aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/Dominators.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2002-08-02 16:43:03 +0000
committerChris Lattner <sabre@nondot.org>2002-08-02 16:43:03 +0000
commit4c9df7c619ba827729490757dae6dc35bb068a9f (patch)
tree4b2b713c17e2cf2c43e94379023483f13013d237 /lib/VMCore/Dominators.cpp
parentf201495f27311bfcb3677e7846c44afa64734417 (diff)
downloadexternal_llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.zip
external_llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.gz
external_llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.bz2
Split dominance calculation and post dominance calculation stuff
Dominance calculation goes to VMCore library to be used by Verifier. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3210 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/Dominators.cpp')
-rw-r--r--lib/VMCore/Dominators.cpp172
1 files changed, 5 insertions, 167 deletions
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp
index 1aff600..eb57587 100644
--- a/lib/VMCore/Dominators.cpp
+++ b/lib/VMCore/Dominators.cpp
@@ -1,18 +1,17 @@
-//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
+//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
-// This file provides a simple class to calculate the dominator set of a
-// function.
+// This file implements simple dominator construction algorithms for finding
+// forward dominators. Postdominators are available in libanalysis, but are not
+// included in libvmcore, because it's not needed. Forward dominators are
+// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
-#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "Support/DepthFirstIterator.h"
-#include "Support/STLExtras.h"
#include "Support/SetOperations.h"
-#include <algorithm>
using std::set;
//===----------------------------------------------------------------------===//
@@ -21,11 +20,7 @@ using std::set;
static RegisterAnalysis<DominatorSet>
A("domset", "Dominator Set Construction", true);
-static RegisterAnalysis<PostDominatorSet>
-B("postdomset", "Post-Dominator Set Construction", true);
-
AnalysisID DominatorSet::ID = A;
-AnalysisID PostDominatorSet::ID = B;
// dominates - Return true if A dominates B. This performs the special checks
// neccesary if A and B are in the same basic block.
@@ -88,69 +83,6 @@ bool DominatorSet::runOnFunction(Function &F) {
}
-// Postdominator set construction. This converts the specified function to only
-// have a single exit node (return stmt), then calculates the post dominance
-// sets for the function.
-//
-bool PostDominatorSet::runOnFunction(Function &F) {
- Doms.clear(); // Reset from the last time we were run...
- // Since we require that the unify all exit nodes pass has been run, we know
- // that there can be at most one return instruction in the function left.
- // Get it.
- //
- Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
-
- if (Root == 0) { // No exit node for the function? Postdomsets are all empty
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
- Doms[FI] = DomSetType();
- return false;
- }
-
- bool Changed;
- do {
- Changed = false;
-
- set<const BasicBlock*> Visited;
- DomSetType WorkingSet;
- idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
- for ( ; It != End; ++It) {
- BasicBlock *BB = *It;
- succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
- if (PI != PEnd) { // Is there SOME predecessor?
- // Loop until we get to a successor that has had it's dom set filled
- // in at least once. We are guaranteed to have this because we are
- // traversing the graph in DFO and have handled start nodes specially.
- //
- while (Doms[*PI].size() == 0) ++PI;
- WorkingSet = Doms[*PI];
-
- for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets
- DomSetType &PredSet = Doms[*PI];
- if (PredSet.size())
- set_intersect(WorkingSet, PredSet);
- }
- }
-
- WorkingSet.insert(BB); // A block always dominates itself
- DomSetType &BBSet = Doms[BB];
- if (BBSet != WorkingSet) {
- BBSet.swap(WorkingSet); // Constant time operation!
- Changed = true; // The sets changed.
- }
- WorkingSet.clear(); // Clear out the set for next iteration
- }
- } while (Changed);
- return false;
-}
-
-// getAnalysisUsage - This obviously provides a post-dominator set, but it also
-// requires the UnifyFunctionExitNodes pass.
-//
-void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired(UnifyFunctionExitNodes::ID);
-}
-
static std::ostream &operator<<(std::ostream &o, const set<BasicBlock*> &BBs) {
for (set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I) {
@@ -174,11 +106,7 @@ void DominatorSetBase::print(std::ostream &o) const {
static RegisterAnalysis<ImmediateDominators>
C("idom", "Immediate Dominators Construction", true);
-static RegisterAnalysis<ImmediatePostDominators>
-D("postidom", "Immediate Post-Dominators Construction", true);
-
AnalysisID ImmediateDominators::ID = C;
-AnalysisID ImmediatePostDominators::ID = D;
// calcIDoms - Calculate the immediate dominator mapping, given a set of
// dominators for every basic block.
