diff options
author | Vikram S. Adve <vadve@cs.uiuc.edu> | 2001-08-28 23:07:19 +0000 |
---|---|---|
committer | Vikram S. Adve <vadve@cs.uiuc.edu> | 2001-08-28 23:07:19 +0000 |
commit | 0e1158f3401ca3c3407b6fb5b5250538b04dae1c (patch) | |
tree | 2199beead3a7a7b18f2d0063fabbbc0e16e17f38 /lib | |
parent | 37866b34376c3143006efde1b544cfce688f7ea9 (diff) | |
download | external_llvm-0e1158f3401ca3c3407b6fb5b5250538b04dae1c.zip external_llvm-0e1158f3401ca3c3407b6fb5b5250538b04dae1c.tar.gz external_llvm-0e1158f3401ca3c3407b6fb5b5250538b04dae1c.tar.bz2 |
Implementation of instruction scheduling for LLVM.
Currently schedules one basic block at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@396 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r-- | lib/CodeGen/InstrSched/InstrScheduling.cpp | 1464 | ||||
-rw-r--r-- | lib/Target/SparcV9/InstrSched/InstrScheduling.cpp | 1464 |
2 files changed, 2928 insertions, 0 deletions
diff --git a/lib/CodeGen/InstrSched/InstrScheduling.cpp b/lib/CodeGen/InstrSched/InstrScheduling.cpp new file mode 100644 index 0000000..d58988e --- /dev/null +++ b/lib/CodeGen/InstrSched/InstrScheduling.cpp @@ -0,0 +1,1464 @@ +// $Id$ +//*************************************************************************** +// File: +// InstrScheduling.cpp +// +// Purpose: +// +// History: +// 7/23/01 - Vikram Adve - Created +//*************************************************************************** + + +//************************* System Include Files ***************************/ + +#include <hash_set> +#include <vector> +#include <algorithm> +#include <iterator> + +//*************************** User Include Files ***************************/ + +#include "llvm/Support/CommandLine.h" +#include "llvm/Method.h" +#include "llvm/BasicBlock.h" +#include "llvm/Instruction.h" +#include "llvm/Analysis/LiveVar/BBLiveVar.h" +#include "llvm/CodeGen/TargetMachine.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/SchedGraph.h" +#include "llvm/CodeGen/SchedPriorities.h" +#include "llvm/CodeGen/InstrScheduling.h" + +cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags, + "enable instruction scheduling debugging information", + clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"), + clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"), + clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"), + clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0); + + +//************************* Forward Declarations ***************************/ + +class InstrSchedule; +class SchedulingManager; +class DelaySlotInfo; + +static void ForwardListSchedule (SchedulingManager& S); + +static void RecordSchedule (const BasicBlock* bb, + const SchedulingManager& S); + +static unsigned ChooseOneGroup (SchedulingManager& S); + +static void MarkSuccessorsReady (SchedulingManager& S, + const SchedGraphNode* node); + +static unsigned FindSlotChoices (SchedulingManager& S, + DelaySlotInfo*& getDelaySlotInfo); + +static void AssignInstructionsToSlots(class SchedulingManager& S, + unsigned maxIssue); + +static void ScheduleInstr (class SchedulingManager& S, + const SchedGraphNode* node, + unsigned int slotNum, + cycles_t curTime); + +static bool ViolatesMinimumGap (const SchedulingManager& S, + MachineOpCode opCode, + const cycles_t inCycle); + +static bool ConflictsWithChoices (const SchedulingManager& S, + MachineOpCode opCode); + +static void ChooseInstructionsForDelaySlots(SchedulingManager& S, + const BasicBlock* bb, + SchedGraph* graph); + +static bool NodeCanFillDelaySlot (const SchedulingManager& S, + const SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor); + +static void MarkNodeForDelaySlot (SchedulingManager& S, + SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor); + +//************************* Internal Data Types *****************************/ + + +//---------------------------------------------------------------------- +// class InstrGroup: +// +// Represents a group of instructions scheduled to be issued +// in a single cycle. +//---------------------------------------------------------------------- + +class InstrGroup: public NonCopyable { +public: + inline const SchedGraphNode* operator[](unsigned int slotNum) const { + assert(slotNum < group.size()); + return group[slotNum]; + } + +private: + friend class InstrSchedule; + + inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) { + assert(slotNum < group.size()); + group[slotNum] = node; + } + + /*ctor*/ InstrGroup(unsigned int nslots) + : group(nslots, NULL) {} + + /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT + +private: + vector<const SchedGraphNode*> group; +}; + + +//---------------------------------------------------------------------- +// class ScheduleIterator: +// +// Iterates over the machine instructions in the for a single basic block. +// The schedule is represented by an InstrSchedule object. +//---------------------------------------------------------------------- + +template<class _NodeType> +class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> { +private: + unsigned cycleNum; + unsigned slotNum; + const InstrSchedule& S; +public: + typedef ScheduleIterator<_NodeType> _Self; + + /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule, + unsigned _cycleNum, + unsigned _slotNum) + : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) { + skipToNextInstr(); + } + + /*ctor*/ inline ScheduleIterator(const _Self& x) + : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {} + + inline bool operator==(const _Self& x) const { + return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S); + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + inline _NodeType* operator*() const { + assert(cycleNum < S.groups.size()); + return (*S.groups[cycleNum])[slotNum]; + } + inline _NodeType* operator->() const { return operator*(); } + + _Self& operator++(); // Preincrement + inline _Self operator++(int) { // Postincrement + _Self tmp(*this); ++*this; return tmp; + } + + static _Self begin(const InstrSchedule& _schedule); + static _Self end( const InstrSchedule& _schedule); + +private: + inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT + void skipToNextInstr(); +}; + + +//---------------------------------------------------------------------- +// class InstrSchedule: +// +// Represents the schedule of machine instructions for a single basic block. +//---------------------------------------------------------------------- + +class InstrSchedule: public NonCopyable { +private: + const unsigned int nslots; + unsigned int numInstr; + vector<InstrGroup*> groups; // indexed by cycle number + vector<cycles_t> startTime; // indexed by node id + +public: // iterators + typedef ScheduleIterator<SchedGraphNode> iterator; + typedef ScheduleIterator<const SchedGraphNode> const_iterator; + + iterator begin(); + const_iterator begin() const; + iterator end(); + const_iterator end() const; + +public: // constructors and destructor + /*ctor*/ InstrSchedule (unsigned int _nslots, + unsigned int _numNodes); + /*dtor*/ ~InstrSchedule (); + +public: // accessor functions to query chosen schedule + const SchedGraphNode* getInstr (unsigned int slotNum, + cycles_t c) const { + const InstrGroup* igroup = this->getIGroup(c); + return (igroup == NULL)? NULL : (*igroup)[slotNum]; + } + + inline InstrGroup* getIGroup (cycles_t c) { + if (c >= groups.size()) + groups.resize(c+1); + if (groups[c] == NULL) + groups[c] = new InstrGroup(nslots); + return groups[c]; + } + + inline const InstrGroup* getIGroup (cycles_t c) const { + assert(c < groups.size()); + return groups[c]; + } + + inline cycles_t getStartTime (unsigned int nodeId) const { + assert(nodeId < startTime.size()); + return startTime[nodeId]; + } + + unsigned int getNumInstructions() const { + return numInstr; + } + + inline void scheduleInstr (const SchedGraphNode* node, + unsigned int slotNum, + cycles_t cycle) { + InstrGroup* igroup = this->getIGroup(cycle); + assert((*igroup)[slotNum] == NULL && "Slot already filled?"); + igroup->addInstr(node, slotNum); + assert(node->getNodeId() < startTime.size()); + startTime[node->getNodeId()] = cycle; + ++numInstr; + } + +private: + friend class iterator; + friend class const_iterator; + /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT. +}; + + +/*ctor*/ +InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes) + : nslots(_nslots), + numInstr(0), + groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles + startTime(_numNodes, (cycles_t) -1) // set all to -1 +{ +} + + +/*dtor*/ +InstrSchedule::~InstrSchedule() +{ + for (unsigned c=0, NC=groups.size(); c < NC; c++) + if (groups[c] != NULL) + delete groups[c]; // delete InstrGroup objects +} + + +template<class _NodeType> +inline +void +ScheduleIterator<_NodeType>::skipToNextInstr() +{ + while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) + ++cycleNum; // skip cycles