aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms
diff options
context:
space:
mode:
authorGordon Henriksen <gordonhenriksen@mac.com>2008-01-07 01:30:53 +0000
committerGordon Henriksen <gordonhenriksen@mac.com>2008-01-07 01:30:53 +0000
commitcc71a50ac7ba72f6405150297763be9c202c1d2b (patch)
tree16961ddedb70b284c1bab1039cd8350248bc5d3f /lib/Transforms
parentdf87fdce8ab5371dd29aca057cbca22924840166 (diff)
downloadexternal_llvm-cc71a50ac7ba72f6405150297763be9c202c1d2b.zip
external_llvm-cc71a50ac7ba72f6405150297763be9c202c1d2b.tar.gz
external_llvm-cc71a50ac7ba72f6405150297763be9c202c1d2b.tar.bz2
With this patch, the LowerGC transformation becomes the
ShadowStackCollector, which additionally has reduced overhead with no sacrifice in portability. Considering a function @fun with 8 loop-local roots, ShadowStackCollector introduces the following overhead (x86): ; shadowstack prologue movl L_llvm_gc_root_chain$non_lazy_ptr, %eax movl (%eax), %ecx movl $___gc_fun, 20(%esp) movl $0, 24(%esp) movl $0, 28(%esp) movl $0, 32(%esp) movl $0, 36(%esp) movl $0, 40(%esp) movl $0, 44(%esp) movl $0, 48(%esp) movl $0, 52(%esp) movl %ecx, 16(%esp) leal 16(%esp), %ecx movl %ecx, (%eax) ; shadowstack loop overhead (none) ; shadowstack epilogue movl 48(%esp), %edx movl %edx, (%ecx) ; shadowstack metadata .align 3 ___gc_fun: # __gc_fun .long 8 .space 4 In comparison to LowerGC: ; lowergc prologue movl L_llvm_gc_root_chain$non_lazy_ptr, %eax movl (%eax), %ecx movl %ecx, 48(%esp) movl $8, 52(%esp) movl $0, 60(%esp) movl $0, 56(%esp) movl $0, 68(%esp) movl $0, 64(%esp) movl $0, 76(%esp) movl $0, 72(%esp) movl $0, 84(%esp) movl $0, 80(%esp) movl $0, 92(%esp) movl $0, 88(%esp) movl $0, 100(%esp) movl $0, 96(%esp) movl $0, 108(%esp) movl $0, 104(%esp) movl $0, 116(%esp) movl $0, 112(%esp) ; lowergc loop overhead leal 44(%esp), %eax movl %eax, 56(%esp) leal 40(%esp), %eax movl %eax, 64(%esp) leal 36(%esp), %eax movl %eax, 72(%esp) leal 32(%esp), %eax movl %eax, 80(%esp) leal 28(%esp), %eax movl %eax, 88(%esp) leal 24(%esp), %eax movl %eax, 96(%esp) leal 20(%esp), %eax movl %eax, 104(%esp) leal 16(%esp), %eax movl %eax, 112(%esp) ; lowergc epilogue movl 48(%esp), %edx movl %edx, (%ecx) ; lowergc metadata (none) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45670 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Scalar/LowerGC.cpp350
1 files changed, 0 insertions, 350 deletions
diff --git a/lib/Transforms/Scalar/LowerGC.cpp b/lib/Transforms/Scalar/LowerGC.cpp
index 8974986..e69de29 100644
--- a/lib/Transforms/Scalar/LowerGC.cpp
+++ b/lib/Transforms/Scalar/LowerGC.cpp
@@ -1,350 +0,0 @@
-//===-- LowerGC.cpp - Provide GC support for targets that don't -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements lowering for the llvm.gc* intrinsics for targets that do
-// not natively support them (which includes the C backend). Note that the code
-// generated is not as efficient as it would be for targets that natively
-// support the GC intrinsics, but it is useful for getting new targets
-// up-and-running quickly.
-//
-// This pass implements the code transformation described in this paper:
-// "Accurate Garbage Collection in an Uncooperative Environment"
-// Fergus Henderson, ISMM, 2002
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "lowergc"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/SmallVector.h"
-using namespace llvm;
-
-namespace {
- class VISIBILITY_HIDDEN LowerGC : public FunctionPass {
- /// GCRootInt, GCReadInt, GCWriteInt - The function prototypes for the
- /// llvm.gcread/llvm.gcwrite/llvm.gcroot intrinsics.
- Function *GCRootInt, *GCReadInt, *GCWriteInt;
-
- /// GCRead/GCWrite - These are the functions provided by the garbage
- /// collector for read/write barriers.
