llvm.memcpy' calls simplified"); +LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64", + "Number of 'llvm.memcpy' calls simplified"); +LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32", + "Number of 'llvm.memmove' calls simplified"); +LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64", + "Number of 'llvm.memmove' calls simplified"); + +/// This LibCallOptimization will simplify a call to the memset library +/// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 +/// bytes depending on the length argument. +struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization { + /// @brief Default Constructor + LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name, + "Number of 'llvm.memset' calls simplified") {} + + /// @brief Make sure that the "memset" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) { + // Just make sure this has 3 arguments per LLVM spec. + return F->arg_size() == 4; + } + + /// Because of alignment and instruction information that we don't have, we + /// leave the bulk of this to the code generators. The optimization here just + /// deals with a few degenerate cases where the length parameter is constant + /// and the alignment matches the sizes of our intrinsic types so we can do + /// store instead of the memcpy call. Other calls are transformed into the + /// llvm.memset intrinsic. + /// @brief Perform the memset optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) { + // Make sure we have constant int values to work with + ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3)); + if (!LEN) + return false; + ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4)); + if (!ALIGN) + return false; + + // Extract the length and alignment + uint64_t len = LEN->getZExtValue(); + uint64_t alignment = ALIGN->getZExtValue(); + + // Alignment 0 is identity for alignment 1 + if (alignment == 0) + alignment = 1; + + // If the length is zero, this is a no-op + if (len == 0) { + // memset(d,c,0,a) -> noop + return ReplaceCallWith(ci, 0); + } + + // If the length is larger than the alignment, we can't optimize + if (len > alignment) + return false; + + // Make sure we have a constant ubyte to work with so we can extract + // the value to be filled. + ConstantInt* FILL = dyn_cast<ConstantInt>(ci->getOperand(2)); + if (!FILL) + return false; + if (FILL->getType() != Type::Int8Ty) + return false; + + // memset(s,c,n) -> store s, c (for n=1,2,4,8) + + // Extract the fill character + uint64_t fill_char = FILL->getZExtValue(); + uint64_t fill_value = fill_char; + + // Get the type we will cast to, based on size of memory area to fill, and + // and the value we will store there. + Value* dest = ci->getOperand(1); + const Type* castType = 0; + switch (len) { + case 1: + castType = Type::Int8Ty; + break; + case 2: + castType = Type::Int16Ty; + fill_value |= fill_char << 8; + break; + case 4: + castType = Type::Int32Ty; + fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; + break; + case 8: + castType = Type::Int64Ty; + fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; + fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48; + fill_value |= fill_char << 56; + break; + default: + return false; + } + + // Cast dest to the right sized primitive and then load/store + CastInst* DestCast = new BitCastInst(dest, PointerType::get(castType), + dest->getName()+".cast", ci); + new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci); + return ReplaceCallWith(ci, 0); + } +}; + +LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32"); +LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64"); + + +/// This LibCallOptimization will simplify calls to the "pow" library +/// function. It looks for cases where the result of pow is well known and +/// substitutes the appropriate value. +/// @brief Simplify the pow library function. +struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + PowOptimization() : LibCallOptimization("pow", + "Number of 'pow' calls simplified") {} + + /// @brief Make sure that the "pow" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + // Just make sure this has 2 arguments + return (f->arg_size() == 2); + } + + /// @brief Perform the pow optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType(); + Value* base = ci->getOperand(1); + Value* expn = ci->getOperand(2); + if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) { + double Op1V = Op1->getValue(); + if (Op1V == 1.0) // pow(1.0,x) -> 1.0 + return ReplaceCallWith(ci, ConstantFP::get(Ty, 1.0)); + } else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) { + double Op2V = Op2->getValue(); + if (Op2V == 0.0) { + // pow(x,0.0) -> 1.0 + return ReplaceCallWith(ci, ConstantFP::get(Ty,1.0)); + } else if (Op2V == 0.5) { + // pow(x,0.5) -> sqrt(x) + CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base, + ci->getName()+".pow",ci); + return ReplaceCallWith(ci, sqrt_inst); + } else if (Op2V == 