with no instructions + + while (cycleNum < S.groups.size() && + (*S.groups[cycleNum])[slotNum] == NULL) + { + ++slotNum; + if (slotNum == S.nslots) + { + ++cycleNum; + slotNum = 0; + while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) + ++cycleNum; // skip cycles with no instructions + } + } +} + +template<class _NodeType> +inline +ScheduleIterator<_NodeType>& +ScheduleIterator<_NodeType>::operator++() // Preincrement +{ + ++slotNum; + if (slotNum == S.nslots) + { + ++cycleNum; + slotNum = 0; + } + skipToNextInstr(); + return *this; +} + +template<class _NodeType> +ScheduleIterator<_NodeType> +ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule) +{ + return _Self(_schedule, 0, 0); +} + +template<class _NodeType> +ScheduleIterator<_NodeType> +ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule) +{ + return _Self(_schedule, _schedule.groups.size(), 0); +} + +InstrSchedule::iterator +InstrSchedule::begin() +{ + return iterator::begin(*this); +} + +InstrSchedule::const_iterator +InstrSchedule::begin() const +{ + return const_iterator::begin(*this); +} + +InstrSchedule::iterator +InstrSchedule::end() +{ + return iterator::end(*this); +} + +InstrSchedule::const_iterator +InstrSchedule::end() const +{ + return const_iterator::end( *this); +} + + +//---------------------------------------------------------------------- +// class DelaySlotInfo: +// +// Record information about delay slots for a single branch instruction. +// Delay slots are simply indexed by slot number 1 ... numDelaySlots +//---------------------------------------------------------------------- + +class DelaySlotInfo: public NonCopyable { +private: + const SchedGraphNode* brNode; + unsigned int ndelays; + vector<const SchedGraphNode*> delayNodeVec; + cycles_t delayedNodeCycle; + unsigned int delayedNodeSlotNum; + +public: + /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode, + unsigned _ndelays) + : brNode(_brNode), ndelays(_ndelays), + delayedNodeCycle(0), delayedNodeSlotNum(0) {} + + inline unsigned getNumDelays () { + return ndelays; + } + + inline const vector<const SchedGraphNode*>& getDelayNodeVec() { + return delayNodeVec; + } + + inline void addDelayNode (const SchedGraphNode* node) { + delayNodeVec.push_back(node); + assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!"); + } + + inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) { + delayedNodeCycle = cycle; + delayedNodeSlotNum = slotNum; + } + + void scheduleDelayedNode (SchedulingManager& S); +}; + + +//---------------------------------------------------------------------- +// class SchedulingManager: +// +// Represents the schedule of machine instructions for a single basic block. +//---------------------------------------------------------------------- + +class SchedulingManager: public NonCopyable { +public: // publicly accessible data members + const unsigned int nslots; + const MachineSchedInfo& schedInfo; + SchedPriorities& schedPrio; + InstrSchedule isched; + +private: + unsigned int totalInstrCount; + cycles_t curTime; + cycles_t nextEarliestIssueTime; // next cycle we can issue + vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot# + vector<const SchedGraphNode*> choiceVec; // indexed by node ptr + vector<int> numInClass; // indexed by sched class + vector<cycles_t> nextEarliestStartTime; // indexed by opCode + hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches; + // indexed by branch node ptr + +public: + /*ctor*/ SchedulingManager (const TargetMachine& _target, + const SchedGraph* graph, + SchedPriorities& schedPrio); + /*dtor*/ ~SchedulingManager () {} + + //---------------------------------------------------------------------- + // Simplify access to the machine instruction info + //---------------------------------------------------------------------- + + inline const MachineInstrInfo& getInstrInfo () const { + return schedInfo.getInstrInfo(); + } + + //---------------------------------------------------------------------- + // Interface for checking and updating the current time + //---------------------------------------------------------------------- + + inline cycles_t getTime () const { + return curTime; + } + + inline cycles_t getEarliestIssueTime() const { + return nextEarliestIssueTime; + } + + inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const { + assert(opCode < (int) nextEarliestStartTime.size()); + return nextEarliestStartTime[opCode]; + } + + // Update