- Constant *GCRead, *GCWrite;
-
- /// RootChain - This is the global linked-list that contains the chain of GC
- /// roots.
- GlobalVariable *RootChain;
-
- /// MainRootRecordType - This is the type for a function root entry if it
- /// had zero roots.
- const Type *MainRootRecordType;
- public:
- static char ID; // Pass identification, replacement for typeid
- LowerGC() : FunctionPass((intptr_t)&ID),
- GCRootInt(0), GCReadInt(0), GCWriteInt(0),
- GCRead(0), GCWrite(0), RootChain(0), MainRootRecordType(0) {}
- virtual bool doInitialization(Module &M);
- virtual bool runOnFunction(Function &F);
-
- private:
- const StructType *getRootRecordType(unsigned NumRoots);
- };
-
- char LowerGC::ID = 0;
- RegisterPass<LowerGC>
- X("lowergc", "Lower GC intrinsics, for GCless code generators");
-}
-
-/// createLowerGCPass - This function returns an instance of the "lowergc"
-/// pass, which lowers garbage collection intrinsics to normal LLVM code.
-FunctionPass *llvm::createLowerGCPass() {
- return new LowerGC();
-}
-
-/// getRootRecordType - This function creates and returns the type for a root
-/// record containing 'NumRoots' roots.
-const StructType *LowerGC::getRootRecordType(unsigned NumRoots) {
- // Build a struct that is a type used for meta-data/root pairs.
- std::vector<const Type *> ST;
- ST.push_back(GCRootInt->getFunctionType()->getParamType(0));
- ST.push_back(GCRootInt->getFunctionType()->getParamType(1));
- StructType *PairTy = StructType::get(ST);
-
- // Build the array of pairs.
- ArrayType *PairArrTy = ArrayType::get(PairTy, NumRoots);
-
- // Now build the recursive list type.
- PATypeHolder RootListH =
- MainRootRecordType ? (Type*)MainRootRecordType : (Type*)OpaqueType::get();
- ST.clear();
- ST.push_back(PointerType::getUnqual(RootListH)); // Prev pointer
- ST.push_back(Type::Int32Ty); // NumElements in array
- ST.push_back(PairArrTy); // The pairs
- StructType *RootList = StructType::get(ST);
- if (MainRootRecordType)
- return RootList;
-
- assert(NumRoots == 0 && "The main struct type should have zero entries!");
- cast<OpaqueType>((Type*)RootListH.get())->refineAbstractTypeTo(RootList);
- MainRootRecordType = RootListH;
- return cast<StructType>(RootListH.get());
-}
-
-/// doInitialization - If this module uses the GC intrinsics, find them now. If
-/// not, this pass does not do anything.
-bool LowerGC::doInitialization(Module &M) {
- GCRootInt = M.getFunction("llvm.gcroot");
- GCReadInt = M.getFunction("llvm.gcread");
- GCWriteInt = M.getFunction("llvm.gcwrite");
- if (!GCRootInt && !GCReadInt && !GCWriteInt) return false;
-
- PointerType *VoidPtr = PointerType::getUnqual(Type::Int8Ty);
- PointerType *VoidPtrPtr = PointerType::getUnqual(VoidPtr);
-
- // If the program is using read/write barriers, find the implementations of
- // them from the GC runtime library.
- if (GCReadInt) // Make: sbyte* %llvm_gc_read(sbyte**)
- GCRead = M.getOrInsertFunction("llvm_gc_read", VoidPtr, VoidPtr, VoidPtrPtr,
- (Type *)0);
- if (GCWriteInt) // Make: void %llvm_gc_write(sbyte*, sbyte**)
- GCWrite = M.getOrInsertFunction("llvm_gc_write", Type::VoidTy,
- VoidPtr, VoidPtr, VoidPtrPtr, (Type *)0);
-
- // If the program has GC roots, get or create the global root list.
- if (GCRootInt) {
- const StructType *RootListTy = getRootRecordType(0);
- const Type *PRLTy = PointerType::getUnqual(RootListTy);
- M.addTypeName("llvm_gc_root_ty", RootListTy);
-
- // Get the root chain if it already exists.
- RootChain = M.getGlobalVariable("llvm_gc_root_chain", PRLTy);
- if (RootChain == 0) {
- // If the root chain does not exist, insert a new one with linkonce
- // linkage!
- RootChain = new GlobalVariable(PRLTy, false,
- GlobalValue::LinkOnceLinkage,
- Constant::getNullValue(PRLTy),
- "llvm_gc_root_chain", &M);
- } else if (RootChain->hasExternalLinkage() && RootChain->isDeclaration()) {
- RootChain->setInitializer(Constant::getNullValue(PRLTy));
- RootChain->setLinkage(GlobalValue::LinkOnceLinkage);
- }
- }
- return true;
-}
-
-/// Coerce - If the specified operand number of the specified instruction does
-/// not have the specified type, insert a cast. Note that this only uses BitCast
-/// because the types involved are all pointers.
