aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LoopInterchange.cpp
diff options
context:
space:
mode:
authorPirama Arumuga Nainar <pirama@google.com>2015-04-10 22:08:18 +0000
committerAndroid Git Automerger <android-git-automerger@android.com>2015-04-10 22:08:18 +0000
commit13a7db5b9c4f5e543d037be68ec3428216bfd550 (patch)
tree1b2c9792582e12f5af0b1512e3094425f0dc0df9 /lib/Transforms/Scalar/LoopInterchange.cpp
parent0eb46f5d1e06a4284663d636a74b06adc3a161d7 (diff)
parent31195f0bdca6ee2a5e72d07edf13e1d81206d949 (diff)
downloadexternal_llvm-13a7db5b9c4f5e543d037be68ec3428216bfd550.zip
external_llvm-13a7db5b9c4f5e543d037be68ec3428216bfd550.tar.gz
external_llvm-13a7db5b9c4f5e543d037be68ec3428216bfd550.tar.bz2
am 31195f0b: Merge "Update aosp/master llvm for rebase to r233350"
* commit '31195f0bdca6ee2a5e72d07edf13e1d81206d949': Update aosp/master llvm for rebase to r233350
Diffstat (limited to 'lib/Transforms/Scalar/LoopInterchange.cpp')
-rw-r--r--lib/Transforms/Scalar/LoopInterchange.cpp1154
1 files changed, 1154 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/LoopInterchange.cpp b/lib/Transforms/Scalar/LoopInterchange.cpp
new file mode 100644
index 0000000..f7626c5
--- /dev/null
+++ b/lib/Transforms/Scalar/LoopInterchange.cpp
@@ -0,0 +1,1154 @@
+//===- LoopInterchange.cpp - Loop interchange pass------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This Pass handles loop interchange transform.
+// This pass interchanges loops to provide a more cache-friendly memory access
+// patterns.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-interchange"
+
+namespace {
+
+typedef SmallVector<Loop *, 8> LoopVector;
+
+// TODO: Check if we can use a sparse matrix here.
+typedef std::vector<std::vector<char>> CharMatrix;
+
+// Maximum number of dependencies that can be handled in the dependency matrix.
+static const unsigned MaxMemInstrCount = 100;
+
+// Maximum loop depth supported.
+static const unsigned MaxLoopNestDepth = 10;
+
+struct LoopInterchange;
+
+#ifdef DUMP_DEP_MATRICIES
+void printDepMatrix(CharMatrix &DepMatrix) {
+ for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
+ std::vector<char> Vec = *I;
+ for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
+ DEBUG(dbgs() << *II << " ");
+ DEBUG(dbgs() << "\n");
+ }
+}
+#endif
+
+bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, Loop *L,
+ DependenceAnalysis *DA) {
+ typedef SmallVector<Value *, 16> ValueVector;
+ ValueVector MemInstr;
+
+ if (Level > MaxLoopNestDepth) {
+ DEBUG(dbgs() << "Cannot handle loops of depth greater than "
+ << MaxLoopNestDepth << "\n");
+ return false;
+ }
+
+ // For each block.
+ for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
+ BB != BE; ++BB) {
+ // Scan the BB and collect legal loads and stores.
+ for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
+ ++I) {
+ Instruction *Ins = dyn_cast<Instruction>(I);
+ if (!Ins)
+ return false;
+ LoadInst *Ld = dyn_cast<LoadInst>(I);
+ StoreInst *St = dyn_cast<StoreInst>(I);
+ if (!St && !Ld)
+ continue;
+ if (Ld && !Ld->isSimple())
+ return false;
+ if (St && !St->isSimple())
+ return false;
+ MemInstr.push_back(I);
+ }
+ }
+
+ DEBUG(dbgs() << "Found " << MemInstr.size()
+ << " Loads and Stores to analyze\n");
+
+ ValueVector::iterator I, IE, J, JE;
+
+ for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
+ for (J = I, JE = MemInstr.end(); J != JE; ++J) {
+ std::vector<char> Dep;
+ Instruction *Src = dyn_cast<Instruction>(*I);
+ Instruction *Des = dyn_cast<Instruction>(*J);
+ if (Src == Des)
+ continue;
+ if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
+ continue;
+ if (auto D = DA->depends(Src, Des, true)) {
+ DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
+ << "\n");
+ if (D->isFlow()) {
+ // TODO: Handle Flow dependence.Check if it is sufficient to populate
+ // the Dependence Matrix with the direction reversed.
