aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2002-03-29 17:13:46 +0000
committerChris Lattner <sabre@nondot.org>2002-03-29 17:13:46 +0000
commitd250f4294e6c56a817462eabb5ca05c8c30cf854 (patch)
tree3d1da0a70dca80d0cb156e4c0339910c161e2753 /lib/Transforms
parentdc89f87d52298131e2265815b65f7aa22388524f (diff)
downloadexternal_llvm-d250f4294e6c56a817462eabb5ca05c8c30cf854.zip
external_llvm-d250f4294e6c56a817462eabb5ca05c8c30cf854.tar.gz
external_llvm-d250f4294e6c56a817462eabb5ca05c8c30cf854.tar.bz2
Find out which calls in the function we need to transform and how.
Next step is to start hacking functions up. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2044 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/IPO/OldPoolAllocate.cpp204
1 files changed, 189 insertions, 15 deletions
diff --git a/lib/Transforms/IPO/OldPoolAllocate.cpp b/lib/Transforms/IPO/OldPoolAllocate.cpp
index 9671c80..7e9f155 100644
--- a/lib/Transforms/IPO/OldPoolAllocate.cpp
+++ b/lib/Transforms/IPO/OldPoolAllocate.cpp
@@ -19,11 +19,55 @@
#include "Support/STLExtras.h"
#include <algorithm>
+
// FIXME: This is dependant on the sparc backend layout conventions!!
static TargetData TargetData("test");
-// Define the pass class that we implement...
namespace {
+ // ScalarInfo - Information about an LLVM value that we know points to some
+ // datastructure we are processing.
+ //
+ struct ScalarInfo {
+ Value *Val; // Scalar value in Current Function
+ AllocDSNode *AllocNode; // Allocation node it points to
+ Value *PoolHandle; // PoolTy* LLVM value
+
+ ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
+ : Val(V), AllocNode(AN), PoolHandle(PH) {}
+ };
+
+ // TransformFunctionInfo - Information about how a function eeds to be
+ // transformed.
+ //
+ struct TransformFunctionInfo {
+ // ArgInfo - Maintain information about the arguments that need to be
+ // processed. Each pair corresponds to an argument (whose number is the
+ // first element) that needs to have a pool pointer (the second element)
+ // passed into the transformed function with it.
+ //
+ // As a special case, "argument" number -1 corresponds to the return value.
+ //
+ vector<pair<int, Value*> > ArgInfo;
+
+ // Func - The function to be transformed...
+ Function *Func;
+
+ // default ctor...
+ TransformFunctionInfo() : Func(0) {}
+
+ inline bool operator<(const TransformFunctionInfo &TFI) const {
+ return Func < TFI.Func || (Func == TFI.Func && ArgInfo < TFI.ArgInfo);
+ }
+
+ void finalizeConstruction() {
+ // Sort the vector so that the return value is first, followed by the
+ // argument records, in order.
+ sort(ArgInfo.begin(), ArgInfo.end());
+ }
+ };
+
+
+ // Define the pass class that we implement...
class PoolAllocate : public Pass {
// PoolTy - The type of a scalar value that contains a pool pointer.
PointerType *PoolTy;
@@ -61,6 +105,20 @@ namespace {
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
+ // The map of already transformed functions...
+ map<TransformFunctionInfo, Function*> TransformedFunctions;
+
+ // getTransformedFunction - Get a transformed function, or return null if
+ // the function specified hasn't been transformed yet.
+ //
+ Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
+ map<TransformFunctionInfo, Function*>::const_iterator I =
+ TransformedFunctions.find(TFI);
+ if (I != TransformedFunctions.end()) return I->second;
+ return 0;
+ }
+
+
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
@@ -79,12 +137,21 @@ namespace {
// available.
//
bool processFunction(Function *F);
+
+
+ void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars);
+
+ // transformFunction - Transform the specified function the specified way.
+ // It we have already transformed that function that way, don't do anything.
+ //
+ void transformFunction(TransformFunctionInfo &TFI);
+
};
}
-// isNotPoolableAlloc - This is a predicate that returns true if the specified
+// isNotPoolableAlloc - This is a predicate that returns true if the specified
// allocation node in a data structure graph is eligable for pool allocation.
//
static bool isNotPoolableAlloc(const AllocDSNode *DS) {
@@ -97,7 +164,6 @@ static bool isNotPoolableAlloc(const AllocDSNode *DS) {
return false;
}
-
// processFunction - Convert a function to use pool allocation where
// available.
//
@@ -112,7 +178,7 @@ bool PoolAllocate::processFunction(Function *F) {
// they are still live (they exist in the graph at all), this means we must
// have scalar references to these nodes, but the scalars are never returned.
//
- std::vector<AllocDSNode*> Allocs;
+ vector<AllocDSNode*> Allocs;
IPGraph.getNonEscapingAllocations(Allocs);
// Filter out allocations that we cannot handle. Currently, this includes
@@ -125,39 +191,147 @@ bool PoolAllocate::processFunction(Function *F) {
if (Allocs.empty()) return false; // Nothing to do.
+ // Insert instructions into the function we are processing to create all of
+ // the memory pool objects themselves. This also inserts destruction code.
+ // This fills in the PoolDescriptors vector to be a array parallel with
+ // Allocs, but containing the alloca instructions that allocate the pool ptr.