-static void Coerce(Instruction *I, unsigned OpNum, Type *Ty) {
- if (I->getOperand(OpNum)->getType() != Ty) {
- if (Constant *C = dyn_cast<Constant>(I->getOperand(OpNum)))
- I->setOperand(OpNum, ConstantExpr::getBitCast(C, Ty));
- else {
- CastInst *CI = new BitCastInst(I->getOperand(OpNum), Ty, "", I);
- I->setOperand(OpNum, CI);
- }
- }
-}
-
-/// runOnFunction - If the program is using GC intrinsics, replace any
-/// read/write intrinsics with the appropriate read/write barrier calls, then
-/// inline them. Finally, build the data structures for
-bool LowerGC::runOnFunction(Function &F) {
- // Quick exit for programs that are not using GC mechanisms.
- if (!GCRootInt && !GCReadInt && !GCWriteInt) return false;
-
- PointerType *VoidPtr = PointerType::getUnqual(Type::Int8Ty);
- PointerType *VoidPtrPtr = PointerType::getUnqual(VoidPtr);
-
- // If there are read/write barriers in the program, perform a quick pass over
- // the function eliminating them. While we are at it, remember where we see
- // calls to llvm.gcroot.
- std::vector<CallInst*> GCRoots;
- std::vector<CallInst*> NormalCalls;
-
- bool MadeChange = false;
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
- if (CallInst *CI = dyn_cast<CallInst>(II++)) {
- if (!CI->getCalledFunction() ||
- !CI->getCalledFunction()->isIntrinsic())
- NormalCalls.push_back(CI); // Remember all normal function calls.
-
- if (Function *F = CI->getCalledFunction())
- if (F == GCRootInt)
- GCRoots.push_back(CI);
- else if (F == GCReadInt || F == GCWriteInt) {
- if (F == GCWriteInt) {
- // Change a llvm.gcwrite call to call llvm_gc_write instead.
- CI->setOperand(0, GCWrite);
- // Insert casts of the operands as needed.
- Coerce(CI, 1, VoidPtr);
- Coerce(CI, 2, VoidPtr);
- Coerce(CI, 3, VoidPtrPtr);
- } else {
- Coerce(CI, 1, VoidPtr);
- Coerce(CI, 2, VoidPtrPtr);
- if (CI->getType() == VoidPtr) {
- CI->setOperand(0, GCRead);
- } else {
- // Create a whole new call to replace the old one.
-
- // It sure would be nice to pass op_begin()+1,
- // op_begin()+2 but it runs into trouble with
- // CallInst::init's &*iterator, which requires a
- // conversion from Use* to Value*. The conversion
- // from Use to Value * is not useful because the
- // memory for Value * won't be contiguous.
- Value* Args[] = {
- CI->getOperand(1),
- CI->getOperand(2)
- };
- CallInst *NC = new CallInst(GCRead, Args, Args + 2,
- CI->getName(), CI);
- // These functions only deal with ptr type results so BitCast
- // is the correct kind of cast (no-op cast).
- Value *NV = new BitCastInst(NC, CI->getType(), "", CI);
- CI->replaceAllUsesWith(NV);
- BB->getInstList().erase(CI);
- CI = NC;
- }
- }
-
- MadeChange = true;
- }
- }
-
- // If there are no GC roots in this function, then there is no need to create
- // a GC list record for it.
- if (GCRoots.empty()) return MadeChange;
-
- // Okay, there are GC roots in this function. On entry to the function, add a
- // record to the llvm_gc_root_chain, and remove it on exit.
-
- // Create the alloca, and zero it out.
- const StructType *RootListTy = getRootRecordType(GCRoots.size());
- AllocaInst *AI = new AllocaInst(RootListTy, 0, "gcroots", F.begin()->begin());
-
- // Insert the memset call after all of the allocas in the function.
- BasicBlock::iterator IP = AI;
- while (isa<AllocaInst>(IP)) ++IP;
-
- Constant *Zero = ConstantInt::get(Type::Int32Ty, 0);
- Constant *One = ConstantInt::get(Type::Int32Ty, 1);
-
- Value *Idx[2] = { Zero, Zero };
-
- // Get a pointer to the prev pointer.
- Value *PrevPtrPtr = new GetElementPtrInst(AI, Idx, Idx + 2,
- "prevptrptr", IP);
-
- // Load the previous pointer.