+ DEBUG(dbgs() << "Flow dependence not handled");
+ return false;
+ }
+ if (D->isAnti()) {
+ DEBUG(dbgs() << "Found Anti dependence \n");
+ unsigned Levels = D->getLevels();
+ char Direction;
+ for (unsigned II = 1; II <= Levels; ++II) {
+ const SCEV *Distance = D->getDistance(II);
+ const SCEVConstant *SCEVConst =
+ dyn_cast_or_null<SCEVConstant>(Distance);
+ if (SCEVConst) {
+ const ConstantInt *CI = SCEVConst->getValue();
+ if (CI->isNegative())
+ Direction = '<';
+ else if (CI->isZero())
+ Direction = '=';
+ else
+ Direction = '>';
+ Dep.push_back(Direction);
+ } else if (D->isScalar(II)) {
+ Direction = 'S';
+ Dep.push_back(Direction);
+ } else {
+ unsigned Dir = D->getDirection(II);
+ if (Dir == Dependence::DVEntry::LT ||
+ Dir == Dependence::DVEntry::LE)
+ Direction = '<';
+ else if (Dir == Dependence::DVEntry::GT ||
+ Dir == Dependence::DVEntry::GE)
+ Direction = '>';
+ else if (Dir == Dependence::DVEntry::EQ)
+ Direction = '=';
+ else
+ Direction = '*';
+ Dep.push_back(Direction);
+ }
+ }
+ while (Dep.size() != Level) {
+ Dep.push_back('I');
+ }
+
+ DepMatrix.push_back(Dep);
+ if (DepMatrix.size() > MaxMemInstrCount) {
+ DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
+ << " dependencies inside loop\n");
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ // We don't have a DepMatrix to check legality return false
+ if (DepMatrix.size() == 0)
+ return false;
+ return true;
+}
+
+// A loop is moved from index 'from' to an index 'to'. Update the Dependence
+// matrix by exchanging the two columns.
+void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
+ unsigned ToIndx) {
+ unsigned numRows = DepMatrix.size();
+ for (unsigned i = 0; i < numRows; ++i) {
+ char TmpVal = DepMatrix[i][ToIndx];
+ DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
+ DepMatrix[i][FromIndx] = TmpVal;
+ }
+}
+
+// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
+// '>'
+bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
+ unsigned Column) {
+ for (unsigned i = 0; i <= Column; ++i) {
+ if (DepMatrix[Row][i] == '<')
+ return false;
+ if (DepMatrix[Row][i] == '>')
+ return true;
+ }
+ // All dependencies were '=','S' or 'I'
+ return false;
+}
+
+// Checks if no dependence exist in the dependency matrix in Row before Column.
+bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
+ unsigned Column) {
+ for (unsigned i = 0; i < Column; ++i) {
+ if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
+ DepMatrix[Row][i] != 'I')
+ return false;
+ }
+ return true;
+}
+
+bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
+ unsigned OuterLoopId, char InnerDep, char OuterDep) {
+
+ if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
+ return false;
+
+ if (InnerDep == OuterDep)
+ return true;
+
+ // It is legal to interchange if and only if after interchange no row has a
+ // '>' direction as the leftmost non-'='.
+
+ if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
+ return true;
+
+ if (InnerDep == '<')
+ return true;
+
+ if (InnerDep == '>') {
+ // If OuterLoopId represents outermost loop then interchanging will make the
+ // 1st dependency as '>'
+ if (OuterLoopId == 0)
+ return false;
+
+ // If all dependencies before OuterloopId are '=','S'or 'I'. Then
+ // interchanging will result in this row having an outermost non '='
+ // dependency of '>'
+ if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
+ return true;
+ }
+
+ return false;
+}
+
+// Checks if it is legal to interchange 2 loops.
+// [Theorm] A permutation of the loops in a perfect nest is legal if and only if
+// the direction matrix, after the same permutation is applied to its columns,
+// has no ">" direction as the leftmost non-"=" direction in any row.
+bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, unsigned InnerLoopId,
+ unsigned OuterLoopId) {
+
+ unsigned NumRows = DepMatrix.size();
+ // For each row check if it is valid to interchange.
