diff options
author | Chris Lattner <sabre@nondot.org> | 2001-11-26 16:58:14 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2001-11-26 16:58:14 +0000 |
commit | 3cc7ddedbbf35f44f5019dfe3f9906a879f4eb1c (patch) | |
tree | 557db20693069d3cd1ab820ea53fe8b3832e4cbf /lib/Transforms/LevelRaise.cpp | |
parent | a0fa588d77cfb6828e05593b376ec48aaf9dbebc (diff) | |
download | external_llvm-3cc7ddedbbf35f44f5019dfe3f9906a879f4eb1c.zip external_llvm-3cc7ddedbbf35f44f5019dfe3f9906a879f4eb1c.tar.gz external_llvm-3cc7ddedbbf35f44f5019dfe3f9906a879f4eb1c.tar.bz2 |
Clean up code, implement array indexing stuff
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1340 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/LevelRaise.cpp')
-rw-r--r-- | lib/Transforms/LevelRaise.cpp | 598 |
1 files changed, 175 insertions, 423 deletions
diff --git a/lib/Transforms/LevelRaise.cpp b/lib/Transforms/LevelRaise.cpp index 78bb2eb..3472dec 100644 --- a/lib/Transforms/LevelRaise.cpp +++ b/lib/Transforms/LevelRaise.cpp @@ -2,30 +2,7 @@ // // This file implements the 'raising' part of the LevelChange API. This is // useful because, in general, it makes the LLVM code terser and easier to -// analyze. Note that it is good to run DCE after doing this transformation. -// -// Eliminate silly things in the source that do not effect the level, but do -// clean up the code: -// * Casts of casts -// - getelementptr/load & getelementptr/store are folded into a direct -// load or store -// - Convert this code (for both alloca and malloc): -// %reg110 = shl uint %n, ubyte 2 ;;<uint> -// %reg108 = alloca ubyte, uint %reg110 ;;<ubyte*> -// %cast76 = cast ubyte* %reg108 to uint* ;;<uint*> -// To: %cast76 = alloca uint, uint %n -// Convert explicit addressing to use getelementptr instruction where possible -// - ... -// -// Convert explicit addressing on pointers to use getelementptr instruction. -// - If a pointer is used by arithmetic operation, insert an array casted -// version into the source program, only for the following pointer types: -// * Method argument pointers -// - Pointers returned by alloca or malloc -// - Pointers returned by function calls -// - If a pointer is indexed with a value scaled by a constant size equal -// to the element size of the array, the expression is replaced with a -// getelementptr instruction. +// analyze. // //===----------------------------------------------------------------------===// @@ -43,7 +20,7 @@ #include "llvm/Assembly/Writer.h" -//#define DEBUG_PEEPHOLE_INSTS 1 +#define DEBUG_PEEPHOLE_INSTS 1 #ifdef DEBUG_PEEPHOLE_INSTS #define PRINT_PEEPHOLE(ID, NUM, I) \ @@ -68,211 +45,12 @@ // cast instruction would cause the underlying bits to change. // static inline bool isReinterpretingCast(const CastInst *CI) { - return !losslessCastableTypes(CI->getOperand(0)->getType(), CI->getType()); + return!CI->getOperand(0)->getType()->isLosslesslyConvertableTo(CI->getType()); } -// DoInsertArrayCast - If the argument value has a pointer type, and if the -// argument value is used as an array, insert a cast before the specified -// basic block iterator that casts the value to an array pointer. Return the -// new cast instruction (in the CastResult var), or null if no cast is inserted. -// -static bool DoInsertArrayCast(Method *CurMeth, Value *V, BasicBlock *BB, - BasicBlock::iterator &InsertBefore, - CastInst *&CastResult) { - const PointerType *ThePtrType = dyn_cast<PointerType>(V->getType()); - if (!ThePtrType) return false; - bool InsertCast = false; - - for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { - Instruction *Inst = cast<Instruction>(*I); - switch (Inst->getOpcode()) { - default: break; // Not an interesting use... - case Instruction::Add: // It's being used as an array index! - //case Instruction::Sub: - InsertCast = true; - break; - case Instruction::Cast: // There is already a cast instruction! - if (const PointerType *PT = dyn_cast<const PointerType>(Inst->getType())) - if (const ArrayType *AT = dyn_cast<const ArrayType>(PT->getValueType())) - if (AT->getElementType() == ThePtrType->getValueType()) { - // Cast already exists! Return the existing one! - CastResult = cast<CastInst>(Inst); - return false; // No changes made to program though... - } - break; - } - } - - if (!InsertCast) return false; // There is no reason to insert a cast! - - // Insert a cast! - const Type *ElTy = ThePtrType->getValueType(); - const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy)); - - CastResult = new CastInst(V, DestTy); - BB->getInstList().insert(InsertBefore, CastResult); - //cerr << "Inserted cast: " << CastResult; - return true; // Made a change! -} - - -// DoInsertArrayCasts - Loop over all "incoming" values in the specified method, -// inserting a cast for pointer values that are used as arrays. For our -// purposes, an incoming value is considered to be either a value that is -// either a method parameter, a value created by alloca or malloc, or a value -// returned from a function call. All casts are kept attached to their original -// values through the PtrCasts map. -// -static bool DoInsertArrayCasts(Method *M, map<Value*, CastInst*> &PtrCasts) { - assert(!M->isExternal() && "Can't handle external methods!"); - - // Insert casts for all arguments to the function... - bool Changed = false; - BasicBlock *CurBB = M->front(); - BasicBlock::iterator It = CurBB->begin(); - for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), - AE = M->getArgumentList().end(); AI != AE; ++AI) { - CastInst *TheCast = 0; - if (DoInsertArrayCast(M, *AI, CurBB, It, TheCast)) { - It = CurBB->begin(); // We might have just invalidated the iterator! - Changed = true; // Yes we made a change - ++It; // Insert next cast AFTER this one... - } - - if (TheCast) // Is there a cast associated with this value? - PtrCasts[*AI] = TheCast; // Yes, add it to the map... - } - - // TODO: insert casts for alloca, malloc, and function call results. Also, - // look for pointers that already have casts, to add to the map. - - return Changed; -} - - - - -// DoElminatePointerArithmetic - Loop over each incoming pointer variable, -// replacing indexing arithmetic with getelementptr calls. -// -static bool DoEliminatePointerArithmetic(const pair<Value*, CastInst*> &Val) { - Value *V = Val.first; // The original pointer - CastInst *CV = Val.second; // The array casted version of the pointer... - - for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { - Instruction *Inst = cast<Instruction>(*I); - if (Inst->getOpcode() != Instruction::Add) - continue; // We only care about add instructions - - BinaryOperator *Add = cast<BinaryOperator>(Inst); - - // Make sure the array is the first operand of the add expression... - if (Add->getOperand(0) != V) - Add->swapOperands(); - - // Get the amount added to the pointer value... - Value *AddAmount = Add->getOperand(1); - - - } - return false; -} - - -// Peephole Malloc instructions: we take a look at the use chain of the -// malloc instruction, and try to find out if the following conditions hold: -// 1. The malloc is of the form: 'malloc [sbyte], uint <constant>' -// 2. The only users of the malloc are cast & add instructions -// 3. Of the cast instructions, there is only one destination pointer type -// [RTy] where the size of the pointed to object is equal to the number -// of bytes allocated. -// -// If these conditions hold, we convert the malloc to allocate an [RTy] -// element. This should be extended in the future to handle arrays. TODO -// -static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) { - MallocInst *MI = cast<MallocInst>(*BI); - if (!MI->isArrayAllocation()) return false; // No array allocation? - - ConstPoolUInt *Amt = dyn_cast<ConstPoolUInt>(MI->getArraySize()); - if (Amt == 0 || MI->getAllocatedType() != ArrayType::get(Type::SByteTy)) - return false; - - // Get the number of bytes allocated... - unsigned Size = Amt->getValue(); - const Type *ResultTy = 0; - - // Loop over all of the uses of the malloc instruction, inspecting casts. - for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); - I != E; ++I) { - if (CastInst *CI = dyn_cast<CastInst>(*I)) { - //cerr << "\t" << CI; - - // We only work on casts to pointer types for sure, be conservative - if (!isa<PointerType>(CI->getType())) { - cerr << "Found cast of malloc value to non pointer type:\n" << CI; - return false; - } - - const Type *DestTy = cast<PointerType>(CI->getType())->getValueType(); - if (isa<ArrayType>(DestTy)) { - cerr << "Avoided malloc conversion because of type: " << DestTy - << " TODO.