- Value *PrevPtr = new LoadInst(RootChain, "prevptr", IP);
- // Store the previous pointer into the prevptrptr
- new StoreInst(PrevPtr, PrevPtrPtr, IP);
-
- // Set the number of elements in this record.
- Idx[1] = One;
- Value *NumEltsPtr = new GetElementPtrInst(AI, Idx, Idx + 2,
- "numeltsptr", IP);
- new StoreInst(ConstantInt::get(Type::Int32Ty, GCRoots.size()), NumEltsPtr,IP);
-
- Value* Par[4];
- Par[0] = Zero;
- Par[1] = ConstantInt::get(Type::Int32Ty, 2);
-
- const PointerType *PtrLocTy =
- cast<PointerType>(GCRootInt->getFunctionType()->getParamType(0));
- Constant *Null = ConstantPointerNull::get(PtrLocTy);
-
- // Initialize all of the gcroot records now.
- for (unsigned i = 0, e = GCRoots.size(); i != e; ++i) {
- // Initialize the meta-data pointer.
- Par[2] = ConstantInt::get(Type::Int32Ty, i);
- Par[3] = One;
- Value *MetaDataPtr = new GetElementPtrInst(AI, Par, Par + 4,
- "MetaDataPtr", IP);
- assert(isa<Constant>(GCRoots[i]->getOperand(2)) && "Must be a constant");
- new StoreInst(GCRoots[i]->getOperand(2), MetaDataPtr, IP);
-
- // Initialize the root pointer to null on entry to the function.
- Par[3] = Zero;
- Value *RootPtrPtr = new GetElementPtrInst(AI, Par, Par + 4,
- "RootEntPtr", IP);
- new StoreInst(Null, RootPtrPtr, IP);
-
- // Each occurrance of the llvm.gcroot intrinsic now turns into an
- // initialization of the slot with the address.
- new StoreInst(GCRoots[i]->getOperand(1), RootPtrPtr, GCRoots[i]);
- }
-
- // Now that the record is all initialized, store the pointer into the global
- // pointer.
- Value *C = new BitCastInst(AI, PointerType::getUnqual(MainRootRecordType), "", IP);
- new StoreInst(C, RootChain, IP);
-
- // Eliminate all the gcroot records now.
- for (unsigned i = 0, e = GCRoots.size(); i != e; ++i)
- GCRoots[i]->getParent()->getInstList().erase(GCRoots[i]);
-
- // On exit from the function we have to remove the entry from the GC root
- // chain. Doing this is straight-forward for return and unwind instructions:
- // just insert the appropriate copy.
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- if (isa<UnwindInst>(BB->getTerminator()) ||
- isa<ReturnInst>(BB->getTerminator())) {
- // We could reuse the PrevPtr loaded on entry to the function, but this
- // would make the value live for the whole function, which is probably a
- // bad idea. Just reload the value out of our stack entry.
- PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", BB->getTerminator());
- new StoreInst(PrevPtr, RootChain, BB->getTerminator());
- }
-
- // If an exception is thrown from a callee we have to make sure to
- // unconditionally take the record off the stack. For this reason, we turn
- // all call instructions into invoke whose cleanup pops the entry off the
- // stack. We only insert one cleanup block, which is shared by all invokes.
- if (!NormalCalls.empty()) {
- // Create the shared cleanup block.
- BasicBlock *Cleanup = new BasicBlock("gc_cleanup", &F);
- UnwindInst *UI = new UnwindInst(Cleanup);
- PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", UI);
- new StoreInst(PrevPtr, RootChain, UI);
-
- // Loop over all of the function calls, turning them into invokes.
- while (!NormalCalls.empty()) {
- CallInst *CI = NormalCalls.back();
- BasicBlock *CBB = CI->getParent();
- NormalCalls.pop_back();
-
- // Split the basic block containing the function call.
- BasicBlock *NewBB = CBB->splitBasicBlock(CI, CBB->getName()+".cont");
-
- // Remove the unconditional branch inserted at the end of the CBB.
- CBB->getInstList().pop_back();
- NewBB->getInstList().remove(CI);
-
- // Create a new invoke instruction.
- std::vector<Value*> Args(CI->op_begin()+1, CI->op_end());
-
- Value *II = new InvokeInst(CI->getCalledValue(), NewBB, Cleanup,
- Args.begin(), Args.end(), CI->getName(), CBB);
- cast<InvokeInst>(II)->setCallingConv(CI->getCallingConv());
- cast<InvokeInst>(II)->setParamAttrs(CI->getParamAttrs());
- CI->replaceAllUsesWith(II);
- delete CI;
- }
- }
-
- return true;
-}