+ for (unsigned Row = 0; Row < NumRows; ++Row) {
+ char InnerDep = DepMatrix[Row][InnerLoopId];
+ char OuterDep = DepMatrix[Row][OuterLoopId];
+ if (InnerDep == '*' || OuterDep == '*')
+ return false;
+ else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
+ OuterDep))
+ return false;
+ }
+ return true;
+}
+
+static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
+
+ DEBUG(dbgs() << "Calling populateWorklist called\n");
+ LoopVector LoopList;
+ Loop *CurrentLoop = &L;
+ std::vector<Loop *> vec = CurrentLoop->getSubLoopsVector();
+ while (vec.size() != 0) {
+ // The current loop has multiple subloops in it hence it is not tightly
+ // nested.
+ // Discard all loops above it added into Worklist.
+ if (vec.size() != 1) {
+ LoopList.clear();
+ return;
+ }
+ LoopList.push_back(CurrentLoop);
+ CurrentLoop = *(vec.begin());
+ vec = CurrentLoop->getSubLoopsVector();
+ }
+ LoopList.push_back(CurrentLoop);
+ V.push_back(LoopList);
+}
+
+static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
+ PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
+ if (InnerIndexVar)
+ return InnerIndexVar;
+ if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
+ return nullptr;
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PhiVar = cast<PHINode>(I);
+ Type *PhiTy = PhiVar->getType();
+ if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
+ !PhiTy->isPointerTy())
+ return nullptr;
+ const SCEVAddRecExpr *AddRec =
+ dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
+ if (!AddRec || !AddRec->isAffine())
+ continue;
+ const SCEV *Step = AddRec->getStepRecurrence(*SE);
+ const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
+ if (!C)
+ continue;
+ // Found the induction variable.
+ // FIXME: Handle loops with more than one induction variable. Note that,
+ // currently, legality makes sure we have only one induction variable.
+ return PhiVar;
+ }
+ return nullptr;
+}
+
+/// LoopInterchangeLegality checks if it is legal to interchange the loop.
+class LoopInterchangeLegality {
+public:
+ LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
+ LoopInterchange *Pass)
+ : OuterLoop(Outer), InnerLoop(Inner), SE(SE), CurrentPass(Pass) {}
+
+ /// Check if the loops can be interchanged.
+ bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
+ CharMatrix &DepMatrix);
+ /// Check if the loop structure is understood. We do not handle triangular
+ /// loops for now.
+ bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
+
+ bool currentLimitations();
+
+private:
+ bool tightlyNested(Loop *Outer, Loop *Inner);
+
+ Loop *OuterLoop;
+ Loop *InnerLoop;
+
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ LoopInterchange *CurrentPass;
+};
+
+/// LoopInterchangeProfitability checks if it is profitable to interchange the
+/// loop.
+class LoopInterchangeProfitability {
+public:
+ LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
+ : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
+
+ /// Check if the loop interchange is profitable
+ bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
+ CharMatrix &DepMatrix);
+
+private:
+ int getInstrOrderCost();
+
+ Loop *OuterLoop;
+ Loop *InnerLoop;
+
+ /// Scev analysis.
+ ScalarEvolution *SE;
+};
+
+/// LoopInterchangeTransform interchanges the loop
+class LoopInterchangeTransform {
+public:
+ LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
+ LoopInfo *LI, DominatorTree *DT,
+ LoopInterchange *Pass, BasicBlock *LoopNestExit)
+ : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
+ LoopExit(LoopNestExit) {}
+
+ /// Interchange OuterLoop and InnerLoop.
+ bool transform();
+ void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
+ void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
+
+private:
+ void splitInnerLoopLatch(Instruction *);
+ void splitOuterLoopLatch();
+ void splitInnerLoopHeader();
+ bool adjustLoopLinks();
+ void adjustLoopPreheaders();
+ void adjustOuterLoopPreheader();
+ void adjustInnerLoopPreheader();
+ bool adjustLoopBranches();
+
+ Loop *OuterLoop;
+ Loop *InnerLoop;
+
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ LoopInfo *LI;
+ DominatorTree *DT;
+ BasicBlock *LoopExit;
+};
+
+// Main LoopInterchange Pass
+struct LoopInterchange : public FunctionPass {
+ static char ID;
+ ScalarEvolution *SE;
+ LoopInfo *LI;
+ DependenceAnalysis *DA;
+ DominatorTree *DT;
+ LoopInterchange()
+ : FunctionPass(ID), SE(nullptr), LI(nullptr), DA(nullptr), DT(nullptr) {
+ initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<DependenceAnalysis>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ }
+
+ bool runOnFunction(Function &F) override {
+ SE = &getAnalysis<ScalarEvolution>();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ DA = &getAnalysis<DependenceAnalysis>();
+ auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ // Build up a worklist of loop pairs to analyze.
