aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/Scalarizer.cpp
diff options
context:
space:
mode:
authorStephen Hines <srhines@google.com>2014-04-23 16:57:46 -0700
committerStephen Hines <srhines@google.com>2014-04-24 15:53:16 -0700
commit36b56886974eae4f9c5ebc96befd3e7bfe5de338 (patch)
treee6cfb69fbbd937f450eeb83bfb83b9da3b01275a /lib/Transforms/Scalar/Scalarizer.cpp
parent69a8640022b04415ae9fac62f8ab090601d8f889 (diff)
downloadexternal_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.zip
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.gz
external_llvm-36b56886974eae4f9c5ebc96befd3e7bfe5de338.tar.bz2
Update to LLVM 3.5a.
Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
Diffstat (limited to 'lib/Transforms/Scalar/Scalarizer.cpp')
-rw-r--r--lib/Transforms/Scalar/Scalarizer.cpp662
1 files changed, 662 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/Scalarizer.cpp b/lib/Transforms/Scalar/Scalarizer.cpp
new file mode 100644
index 0000000..006375c
--- /dev/null
+++ b/lib/Transforms/Scalar/Scalarizer.cpp
@@ -0,0 +1,662 @@
+//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass converts vector operations into scalar operations, in order
+// to expose optimization opportunities on the individual scalar operations.
+// It is mainly intended for targets that do not have vector units, but it
+// may also be useful for revectorizing code to different vector widths.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "scalarizer"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+using namespace llvm;
+
+namespace {
+// Used to store the scattered form of a vector.
+typedef SmallVector<Value *, 8> ValueVector;
+
+// Used to map a vector Value to its scattered form. We use std::map
+// because we want iterators to persist across insertion and because the
+// values are relatively large.
+typedef std::map<Value *, ValueVector> ScatterMap;
+
+// Lists Instructions that have been replaced with scalar implementations,
+// along with a pointer to their scattered forms.
+typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
+
+// Provides a very limited vector-like interface for lazily accessing one
+// component of a scattered vector or vector pointer.
+class Scatterer {
+public:
+ Scatterer() {}
+
+ // Scatter V into Size components. If new instructions are needed,
+ // insert them before BBI in BB. If Cache is nonnull, use it to cache
+ // the results.
+ Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
+ ValueVector *cachePtr = 0);
+
+ // Return component I, creating a new Value for it if necessary.
+ Value *operator[](unsigned I);
+
+ // Return the number of components.
+ unsigned size() const { return Size; }
+
+private:
+ BasicBlock *BB;
+ BasicBlock::iterator BBI;
+ Value *V;
+ ValueVector *CachePtr;
+ PointerType *PtrTy;
+ ValueVector Tmp;
+ unsigned Size;
+};
+
+// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
+// called Name that compares X and Y in the same way as FCI.
+struct FCmpSplitter {
+ FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
+ Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
+ const Twine &Name) const {
+ return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
+ }
+ FCmpInst &FCI;
+};
+
+// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
+// called Name that compares X and Y in the same way as ICI.
+struct ICmpSplitter {
+ ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
+ Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
+ const Twine &Name) const {
+ return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
+ }
+ ICmpInst &ICI;
+};
+
+// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
+// a binary operator like BO called Name with operands X and Y.
+struct BinarySplitter {
+ BinarySplitter(BinaryOperator &bo) : BO(bo) {}
+ Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
+ const Twine &Name) const {
+ return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
+ }
+ BinaryOperator &BO;
+};
+
+// Information about a load or store that we're scalarizing.
+struct VectorLayout {
+ VectorLayout() : VecTy(0), ElemTy(0), VecAlign(0), ElemSize(0) {}
+
+ // Return the alignment of element I.
+ uint64_t getElemAlign(unsigned I) {
+ return MinAlign(VecAlign, I * ElemSize);
+ }
+
+ // The type of the vector.
+ VectorType *VecTy;
+
+ // The type of each element.
+ Type *ElemTy;
+
+ // The alignment of the vector.
+ uint64_t VecAlign;
+
+ // The size of each element.
