diff options
author | Chris Lattner <sabre@nondot.org> | 2002-08-02 16:43:03 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2002-08-02 16:43:03 +0000 |
commit | 4c9df7c619ba827729490757dae6dc35bb068a9f (patch) | |
tree | 4b2b713c17e2cf2c43e94379023483f13013d237 /lib/VMCore/Dominators.cpp | |
parent | f201495f27311bfcb3677e7846c44afa64734417 (diff) | |
download | external_llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.zip external_llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.gz external_llvm-4c9df7c619ba827729490757dae6dc35bb068a9f.tar.bz2 |
Split dominance calculation and post dominance calculation stuff
Dominance calculation goes to VMCore library to be used by Verifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3210 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/Dominators.cpp')
-rw-r--r-- | lib/VMCore/Dominators.cpp | 172 |
1 files changed, 5 insertions, 167 deletions
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp index 1aff600..eb57587 100644 --- a/lib/VMCore/Dominators.cpp +++ b/lib/VMCore/Dominators.cpp @@ -1,18 +1,17 @@ -//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=// +//===- Dominators.cpp - Dominator Calculation -----------------------------===// // -// This file provides a simple class to calculate the dominator set of a -// function. +// This file implements simple dominator construction algorithms for finding +// forward dominators. Postdominators are available in libanalysis, but are not +// included in libvmcore, because it's not needed. Forward dominators are +// needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" -#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "Support/DepthFirstIterator.h" -#include "Support/STLExtras.h" #include "Support/SetOperations.h" -#include <algorithm> using std::set; //===----------------------------------------------------------------------===// @@ -21,11 +20,7 @@ using std::set; static RegisterAnalysis<DominatorSet> A("domset", "Dominator Set Construction", true); -static RegisterAnalysis<PostDominatorSet> -B("postdomset", "Post-Dominator Set Construction", true); - AnalysisID DominatorSet::ID = A; -AnalysisID PostDominatorSet::ID = B; // dominates - Return true if A dominates B. This performs the special checks // neccesary if A and B are in the same basic block. @@ -88,69 +83,6 @@ bool DominatorSet::runOnFunction(Function &F) { } -// Postdominator set construction. This converts the specified function to only -// have a single exit node (return stmt), then calculates the post dominance -// sets for the function. -// -bool PostDominatorSet::runOnFunction(Function &F) { - Doms.clear(); // Reset from the last time we were run... - // Since we require that the unify all exit nodes pass has been run, we know - // that there can be at most one return instruction in the function left. - // Get it. - // - Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode(); - - if (Root == 0) { // No exit node for the function? Postdomsets are all empty - for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) - Doms[FI] = DomSetType(); - return false; - } - - bool Changed; - do { - Changed = false; - - set<const BasicBlock*> Visited; - DomSetType WorkingSet; - idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root); - for ( ; It != End; ++It) { - BasicBlock *BB = *It; - succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); - if (PI != PEnd) { // Is there SOME predecessor? - // Loop until we get to a successor that has had it's dom set filled - // in at least once. We are guaranteed to have this because we are - // traversing the graph in DFO and have handled start nodes specially. - // - while (Doms[*PI].size() == 0) ++PI; - WorkingSet = Doms[*PI]; - - for (++PI; PI != PEnd; ++PI) { // Intersect all of the successor sets - DomSetType &PredSet = Doms[*PI]; - if (PredSet.size()) - set_intersect(WorkingSet, PredSet); - } - } - - WorkingSet.insert(BB); // A block always dominates itself - DomSetType &BBSet = Doms[BB]; - if (BBSet != WorkingSet) { - BBSet.swap(WorkingSet); // Constant time operation! - Changed = true; // The sets changed. - } - WorkingSet.clear(); // Clear out the set for next iteration - } - } while (Changed); - return false; -} - -// getAnalysisUsage - This obviously provides a post-dominator set, but it also -// requires the UnifyFunctionExitNodes pass. -// -void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired(UnifyFunctionExitNodes::ID); -} - static std::ostream &operator<<(std::ostream &o, const set<BasicBlock*> &BBs) { for (set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) { @@ -174,11 +106,7 @@ void DominatorSetBase::print(std::ostream &o) const { static RegisterAnalysis<ImmediateDominators> C("idom", "Immediate Dominators Construction", true); -static RegisterAnalysis<ImmediatePostDominators> -D("postidom", "Immediate Post-Dominators Construction", true); - AnalysisID ImmediateDominators::ID = C; -AnalysisID ImmediatePostDominators::ID = D; // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. @@ -230,11 +158,7 @@ void ImmediateDominatorsBase::print(std::ostream &o) const { static RegisterAnalysis<DominatorTree> E("domtree", "Dominator Tree Construction", true); -static RegisterAnalysis<PostDominatorTree> -F("postdomtree", "Post-Dominator Tree Construction", true); - AnalysisID DominatorTree::ID = E; -AnalysisID PostDominatorTree::ID = F; // DominatorTreeBase::reset - Free all of the tree node memory. // @@ -291,54 +215,6 @@ void DominatorTree::calculate(const DominatorSet &DS) { } -void PostDominatorTree::calculate(const PostDominatorSet &DS) { - Nodes[Root] = new Node(Root, 0); // Add a node for the root... - - if (Root) { - // Iterate over all nodes in depth first order... - for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root); - I != E; ++I) { - BasicBlock *BB = *I; - const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping - // over nodes in the dominator chain, looking for a node whose dominator - // set is equal to the current nodes, except that the current node does - // not exist in it. This means that it is one level higher in the dom - // chain than the current node, and it is our idom! We know that we have - // already added a DominatorTree node for our idom, because the idom must - // be a predecessor in the depth first order that we are iterating through - // the function. - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number - // of elements in the dominator set indicates what level the - // node is at in the chain. We want the node immediately - // above us, so it will have an identical dominator set, - // except that BB will not dominate it... therefore it's - // dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } - } - } - } -} - static std::ostream &operator<<(std::ostream &o, const DominatorTreeBase::Node *Node) { return o << Node->getNode() @@ -367,11 +243,7 @@ void DominatorTreeBase::print(std::ostream &o) const { static RegisterAnalysis<DominanceFrontier> G("domfrontier", "Dominance Frontier Construction", true); -static RegisterAnalysis<PostDominanceFrontier> -H("postdomfrontier", "Post-Dominance Frontier Construction", true); - AnalysisID DominanceFrontier::ID = G; -AnalysisID PostDominanceFrontier::ID = H; const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, @@ -406,40 +278,6 @@ DominanceFrontier::calculate(const DominatorTree &DT, return S; } -const DominanceFrontier::DomSetType & -PostDominanceFrontier::calculate(const PostDominatorTree &DT, - const DominatorTree::Node *Node) { - // Loop over CFG successors to calculate DFlocal[Node] - BasicBlock *BB = Node->getNode(); - DomSetType &S = Frontiers[BB]; // The new set to fill in... - if (!Root) return S; - - for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); - SI != SE; ++SI) { - // Does Node immediately dominate this predeccessor? - if (DT[*SI]->getIDom() != Node) - S.insert(*SI); - } - - // At this point, S is DFlocal. Now we union in DFup's of our children... - // Loop through and visit the nodes that Node immediately dominates (Node's - // children in the IDomTree) - // - for (PostDominatorTree::Node::const_iterator - NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { - DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calculate(DT, IDominee); - - DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); - for (; CDFI != CDFE; ++CDFI) { - if (!Node->dominates(DT[*CDFI])) - S.insert(*CDFI); - } - } - - return S; -} - void DominanceFrontierBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << "=============================--------------------------------\n" |