\n"; - return false; - } - if (TD.getTypeSize(DestTy) == Size && DestTy != ResultTy) { - // Does the size of the allocated type match the number of bytes - // allocated? - // - if (ResultTy == 0) { - ResultTy = DestTy; // Keep note of this for future uses... - } else { - // It's overdefined! We don't know which type to convert to! - return false; - } - } - } - } - - // If we get this far, we have either found, or not, a type that is cast to - // that is of the same size as the malloc instruction. - if (!ResultTy) return false; - - // Now we check to see if we can convert the return value of malloc to the - // specified pointer type. All this is moot if we can't. - // - ValueTypeCache ConvertedTypes; - if (RetValConvertableToType(MI, PointerType::get(ResultTy), ConvertedTypes)) { - // Yup, it's convertable, do the transformation now! - PRINT_PEEPHOLE1("mall-refine:in ", MI); - - // Create a new malloc instruction, and insert it into the method... - MallocInst *NewMI = new MallocInst(PointerType::get(ResultTy)); - NewMI->setName(MI->getName()); - MI->setName(""); - BI = BB->getInstList().insert(BI, NewMI)+1; - - // Create a new cast instruction to cast it to the old type... - CastInst *NewCI = new CastInst(NewMI, MI->getType()); - BB->getInstList().insert(BI, NewCI); - - // Move all users of the old malloc instruction over to use the new cast... - MI->replaceAllUsesWith(NewCI); - - ValueMapCache ValueMap; - ConvertUsersType(NewCI, NewMI, ValueMap); // This will delete MI! - - BI = BB->begin(); // Rescan basic block. BI might be invalidated. - PRINT_PEEPHOLE1("mall-refine:out", NewMI); - return true; - } - return false; -} - - // Peephole optimize the following instructions: // %t1 = cast ulong <const int> to {<...>} * @@ -288,172 +66,41 @@ static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) { // static bool PeepholeOptimizeAddCast(BasicBlock *BB, BasicBlock::iterator &BI, Value *AddOp1, CastInst *AddOp2) { - Value *OffsetVal = AddOp2->getOperand(0); - Value *SrcPtr; // Of type pointer to struct... - const StructType *StructTy; + const CompositeType *CompTy; + Value *OffsetVal = AddOp2->getOperand(0); + Value *SrcPtr; // Of type pointer to struct... - if ((StructTy = getPointedToStruct(AddOp1->getType()))) { + if ((CompTy = getPointedToComposite(AddOp1->getType()))) { SrcPtr = AddOp1; // Handle the first case... } else if (CastInst *AddOp1c = dyn_cast<CastInst>(AddOp1)) { SrcPtr = AddOp1c->getOperand(0); // Handle the second case... - StructTy = getPointedToStruct(SrcPtr->getType()); + CompTy = getPointedToComposite(SrcPtr->getType()); } // Only proceed if we have detected all of our conditions successfully... - if (!StructTy || !SrcPtr || !OffsetVal->getType()->isIntegral()) + if (!CompTy || !SrcPtr || !OffsetVal->getType()->isIntegral()) return false; - // See if the cast is of an integer expression that is either a constant, - // or a value scaled by some amount with a possible offset. - // - analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal); - unsigned Offset = 0, Scale = 1; - - // The expression must either be a constant, or a scaled index to be useful - if (!Expr.Offset && !Expr.Scale) - return false; - - // Get the offset value if it exists... - if (Expr.Offset) { - if (ConstPoolSInt *CPSI = dyn_cast<ConstPoolSInt>(Expr.Offset)) - Offset = (unsigned)CPSI->getValue(); - else { - ConstPoolUInt *CPUI = cast<ConstPoolUInt>(Expr.Offset); - Offset = (unsigned)CPUI->getValue(); - } - assert(Offset != 0 && "Expression analysis failure!"); - } - - // Get