+ uint64_t ElemSize;
+};
+
+class Scalarizer : public FunctionPass,
+ public InstVisitor<Scalarizer, bool> {
+public:
+ static char ID;
+
+ Scalarizer() :
+ FunctionPass(ID) {
+ initializeScalarizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool doInitialization(Module &M) override;
+ bool runOnFunction(Function &F) override;
+
+ // InstVisitor methods. They return true if the instruction was scalarized,
+ // false if nothing changed.
+ bool visitInstruction(Instruction &) { return false; }
+ bool visitSelectInst(SelectInst &SI);
+ bool visitICmpInst(ICmpInst &);
+ bool visitFCmpInst(FCmpInst &);
+ bool visitBinaryOperator(BinaryOperator &);
+ bool visitGetElementPtrInst(GetElementPtrInst &);
+ bool visitCastInst(CastInst &);
+ bool visitBitCastInst(BitCastInst &);
+ bool visitShuffleVectorInst(ShuffleVectorInst &);
+ bool visitPHINode(PHINode &);
+ bool visitLoadInst(LoadInst &);
+ bool visitStoreInst(StoreInst &);
+
+private:
+ Scatterer scatter(Instruction *, Value *);
+ void gather(Instruction *, const ValueVector &);
+ bool canTransferMetadata(unsigned Kind);
+ void transferMetadata(Instruction *, const ValueVector &);
+ bool getVectorLayout(Type *, unsigned, VectorLayout &);
+ bool finish();
+
+ template<typename T> bool splitBinary(Instruction &, const T &);
+
+ ScatterMap Scattered;
+ GatherList Gathered;
+ unsigned ParallelLoopAccessMDKind;
+ const DataLayout *DL;
+};
+
+char Scalarizer::ID = 0;
+} // end anonymous namespace
+
+// This is disabled by default because having separate loads and stores makes
+// it more likely that the -combiner-alias-analysis limits will be reached.
+static cl::opt<bool> ScalarizeLoadStore
+ ("scalarize-load-store", cl::Hidden, cl::init(false),
+ cl::desc("Allow the scalarizer pass to scalarize loads and store"));
+
+INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations",
+ false, false)
+
+Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
+ ValueVector *cachePtr)
+ : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
+ Type *Ty = V->getType();
+ PtrTy = dyn_cast<PointerType>(Ty);
+ if (PtrTy)
+ Ty = PtrTy->getElementType();
+ Size = Ty->getVectorNumElements();
+ if (!CachePtr)
+ Tmp.resize(Size, 0);
+ else if (CachePtr->empty())
+ CachePtr->resize(Size, 0);
+ else
+ assert(Size == CachePtr->size() && "Inconsistent vector sizes");
+}
+
+// Return component I, creating a new Value for it if necessary.
+Value *Scatterer::operator[](unsigned I) {
+ ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
+ // Try to reuse a previous value.
+ if (CV[I])
+ return CV[I];
+ IRBuilder<> Builder(BB, BBI);
+ if (PtrTy) {
+ if (!CV[0]) {
+ Type *Ty =
+ PointerType::get(PtrTy->getElementType()->getVectorElementType(),
+ PtrTy->getAddressSpace());
+ CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
+ }
+ if (I != 0)
+ CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
+ V->getName() + ".i" + Twine(I));
+ } else {
+ // Search through a chain of InsertElementInsts looking for element I.
+ // Record other elements in the cache. The new V is still suitable
+ // for all uncached indices.
+ for (;;) {
+ InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
+ if (!Insert)
+ break;
+ ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
+ if (!Idx)
+ break;
+ unsigned J = Idx->getZExtValue();
+ CV[J] = Insert->getOperand(1);
+ V = Insert->getOperand(0);
+ if (I == J)
+ return CV[J];
+ }
+ CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
+ V->getName() + ".i" + Twine(I));
+ }
+ return CV[I];
+}
+
+bool Scalarizer::doInitialization(Module &M) {
+ ParallelLoopAccessMDKind =
+ M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
+ return false;
+}
+
+bool Scalarizer::runOnFunction(Function &F) {
+ DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+ DL = DLP ? &DLP->getDataLayout() : 0;
+ for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
+ BasicBlock *BB = BBI;
+ for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
+ Instruction *I = II;
+ bool Done = visit(I);
+ ++II;
+ if (Done && I->getType()->isVoidTy())
+ I->eraseFromParent();
+ }
+ }
+ return finish();
+}
+
+// Return a scattered form of V that can be accessed by Point. V must be a
+// vector or a pointer to a vector.
+Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
+ if (Argument *VArg = dyn_cast<Argument>(V)) {
+ // Put the scattered form of arguments in the entry block,
+ // so that it can be used everywhere.
+ Function *F = VArg->getParent();
+ BasicBlock *BB = &F->getEntryBlock();
+ return Scatterer(BB, BB->begin(), V, &Scattered[V]);
+ }
+ if (Instruction *VOp = dyn_cast<Instruction>(V)) {
+ // Put the scattered form of an instruction directly after the
+ // instruction.
+ BasicBlock *BB = VOp->getParent();
+ return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
+ V, &Scattered[V]);
+ }
+ // In the fallback case, just put the scattered before Point and
+ // keep the result local to Point.
+ return Scatterer(Point->getParent(), Point, V);
+}
+
+// Replace Op with the gathered form of the components in CV. Defer the
+// deletion of Op and creation of the gathered form to the end of the pass,
+// so that we can avoid creating the gathered form if all uses of Op are
+// replaced with uses of CV.
+void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
+ // Since we're not deleting Op yet, stub out its operands, so that it
+ // doesn't make anything live unnecessarily.
+ for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
+ Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
+
+ transferMetadata(Op, CV);
+
+ // If we already have a scattered form of Op (created from ExtractElements
+ // of Op itself), replace them with the new form.
+ ValueVector &SV = Scattered[Op];
+ if (!SV.empty()) {
+ for (unsigned I = 0, E = SV.size(); I != E; ++I) {
+ Instruction *Old = cast<Instruction>(SV[I]);
+ CV[I]->takeName(Old);
+ Old->replaceAllUsesWith(CV[I]);
+ Old->eraseFromParent();
+ }
+ }
+ SV = CV;
+ Gathered.push_back(GatherList::value_type(Op, &SV));
+}
+
+// Return true if it is safe to transfer the given metadata tag from
+// vector to scalar instructions.
+bool Scalarizer::canTransferMetadata(unsigned Tag) {
+ return (Tag == LLVMContext::MD_tbaa
+ || Tag == LLVMContext::MD_fpmath
+ || Tag == LLVMContext::MD_tbaa_struct
+ || Tag == LLVMContext::MD_invariant_load
+ || Tag == ParallelLoopAccessMDKind);
+}
+
+// Transfer metadata from Op to the instructions in CV if it is known
+// to be safe to do so.
+void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ Op->getAllMetadataOtherThanDebugLoc(MDs);
+ for (unsigned I = 0, E = CV.size(); I != E; ++I) {
+ if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
+ for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
+ MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
+ if (canTransferMetadata(MI->first))
+ New->setMetadata(MI->first, MI->second);
+ New->setDebugLoc(Op->getDebugLoc());
+ }
+ }
+}
+
+// Try to fill in Layout from Ty, returning true on success. Alignment is
+// the alignment of the vector, or 0 if the ABI default should be used.
+bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
+ VectorLayout &Layout) {
+ if (!DL)
+ return false;
+
+ // Make sure we're dealing with a vector.
+ Layout.VecTy = dyn_cast<VectorType>(Ty);
+ if (!Layout.VecTy)
+ return false;
+
+ // Check that we're dealing with full-byte elements.
+ Layout.ElemTy = Layout.VecTy->getElementType();
+ if (DL->getTypeSizeInBits(Layout.ElemTy) !=
+ DL->getTypeStoreSizeInBits(Layout.ElemTy))
+ return false;
+
+ if (Alignment)
+ Layout.VecAlign = Alignment;
+ else
+ Layout.VecAlign = DL->getABITypeAlignment(Layout.VecTy);
+ Layout.ElemSize = DL->getTypeStoreSize(Layout.ElemTy);
+ return true;
+}
+
+// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
+// to create an instruction like I with operands X and Y and name Name.