1.0) { + // pow(x,1.0) -> x + return ReplaceCallWith(ci, base); + } else if (Op2V == -1.0) { + // pow(x,-1.0) -> 1.0/x + Value *div_inst = + BinaryOperator::createFDiv(ConstantFP::get(Ty, 1.0), base, + ci->getName()+".pow", ci); + return ReplaceCallWith(ci, div_inst); + } + } + return false; // opt failed + } +} PowOptimizer; + +/// This LibCallOptimization will simplify calls to the "printf" library +/// function. It looks for cases where the result of printf is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the printf library function. +struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + PrintfOptimization() : LibCallOptimization("printf", + "Number of 'printf' calls simplified") {} + + /// @brief Make sure that the "printf" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + // Just make sure this has at least 1 argument and returns an integer or + // void type. + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() >= 1 && + (isa<IntegerType>(FT->getReturnType()) || + FT->getReturnType() == Type::VoidTy); + } + + /// @brief Perform the printf optimization. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // All the optimizations depend on the length of the first argument and the + // fact that it is a constant string array. Check that now + std::string FormatStr; + if (!GetConstantStringInfo(CI->getOperand(1), FormatStr)) + return false; + + // If this is a simple constant string with no format specifiers that ends + // with a \n, turn it into a puts call. + if (FormatStr.empty()) { + // Tolerate printf's declared void. + if (CI->use_empty()) return ReplaceCallWith(CI, 0); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); + } + + if (FormatStr.size() == 1) { + // Turn this into a putchar call, even if it is a %. + Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]); + new CallInst(SLC.get_putchar(), V, "", CI); + if (CI->use_empty()) return ReplaceCallWith(CI, 0); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); + } + + // Check to see if the format str is something like "foo\n", in which case + // we convert it to a puts call. We don't allow it to contain any format + // characters. + if (FormatStr[FormatStr.size()-1] == '\n' && + FormatStr.find('%') == std::string::npos) { + // Create a string literal with no \n on it. We expect the constant merge + // pass to be run after this pass, to merge duplicate strings. + FormatStr.erase(FormatStr.end()-1); + Constant *Init = ConstantArray::get(FormatStr, true); + Constant *GV = new GlobalVariable(Init->getType(), true, + GlobalVariable::InternalLinkage, + Init, "str", + CI->getParent()->getParent()->getParent()); + // Cast GV to be a pointer to char. + GV = ConstantExpr::getBitCast(GV, PointerType::get(Type::Int8Ty)); + new CallInst(SLC.get_puts(), GV, "", CI); + + if (CI->use_empty()) return ReplaceCallWith(CI, 0); + return ReplaceCallWith(CI, + ConstantInt::get(CI->getType(), FormatStr.size())); + } + + + // Only support %c or "%s\n" for now. + if (FormatStr.size() < 2 || FormatStr[0] != '%') + return false; + + // Get the second character and switch on its value + switch (FormatStr[1]) { + default: return false; + case 's': + if (FormatStr != "%s\n" || CI->getNumOperands() < 3 || + // TODO: could insert strlen call to compute string length. + !CI->use_empty()) + return false; + + // printf("%s\n",str) -> puts(str) + new CallInst(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI), + CI->getName(), CI); + return ReplaceCallWith(CI, 0); + case 'c': { + // printf("%c",c) -> putchar(c) + if (FormatStr.size() != 2 || CI->getNumOperands() < 3) + return false; + + Value *V = CI->getOperand(2); + if (!isa<IntegerType>(V->getType()) || + cast<IntegerType>(V->getType())->getBitWidth() > 32) + return false; + + V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int", + CI); + new CallInst(SLC.get_putchar(), V, "", CI); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); + } + } + } +} PrintfOptimizer; + +/// This LibCallOptimization will simplify calls to the "fprintf" library +/// function. It looks for cases where the result of fprintf is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the fprintf library function. +struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + FPrintFOptimization() : LibCallOptimization("fprintf", + "Number of 'fprintf' calls simplified") {} + + /// @brief Make sure that the "fprintf" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 2 && // two fixed arguments. + FT->getParamType(1) == PointerType::get(Type::Int8Ty) && + isa<PointerType>(FT->getParamType(0)) && + isa<IntegerType>(FT->getReturnType()); + } + + /// @brief Perform the fprintf optimization. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // If the call has more than 3 operands, we can't optimize it + if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4) + return false; + + // All the optimizations depend on the format string. + std::string FormatStr; + if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) + return false; + + // If this is just a format string, turn it into fwrite. + if (CI->getNumOperands() == 3) { + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') + return false; // we found a format specifier + + // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file) + const Type *FILEty = CI->getOperand(1)->getType(); + + Value *FWriteArgs[] = { + CI->getOperand(2), + ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()), + ConstantInt::get(SLC.getIntPtrType(), 1), + CI->getOperand(1) + }; + new CallInst(SLC.get_fwrite(FILEty), FWriteArgs, 4, CI->getName(), CI); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), + FormatStr.size())); + } + + // The remaining optimizations require the format string to be length 2: + // "%s" or "%c". + if (FormatStr.size() != 2 || FormatStr[0] != '%') + return false; + + // Get the second character and switch on its value + switch (FormatStr[1]) { + case 'c': { + // fprintf(file,"%c",c) -> fputc(c,file) + const Type *FILETy = CI->getOperand(1)->getType(); + Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty, + CI->getName()+".int", CI); + new CallInst(SLC.get_fputc(FILETy), C, CI->getOperand(1), "", CI); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); + } + case 's': { + const Type *FILETy = CI->getOperand(1)->getType(); + + // If the result of the fprintf call is used, we can't do this. + // TODO: we should insert a strlen call. + if (!CI->use_empty()) + return false; + + // fprintf(file,"%s",str) -> fputs(str,file) + new CallInst(SLC.get_fputs(FILETy), CastToCStr(CI->getOperand(3), CI), + CI->getOperand(1), CI->getName(), CI); + return ReplaceCallWith(CI, 0); + } + default: + return false; + } + } +} FPrintFOptimizer; + +/// This LibCallOptimization will simplify calls to the "sprintf" library +/// function. It looks for cases where the result of sprintf is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the sprintf library function. +struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + SPrintFOptimization() : LibCallOptimization("sprintf", + "Number of 'sprintf' calls simplified") {} + + /// @brief Make sure that the "sprintf" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 2 && // two fixed arguments. + FT->getParamType(1) == PointerType::get(Type::Int8Ty) && + FT->getParamType(0) == FT->getParamType(1) && + isa<IntegerType>(FT->getReturnType()); + } + + /// @brief Perform the sprintf optimization. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // If the call has more than 3 operands, we can't optimize it + if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4) + return false; + + std::string FormatStr; + if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) + return false; + + if (CI->getNumOperands() == 3) { + // Make sure there's no % in the constant array + for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) + if (FormatStr[i] == '%') + return false; // we found a format specifier + + // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1) + Value *MemCpyArgs[] = { + CI->getOperand(1), CI->getOperand(2), + ConstantInt::get(SLC.getIntPtrType(), + FormatStr.size()+1), // Copy the nul byte. + ConstantInt::get(Type::Int32Ty, 1) + }; + new CallInst(SLC.get_memcpy(), MemCpyArgs, 4, "", CI); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), + FormatStr.size())); + } + + // The remaining optimizations require the format string to be "%s" or "%c". + if (FormatStr.size() != 2 || FormatStr[0] != '%') + return false; + + // Get the second character and switch on its value + switch (FormatStr[1]) { + case 'c': { + // sprintf(dest,"%c",chr) -> store chr, dest + Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3), + Type::Int8Ty, "char", CI); + new StoreInst(V, CI->getOperand(1), CI); + Value *Ptr = new GetElementPtrInst(CI->getOperand(1), + ConstantInt::get(Type::Int32Ty, 1), + CI->getOperand(1)->getName()+".end", + CI); + new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI); + return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1)); + } + case 's': { + // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) + Value *Len = new CallInst(SLC.get_strlen(), + CastToCStr(CI->getOperand(3), CI), + CI->getOperand(3)->getName()+".len", CI); + Value *UnincLen = Len; + Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1), + Len->getName()+"1", CI); + Value *MemcpyArgs[4] = { + CI->getOperand(1), + CastToCStr(CI->getOperand(3), CI), + Len, + ConstantInt::get(Type::Int32Ty, 1) + }; + new CallInst(SLC.get_memcpy(), MemcpyArgs, 4, "", CI); + + // The strlen result is the unincremented number of bytes in the string. + if (!CI->use_empty()) { + if (UnincLen->getType() != CI->getType()) + UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false, + Len->getName(), CI); + CI->replaceAllUsesWith(UnincLen); + } + return ReplaceCallWith(CI, 0); + } + } + return false; + } +} SPrintFOptimizer; + +/// This LibCallOptimization will simplify calls to the "fputs" library +/// function. It looks for cases where the result of fputs is not used and the +/// operation can be reduced to something simpler. +/// @brief Simplify the fputs library function. +struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + FPutsOptimization() : LibCallOptimization("fputs", + "Number of 'fputs' calls simplified") {} + + /// @brief Make sure that the "fputs" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + // Just make sure this has 2 arguments + return F->arg_size() == 2; + } + + /// @brief Perform the fputs optimization. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // If the result is used, none of these optimizations work. + if (!CI->use_empty()) + return false; + + // All the optimizations depend on the length of the first argument and the + // fact that it is a constant string array. Check that now + std::string Str; + if (!GetConstantStringInfo(CI->getOperand(1), Str)) + return false; + + const Type *FILETy = CI->getOperand(2)->getType(); + // fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1) + Value *FWriteParms[4] = { + CI->getOperand(1), + ConstantInt::get(SLC.getIntPtrType(), Str.size()), + ConstantInt::get(SLC.getIntPtrType(), 1), + CI->getOperand(2) + }; + new CallInst(SLC.get_fwrite(FILETy), FWriteParms, 4, "", CI); + return ReplaceCallWith(CI, 0); // Known to have no uses (see above). + } +} FPutsOptimizer; + +/// This LibCallOptimization will simplify calls to the "fwrite" function. +struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + FWriteOptimization() : LibCallOptimization("fwrite", + "Number of 'fwrite' calls simplified") {} + + /// @brief Make sure that the "fputs" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + const FunctionType *FT = F->getFunctionType(); + return FT->getNumParams() == 4 && + FT->getParamType(0) == PointerType::get(Type::Int8Ty) && + FT->getParamType(1) == FT->getParamType(2) && + isa<IntegerType>(FT->getParamType(1)) && + isa<PointerType>(FT->getParamType(3)) && + isa<IntegerType>(FT->getReturnType()); + } + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // Get the element size and count. + uint64_t EltSize, EltCount; + if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(2))) + EltSize = C->getZExtValue(); + else + return false; + if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(3))) + EltCount = C->getZExtValue(); + else + return false; + + // If this is writing zero records, remove the call (it's a noop). + if (EltSize * EltCount == 0) + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); + + // If this is writing one byte, turn it into fputc. + if (EltSize == 1 && EltCount == 1) { + // fwrite(s,1,1,F) -> fputc(s[0],F) + Value *Ptr = CI->getOperand(1); + Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI); + Val = new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI); + const Type *FILETy = CI->getOperand(4)->getType(); + new CallInst(SLC.get_fputc(FILETy), Val, CI->getOperand(4), "", CI); + return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); + } + return false; + } +} FWriteOptimizer; + +/// This LibCallOptimization will simplify calls to the "isdigit" library +/// function. It simply does range checks the parameter explicitly. +/// @brief Simplify the isdigit library function. +struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization { +public: + isdigitOptimization() : LibCallOptimization("isdigit", + "Number of 'isdigit' calls simplified") {} + + /// @brief Make sure that the "isdigit" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + // Just make sure this has 1 argument + return (f->arg_size() == 1); + } + + /// @brief Perform the toascii optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1))) { + // isdigit(c) -> 0 or 1, if 'c' is constant + uint64_t val = CI->getZExtValue(); + if (val >= '0' && val <= '9') + return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1)); + else + return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0)); + } + + // isdigit(c) -> (unsigned)c - '0' <= 9 + CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1), + Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci); + BinaryOperator* sub_inst = BinaryOperator::createSub(cast, + ConstantInt::get(Type::Int32Ty,0x30), + ci->getOperand(1)->getName()+".sub",ci); + ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst, + ConstantInt::get(Type::Int32Ty,9), + ci->getOperand(1)->getName()+".cmp",ci); + CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty, + ci->getOperand(1)->getName()+".isdigit", ci); + return ReplaceCallWith(ci, c2); + } +} isdigitOptimizer; + +struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization { +public: + isasciiOptimization() + : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {} + + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() && + F->getReturnType()->isInteger(); + } + + /// @brief