+ SmallVector<LoopVector, 8> Worklist;
+
+ for (Loop *L : *LI)
+ populateWorklist(*L, Worklist);
+
+ DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
+ bool Changed = true;
+ while (!Worklist.empty()) {
+ LoopVector LoopList = Worklist.pop_back_val();
+ Changed = processLoopList(LoopList);
+ }
+ return Changed;
+ }
+
+ bool isComputableLoopNest(LoopVector LoopList) {
+ for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
+ Loop *L = *I;
+ const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
+ if (ExitCountOuter == SE->getCouldNotCompute()) {
+ DEBUG(dbgs() << "Couldn't compute Backedge count\n");
+ return false;
+ }
+ if (L->getNumBackEdges() != 1) {
+ DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
+ return false;
+ }
+ if (!L->getExitingBlock()) {
+ DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
+ return false;
+ }
+ }
+ return true;
+ }
+
+ unsigned selectLoopForInterchange(LoopVector LoopList) {
+ // TODO: Add a better heuristic to select the loop to be interchanged based
+ // on the dependece matrix. Currently we select the innermost loop.
+ return LoopList.size() - 1;
+ }
+
+ bool processLoopList(LoopVector LoopList) {
+ bool Changed = false;
+ bool containsLCSSAPHI = false;
+ CharMatrix DependencyMatrix;
+ if (LoopList.size() < 2) {
+ DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
+ return false;
+ }
+ if (!isComputableLoopNest(LoopList)) {
+ DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
+ return false;
+ }
+ Loop *OuterMostLoop = *(LoopList.begin());
+
+ DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
+ << "\n");
+
+ if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
+ OuterMostLoop, DA)) {
+ DEBUG(dbgs() << "Populating Dependency matrix failed\n");
+ return false;
+ }
+#ifdef DUMP_DEP_MATRICIES
+ DEBUG(dbgs() << "Dependence before inter change \n");
+ printDepMatrix(DependencyMatrix);
+#endif
+
+ BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
+ BranchInst *OuterMostLoopLatchBI =
+ dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
+ if (!OuterMostLoopLatchBI)
+ return false;
+
+ // Since we currently do not handle LCSSA PHI's any failure in loop
+ // condition will now branch to LoopNestExit.
+ // TODO: This should be removed once we handle LCSSA PHI nodes.
+
+ // Get the Outermost loop exit.
+ BasicBlock *LoopNestExit;
+ if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
+ LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
+ else
+ LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
+
+ for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
+ Loop *L = *I;
+ BasicBlock *Latch = L->getLoopLatch();
+ BasicBlock *Header = L->getHeader();
+ if (Latch && Latch != Header && isa<PHINode>(Latch->begin())) {
+ containsLCSSAPHI = true;
+ break;
+ }
+ }
+
+ // TODO: Handle lcssa PHI's. Currently LCSSA PHI's are not handled. Handle
+ // the same by splitting the loop latch and adjusting loop links
+ // accordingly.
+ if (containsLCSSAPHI)
+ return false;
+
+ unsigned SelecLoopId = selectLoopForInterchange(LoopList);
+ // Move the selected loop outwards to the best posible position.