+ //
+ vector<AllocaInst*> PoolDescriptors;
+ CreatePools(F, Allocs, PoolDescriptors);
+
+
// Loop through the value map looking for scalars that refer to nonescaping
- // allocations.
+ // allocations. Add them to the Scalars vector. Note that we may have
+ // multiple entries in the Scalars vector for each value if it points to more
+ // than one object.
//
map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
- vector<pair<Value*, AllocDSNode*> > Scalars;
+ vector<ScalarInfo> Scalars;
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
+
+ assert(PVS.size() == 1 &&
+ "Only handle scalars that point to one thing so far!");
+
// Check to see if the scalar points to anything that is an allocation...
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
- if (find(Allocs.begin(), Allocs.end(), Alloc) != Allocs.end())
+ vector<AllocDSNode*>::iterator AI =
+ find(Allocs.begin(), Allocs.end(), Alloc);
+ if (AI != Allocs.end()) {
+ unsigned IDX = AI-Allocs.begin();
// Add it to the list of scalars we have
- Scalars.push_back(make_pair(I->first, Alloc));
+ Scalars.push_back(ScalarInfo(I->first, Alloc, PoolDescriptors[IDX]));
+ }
}
}
+ // Now we need to figure out what called methods we need to transform, and
+ // how. To do this, we look at all of the scalars, seeing which functions are
+ // either used as a scalar value (so they return a data structure), or are
+ // passed one of our scalar values.
+ //
+ transformFunctionBody(F, Scalars);
+
+ return true;
+}
+
+static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
+ Value *PoolHandle) {
+ assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
+ TFI.ArgInfo.push_back(make_pair(Arg, PoolHandle));
+
+ assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
+ "Function call record should always call the same function!");
+ TFI.Func = CI->getCalledFunction();
+}
+
+void PoolAllocate::transformFunctionBody(Function *F,
+ vector<ScalarInfo> &Scalars) {
cerr << "In '" << F->getName()
<< "': Found the following values that point to poolable nodes:\n";
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
- Scalars[i].first->dump();
+ Scalars[i].Val->dump();
+
+ // CallMap - Contain an entry for every call instruction that needs to be
+ // transformed. Each entry in the map contains information about what we need
+ // to do to each call site to change it to work.
+ //
+ map<CallInst*, TransformFunctionInfo> CallMap;
+
+ // Now we need to figure out what called methods we need to transform, and
+ // how. To do this, we look at all of the scalars, seeing which functions are
+ // either used as a scalar value (so they return a data structure), or are
+ // passed one of our scalar values.
+ //
+ for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
+ Value *ScalarVal = Scalars[i].Val;
+
+ // Check to see if the scalar _IS_ a call...
+ if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
+ // If so, add information about the pool it will be returning...
+ addCallInfo(CallMap[CI], CI, -1, Scalars[i].PoolHandle);
+
+ // Check to see if the scalar is an operand to a call...
+ for (Value::use_iterator UI = ScalarVal->use_begin(),
+ UE = ScalarVal->use_end(); UI != UE; ++UI) {
+ if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+ // Find out which operand this is to the call instruction...
+ User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
+ assert(OI != CI->op_end() && "Call on use list but not an operand!?");
+ assert(OI != CI->op_begin() && "Pointer operand is call destination?");
+
+ // FIXME: This is broken if the same pointer is passed to a call more
+ // than once! It will get multiple entries for the first pointer.
+
+ // Add the operand number and pool handle to the call table...
+ addCallInfo(CallMap[CI], CI, OI-CI->op_begin(), Scalars[i].PoolHandle);
+ }
+ }
+ }
+
+ // Print out call map...
+ for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
+ I != CallMap.end(); ++I) {
+ cerr << "\nFor call: ";
+ I->first->dump();
+ I->second.finalizeConstruction();
+ cerr << " must pass pool pointer for arg #";
+ for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
+ cerr << I->second.ArgInfo[i].first << " ";
+ cerr << "\n";
+ }
+
+ // Loop through all of the call nodes, recursively creating the new functions
+ // that we want to call... This uses a map to prevent infinite recursion and
+ // to avoid duplicating functions unneccesarily.
+ //
+ for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
+ E = CallMap.end(); I != E; ++I) {
+ // Make sure the entries are sorted.
+ I->second.finalizeConstruction();
+ transformFunction(I->second);
+ }
+
+
+
+}
+
+
+// transformFunction - Transform the specified function the specified way.
+// It we have already transformed that function that way, don't do anything.
+//
+void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
+ if (getTransformedFunction(TFI)) return; // Function xformation already done?
+
- // Insert instructions into the function we are processing to create all of
- // the memory pool objects themselves. This also inserts destruction code.
- vector<AllocaInst*> PoolDescriptors;
- CreatePools(F, Allocs, PoolDescriptors);
- return true;
}
@@ -181,7 +355,7 @@ void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
// Add an allocation and a free for each pool...
AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool");
EntryNodeInsts.push_back(PoolAlloc);
-
+ PoolDescriptors.push_back(PoolAlloc); // Keep track of pool allocas
AllocationInst *AI = Allocs[i]->getAllocation();
// Initialize the pool. We need to know how big each allocation is. For