Perform the isascii optimization. + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { + // isascii(c) -> (unsigned)c < 128 + Value *V = CI->getOperand(1); + Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V, + ConstantInt::get(V->getType(), 128), + V->getName()+".isascii", CI); + if (Cmp->getType() != CI->getType()) + Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI); + return ReplaceCallWith(CI, Cmp); + } +} isasciiOptimizer; + + +/// This LibCallOptimization will simplify calls to the "toascii" library +/// function. It simply does the corresponding and operation to restrict the +/// range of values to the ASCII character set (0-127). +/// @brief Simplify the toascii library function. +struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization { +public: + /// @brief Default Constructor + ToAsciiOptimization() : LibCallOptimization("toascii", + "Number of 'toascii' calls simplified") {} + + /// @brief Make sure that the "fputs" function has the right prototype + virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ + // Just make sure this has 2 arguments + return (f->arg_size() == 1); + } + + /// @brief Perform the toascii optimization. + virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { + // toascii(c) -> (c & 0x7f) + Value *chr = ci->getOperand(1); + Value *and_inst = BinaryOperator::createAnd(chr, + ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci); + return ReplaceCallWith(ci, and_inst); + } +} ToAsciiOptimizer; + +/// This LibCallOptimization will simplify calls to the "ffs" library +/// calls which find the first set bit in an int, long, or long long. The +/// optimization is to compute the result at compile time if the argument is +/// a constant. +/// @brief Simplify the ffs library function. +struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization { +protected: + /// @brief Subclass Constructor + FFSOptimization(const char* funcName, const char* description) + : LibCallOptimization(funcName, description) {} + +public: + /// @brief Default Constructor + FFSOptimization() : LibCallOptimization("ffs", + "Number of 'ffs' calls simplified") {} + + /// @brief Make sure that the "ffs" function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + // Just make sure this has 2 arguments + return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty; + } + + /// @brief Perform the ffs optimization. + virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(TheCall->getOperand(1))) { + // ffs(cnst) -> bit# + // ffsl(cnst) -> bit# + // ffsll(cnst) -> bit# + uint64_t val = CI->getZExtValue(); + int result = 0; + if (val) { + ++result; + while ((val & 1) == 0) { + ++result; + val >>= 1; + } + } + return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result)); + } + + // ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1 + // ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1 + // ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1 + const Type *ArgType = TheCall->getOperand(1)->getType(); + const char *CTTZName; + assert(ArgType->getTypeID() == Type::IntegerTyID && + "llvm.cttz argument is not an integer?"); + unsigned BitWidth = cast<IntegerType>(ArgType)->getBitWidth(); + if (BitWidth == 8) + CTTZName = "llvm.cttz.i8"; + else if (BitWidth == 16) + CTTZName = "llvm.cttz.i16"; + else if (BitWidth == 32) + CTTZName = "llvm.cttz.i32"; + else { + assert(BitWidth == 64 && "Unknown bitwidth"); + CTTZName = "llvm.cttz.i64"; + } + + Constant *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType, + ArgType, NULL); + Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType, + false/*ZExt*/, "tmp", TheCall); + Value *V2 = new CallInst(F, V, "tmp", TheCall); + V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/, + "tmp", TheCall); + V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1), + "tmp", TheCall); + Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V, + Constant::getNullValue(V->getType()), "tmp", + TheCall); + V2 = new SelectInst(Cond, ConstantInt::get(Type::Int32Ty, 0), V2, + TheCall->getName(), TheCall); + return ReplaceCallWith(TheCall, V2); + } +} FFSOptimizer; + +/// This LibCallOptimization will simplify calls to the "ffsl" library +/// calls. It simply uses FFSOptimization for which the transformation is +/// identical. +/// @brief Simplify the ffsl library function. +struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization { +public: + /// @brief Default Constructor + FFSLOptimization() : FFSOptimization("ffsl", + "Number of 'ffsl' calls simplified") {} + +} FFSLOptimizer; + +/// This LibCallOptimization will simplify calls to the "ffsll" library +/// calls. It simply uses FFSOptimization for which the transformation is +/// identical. +/// @brief Simplify the ffsl library function. +struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization { +public: + /// @brief Default