+ for (unsigned i = SelecLoopId; i > 0; i--) {
+ bool Interchanged =
+ processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
+ if (!Interchanged)
+ return Changed;
+ // Loops interchanged reflect the same in LoopList
+ std::swap(LoopList[i - 1], LoopList[i]);
+
+ // Update the DependencyMatrix
+ interChangeDepedencies(DependencyMatrix, i, i - 1);
+
+#ifdef DUMP_DEP_MATRICIES
+ DEBUG(dbgs() << "Dependence after inter change \n");
+ printDepMatrix(DependencyMatrix);
+#endif
+ Changed |= Interchanged;
+ }
+ return Changed;
+ }
+
+ bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
+ unsigned OuterLoopId, BasicBlock *LoopNestExit,
+ std::vector<std::vector<char>> &DependencyMatrix) {
+
+ DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
+ << " and OuterLoopId = " << OuterLoopId << "\n");
+ Loop *InnerLoop = LoopList[InnerLoopId];
+ Loop *OuterLoop = LoopList[OuterLoopId];
+
+ LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, this);
+ if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
+ DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
+ return false;
+ }
+ DEBUG(dbgs() << "Loops are legal to interchange\n");
+ LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
+ if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
+ DEBUG(dbgs() << "Interchanging Loops not profitable\n");
+ return false;
+ }
+
+ LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, this,
+ LoopNestExit);
+ LIT.transform();
+ DEBUG(dbgs() << "Loops interchanged\n");
+ return true;
+ }
+};
+
+} // end of namespace
+
+static bool containsUnsafeInstructions(BasicBlock *BB) {
+ for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
+ if (I->mayHaveSideEffects() || I->mayReadFromMemory())
+ return true;
+ }
+ return false;
+}
+
+bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
+
+ DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
+
+ // A perfectly nested loop will not have any branch in between the outer and
+ // inner block i.e. outer header will branch to either inner preheader and
+ // outerloop latch.
+ BranchInst *outerLoopHeaderBI =
+ dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
+ if (!outerLoopHeaderBI)
+ return false;
+ unsigned num = outerLoopHeaderBI->getNumSuccessors();
+ for (unsigned i = 0; i < num; i++) {
+ if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
+ outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
+ return false;
+ }
+
+ DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
+ // We do not have any basic block in between now make sure the outer header
+ // and outer loop latch doesnt contain any unsafe instructions.
+ if (containsUnsafeInstructions(OuterLoopHeader) ||
+ containsUnsafeInstructions(OuterLoopLatch))
+ return false;
+
+ DEBUG(dbgs() << "Loops are perfectly nested \n");
+ // We have a perfect loop nest.
+ return true;
+}
+
+static unsigned getPHICount(BasicBlock *BB) {
+ unsigned PhiCount = 0;
+ for (auto I = BB->begin(); isa<PHINode>(I); ++I)
+ PhiCount++;
+ return PhiCount;
+}
+
+bool LoopInterchangeLegality::isLoopStructureUnderstood(
+ PHINode *InnerInduction) {
+
+ unsigned Num = InnerInduction->getNumOperands();
+ BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
+ for (unsigned i = 0; i < Num; ++i) {
+ Value *Val = InnerInduction->getOperand(i);
+ if (isa<Constant>(Val))
+ continue;
+ Instruction *I = dyn_cast<Instruction>(Val);
+ if (!I)
+ return false;
+ // TODO: Handle triangular loops.
+ // e.g. for(int i=0;i<N;i++)
+ // for(int j=i;j<N;j++)
+ unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
+ if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
+ InnerLoopPreheader &&
+ !OuterLoop->isLoopInvariant(I)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// This function indicates the current limitations in the transform as a result
+// of which we do not proceed.
+bool LoopInterchangeLegality::currentLimitations() {
+
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
+ BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
+
+ PHINode *InnerInductionVar;
+ PHINode *OuterInductionVar;
+
+ // We currently handle only 1 induction variable inside the loop. We also do
+ // not handle reductions as of now.
+ if (getPHICount(InnerLoopHeader) > 1)
+ return true;
+
+ if (getPHICount(OuterLoopHeader) > 1)
+ return true;
+
+ InnerInductionVar = getInductionVariable(InnerLoop, SE);
+ OuterInductionVar = getInductionVariable(OuterLoop, SE);
+
+ if (!OuterInductionVar || !InnerInductionVar) {
+ DEBUG(dbgs() << "Induction variable not found\n");
+ return true;
+ }
+
+ // TODO: Triangular loops are not handled for now.
+ if (!isLoopStructureUnderstood(InnerInductionVar)) {
+ DEBUG(dbgs() << "Loop structure not understood by pass\n");
+ return true;
+ }
+
+ // TODO: Loops with LCSSA PHI's are currently not handled.
+ if (isa<PHINode>(OuterLoopLatch->begin())) {
+ DEBUG(dbgs() << "Found and LCSSA PHI in outer loop latch\n");
+ return true;
+ }
+ if (InnerLoopLatch != InnerLoopHeader &&
+ isa<PHINode>(InnerLoopLatch->begin())) {
+ DEBUG(dbgs() << "Found and LCSSA PHI in inner loop latch\n");
+ return true;
+ }
+
+ // TODO: Current limitation: Since we split the inner loop latch at the point
+ // were induction variable is incremented (induction.next); We cannot have
+ // more than 1 user of induction.next since it would result in broken code
+ // after split.