@@ -230,11 +158,7 @@ void ImmediateDominatorsBase::print(std::ostream &o) const {
static RegisterAnalysis<DominatorTree>
E("domtree", "Dominator Tree Construction", true);
-static RegisterAnalysis<PostDominatorTree>
-F("postdomtree", "Post-Dominator Tree Construction", true);
-
AnalysisID DominatorTree::ID = E;
-AnalysisID PostDominatorTree::ID = F;
// DominatorTreeBase::reset - Free all of the tree node memory.
//
@@ -291,54 +215,6 @@ void DominatorTree::calculate(const DominatorSet &DS) {
}
-void PostDominatorTree::calculate(const PostDominatorSet &DS) {
- Nodes[Root] = new Node(Root, 0); // Add a node for the root...
-
- if (Root) {
- // Iterate over all nodes in depth first order...
- for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
- I != E; ++I) {
- BasicBlock *BB = *I;
- const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
- unsigned DomSetSize = Dominators.size();
- if (DomSetSize == 1) continue; // Root node... IDom = null
-
- // Loop over all dominators of this node. This corresponds to looping
- // over nodes in the dominator chain, looking for a node whose dominator
- // set is equal to the current nodes, except that the current node does
- // not exist in it. This means that it is one level higher in the dom
- // chain than the current node, and it is our idom! We know that we have
- // already added a DominatorTree node for our idom, because the idom must
- // be a predecessor in the depth first order that we are iterating through
- // the function.
- //
- DominatorSet::DomSetType::const_iterator I = Dominators.begin();
- DominatorSet::DomSetType::const_iterator End = Dominators.end();
- for (; I != End; ++I) { // Iterate over dominators...
- // All of our dominators should form a chain, where the number
- // of elements in the dominator set indicates what level the
- // node is at in the chain. We want the node immediately
- // above us, so it will have an identical dominator set,
- // except that BB will not dominate it... therefore it's
- // dominator set size will be one less than BB's...
- //
- if (DS.getDominators(*I).size() == DomSetSize - 1) {
- // We know that the immediate dominator should already have a node,
- // because we are traversing the CFG in depth first order!
- //
- Node *IDomNode = Nodes[*I];
- assert(IDomNode && "No node for IDOM?");
-
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
- break;
- }
- }
- }
- }
-}
-
static std::ostream &operator<<(std::ostream &o,
const DominatorTreeBase::Node *Node) {
return o << Node->getNode()
@@ -367,11 +243,7 @@ void DominatorTreeBase::print(std::ostream &o) const {
static RegisterAnalysis<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true);
-static RegisterAnalysis<PostDominanceFrontier>
-H("postdomfrontier", "Post-Dominance Frontier Construction", true);
-
AnalysisID DominanceFrontier::ID = G;
-AnalysisID PostDominanceFrontier::ID = H;
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
@@ -406,40 +278,6 @@ DominanceFrontier::calculate(const DominatorTree &DT,
return S;
}
-const DominanceFrontier::DomSetType &
-PostDominanceFrontier::calculate(const PostDominatorTree &DT,
- const DominatorTree::Node *Node) {
- // Loop over CFG successors to calculate DFlocal[Node]
- BasicBlock *BB = Node->getNode();
- DomSetType &S = Frontiers[BB]; // The new set to fill in...
- if (!Root) return S;
-
- for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
- SI != SE; ++SI) {
- // Does Node immediately dominate this predeccessor?
- if (DT[*SI]->getIDom() != Node)
- S.insert(*SI);
- }
-
- // At this point, S is DFlocal. Now we union in DFup's of our children...
- // Loop through and visit the nodes that Node immediately dominates (Node's
- // children in the IDomTree)
- //
- for (PostDominatorTree::Node::const_iterator
- NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
- DominatorTree::Node *IDominee = *NI;
- const DomSetType &ChildDF = calculate(DT, IDominee);
-
- DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
- for (; CDFI != CDFE; ++CDFI) {
- if (!Node->dominates(DT[*CDFI]))
- S.insert(*CDFI);
- }
- }
-
- return S;
-}
-
void DominanceFrontierBase::print(std::ostream &o) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << "=============================--------------------------------\n"