the scale value if it exists... - if (Expr.Scale) { - if (ConstPoolSInt *CPSI = dyn_cast<ConstPoolSInt>(Expr.Scale)) - Scale = (unsigned)CPSI->getValue(); - else { - ConstPoolUInt *CPUI = cast<ConstPoolUInt>(Expr.Scale); - Scale = (unsigned)CPUI->getValue(); - } - assert(Scale != 1 && "Expression analysis failure!"); - } - - // Check to make sure the offset is not negative or really large, outside the - // scope of this structure... - // - if (Offset >= TD.getTypeSize(StructTy)) - return false; + vector<Value*> Indices; + if (!ConvertableToGEP(SrcPtr->getType(), OffsetVal, Indices, &BI)) + return false; // Not convertable... perhaps next time - const StructLayout *SL = TD.getStructLayout(StructTy); - vector<ConstPoolVal*> Offsets; - unsigned ActualOffset = Offset; - const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets); - - if (getPointedToStruct(AddOp1->getType())) { // case 1 + if (getPointedToComposite(AddOp1->getType())) { // case 1 PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, *BI); } else { PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, *BI); } - GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Offsets); - //AddOp2->getName()); + GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Indices, + AddOp2->getName()); BI = BB->getInstList().insert(BI, GEP)+1; - - Instruction *AddrSrc = GEP; - - if (const ArrayType *AT = dyn_cast<ArrayType>(ElTy)) { - assert((Scale == 1 || Offset == ActualOffset) && - "Cannot handle scaled expression and unused offset in the same " - "instruction until after GEP array works!"); - - // Check to see if we have bottomed out INSIDE of an array reference.. - // - if (Offset != ActualOffset) { - // Insert a cast of the "rest" of the offset to the appropriate - // pointer type. - CastInst *OffInst = - new CastInst(ConstPoolUInt::get(Type::ULongTy, - Offset-ActualOffset), - GEP->getType()); - BI = BB->getInstList().insert(BI, OffInst)+1; - - // Now insert an ADD to actually adjust the pointer... - Instruction *AddInst = - BinaryOperator::create(Instruction::Add, GEP, OffInst); - BI = BB->getInstList().insert(BI, AddInst)+1; - PRINT_PEEPHOLE2("add-to-gep:out1", OffInst, AddInst); - - AddrSrc = AddInst; - } else if (Scale != 1) { - // If the scale factor occurs, then this means that there is an index into - // this element of the array. Check to make sure the scale factor is the - // same as the size of the datatype that we are dealing with. - // - assert(Scale == TD.getTypeSize(AT->getElementType()) && - "Scaling by something other than the array element size!!"); - - // TODO: In the future, we will not want to cast the index and scale to - // pointer types first. We will want to create a GEP directly here. - - // Now we must actually perform the scaling operation to get an - // appropriate value to add in... but the scale has to be done in the - // appropriate destination pointer type, so cast the index value now. - // - // Cast the base index pointer - CastInst *IdxValue = new CastInst(Expr.Var, GEP->getType()); - BI = BB->getInstList().insert(BI, IdxValue)+1; - - // Case the scale amount as well... - CastInst *ScaleAmt = - new CastInst(ConstPoolUInt::get(Type::ULongTy, Scale), GEP->getType()); - BI = BB->getInstList().insert(BI, ScaleAmt)+1; - - // Insert the multiply now. Make sure to make the constant the second arg - Instruction *ScaledVal = - BinaryOperator::create(Instruction::Mul, IdxValue, ScaleAmt); - BI = BB->getInstList().insert(BI, ScaledVal)+1; - - // Now insert an ADD to actually adjust the pointer... - Instruction *AddInst = - BinaryOperator::create(Instruction::Add, GEP, ScaledVal); - BI = BB->getInstList().insert(BI, AddInst)+1; - - PRINT_PEEPHOLE4("add-to-gep:out1", IdxValue, ScaleAmt, ScaledVal, - AddInst); - AddrSrc = AddInst; - } - - // Insert a cast of the pointer to array of X to be a pointer to the - // element of the array. - // - // Insert a cast of the "rest" of the offset to the appropriate - // pointer type. - CastInst *ACI = new CastInst(AddrSrc, AT->getElementType()); - BI = BB->getInstList().insert(BI, ACI)+1; - AddrSrc = ACI; - - } else { - assert(Offset == ActualOffset && "GEP to middle of non array!"); - assert(Scale == 1 && "Scale factor for expr that is not an array idx!"); - } - - Instruction *NCI = new CastInst(AddrSrc, AddOp1->getType()); + Instruction *NCI = new CastInst(GEP, AddOp1->getType()); ReplaceInstWithInst(BB->getInstList(), BI, NCI); PRINT_PEEPHOLE2("add-to-gep:out", GEP, NCI); return true; } -// Peephole optimize the following instructions: -// %t1 = cast int (uint) * %reg111 to uint (...) * -// %t2 = call uint (...) * %cast111( uint %key ) -// -// Into: %t3 = call int (uint) * %reg111( uint %key ) -// %t2 = cast int %t3 to uint -// -static bool PeepholeCallInst(BasicBlock *BB, BasicBlock::iterator &BI) { - CallInst *CI = cast<CallInst>(*BI); - return false; -} - - static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { Instruction *I = *BI; @@ -502,14 +149,14 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // specific type of the operands to do it's job. if (!isReinterpretingCast(CI)) { ValueTypeCache ConvertedTypes; - if (RetValConvertableToType(CI, Src->getType(), ConvertedTypes)) { - PRINT_PEEPHOLE2("CAST-DEST-EXPR-CONV:in ", CI, Src); + if (ValueConvertableToType(CI, Src->getType(), ConvertedTypes)) { + PRINT_PEEPHOLE2("CAST-DEST-EXPR-CONV:in ", Src, CI); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\nCONVERTING EXPR TYPE:\n"; #endif ValueMapCache ValueMap; - ConvertUsersType(CI, Src, ValueMap); // This will delete CI! + ConvertValueToNewType(CI, Src, ValueMap); // This will delete CI! BI = BB->begin(); // Rescan basic block. BI might be invalidated. PRINT_PEEPHOLE1("CAST-DEST-EXPR-CONV:out", Src); @@ -520,7 +167,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { } else { ConvertedTypes.clear(); if (ExpressionConvertableToType(Src, DestTy, ConvertedTypes)) { - PRINT_PEEPHOLE2("CAST-SRC-EXPR-CONV:in ", CI, Src); + PRINT_PEEPHOLE2("CAST-SRC-EXPR-CONV:in ", Src, CI); #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\nCONVERTING SRC EXPR TYPE:\n"; @@ -552,7 +199,7 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // %t1 = cast <eltype> * %t1 to <ty> * // #if 1 - if (const StructType *STy = getPointedToStruct(Src->getType())) + if (const CompositeType *CTy = getPointedToComposite(Src->getType())) if (const PointerType *DestPTy = dyn_cast<PointerType>(DestTy)) { // Loop over uses of the cast, checking for add instructions. If an add @@ -574,24 +221,34 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { if (!HasAddUse) { const Type *DestPointedTy = DestPTy->getValueType(); unsigned Depth = 1; - const StructType *CurSTy = STy; + const CompositeType *CurCTy = CTy; const Type *ElTy = 0; - while (CurSTy) { - - // Check for a zero element struct type... if we have one, bail. - if (CurSTy->getElementTypes().size() == 0) break; + + // Build the index vector, full of all zeros + vector<Value*> Indices; + + while (CurCTy) { + if (const StructType *CurSTy = dyn_cast<StructType>(CurCTy)) { + // Check for a zero element struct type... if we have one, bail. + if (CurSTy->getElementTypes().size() == 0) break; - // Grab the first element of the struct type, which must lie at - // offset zero in the struct. - // - ElTy = CurSTy->getElementTypes()[0]; + // Grab the first element of the struct type, which must lie at + // offset zero in the struct. + // + ElTy = CurSTy->getElementTypes()[0]; + } else { + ElTy = cast<ArrayType>(CurCTy)->getElementType(); + } + + // Insert a zero to index through this type... + Indices.push_back(ConstPoolUInt::get(CurCTy->getIndexType(), 0)); // Did we find what we're looking for? - if (losslessCastableTypes(ElTy, DestPointedTy)) break; + if (ElTy->isLosslesslyConvertableTo(DestPointedTy)) break; // Nope, go a level deeper. ++Depth; - CurSTy = dyn_cast<StructType>(ElTy); + CurCTy = dyn_cast<CompositeType>(ElTy); ElTy = 0; } @@ -599,10 +256,6 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { if (ElTy) { PRINT_PEEPHOLE1("cast-for-first:in", CI); - // Build