+ // e.g.
+ // for(i=0;i<N;i++) {
+ // for(j = 0;j<M;j++) {
+ // A[j+1][i+2] = A[j][i]+k;
+ // }
+ // }
+ bool FoundInduction = false;
+ Instruction *InnerIndexVarInc = nullptr;
+ if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
+ InnerIndexVarInc =
+ dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
+ else
+ InnerIndexVarInc =
+ dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
+
+ if (!InnerIndexVarInc)
+ return true;
+
+ // Since we split the inner loop latch on this induction variable. Make sure
+ // we do not have any instruction between the induction variable and branch
+ // instruction.
+
+ for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend();
+ I != E && !FoundInduction; ++I) {
+ if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I))
+ continue;
+ const Instruction &Ins = *I;
+ // We found an instruction. If this is not induction variable then it is not
+ // safe to split this loop latch.
+ if (!Ins.isIdenticalTo(InnerIndexVarInc))
+ return true;
+ else
+ FoundInduction = true;
+ }
+ // The loop latch ended and we didnt find the induction variable return as
+ // current limitation.
+ if (!FoundInduction)
+ return true;
+
+ return false;
+}
+
+bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
+ unsigned OuterLoopId,
+ CharMatrix &DepMatrix) {
+
+ if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
+ DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
+ << "and OuterLoopId = " << OuterLoopId
+ << "due to dependence\n");
+ return false;
+ }
+
+ // Create unique Preheaders if we already do not have one.
+ BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+
+ // Create a unique outer preheader -
+ // 1) If OuterLoop preheader is not present.
+ // 2) If OuterLoop Preheader is same as OuterLoop Header
+ // 3) If OuterLoop Preheader is same as Header of the previous loop.
+ // 4) If OuterLoop Preheader is Entry node.
+ if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
+ isa<PHINode>(OuterLoopPreHeader->begin()) ||
+ !OuterLoopPreHeader->getUniquePredecessor()) {
+ OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, CurrentPass);
+ }
+
+ if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
+ InnerLoopPreHeader == OuterLoop->getHeader()) {
+ InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, CurrentPass);
+ }
+
+ // Check if the loops are tightly nested.
+ if (!tightlyNested(OuterLoop, InnerLoop)) {
+ DEBUG(dbgs() << "Loops not tightly nested\n");
+ return false;
+ }
+
+ // TODO: The loops could not be interchanged due to current limitations in the
+ // transform module.
+ if (currentLimitations()) {
+ DEBUG(dbgs() << "Not legal because of current transform limitation\n");
+ return false;
+ }
+
+ return true;
+}
+
+int LoopInterchangeProfitability::getInstrOrderCost() {
+ unsigned GoodOrder, BadOrder;
+ BadOrder = GoodOrder = 0;
+ for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
+ BI != BE; ++BI) {
+ for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
+ const Instruction &Ins = *I;
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
+ unsigned NumOp = GEP->getNumOperands();
+ bool FoundInnerInduction = false;
+ bool FoundOuterInduction = false;
+ for (unsigned i = 0; i < NumOp; ++i) {
+ const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
+ if (!AR)
+ continue;
+
+ // If we find the inner induction after an outer induction e.g.
+ // for(int i=0;i<N;i++)
+ // for(int j=0;j<N;j++)
+ // A[i][j] = A[i-1][j-1]+k;
+ // then it is a good order.
+ if (AR->getLoop() == InnerLoop) {
+ // We found an InnerLoop induction after OuterLoop induction. It is
+ // a good order.
+ FoundInnerInduction = true;
+ if (FoundOuterInduction) {
+ GoodOrder++;
+ break;
+ }
+ }
+ // If we find the outer induction after an inner induction e.g.
+ // for(int i=0;i<N;i++)
+ // for(int j=0;j<N;j++)
+ // A[j][i] = A[j-1][i-1]+k;
+ // then it is a bad order.
+ if (AR->getLoop() == OuterLoop) {
+ // We found an OuterLoop induction after InnerLoop induction. It is
+ // a bad order.