Constructor + FFSLLOptimization() : FFSOptimization("ffsll", + "Number of 'ffsll' calls simplified") {} + +} FFSLLOptimizer; + +/// This optimizes unary functions that take and return doubles. +struct UnaryDoubleFPOptimizer : public LibCallOptimization { + UnaryDoubleFPOptimizer(const char *Fn, const char *Desc) + : LibCallOptimization(Fn, Desc) {} + + // Make sure that this function has the right prototype + virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ + return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy && + F->getReturnType() == Type::DoubleTy; + } + + /// ShrinkFunctionToFloatVersion - If the input to this function is really a + /// float, strength reduce this to a float version of the function, + /// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called + /// when the target supports the destination function and where there can be + /// no precision loss. + static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC, + Constant *(SimplifyLibCalls::*FP)()){ + if (FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1))) + if (Cast->getOperand(0)->getType() == Type::FloatTy) { + Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0), + CI->getName(), CI); + New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI); + CI->replaceAllUsesWith(New); + CI->eraseFromParent(); + if (Cast->use_empty()) + Cast->eraseFromParent(); + return true; + } + return false; + } +}; + + +struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer { + FloorOptimization() + : UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_FLOORF + // If this is a float argument passed in, convert to floorf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf)) + return true; +#endif + return false; // opt failed + } +} FloorOptimizer; + +struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer { + CeilOptimization() + : UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_CEILF + // If this is a float argument passed in, convert to ceilf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf)) + return true; +#endif + return false; // opt failed + } +} CeilOptimizer; + +struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer { + RoundOptimization() + : UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_ROUNDF + // If this is a float argument passed in, convert to roundf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf)) + return true; +#endif + return false; // opt failed + } +} RoundOptimizer; + +struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer { + RintOptimization() + : UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_RINTF + // If this is a float argument passed in, convert to rintf. + if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf)) + return true; +#endif + return false; // opt failed + } +} RintOptimizer; + +struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer { + NearByIntOptimization() + : UnaryDoubleFPOptimizer("nearbyint", + "Number of 'nearbyint' calls simplified") {} + + virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { +#ifdef HAVE_NEARBYINTF + // If this is a float argument passed in, convert to nearbyintf. + if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf)) + return true; +#endif + return false; // opt failed + } +} NearByIntOptimizer; + +/// GetConstantStringInfo - This function computes the length of a +/// null-terminated constant array of integers. This function can't rely on the +/// size of the constant array because there could be a null terminator in the +/// middle of the array. +/// +/// We also have to bail out if we find a non-integer constant initializer +/// of one of the elements or if there is no null-terminator. The logic +/// below checks each of these conditions and will return true only if all +/// conditions are met. If the conditions aren't met, this returns false. +/// +/// If successful, the \p Array param is set to the constant array being +/// indexed, the \p Length parameter is set to the length of the null-terminated +/// string pointed to by V, the \p StartIdx value is set to the first +/// element of the Array that V points to, and true is returned. +static bool GetConstantStringInfo(Value *V, std::string &Str) { + // Look through noop bitcast instructions. + if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { + if (BCI->getType() == BCI->getOperand(0)->getType()) + return GetConstantStringInfo(BCI->getOperand(0), Str); + return false; + } + + // If the value is not a GEP instruction nor a constant expression with a + // GEP instruction, then return false because ConstantArray can't occur + // any other way + User *GEP = 0; + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { + GEP = GEPI; + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + if (CE->getOpcode() != Instruction::GetElementPtr) + return false; + GEP = CE; + } else { + return false; + } + + // Make sure the GEP has exactly three