aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine
diff options
context:
space:
mode:
authorHal Finkel <hfinkel@anl.gov>2013-07-02 05:21:11 +0000
committerHal Finkel <hfinkel@anl.gov>2013-07-02 05:21:11 +0000
commitb19dd2bcaf219a3b5f144815c40b3f1b11a3d35d (patch)
tree2e095f7703ad140dd46f3b19452e9e0c4a95d268 /lib/Transforms/InstCombine
parente7dd3afef074596dd61211b5e0b05c4de5d5f85b (diff)
downloadexternal_llvm-b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d.zip
external_llvm-b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d.tar.gz
external_llvm-b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d.tar.bz2
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because: 1. As discussed during review, it needs to be rewritten (to avoid creating and then deleting instructions). 2. This is causing optimizer crashes. Specifically, I'm seeing things like this: While deleting: i1 % Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1 opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed. I'd guess that these will go away once we're no longer creating/deleting instructions here, but just in case, I'm adding a regression test. Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message: InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms Real world code sometimes has the denominator of a 'udiv' be a 'select'. LLVM can handle such cases but only when the 'select' operands are symmetric in structure (both select operands are a constant power of two or a left shift, etc.). This falls apart if we are dealt a 'udiv' where the code is not symetric or if the select operands lead us to more select instructions. Instead, we should treat the LHS and each select operand as a distinct divide operation and try to optimize them independently. If we can to simplify each operation, then we can replace the 'udiv' with, say, a 'lshr' that has a new select with a bunch of new operands for the select. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185415 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/InstCombine')
-rw-r--r--lib/Transforms/InstCombine/InstCombineMulDivRem.cpp121
1 files changed, 44 insertions, 77 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index bc5d699..d0d4f41 100644
--- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -705,27 +705,26 @@ static Value *dyn_castZExtVal(Value *V, Type *Ty) {
return 0;
}
-const unsigned MaxDepth = 6;
+Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
-// \brief Recursively visits the possible right hand operands of a udiv
-// instruction, seeing through select instructions, to determine if we can
-// replace the udiv with something simpler. If we find that an operand is not
-// able to simplify the udiv, we abort the entire transformation.
-//
-// Inserts any intermediate instructions used for the simplification into
-// NewInstrs and returns a new instruction that depends upon them.
-static Instruction *visitUDivOperand(Value *Op0, Value *Op1,
- const BinaryOperator &I,
- SmallVectorImpl<Instruction *> &NewInstrs,
- unsigned Depth = 0) {
{
// X udiv 2^C -> X >> C
// Check to see if this is an unsigned division with an exact power of 2,
// if so, convert to a right shift.
const APInt *C;
if (match(Op1, m_Power2(C))) {
- BinaryOperator *LShr = BinaryOperator::CreateLShr(
- Op0, ConstantInt::get(Op0->getType(), C->logBase2()));
+ BinaryOperator *LShr =
+ BinaryOperator::CreateLShr(Op0,
+ ConstantInt::get(Op0->getType(),
+ C->logBase2()));
if (I.isExact()) LShr->setIsExact();
return LShr;
}
@@ -734,68 +733,51 @@ static Instruction *visitUDivOperand(Value *Op0, Value *Op1,
if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
// X udiv C, where C >= signbit
if (C->getValue().isNegative()) {
- ICmpInst *IC = new ICmpInst(ICmpInst::ICMP_ULT, Op0, C);
- NewInstrs.push_back(IC);
-
+ Value *IC = Builder->CreateICmpULT(Op0, C);
return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
ConstantInt::get(I.getType(), 1));
}
}
+ // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
+ if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
+ Value *X;
+ ConstantInt *C1;
+ if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
+ APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
+ return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
+ }
+ }
+
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
{ const APInt *CI; Value *N;
if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
- if (*CI != 1) {
- N = BinaryOperator::CreateAdd(
- N, ConstantInt::get(N->getType(), CI->logBase2()));
- NewInstrs.push_back(cast<Instruction>(N));
- }
- if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) {
- N = new ZExtInst(N, Z->getDestTy());
- NewInstrs.push_back(cast<Instruction>(N));
- }
- BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
- if (I.isExact()) LShr->setIsExact();
- return LShr;
+ if (*CI != 1)
+ N = Builder->CreateAdd(N,
+ ConstantInt::get(N->getType(), CI->logBase2()));
+ if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
+ N = Builder->CreateZExt(N, Z->getDestTy());
+ if (I.isExact())
+ return BinaryOperator::CreateExactLShr(Op0, N);
+ return BinaryOperator::CreateLShr(Op0, N);
}
}
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return 0;
+ // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
+ // where C1&C2 are powers of two.
+ { Value *Cond; const APInt *C1, *C2;
+ if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
+ // Construct the "on true" case of the select
+ Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
+ I.isExact());
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *LHS =
- visitUDivOperand(Op0, SI->getOperand(1), I, NewInstrs)) {
- NewInstrs.push_back(LHS);
- if (Instruction *RHS =
- visitUDivOperand(Op0, SI->getOperand(2), I, NewInstrs)) {
- NewInstrs.push_back(RHS);
- return SelectInst::Create(SI->getCondition(), LHS, RHS);
- }
- }
+ // Construct the "on false" case of the select
+ Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
+ I.isExact());
- return 0;
-}
-
-Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
- return ReplaceInstUsesWith(I, V);
-
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
-
- // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
- if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
- Value *X;
- ConstantInt *C1;
- if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
- APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
- return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
+ // construct the select instruction and return it.
+ return SelectInst::Create(Cond, TSI, FSI);
}
}
@@ -806,21 +788,6 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
I.isExact()),
I.getType());
- // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
- SmallVector<Instruction *, 4> NewInstrs;
- Instruction *RetI = visitUDivOperand(Op0, Op1, I, NewInstrs);
- for (unsigned i = 0, e = NewInstrs.size(); i != e; i++)
- // If we managed to replace the UDiv completely, insert the new intermediate
- // instructions before where the UDiv was.
- // If we couldn't, we must clean up after ourselves by deleting the new
- // instructions.
- if (RetI)
- NewInstrs[i]->insertBefore(&I);
- else
- delete NewInstrs[i];
- if (RetI)
- return RetI;
-
return 0;
}