the index vector, full of all zeros - vector<ConstPoolVal *> Indices(Depth, - ConstPoolUInt::get(Type::UByteTy,0)); - // Insert the new T cast instruction... stealing old T's name GetElementPtrInst *GEP = new GetElementPtrInst(Src, Indices, CI->getName()); @@ -622,12 +275,6 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { #endif #if 1 - } else if (MallocInst *MI = dyn_cast<MallocInst>(I)) { - if (PeepholeMallocInst(BB, BI)) return true; - - } else if (CallInst *CI = dyn_cast<CallInst>(I)) { - if (PeepholeCallInst(BB, BI)) return true; - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { Value *Val = SI->getOperand(0); Value *Pointer = SI->getPointerOperand(); @@ -642,9 +289,8 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // Append any indices that the store instruction has onto the end of the // ones that the GEP is carrying... // - vector<ConstPoolVal*> Indices(GEP->getIndices()); - Indices.insert(Indices.end(), SI->getIndices().begin(), - SI->getIndices().end()); + vector<Value*> Indices(GEP->copyIndices()); + Indices.insert(Indices.end(), SI->idx_begin(), SI->idx_end()); PRINT_PEEPHOLE2("gep-store:in", GEP, SI); ReplaceInstWithInst(BB->getInstList(), BI, @@ -665,8 +311,8 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { if (CastInst *CI = dyn_cast<CastInst>(Pointer)) if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType if (PointerType *CSPT = dyn_cast<PointerType>(CastSrc->getType())) - if (losslessCastableTypes(Val->getType(), // convertable types! - CSPT->getValueType()) && + // convertable types? + if (Val->getType()->isLosslesslyConvertableTo(CSPT->getValueType()) && !SI->hasIndices()) { // No subscripts yet! PRINT_PEEPHOLE3("st-src-cast:in ", Pointer, Val, SI); @@ -697,9 +343,8 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { // Append any indices that the load instruction has onto the end of the // ones that the GEP is carrying... // - vector<ConstPoolVal*> Indices(GEP->getIndices()); - Indices.insert(Indices.end(), LI->getIndices().begin(), - LI->getIndices().end()); + vector<Value*> Indices(GEP->copyIndices()); + Indices.insert(Indices.end(), LI->idx_begin(), LI->idx_end()); PRINT_PEEPHOLE2("gep-load:in", GEP, LI); ReplaceInstWithInst(BB->getInstList(), BI, @@ -729,7 +374,8 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { const Type *ElTy = SrcTy ? SrcTy->getValueType() : 0; // Make sure that nothing will be lost in the new cast... - if (SrcTy && losslessCastableTypes(ElTy, LI->getType())) { + if (!LI->hasIndices() && SrcTy && + ElTy->isLosslesslyConvertableTo(LI->getType())) { PRINT_PEEPHOLE2("CL-LoadCast:in ", CI, LI); string CName = CI->getName(); CI->setName(""); @@ -785,37 +431,143 @@ static bool DoRaisePass(Method *M) { } + + +// DoInsertArrayCast - If the argument value has a pointer type, and if the +// argument value is used as an array, insert a cast before the specified +// basic block iterator that casts the value to an array pointer. Return the +// new cast instruction (in the CastResult var), or null if no cast is inserted. +// +static bool DoInsertArrayCast(Value *V, BasicBlock *BB, + BasicBlock::iterator InsertBefore) { + const PointerType *ThePtrType = dyn_cast<PointerType>(V->getType()); + if (!ThePtrType) return false; + + const Type *ElTy = ThePtrType->getValueType(); + if (isa<MethodType>(ElTy) || isa<ArrayType>(ElTy)) return false; + + unsigned ElementSize = TD.getTypeSize(ElTy); + bool InsertCast = false; + + for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { + Instruction *Inst = cast<Instruction>(*I); + switch (Inst->getOpcode()) { + case Instruction::Cast: // There is already a cast instruction! + if (const PointerType *PT = dyn_cast<const PointerType>(Inst->getType())) + if (const ArrayType *AT = dyn_cast<const ArrayType>(PT->getValueType())) + if (AT->getElementType() == ThePtrType->getValueType()) { + // Cast already exists! Don't mess around with it. + return false; // No changes made to program though... + } + break; + case Instruction::Add: { // Analyze pointer arithmetic... + Value *OtherOp = Inst->getOperand(Inst->getOperand(0) == V); + analysis::ExprType Expr = analysis::ClassifyExpression(OtherOp); + + // This looks like array addressing iff: + // A. The constant of the index is larger than the size of the element + // type. + // B. The scale factor is >= the size of the type. + // + if (Expr.Offset && getConstantValue(Expr.Offset) >= (int)ElementSize) // A + InsertCast = true; + + if (Expr.Scale && getConstantValue(Expr.Scale) >= (int)ElementSize) // B + InsertCast = true; + + break; + } + default: break; // Not an interesting use... + } + } + + if (!InsertCast) return false; // There is no reason to insert a cast! + + // Calculate the destination pointer type + const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy)); + + // Check to make sure that all uses of the value can be converted over to use + // the newly typed value. + // + ValueTypeCache ConvertedTypes; + if (!ValueConvertableToType(V, DestTy, ConvertedTypes)) { + cerr << "FAILED to convert types of values for " << V << "\n"; + ConvertedTypes.clear(); + ValueConvertableToType(V, DestTy, ConvertedTypes); + return false; + } + ConvertedTypes.clear(); + + // Insert a cast! + CastInst *TheCast = + new CastInst(ConstPoolVal::getNullConstant(V->getType()), DestTy, + V->getName()); + BB->getInstList().insert(InsertBefore, TheCast); + + cerr << "Inserting cast for " << V << endl; + + // Convert users of the old value over to use the cast result... + ValueMapCache VMC; + ConvertValueToNewType(V, TheCast, VMC); + + // The cast is the only thing that is allowed to reference the value... + TheCast->setOperand(0, V); + + cerr << "Inserted ptr-array cast: " << TheCast; + return true; // Made a change! +} + + +// DoInsertArrayCasts - Loop over all "incoming" values in the specified method, +// inserting a cast for pointer values that are used as arrays. For our +// purposes, an incoming value is considered to be either a value that is +// either a method parameter, or a pointer returned from a function call. +// +static bool DoInsertArrayCasts(Method *M) { + assert(!M->isExternal() && "Can't handle external methods!"); + + // Insert casts for all arguments to the function... + bool Changed = false; + BasicBlock *CurBB = M->front(); + + for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), + AE = M->getArgumentList().end(); AI != AE; ++AI) { + + Changed |= DoInsertArrayCast(*AI, CurBB, CurBB->begin()); + } + + // TODO: insert casts for alloca, malloc, and function call results. Also, + // look for pointers that already have casts, to add to the map. + + return Changed; +} + + + + // RaisePointerReferences::doit - Raise a method representation to a higher // level. // bool RaisePointerReferences::doit(Method *M) { if (M->isExternal()) return false; - bool Changed = false; #ifdef DEBUG_PEEPHOLE_INSTS cerr << "\n\n\nStarting to work on Method '" << M->getName() << "'\n"; #endif - while (DoRaisePass(M)) Changed = true; - -#if 0 - // PtrCasts - Keep a mapping between the pointer values (the key of the - // map), and the cast to array pointer (the value) in this map. This is - // used when converting pointer math into array addressing. - // - map<Value*, CastInst*> PtrCasts; - - // Insert casts for all incoming pointer values. Keep track of those casts - // and the identified incoming values in the PtrCasts map. + // Insert casts for all incoming pointer pointer values that are treated as + // arrays... // - Changed |= DoInsertArrayCasts(M, PtrCasts); + bool Changed = false, LocalChange; + do { + LocalChange = DoInsertArrayCasts(M); - // Loop over each incoming pointer variable, replacing indexing arithmetic - // with getelementptr calls. - // - Changed |= reduce_apply_bool(PtrCasts.begin(), PtrCasts.end(), - ptr_fun(DoEliminatePointerArithmetic)); -#endif + // Iterate over the method, refining it, until it converges on a stable + // state + while (DoRaisePass(M)) LocalChange = true; + Changed |= LocalChange; + + } while (LocalChange); return Changed; } |