arguments. + if (GEP->getNumOperands() != 3) + return false; + + // Check to make sure that the first operand of the GEP is an integer and + // has value 0 so that we are sure we're indexing into the initializer. + if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { + if (!Idx->isZero()) + return false; + } else + return false; + + // If the second index isn't a ConstantInt, then this is a variable index + // into the array. If this occurs, we can't say anything meaningful about + // the string. + uint64_t StartIdx = 0; + if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) + StartIdx = CI->getZExtValue(); + else + return false; + + // The GEP instruction, constant or instruction, must reference a global + // variable that is a constant and is initialized. The referenced constant + // initializer is the array that we'll use for optimization. + GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); + if (!GV || !GV->isConstant() || !GV->hasInitializer()) + return false; + Constant *GlobalInit = GV->getInitializer(); + + // Handle the ConstantAggregateZero case + if (isa<ConstantAggregateZero>(GlobalInit)) { + // This is a degenerate case. The initializer is constant zero so the + // length of the string must be zero. + Str.clear(); + return true; + } + + // Must be a Constant Array + ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); + if (!Array) return false; + + // Get the number of elements in the array + uint64_t NumElts = Array->getType()->getNumElements(); + + // Traverse the constant array from StartIdx (derived above) which is + // the place the GEP refers to in the array. + for (unsigned i = StartIdx; i < NumElts; ++i) { + Constant *Elt = Array->getOperand(i); + ConstantInt *CI = dyn_cast<ConstantInt>(Elt); + if (!CI) // This array isn't suitable, non-int initializer. + return false; + if (CI->isZero()) + return true; // we found end of string, success! + Str += (char)CI->getZExtValue(); + } + + return false; // The array isn't null terminated. +} + +/// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*, +/// inserting the cast before IP, and return the cast. +/// @brief Cast a value to a "C" string. +static Value *CastToCStr(Value *V, Instruction *IP) { + assert(isa<PointerType>(V->getType()) && + "Can't cast non-pointer type to C string type"); + const Type *SBPTy = PointerType::get(Type::Int8Ty); + if (V->getType() != SBPTy) + return new BitCastInst(V, SBPTy, V->getName(), IP); + return V; +} + +// TODO: +// Additional cases that we need to add to this file: +// +// cbrt: +// * cbrt(expN(X)) -> expN(x/3) +// * cbrt(sqrt(x)) -> pow(x,1/6) +// * cbrt(sqrt(x)) -> pow(x,1/9) +// +// cos, cosf, cosl: +// * cos(-x) -> cos(x) +// +// exp, expf, expl: +// * exp(log(x)) -> x +// +// log, logf, logl: +// * log(exp(x)) -> x +// * log(x**y) -> y*log(x) +// * log(exp(y)) -> y*log(e) +// * log(exp2(y)) -> y*log(2) +// * log(exp10(y)) -> y*log(10) +// * log(sqrt(x)) -> 0.5*log(x) +// * log(pow(x,y)) -> y*log(x) +// +// lround, lroundf, lroundl: +// * lround(cnst) -> cnst' +// +// memcmp: +// * memcmp(x,y,l) -> cnst +// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l) +// +// memmove: +// * memmove(d,s,l,a) -> memcpy(d,s,l,a) +// (if s is a global constant array) +// +// pow, powf, powl: +// * pow(exp(x),y) -> exp(x*y) +// * pow(sqrt(x),y) -> pow(x,y*0.5) +// * pow(pow(x,y),z)-> pow(x,y*z) +// +// puts: +// * puts("") -> putchar("\n") +// +// round, roundf, roundl: +// * round(cnst) -> cnst' +// +// signbit: +// * signbit(cnst) -> cnst' +// * signbit(nncst) -> 0 (if pstv is a non-negative constant) +// +// sqrt, sqrtf, sqrtl: +// * sqrt(expN(x)) -> expN(x*0.5) +// * sqrt(Nroot(x)) -> pow(x,1/(2*N)) +// * sqrt(pow(x,y)) -> pow(|x|,y*0.5) +// +// stpcpy: +// * stpcpy(str, "literal") -> +// llvm.memcpy(str,"literal",strlen("literal")+1,1) +// strrchr: +// * strrchr(s,c) -> reverse_offset_of_in(c,s) +// (if c is a constant integer and s is a constant string) +// * strrchr(s1,0) -> strchr(s1,0) +// +// strncat: +// * strncat(x,y,0) -> x +// * strncat(x,y,0) -> x (if strlen(y) = 0) +// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y)) +// +// strncpy: +// * strncpy(d,s,0) -> d +// * strncpy(d,s,l) -> memcpy(d,s,l,1) +// (if s and l are constants) +// +// strpbrk: +// * strpbrk(s,a) -> offset_in_for(s,a) +// (if s and a are both constant strings) +// * strpbrk(s,"") -> 0 +// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1) +// +// strspn, strcspn: +// * strspn(s,a) -> const_int (if both args are constant) +// * strspn("",a) -> 0 +// * strspn(s,"") -> 0 +// * strcspn(s,a) -> const_int (if both args are constant) +// * strcspn("",a) -> 0 +// * strcspn(s,"") -> strlen(a) +// +// strstr: +// * strstr(x,x) -> x +// * strstr(s1,s2) -> offset_of_s2_in(s1) +// (if s1 and s2 are constant strings) +// +// tan, tanf, tanl: +// * tan(atan(x)) -> x +// +// trunc, truncf, truncl: +// * trunc(cnst) -> cnst' +// +// +} |