+template<typename Splitter>
+bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
+ VectorType *VT = dyn_cast<VectorType>(I.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = VT->getNumElements();
+ IRBuilder<> Builder(I.getParent(), &I);
+ Scatterer Op0 = scatter(&I, I.getOperand(0));
+ Scatterer Op1 = scatter(&I, I.getOperand(1));
+ assert(Op0.size() == NumElems && "Mismatched binary operation");
+ assert(Op1.size() == NumElems && "Mismatched binary operation");
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned Elem = 0; Elem < NumElems; ++Elem)
+ Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
+ I.getName() + ".i" + Twine(Elem));
+ gather(&I, Res);
+ return true;
+}
+
+bool Scalarizer::visitSelectInst(SelectInst &SI) {
+ VectorType *VT = dyn_cast<VectorType>(SI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = VT->getNumElements();
+ IRBuilder<> Builder(SI.getParent(), &SI);
+ Scatterer Op1 = scatter(&SI, SI.getOperand(1));
+ Scatterer Op2 = scatter(&SI, SI.getOperand(2));
+ assert(Op1.size() == NumElems && "Mismatched select");
+ assert(Op2.size() == NumElems && "Mismatched select");
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ if (SI.getOperand(0)->getType()->isVectorTy()) {
+ Scatterer Op0 = scatter(&SI, SI.getOperand(0));
+ assert(Op0.size() == NumElems && "Mismatched select");
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
+ SI.getName() + ".i" + Twine(I));
+ } else {
+ Value *Op0 = SI.getOperand(0);
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
+ SI.getName() + ".i" + Twine(I));
+ }
+ gather(&SI, Res);
+ return true;
+}
+
+bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
+ return splitBinary(ICI, ICmpSplitter(ICI));
+}
+
+bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
+ return splitBinary(FCI, FCmpSplitter(FCI));
+}
+
+bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
+ return splitBinary(BO, BinarySplitter(BO));
+}
+
+bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
+ if (!VT)
+ return false;
+
+ IRBuilder<> Builder(GEPI.getParent(), &GEPI);
+ unsigned NumElems = VT->getNumElements();
+ unsigned NumIndices = GEPI.getNumIndices();
+
+ Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
+
+ SmallVector<Scatterer, 8> Ops;
+ Ops.resize(NumIndices);
+ for (unsigned I = 0; I < NumIndices; ++I)
+ Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
+
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned I = 0; I < NumElems; ++I) {
+ SmallVector<Value *, 8> Indices;
+ Indices.resize(NumIndices);
+ for (unsigned J = 0; J < NumIndices; ++J)
+ Indices[J] = Ops[J][I];
+ Res[I] = Builder.CreateGEP(Base[I], Indices,
+ GEPI.getName() + ".i" + Twine(I));
+ if (GEPI.isInBounds())
+ if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
+ NewGEPI->setIsInBounds();
+ }
+ gather(&GEPI, Res);
+ return true;
+}
+
+bool Scalarizer::visitCastInst(CastInst &CI) {
+ VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = VT->getNumElements();
+ IRBuilder<> Builder(CI.getParent(), &CI);
+ Scatterer Op0 = scatter(&CI, CI.getOperand(0));
+ assert(Op0.size() == NumElems && "Mismatched cast");
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
+ CI.getName() + ".i" + Twine(I));
+ gather(&CI, Res);
+ return true;
+}
+
+bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
+ VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
+ VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
+ if (!DstVT || !SrcVT)
+ return false;
+
+ unsigned DstNumElems = DstVT->getNumElements();
+ unsigned SrcNumElems = SrcVT->getNumElements();
+ IRBuilder<> Builder(BCI.getParent(), &BCI);
+ Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
+ ValueVector Res;
+ Res.resize(DstNumElems);
+
+ if (DstNumElems == SrcNumElems) {
+ for (unsigned I = 0; I < DstNumElems; ++I)
+ Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
+ BCI.getName() + ".i" + Twine(I));
+ } else if (DstNumElems > SrcNumElems) {
+ // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
+ // individual elements to the destination.
+ unsigned FanOut = DstNumElems / SrcNumElems;
+ Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
+ unsigned ResI = 0;
+ for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
+ Value *V = Op0[Op0I];
+ Instruction *VI;
+ // Look through any existing bitcasts before converting to <N x t2>.
+ // In the best case, the resulting conversion might be a no-op.
