diff options
author | Stephen Hines <srhines@google.com> | 2014-04-23 16:57:46 -0700 |
---|---|---|
committer | Stephen Hines <srhines@google.com> | 2014-04-24 15:53:16 -0700 |
commit | 36b56886974eae4f9c5ebc96befd3e7bfe5de338 (patch) | |
tree | e6cfb69fbbd937f450eeb83bfb83b9da3b01275a /lib/Transforms/InstCombine/InstCombineCompares.cpp | |
parent | 69a8640022b04415ae9fac62f8ab090601d8f889 (diff) | |
download | external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.zip external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.gz external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.bz2 |
Update to LLVM 3.5a.
Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineCompares.cpp | 218 |
1 files changed, 96 insertions, 122 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp index 9bb65ef..8c0ad52 100644 --- a/lib/Transforms/InstCombine/InstCombineCompares.cpp +++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp @@ -15,11 +15,11 @@ #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/IR/ConstantRange.h" #include "llvm/IR/DataLayout.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IntrinsicInst.h" -#include "llvm/Support/ConstantRange.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/PatternMatch.h" +#include "llvm/IR/PatternMatch.h" #include "llvm/Target/TargetLibraryInfo.h" using namespace llvm; using namespace PatternMatch; @@ -28,15 +28,6 @@ static ConstantInt *getOne(Constant *C) { return ConstantInt::get(cast<IntegerType>(C->getType()), 1); } -/// AddOne - Add one to a ConstantInt -static Constant *AddOne(Constant *C) { - return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); -} -/// SubOne - Subtract one from a ConstantInt -static Constant *SubOne(Constant *C) { - return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); -} - static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); } @@ -227,7 +218,7 @@ Instruction *InstCombiner:: FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, ConstantInt *AndCst) { // We need TD information to know the pointer size unless this is inbounds. - if (!GEP->isInBounds() && TD == 0) + if (!GEP->isInBounds() && DL == 0) return 0; Constant *Init = GV->getInitializer(); @@ -316,7 +307,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // Find out if the comparison would be true or false for the i'th element. Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, - CompareRHS, TD, TLI); + CompareRHS, DL, TLI); // If the result is undef for this element, ignore it. if (isa<UndefValue>(C)) { // Extend range state machines to cover this element in case there is an @@ -395,7 +386,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // index down like the GEP would do implicitly. We don't have to do this for // an inbounds GEP because the index can't be out of range. if (!GEP->isInBounds()) { - Type *IntPtrTy = TD->getIntPtrType(GEP->getType()); + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) Idx = Builder->CreateTrunc(Idx, IntPtrTy); @@ -484,8 +475,8 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // - Default to i32 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) Ty = Idx->getType(); - else if (TD) - Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount); + else if (DL) + Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount); else if (ArrayElementCount <= 32) Ty = Type::getInt32Ty(Init->getContext()); @@ -512,7 +503,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, /// If we can't emit an optimized form for this expression, this returns null. /// static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { - DataLayout &TD = *IC.getDataLayout(); + const DataLayout &DL = *IC.getDataLayout(); gep_type_iterator GTI = gep_type_begin(GEP); // Check to see if this gep only has a single variable index. If so, and if @@ -529,9 +520,9 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = dyn_cast<StructType>(*GTI)) { - Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); + Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { - uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); + uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } else { @@ -547,7 +538,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { Value *VariableIdx = GEP->getOperand(i); // Determine the scale factor of the variable element. For example, this is // 4 if the variable index is into an array of i32. - uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); + uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); // Verify that there are no other variable indices. If so, emit the hard way. for (++i, ++GTI; i != e; ++i, ++GTI) { @@ -559,9 +550,9 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = dyn_cast<StructType>(*GTI)) { - Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); + Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { - uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); + uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } @@ -571,7 +562,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { // Okay, we know we have a single variable index, which must be a // pointer/array/vector index. If there is no offset, life is simple, return // the index. - Type *IntPtrTy = TD.getIntPtrType(GEP->getOperand(0)->getType()); + Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); if (Offset == 0) { // Cast to intptrty in case a truncation occurs. If an extension is needed, @@ -624,7 +615,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, RHS = BCI->getOperand(0); Value *PtrBase = GEPLHS->getOperand(0); - if (TD && PtrBase == RHS && GEPLHS->isInBounds()) { + if (DL && PtrBase == RHS && GEPLHS->isInBounds()) { // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). // This transformation (ignoring the base and scales) is valid because we // know pointers can't overflow since the gep is inbounds. See if we can @@ -657,7 +648,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, // If we're comparing GEPs with two base pointers that only differ in type // and both GEPs have only constant indices or just one use, then fold // the compare with the adjusted indices. - if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() && + if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() && (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && PtrBase->stripPointerCasts() == @@ -728,7 +719,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, // Only lower this if the icmp is the only user of the GEP or if we expect // the result to fold to a constant! - if (TD && + if (DL && GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { @@ -1078,17 +1069,17 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } break; - case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) - if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { + case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) + if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { // If this is a comparison that tests the signbit (X < 0) or (x > -1), // fold the xor. if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { Value *CompareVal = LHSI->getOperand(0); - // If the sign bit of the XorCST is not set, there is no change to + // If the sign bit of the XorCst is not set, there is no change to // the operation, just stop using the Xor. - if (!XorCST->isNegative()) { + if (!XorCst->isNegative()) { ICI.setOperand(0, CompareVal); Worklist.Add(LHSI); return &ICI; @@ -1110,8 +1101,8 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, if (LHSI->hasOneUse()) { // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) - if (!ICI.isEquality() && XorCST->getValue().isSignBit()) { - const APInt &SignBit = XorCST->getValue(); + if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { + const APInt &SignBit = XorCst->getValue(); ICmpInst::Predicate Pred = ICI.isSigned() ? ICI.getUnsignedPredicate() : ICI.getSignedPredicate(); @@ -1120,8 +1111,8 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) - if (!ICI.isEquality() && XorCST->isMaxValue(true)) { - const APInt &NotSignBit = XorCST->getValue(); + if (!ICI.isEquality() && XorCst->isMaxValue(true)) { + const APInt &NotSignBit = XorCst->getValue(); ICmpInst::Predicate Pred = ICI.isSigned() ? ICI.getUnsignedPredicate() : ICI.getSignedPredicate(); @@ -1134,20 +1125,20 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) // iff -C is a power of 2 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && - XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) - return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST); + XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) + return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); // (icmp ult (xor X, C), -C) -> (icmp uge X, C) // iff -C is a power of 2 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && - XorCST->getValue() == -RHSV && RHSV.isPowerOf2()) - return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST); + XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) + return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); } break; - case Instruction::And: // (icmp pred (and X, AndCST), RHS) + case Instruction::And: // (icmp pred (and X, AndCst), RHS) if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && LHSI->getOperand(0)->hasOneUse()) { - ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); + ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); // If the LHS is an AND of a truncating cast, we can widen the // and/compare to be the input width without changing the value @@ -1158,10 +1149,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // Extending a relational comparison when we're checking the sign // bit would not work. if (ICI.isEquality() || - (!AndCST->isNegative() && RHSV.isNonNegative())) { + (!AndCst->isNegative() && RHSV.isNonNegative())) { Value *NewAnd = Builder->CreateAnd(Cast->getOperand(0), - ConstantExpr::getZExt(AndCST, Cast->getSrcTy())); + ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); NewAnd->takeName(LHSI); return new ICmpInst(ICI.getPredicate(), NewAnd, ConstantExpr::getZExt(RHS, Cast->getSrcTy())); @@ -1177,7 +1168,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { Value *NewAnd = Builder->CreateAnd(Cast->getOperand(0), - ConstantExpr::getTrunc(AndCST, Ty)); + ConstantExpr::getTrunc(AndCst, Ty)); NewAnd->takeName(LHSI); return new ICmpInst(ICI.getPredicate(), NewAnd, ConstantExpr::getTrunc(RHS, Ty)); @@ -1194,45 +1185,54 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, ConstantInt *ShAmt; ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; - Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. - Type *AndTy = AndCST->getType(); // Type of the and. - - // We can fold this as long as we can't shift unknown bits - // into the mask. This can happen with signed shift - // rights, as they sign-extend. With logical shifts, - // we must still make sure the comparison is not signed - // because we are effectively changing the - // position of the sign bit (PR17827). - // TODO: We can relax these constraints a bit more. + + // This seemingly simple opportunity to fold away a shift turns out to + // be rather complicated. See PR17827 + // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. if (ShAmt) { bool CanFold = false; unsigned ShiftOpcode = Shift->getOpcode(); if (ShiftOpcode == Instruction::AShr) { - // To test for the bad case of the signed shr, see if any - // of the bits shifted in could be tested after the mask. - uint32_t TyBits = Ty->getPrimitiveSizeInBits(); - int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); - - uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); - if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & - AndCST->getValue()) == 0) + // There may be some constraints that make this possible, + // but nothing simple has been discovered yet. + CanFold = false; + } else if (ShiftOpcode == Instruction::Shl) { + // For a left shift, we can fold if the comparison is not signed. + // We can also fold a signed comparison if the mask value and + // comparison value are not negative. These constraints may not be + // obvious, but we can prove that they are correct using an SMT + // solver. + if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) + CanFold = true; + } else if (ShiftOpcode == Instruction::LShr) { + // For a logical right shift, we can fold if the comparison is not + // signed. We can also fold a signed comparison if the shifted mask + // value and the shifted comparison value are not negative. + // These constraints may not be obvious, but we can prove that they + // are correct using an SMT solver. + if (!ICI.isSigned()) CanFold = true; - } else if (ShiftOpcode == Instruction::Shl || - ShiftOpcode == Instruction::LShr) { - CanFold = !ICI.isSigned(); + else { + ConstantInt *ShiftedAndCst = + cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); + ConstantInt *ShiftedRHSCst = + cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); + + if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) + CanFold = true; + } } if (CanFold) { Constant *NewCst; - if (Shift->getOpcode() == Instruction::Shl) + if (ShiftOpcode == Instruction::Shl) NewCst = ConstantExpr::getLShr(RHS, ShAmt); else NewCst = ConstantExpr::getShl(RHS, ShAmt); // Check to see if we are shifting out any of the bits being // compared. - if (ConstantExpr::get(Shift->getOpcode(), - NewCst, ShAmt) != RHS) { + if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { // If we shifted bits out, the fold is not going to work out. // As a special case, check to see if this means that the // result is always true or false now. @@ -1242,12 +1242,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, return ReplaceInstUsesWith(ICI, Builder->getTrue()); } else { ICI.setOperand(1, NewCst); - Constant *NewAndCST; - if (Shift->getOpcode() == Instruction::Shl) - NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); + Constant *NewAndCst; + if (ShiftOpcode == Instruction::Shl) + NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); else - NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); - LHSI->setOperand(1, NewAndCST); + NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); + LHSI->setOperand(1, NewAndCst); LHSI->setOperand(0, Shift->getOperand(0)); Worklist.Add(Shift); // Shift is dead. return &ICI; @@ -1264,10 +1264,10 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // Compute C << Y. Value *NS; if (Shift->getOpcode() == Instruction::LShr) { - NS = Builder->CreateShl(AndCST, Shift->getOperand(1)); + NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); } else { // Insert a logical shift. - NS = Builder->CreateLShr(AndCST, Shift->getOperand(1)); + NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); } // Compute X & (C << Y). @@ -1278,12 +1278,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, return &ICI; } - // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any - // bit set in (X & AndCST) will produce a result greater than RHSV. + // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any + // bit set in (X & AndCst) will produce a result greater than RHSV. if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { - unsigned NTZ = AndCST->getValue().countTrailingZeros(); - if ((NTZ < AndCST->getBitWidth()) && - APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV)) + unsigned NTZ = AndCst->getValue().countTrailingZeros(); + if ((NTZ < AndCst->getBitWidth()) && + APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) return new ICmpInst(ICmpInst::ICMP_NE, LHSI, Constant::getNullValue(RHS->getType())); } @@ -1792,8 +1792,8 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. - if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && - TD->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { + if (DL && LHSCI->getOpcode() == Instruction::PtrToInt && + DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { Value *RHSOp = 0; if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); @@ -1937,16 +1937,15 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, // and truncates that discard the high bits of the add. Verify that this is // the case. Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); - for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end(); - UI != E; ++UI) { - if (*UI == AddWithCst) continue; + for (User *U : OrigAdd->users()) { + if (U == AddWithCst) continue; // Only accept truncates for now. We would really like a nice recursive // predicate like SimplifyDemandedBits, but which goes downwards the use-def // chain to see which bits of a value are actually demanded. If the // original add had another add which was then immediately truncated, we // could still do the transformation. - TruncInst *TI = dyn_cast<TruncInst>(*UI); + TruncInst *TI = dyn_cast<TruncInst>(U); if (TI == 0 || TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0; } @@ -2048,7 +2047,7 @@ static APInt DemandedBitsLHSMask(ICmpInst &I, /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst /// should be swapped. -/// The descision is based on how many times these two operands are reused +/// The decision is based on how many times these two operands are reused /// as subtract operands and their positions in those instructions. /// The rational is that several architectures use the same instruction for /// both subtract and cmp, thus it is better if the order of those operands @@ -2064,12 +2063,12 @@ static bool swapMayExposeCSEOpportunities(const Value * Op0, // Each time Op0 is the first operand, count -1: swapping is bad, the // subtract has already the same layout as the compare. // Each time Op0 is the second operand, count +1: swapping is good, the - // subtract has a diffrent layout as the compare. + // subtract has a different layout as the compare. // At the end, if the benefit is greater than 0, Op0 should come second to // expose more CSE opportunities. int GlobalSwapBenefits = 0; - for (Value::const_use_iterator UI = Op0->use_begin(), UIEnd = Op0->use_end(); UI != UIEnd; ++UI) { - const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(*UI); + for (const User *U : Op0->users()) { + const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); if (!BinOp || BinOp->getOpcode() != Instruction::Sub) continue; // If Op0 is the first argument, this is not beneficial to swap the @@ -2104,7 +2103,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { Changed = true; } - if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD)) + if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // comparing -val or val with non-zero is the same as just comparing val @@ -2172,8 +2171,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { unsigned BitWidth = 0; if (Ty->isIntOrIntVectorTy()) BitWidth = Ty->getScalarSizeInBits(); - else if (TD) // Pointers require TD info to get their size. - BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); + else if (DL) // Pointers require DL info to get their size. + BitWidth = DL->getTypeSizeInBits(Ty->getScalarType()); bool isSignBit = false; @@ -2468,7 +2467,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // operands has at least one user besides the compare (the select), // which would often largely negate the benefit of folding anyway. if (I.hasOneUse()) - if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin())) + if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) return 0; @@ -2532,8 +2531,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { } case Instruction::IntToPtr: // icmp pred inttoptr(X), null -> icmp pred X, 0 - if (RHSC->isNullValue() && TD && - TD->getIntPtrType(RHSC->getType()) == + if (RHSC->isNullValue() && DL && + DL->getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); @@ -3229,7 +3228,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD)) + if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Simplify 'fcmp pred X, X' @@ -3313,31 +3312,6 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) return NV; break; - case Instruction::Select: { - // If either operand of the select is a constant, we can fold the - // comparison into the select arms, which will cause one to be - // constant folded and the select turned into a bitwise or. - Value *Op1 = 0, *Op2 = 0; - if (LHSI->hasOneUse()) { - if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { - // Fold the known value into the constant operand. - Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); - // Insert a new FCmp of the other select operand. - Op2 = Builder->CreateFCmp(I.getPredicate(), - LHSI->getOperand(2), RHSC, I.getName()); - } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { - // Fold the known value into the constant operand. - Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); - // Insert a new FCmp of the other select operand. - Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1), - RHSC, I.getName()); - } - } - - if (Op1) - return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); - break; - } case Instruction::FSub: { // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C Value *Op; |