diff options
author | Hal Finkel <hfinkel@anl.gov> | 2013-07-02 05:21:11 +0000 |
---|---|---|
committer | Hal Finkel <hfinkel@anl.gov> | 2013-07-02 05:21:11 +0000 |
commit | b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d (patch) | |
tree | 2e095f7703ad140dd46f3b19452e9e0c4a95d268 /lib/Transforms/InstCombine | |
parent | e7dd3afef074596dd61211b5e0b05c4de5d5f85b (diff) | |
download | external_llvm-b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d.zip external_llvm-b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d.tar.gz external_llvm-b19dd2bcaf219a3b5f144815c40b3f1b11a3d35d.tar.bz2 |
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms)
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185415 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/InstCombine')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 121 |
1 files changed, 44 insertions, 77 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index bc5d699..d0d4f41 100644 --- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -705,27 +705,26 @@ static Value *dyn_castZExtVal(Value *V, Type *Ty) { return 0; } -const unsigned MaxDepth = 6; +Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) + return ReplaceInstUsesWith(I, V); + + // Handle the integer div common cases + if (Instruction *Common = commonIDivTransforms(I)) + return Common; -// \brief Recursively visits the possible right hand operands of a udiv -// instruction, seeing through select instructions, to determine if we can -// replace the udiv with something simpler. If we find that an operand is not -// able to simplify the udiv, we abort the entire transformation. -// -// Inserts any intermediate instructions used for the simplification into -// NewInstrs and returns a new instruction that depends upon them. -static Instruction *visitUDivOperand(Value *Op0, Value *Op1, - const BinaryOperator &I, - SmallVectorImpl<Instruction *> &NewInstrs, - unsigned Depth = 0) { { // X udiv 2^C -> X >> C // Check to see if this is an unsigned division with an exact power of 2, // if so, convert to a right shift. const APInt *C; if (match(Op1, m_Power2(C))) { - BinaryOperator *LShr = BinaryOperator::CreateLShr( - Op0, ConstantInt::get(Op0->getType(), C->logBase2())); + BinaryOperator *LShr = + BinaryOperator::CreateLShr(Op0, + ConstantInt::get(Op0->getType(), + C->logBase2())); if (I.isExact()) LShr->setIsExact(); return LShr; } @@ -734,68 +733,51 @@ static Instruction *visitUDivOperand(Value *Op0, Value *Op1, if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { // X udiv C, where C >= signbit if (C->getValue().isNegative()) { - ICmpInst *IC = new ICmpInst(ICmpInst::ICMP_ULT, Op0, C); - NewInstrs.push_back(IC); - + Value *IC = Builder->CreateICmpULT(Op0, C); return SelectInst::Create(IC, Constant::getNullValue(I.getType()), ConstantInt::get(I.getType(), 1)); } } + // (x lshr C1) udiv C2 --> x udiv (C2 << C1) + if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { + Value *X; + ConstantInt *C1; + if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { + APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); + return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); + } + } + // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) { const APInt *CI; Value *N; if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) || match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) { - if (*CI != 1) { - N = BinaryOperator::CreateAdd( - N, ConstantInt::get(N->getType(), CI->logBase2())); - NewInstrs.push_back(cast<Instruction>(N)); - } - if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) { - N = new ZExtInst(N, Z->getDestTy()); - NewInstrs.push_back(cast<Instruction>(N)); - } - BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); - if (I.isExact()) LShr->setIsExact(); - return LShr; + if (*CI != 1) + N = Builder->CreateAdd(N, + ConstantInt::get(N->getType(), CI->logBase2())); + if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) + N = Builder->CreateZExt(N, Z->getDestTy()); + if (I.isExact()) + return BinaryOperator::CreateExactLShr(Op0, N); + return BinaryOperator::CreateLShr(Op0, N); } } - // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth++ == MaxDepth) - return 0; + // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) + // where C1&C2 are powers of two. + { Value *Cond; const APInt *C1, *C2; + if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { + // Construct the "on true" case of the select + Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", + I.isExact()); - if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) - if (Instruction *LHS = - visitUDivOperand(Op0, SI->getOperand(1), I, NewInstrs)) { - NewInstrs.push_back(LHS); - if (Instruction *RHS = - visitUDivOperand(Op0, SI->getOperand(2), I, NewInstrs)) { - NewInstrs.push_back(RHS); - return SelectInst::Create(SI->getCondition(), LHS, RHS); - } - } + // Construct the "on false" case of the select + Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", + I.isExact()); - return 0; -} - -Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - - if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) - return ReplaceInstUsesWith(I, V); - - // Handle the integer div common cases - if (Instruction *Common = commonIDivTransforms(I)) - return Common; - - // (x lshr C1) udiv C2 --> x udiv (C2 << C1) - if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { - Value *X; - ConstantInt *C1; - if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { - APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); - return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); + // construct the select instruction and return it. + return SelectInst::Create(Cond, TSI, FSI); } } @@ -806,21 +788,6 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { I.isExact()), I.getType()); - // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) - SmallVector<Instruction *, 4> NewInstrs; - Instruction *RetI = visitUDivOperand(Op0, Op1, I, NewInstrs); - for (unsigned i = 0, e = NewInstrs.size(); i != e; i++) - // If we managed to replace the UDiv completely, insert the new intermediate - // instructions before where the UDiv was. - // If we couldn't, we must clean up after ourselves by deleting the new - // instructions. - if (RetI) - NewInstrs[i]->insertBefore(&I); - else - delete NewInstrs[i]; - if (RetI) - return RetI; - return 0; } |