+ while ((VI = dyn_cast<Instruction>(V)) &&
+ VI->getOpcode() == Instruction::BitCast)
+ V = VI->getOperand(0);
+ V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
+ Scatterer Mid = scatter(&BCI, V);
+ for (unsigned MidI = 0; MidI < FanOut; ++MidI)
+ Res[ResI++] = Mid[MidI];
+ }
+ } else {
+ // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
+ unsigned FanIn = SrcNumElems / DstNumElems;
+ Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
+ unsigned Op0I = 0;
+ for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
+ Value *V = UndefValue::get(MidTy);
+ for (unsigned MidI = 0; MidI < FanIn; ++MidI)
+ V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
+ BCI.getName() + ".i" + Twine(ResI)
+ + ".upto" + Twine(MidI));
+ Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
+ BCI.getName() + ".i" + Twine(ResI));
+ }
+ }
+ gather(&BCI, Res);
+ return true;
+}
+
+bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
+ VectorType *VT = dyn_cast<VectorType>(SVI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = VT->getNumElements();
+ Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
+ Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ for (unsigned I = 0; I < NumElems; ++I) {
+ int Selector = SVI.getMaskValue(I);
+ if (Selector < 0)
+ Res[I] = UndefValue::get(VT->getElementType());
+ else if (unsigned(Selector) < Op0.size())
+ Res[I] = Op0[Selector];
+ else
+ Res[I] = Op1[Selector - Op0.size()];
+ }
+ gather(&SVI, Res);
+ return true;
+}
+
+bool Scalarizer::visitPHINode(PHINode &PHI) {
+ VectorType *VT = dyn_cast<VectorType>(PHI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = VT->getNumElements();
+ IRBuilder<> Builder(PHI.getParent(), &PHI);
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ unsigned NumOps = PHI.getNumOperands();
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
+ PHI.getName() + ".i" + Twine(I));
+
+ for (unsigned I = 0; I < NumOps; ++I) {
+ Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
+ BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
+ for (unsigned J = 0; J < NumElems; ++J)
+ cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
+ }
+ gather(&PHI, Res);
+ return true;
+}
+
+bool Scalarizer::visitLoadInst(LoadInst &LI) {
+ if (!ScalarizeLoadStore)
+ return false;
+ if (!LI.isSimple())
+ return false;
+
+ VectorLayout Layout;
+ if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
+ return false;
+
+ unsigned NumElems = Layout.VecTy->getNumElements();
+ IRBuilder<> Builder(LI.getParent(), &LI);
+ Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
+ LI.getName() + ".i" + Twine(I));
+ gather(&LI, Res);
+ return true;
+}
+
+bool Scalarizer::visitStoreInst(StoreInst &SI) {
+ if (!ScalarizeLoadStore)
+ return false;
+ if (!SI.isSimple())
+ return false;
+
+ VectorLayout Layout;
+ Value *FullValue = SI.getValueOperand();
+ if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
+ return false;
+
+ unsigned NumElems = Layout.VecTy->getNumElements();
+ IRBuilder<> Builder(SI.getParent(), &SI);
+ Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
+ Scatterer Val = scatter(&SI, FullValue);
+
+ ValueVector Stores;
+ Stores.resize(NumElems);
+ for (unsigned I = 0; I < NumElems; ++I) {
+ unsigned Align = Layout.getElemAlign(I);
+ Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
+ }
+ transferMetadata(&SI, Stores);
+ return true;
+}
+
+// Delete the instructions that we scalarized. If a full vector result
+// is still needed, recreate it using InsertElements.
+bool Scalarizer::finish() {
+ if (Gathered.empty())
+ return false;
+ for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
+ GMI != GME; ++GMI) {
+ Instruction *Op = GMI->first;
+ ValueVector &CV = *GMI->second;
+ if (!Op->use_empty()) {
+ // The value is still needed, so recreate it using a series of
+ // InsertElements.
+ Type *Ty = Op->getType();
+ Value *Res = UndefValue::get(Ty);
+ BasicBlock *BB = Op->getParent();
+ unsigned Count = Ty->getVectorNumElements();
+ IRBuilder<> Builder(BB, Op);
+ if (isa<PHINode>(Op))
+ Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
+ for (unsigned I = 0; I < Count; ++I)
+ Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
+ Op->getName() + ".upto" + Twine(I));
+ Res->takeName(Op);
+ Op->replaceAllUsesWith(Res);
+ }
+ Op->eraseFromParent();
+ }
+ Gathered.clear();
+ Scattered.clear();
+ return true;
+}
+
+FunctionPass *llvm::createScalarizerPass() {
+ return new Scalarizer();
+}