+ FoundOuterInduction = true;
+ if (FoundInnerInduction) {
+ BadOrder++;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ return GoodOrder - BadOrder;
+}
+
+static bool isProfitabileForVectorization(unsigned InnerLoopId,
+ unsigned OuterLoopId,
+ CharMatrix &DepMatrix) {
+ // TODO: Improve this heuristic to catch more cases.
+ // If the inner loop is loop independent or doesn't carry any dependency it is
+ // profitable to move this to outer position.
+ unsigned Row = DepMatrix.size();
+ for (unsigned i = 0; i < Row; ++i) {
+ if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
+ return false;
+ // TODO: We need to improve this heuristic.
+ if (DepMatrix[i][OuterLoopId] != '=')
+ return false;
+ }
+ // If outer loop has dependence and inner loop is loop independent then it is
+ // profitable to interchange to enable parallelism.
+ return true;
+}
+
+bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
+ unsigned OuterLoopId,
+ CharMatrix &DepMatrix) {
+
+ // TODO: Add Better Profitibility checks.
+ // e.g
+ // 1) Construct dependency matrix and move the one with no loop carried dep
+ // inside to enable vectorization.
+
+ // This is rough cost estimation algorithm. It counts the good and bad order
+ // of induction variables in the instruction and allows reordering if number
+ // of bad orders is more than good.
+ int Cost = 0;
+ Cost += getInstrOrderCost();
+ DEBUG(dbgs() << "Cost = " << Cost << "\n");
+ if (Cost < 0)
+ return true;
+
+ // It is not profitable as per current cache profitibility model. But check if
+ // we can move this loop outside to improve parallelism.
+ bool ImprovesPar =
+ isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
+ return ImprovesPar;
+}
+
+void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
+ Loop *InnerLoop) {
+ for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
+ ++I) {
+ if (*I == InnerLoop) {
+ OuterLoop->removeChildLoop(I);
+ return;
+ }
+ }
+ assert(false && "Couldn't find loop");
+}
+
+void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
+ Loop *OuterLoop) {
+ Loop *OuterLoopParent = OuterLoop->getParentLoop();
+ if (OuterLoopParent) {
+ // Remove the loop from its parent loop.
+ removeChildLoop(OuterLoopParent, OuterLoop);
+ removeChildLoop(OuterLoop, InnerLoop);
+ OuterLoopParent->addChildLoop(InnerLoop);
+ } else {
+ removeChildLoop(OuterLoop, InnerLoop);
+ LI->changeTopLevelLoop(OuterLoop, InnerLoop);
+ }
+
+ for (Loop::iterator I = InnerLoop->begin(), E = InnerLoop->end(); I != E; ++I)
+ OuterLoop->addChildLoop(InnerLoop->removeChildLoop(I));
+
+ InnerLoop->addChildLoop(OuterLoop);
+}
+
+bool LoopInterchangeTransform::transform() {
+
+ DEBUG(dbgs() << "transform\n");
+ bool Transformed = false;
+ Instruction *InnerIndexVar;
+
+ if (InnerLoop->getSubLoops().size() == 0) {
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ DEBUG(dbgs() << "Calling Split Inner Loop\n");
+ PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
+ if (!InductionPHI) {
+ DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
+ return false;
+ }
+
+ if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
+ InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
+ else
+ InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
+
+ //
+ // Split at the place were the induction variable is
+ // incremented/decremented.
+ // TODO: This splitting logic may not work always. Fix this.
+ splitInnerLoopLatch(InnerIndexVar);
+ DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
+
+ // Splits the inner loops phi nodes out into a seperate basic block.
+ splitInnerLoopHeader();
+ DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
+ }
+
+ Transformed |= adjustLoopLinks();
+ if (!Transformed) {
+ DEBUG(dbgs() << "adjustLoopLinks Failed\n");
+ return false;
+ }
+
+ restructureLoops(InnerLoop, OuterLoop);
+ return true;
+}
+
+void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
+ BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
+ BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
+ InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
+}
+
+void LoopInterchangeTransform::splitOuterLoopLatch() {
+ BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
+ BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch;
+ OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock,
+ OuterLoopLatch->getFirstNonPHI(), DT, LI);
+}
+
+void LoopInterchangeTransform::splitInnerLoopHeader() {
+
+ // Split the inner loop header out.
+ BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
+ SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
+
+ DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
+ "InnerLoopHeader \n");
+}
+
+/// \brief Move all instructions except the terminator from FromBB right before
+/// InsertBefore
+static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
+ auto &ToList = InsertBefore->getParent()->getInstList();
+ auto &FromList = FromBB->getInstList();
+
+ ToList.splice(InsertBefore, FromList, FromList.begin(),
+ FromBB->getTerminator());
+}
+
+void LoopInterchangeTransform::adjustOuterLoopPreheader() {
+ BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
+ BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader();
+
+ moveBBContents(OuterLoopPreHeader, InnerPreHeader->getTerminator());
+}
+
+void LoopInterchangeTransform::adjustInnerLoopPreheader() {
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *OuterHeader = OuterLoop->getHeader();
+
+ moveBBContents(InnerLoopPreHeader, OuterHeader->getTerminator());
+}
+
+bool LoopInterchangeTransform::adjustLoopBranches() {
+
+ DEBUG(dbgs() << "adjustLoopBranches called\n");
+ // Adjust the loop preheader
+ BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
+ BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
+ BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
+ BasicBlock *InnerLoopLatchPredecessor =
+ InnerLoopLatch->getUniquePredecessor();
+ BasicBlock *InnerLoopLatchSuccessor;
+ BasicBlock *OuterLoopLatchSuccessor;
+
+ BranchInst *OuterLoopLatchBI =
+ dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
+ BranchInst *InnerLoopLatchBI =
+ dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
+ BranchInst *OuterLoopHeaderBI =
+ dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
+ BranchInst *InnerLoopHeaderBI =
+ dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
+
+ if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
+ !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
+ !InnerLoopHeaderBI)
+ return false;
+
+ BranchInst *InnerLoopLatchPredecessorBI =
+ dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
+ BranchInst *OuterLoopPredecessorBI =
+ dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
+
+ if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
+ return false;
+ BasicBlock *InnerLoopHeaderSucessor = InnerLoopHeader->getUniqueSuccessor();
+ if (!InnerLoopHeaderSucessor)
+ return false;
+
+ // Adjust Loop Preheader and headers
+
+ unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
+ for (unsigned i = 0; i < NumSucc; ++i) {
+ if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
+ OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
+ }
+
+ NumSucc = OuterLoopHeaderBI->getNumSuccessors();
+ for (unsigned i = 0; i < NumSucc; ++i) {
+ if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
+ OuterLoopHeaderBI->setSuccessor(i, LoopExit);
+ else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
+ OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSucessor);
+ }
+
+ BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
+ InnerLoopHeaderBI->eraseFromParent();
+
+ // -------------Adjust loop latches-----------
+ if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
+ InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
+ else
+ InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
+
+ NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
+ for (unsigned i = 0; i < NumSucc; ++i) {
+ if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
+ InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
+ }
+
+ if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
+ OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
+ else
+ OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
+
+ if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
+ InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
+ else
+ InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
+
+ if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
+ OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
+ } else {
+ OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
+ }
+
+ return true;
+}
+void LoopInterchangeTransform::adjustLoopPreheaders() {
+
+ // We have interchanged the preheaders so we need to interchange the data in
+ // the preheader as well.
+ // This is because the content of inner preheader was previously executed
+ // inside the outer loop.
+ BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BranchInst *InnerTermBI =
+ cast<BranchInst>(InnerLoopPreHeader->getTerminator());
+
+ BasicBlock *HeaderSplit =
+ SplitBlock(OuterLoopHeader, OuterLoopHeader->getTerminator(), DT, LI);
+ Instruction *InsPoint = HeaderSplit->getFirstNonPHI();
+ // These instructions should now be executed inside the loop.
+ // Move instruction into a new block after outer header.
+ moveBBContents(InnerLoopPreHeader, InsPoint);
+ // These instructions were not executed previously in the loop so move them to
+ // the older inner loop preheader.
+ moveBBContents(OuterLoopPreHeader, InnerTermBI);
+}
+
+bool LoopInterchangeTransform::adjustLoopLinks() {
+
+ // Adjust all branches in the inner and outer loop.
+ bool Changed = adjustLoopBranches();
+ if (Changed)
+ adjustLoopPreheaders();
+ return Changed;
+}
+
+char LoopInterchange::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
+ "Interchanges loops for cache reuse", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DependenceAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSA)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+
+INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
+ "Interchanges loops for cache reuse", false, false)
+
+Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }