aboutsummaryrefslogtreecommitdiffstats
path: root/lib/VMCore/LLVMContextImpl.cpp
diff options
context:
space:
mode:
authorOwen Anderson <resistor@mac.com>2009-07-24 23:12:02 +0000
committerOwen Anderson <resistor@mac.com>2009-07-24 23:12:02 +0000
commiteed707b1e6097aac2bb6b3d47271f6300ace7f2e (patch)
treec7390f63d90fc0c0ac483a90275863f41b69c085 /lib/VMCore/LLVMContextImpl.cpp
parente8530a3d8c940fb7710be7e25098b5c3b2c2de19 (diff)
downloadexternal_llvm-eed707b1e6097aac2bb6b3d47271f6300ace7f2e.zip
external_llvm-eed707b1e6097aac2bb6b3d47271f6300ace7f2e.tar.gz
external_llvm-eed707b1e6097aac2bb6b3d47271f6300ace7f2e.tar.bz2
Revert the ConstantInt constructors back to their 2.5 forms where possible, thanks to contexts-on-types. More to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77011 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/LLVMContextImpl.cpp')
-rw-r--r--lib/VMCore/LLVMContextImpl.cpp386
1 files changed, 14 insertions, 372 deletions
diff --git a/lib/VMCore/LLVMContextImpl.cpp b/lib/VMCore/LLVMContextImpl.cpp
index 34fc6e5..8e6c777 100644
--- a/lib/VMCore/LLVMContextImpl.cpp
+++ b/lib/VMCore/LLVMContextImpl.cpp
@@ -45,368 +45,10 @@ static std::vector<Constant*> getValType(ConstantVector *CP) {
return Elements;
}
-namespace llvm {
-template<typename T, typename Alloc>
-struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
- static unsigned uses(const std::vector<T, Alloc>& v) {
- return v.size();
- }
-};
-
-template<class ConstantClass, class TypeClass, class ValType>
-struct VISIBILITY_HIDDEN ConstantCreator {
- static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
- return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
- }
-};
-
-template<class ConstantClass, class TypeClass>
-struct VISIBILITY_HIDDEN ConvertConstantType {
- static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
- llvm_unreachable("This type cannot be converted!");
- }
-};
-
-// ConstantAggregateZero does not take extra "value" argument...
-template<class ValType>
-struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
- static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
- return new ConstantAggregateZero(Ty);
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantAggregateZero, Type> {
- static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
- // Make everyone now use a constant of the new type...
- Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantArray, ArrayType> {
- static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantStruct, StructType> {
- static void convert(ConstantStruct *OldC, const StructType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = NewTy->getContext().getConstantStruct(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
-
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-
-template<>
-struct ConvertConstantType<ConstantVector, VectorType> {
- static void convert(ConstantVector *OldC, const VectorType *NewTy) {
- // Make everyone now use a constant of the new type...
- std::vector<Constant*> C;
- for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
- C.push_back(cast<Constant>(OldC->getOperand(i)));
- Constant *New = OldC->getContext().getConstantVector(NewTy, C);
- assert(New != OldC && "Didn't replace constant??");
- OldC->uncheckedReplaceAllUsesWith(New);
- OldC->destroyConstant(); // This constant is now dead, destroy it.
- }
-};
-}
-
-template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey /*true for arrays and structs*/ >
-class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
-public:
- typedef std::pair<const Type*, ValType> MapKey;
- typedef std::map<MapKey, Constant *> MapTy;
- typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
- typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
-private:
- /// Map - This is the main map from the element descriptor to the Constants.
- /// This is the primary way we avoid creating two of the same shape
- /// constant.
- MapTy Map;
-
- /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
- /// from the constants to their element in Map. This is important for
- /// removal of constants from the array, which would otherwise have to scan
- /// through the map with very large keys.
- InverseMapTy InverseMap;
-
- /// AbstractTypeMap - Map for abstract type constants.
- ///
- AbstractTypeMapTy AbstractTypeMap;
-
- /// ValueMapLock - Mutex for this map.
- sys::SmartMutex<true> ValueMapLock;
-
-public:
- // NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator map_end() { return Map.end(); }
-
- /// InsertOrGetItem - Return an iterator for the specified element.
- /// If the element exists in the map, the returned iterator points to the
- /// entry and Exists=true. If not, the iterator points to the newly
- /// inserted entry and returns Exists=false. Newly inserted entries have
- /// I->second == 0, and should be filled in.
- /// NOTE: This function is not locked. It is the caller's responsibility
- // to enforce proper synchronization.
- typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
- &InsertVal,
- bool &Exists) {
- std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
- Exists = !IP.second;
- return IP.first;
- }
-
-private:
- typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
- if (HasLargeKey) {
- typename InverseMapTy::iterator IMI = InverseMap.find(CP);
- assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
- IMI->second->second == CP &&
- "InverseMap corrupt!");
- return IMI->second;
- }
-
- typename MapTy::iterator I =
- Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
- getValType(CP)));
- if (I == Map.end() || I->second != CP) {
- // FIXME: This should not use a linear scan. If this gets to be a
- // performance problem, someone should look at this.
- for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
- /* empty */;
- }
- return I;
- }
-
- ConstantClass* Create(const TypeClass *Ty, const ValType &V,
- typename MapTy::iterator I) {
- ConstantClass* Result =
- ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-
- assert(Result->getType() == Ty && "Type specified is not correct!");
- I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.insert(std::make_pair(Result, I));
-
- // If the type of the constant is abstract, make sure that an entry
- // exists for it in the AbstractTypeMap.
- if (Ty->isAbstract()) {
- typename AbstractTypeMapTy::iterator TI =
- AbstractTypeMap.find(Ty);
-
- if (TI == AbstractTypeMap.end()) {
- // Add ourselves to the ATU list of the type.
- cast<DerivedType>(Ty)->addAbstractTypeUser(this);
-
- AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
- }
- }
-
- return Result;
- }
-public:
-
- /// getOrCreate - Return the specified constant from the map, creating it if
- /// necessary.
- ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- MapKey Lookup(Ty, V);
- ConstantClass* Result = 0;
-
- typename MapTy::iterator I = Map.find(Lookup);
- // Is it in the map?
- if (I != Map.end())
- Result = static_cast<ConstantClass *>(I->second);
-
- if (!Result) {
- // If no preexisting value, create one now...
- Result = Create(Ty, V, I);
- }
-
- return Result;
- }
-
- void remove(ConstantClass *CP) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename MapTy::iterator I = FindExistingElement(CP);
- assert(I != Map.end() && "Constant not found in constant table!");
- assert(I->second == CP && "Didn't find correct element?");
-
- if (HasLargeKey) // Remember the reverse mapping if needed.
- InverseMap.erase(CP);
-
- // Now that we found the entry, make sure this isn't the entry that
- // the AbstractTypeMap points to.
- const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
- if (Ty->isAbstract()) {
- assert(AbstractTypeMap.count(Ty) &&
- "Abstract type not in AbstractTypeMap?");
- typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
- if (ATMEntryIt == I) {
- // Yes, we are removing the representative entry for this type.
- // See if there are any other entries of the same type.
- typename MapTy::iterator TmpIt = ATMEntryIt;
-
- // First check the entry before this one...
- if (TmpIt != Map.begin()) {
- --TmpIt;
- if (TmpIt->first.first != Ty) // Not the same type, move back...
- ++TmpIt;
- }
-
- // If we didn't find the same type, try to move forward...
- if (TmpIt == ATMEntryIt) {
- ++TmpIt;
- if (TmpIt == Map.end() || TmpIt->first.first != Ty)
- --TmpIt; // No entry afterwards with the same type
- }
-
- // If there is another entry in the map of the same abstract type,
- // update the AbstractTypeMap entry now.
- if (TmpIt != ATMEntryIt) {
- ATMEntryIt = TmpIt;
- } else {
- // Otherwise, we are removing the last instance of this type
- // from the table. Remove from the ATM, and from user list.
- cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
- AbstractTypeMap.erase(Ty);
- }
- }
- }
-
- Map.erase(I);
- }
-
-
- /// MoveConstantToNewSlot - If we are about to change C to be the element
- /// specified by I, update our internal data structures to reflect this
- /// fact.
- /// NOTE: This function is not locked. It is the responsibility of the
- /// caller to enforce proper synchronization if using this method.
- void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
- // First, remove the old location of the specified constant in the map.
- typename MapTy::iterator OldI = FindExistingElement(C);
- assert(OldI != Map.end() && "Constant not found in constant table!");
- assert(OldI->second == C && "Didn't find correct element?");
-
- // If this constant is the representative element for its abstract type,
- // update the AbstractTypeMap so that the representative element is I.
- if (C->getType()->isAbstract()) {
- typename AbstractTypeMapTy::iterator ATI =
- AbstractTypeMap.find(C->getType());
- assert(ATI != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
- if (ATI->second == OldI)
- ATI->second = I;
- }
-
- // Remove the old entry from the map.
- Map.erase(OldI);
-
- // Update the inverse map so that we know that this constant is now
- // located at descriptor I.
- if (HasLargeKey) {
- assert(I->second == C && "Bad inversemap entry!");
- InverseMap[C] = I;
- }
- }
-
- void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
- sys::SmartScopedLock<true> Lock(ValueMapLock);
- typename AbstractTypeMapTy::iterator I =
- AbstractTypeMap.find(cast<Type>(OldTy));
-
- assert(I != AbstractTypeMap.end() &&
- "Abstract type not in AbstractTypeMap?");
-
- // Convert a constant at a time until the last one is gone. The last one
- // leaving will remove() itself, causing the AbstractTypeMapEntry to be
- // eliminated eventually.
- do {
- ConvertConstantType<ConstantClass,
- TypeClass>::convert(
- static_cast<ConstantClass *>(I->second->second),
- cast<TypeClass>(NewTy));
-
- I = AbstractTypeMap.find(cast<Type>(OldTy));
- } while (I != AbstractTypeMap.end());
- }
-
- // If the type became concrete without being refined to any other existing
- // type, we just remove ourselves from the ATU list.
- void typeBecameConcrete(const DerivedType *AbsTy) {
- AbsTy->removeAbstractTypeUser(this);
- }
-
- void dump() const {
- DOUT << "Constant.cpp: ValueMap\n";
- }
-};
LLVMContextImpl::LLVMContextImpl(LLVMContext &C) :
- Context(C), TheTrueVal(0), TheFalseVal(0) {
- AggZeroConstants = new ValueMap<char, Type, ConstantAggregateZero>();
- ArrayConstants = new ArrayConstantsTy();
- StructConstants = new StructConstantsTy();
- VectorConstants = new VectorConstantsTy();
-}
+ Context(C), TheTrueVal(0), TheFalseVal(0) { }
-LLVMContextImpl::~LLVMContextImpl() {
- delete AggZeroConstants;
- delete ArrayConstants;
- delete StructConstants;
- delete VectorConstants;
-}
-
-// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
-// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
-// operator== and operator!= to ensure that the DenseMap doesn't attempt to
-// compare APInt's of different widths, which would violate an APInt class
-// invariant which generates an assertion.
-ConstantInt *LLVMContextImpl::getConstantInt(const APInt& V) {
- // Get the corresponding integer type for the bit width of the value.
- const IntegerType *ITy = Context.getIntegerType(V.getBitWidth());
- // get an existing value or the insertion position
- DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
-
- ConstantsLock.reader_acquire();
- ConstantInt *&Slot = IntConstants[Key];
- ConstantsLock.reader_release();
-
- if (!Slot) {
- sys::SmartScopedWriter<true> Writer(ConstantsLock);
- ConstantInt *&NewSlot = IntConstants[Key];
- if (!Slot) {
- NewSlot = new ConstantInt(ITy, V);
- }
-
- return NewSlot;
- } else {
- return Slot;
- }
-}
ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
@@ -483,7 +125,7 @@ LLVMContextImpl::getConstantAggregateZero(const Type *Ty) {
"Cannot create an aggregate zero of non-aggregate type!");
// Implicitly locked.
- return AggZeroConstants->getOrCreate(Ty, 0);
+ return AggZeroConstants.getOrCreate(Ty, 0);
}
Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
@@ -493,12 +135,12 @@ Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
Constant *C = V[0];
if (!C->isNullValue()) {
// Implicitly locked.
- return ArrayConstants->getOrCreate(Ty, V);
+ return ArrayConstants.getOrCreate(Ty, V);
}
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
// Implicitly locked.
- return ArrayConstants->getOrCreate(Ty, V);
+ return ArrayConstants.getOrCreate(Ty, V);
}
}
@@ -511,7 +153,7 @@ Constant *LLVMContextImpl::getConstantStruct(const StructType *Ty,
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
// Implicitly locked.
- return StructConstants->getOrCreate(Ty, V);
+ return StructConstants.getOrCreate(Ty, V);
return Context.getConstantAggregateZero(Ty);
}
@@ -539,7 +181,7 @@ Constant *LLVMContextImpl::getConstantVector(const VectorType *Ty,
return Context.getUndef(Ty);
// Implicitly locked.
- return VectorConstants->getOrCreate(Ty, V);
+ return VectorConstants.getOrCreate(Ty, V);
}
// *** erase methods ***
@@ -556,19 +198,19 @@ void LLVMContextImpl::erase(MDNode *M) {
}
void LLVMContextImpl::erase(ConstantAggregateZero *Z) {
- AggZeroConstants->remove(Z);
+ AggZeroConstants.remove(Z);
}
void LLVMContextImpl::erase(ConstantArray *C) {
- ArrayConstants->remove(C);
+ ArrayConstants.remove(C);
}
void LLVMContextImpl::erase(ConstantStruct *S) {
- StructConstants->remove(S);
+ StructConstants.remove(S);
}
void LLVMContextImpl::erase(ConstantVector *V) {
- VectorConstants->remove(V);
+ VectorConstants.remove(V);
}
// *** RAUW helpers ***
@@ -621,7 +263,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
sys::SmartScopedWriter<true> Writer(ConstantsLock);
bool Exists;
ArrayConstantsTy::MapTy::iterator I =
- ArrayConstants->InsertOrGetItem(Lookup, Exists);
+ ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
@@ -630,7 +272,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
- ArrayConstants->MoveConstantToNewSlot(CA, I);
+ ArrayConstants.MoveConstantToNewSlot(CA, I);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
@@ -693,7 +335,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantStruct *CS,
sys::SmartScopedWriter<true> Writer(ConstantsLock);
bool Exists;
StructConstantsTy::MapTy::iterator I =
- StructConstants->InsertOrGetItem(Lookup, Exists);
+ StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
@@ -702,7 +344,7 @@ Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantStruct *CS,
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
- StructConstants->MoveConstantToNewSlot(CS, I);
+ StructConstants.MoveConstantToNewSlot(CS, I);
// Update to the new value.
CS->setOperand(OperandToUpdate, ToC);