current time to specified cycle + inline void updateTime (cycles_t c) { + curTime = c; + schedPrio.updateTime(c); + } + + //---------------------------------------------------------------------- + // Functions to manage the choices for the current cycle including: + // -- a vector of choices by priority (choiceVec) + // -- vectors of the choices for each instruction slot (choicesForSlot[]) + // -- number of choices in each sched class, used to check issue conflicts + // between choices for a single cycle + //---------------------------------------------------------------------- + + inline unsigned int getNumChoices () const { + return choiceVec.size(); + } + + inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const { + assert(sc < (int) numInClass.size() && "Invalid op code or sched class!"); + return numInClass[sc]; + } + + inline const SchedGraphNode* getChoice(unsigned int i) const { + // assert(i < choiceVec.size()); don't check here. + return choiceVec[i]; + } + + inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) { + assert(slotNum < nslots); + return choicesForSlot[slotNum]; + } + + inline void addChoice (const SchedGraphNode* node) { + // Append the instruction to the vector of choices for current cycle. + // Increment numInClass[c] for the sched class to which the instr belongs. + choiceVec.push_back(node); + const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode()); + assert(sc < (int) numInClass.size()); + numInClass[sc]++; + } + + inline void addChoiceToSlot (unsigned int slotNum, + const SchedGraphNode* node) { + // Add the instruction to the choice set for the specified slot + assert(slotNum < nslots); + choicesForSlot[slotNum].insert(node); + } + + inline void resetChoices () { + choiceVec.clear(); + for (unsigned int s=0; s < nslots; s++) + choicesForSlot[s].clear(); + for (unsigned int c=0; c < numInClass.size(); c++) + numInClass[c] = 0; + } + + //---------------------------------------------------------------------- + // Code to query and manage the partial instruction schedule so far + //---------------------------------------------------------------------- + + inline unsigned int getNumScheduled () const { + return isched.getNumInstructions(); + } + + inline unsigned int getNumUnscheduled() const { + return totalInstrCount - isched.getNumInstructions(); + } + + inline bool isScheduled (const SchedGraphNode* node) const { + return (isched.getStartTime(node->getNodeId()) >= 0); + } + + inline void scheduleInstr (const SchedGraphNode* node, + unsigned int slotNum, + cycles_t cycle) + { + assert(! isScheduled(node) && "Instruction already scheduled?"); + + // add the instruction to the schedule + isched.scheduleInstr(node, slotNum, cycle); + + // update the earliest start times of all nodes that conflict with `node' + // and the next-earliest time anything can issue if `node' causes bubbles + updateEarliestStartTimes(node, cycle); + + // remove the instruction from the choice sets for all slots + for (unsigned s=0; s < nslots; s++) + choicesForSlot[s].erase(node); + + // and decrement the instr count for the sched class to which it belongs + const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode()); + assert(sc < (int) numInClass.size()); + numInClass[sc]--; + } + + //---------------------------------------------------------------------- + // Create and retrieve delay slot info for delayed instructions + //---------------------------------------------------------------------- + + inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn, + bool createIfMissing=false) + { + DelaySlotInfo* dinfo; + hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator + I = delaySlotInfoForBranches.find(bn); + if (I == delaySlotInfoForBranches.end()) + { + if (createIfMissing) + { + dinfo = new DelaySlotInfo(bn, + getInstrInfo().getNumDelaySlots(bn->getOpCode())); + delaySlotInfoForBranches[bn] = dinfo; + } + else + dinfo = NULL; + } + else + dinfo = (*I).second; + + return dinfo; + } + +private: + /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT. + void updateEarliestStartTimes(const SchedGraphNode* node, + cycles_t schedTime); +}; + + +/*ctor*/ +SchedulingManager::SchedulingManager(const TargetMachine& target, + const SchedGraph* graph, + SchedPriorities& _schedPrio) + : nslots(target.getSchedInfo().getMaxNumIssueTotal()), + schedInfo(target.getSchedInfo()), + schedPrio(_schedPrio), + isched(nslots, graph->getNumNodes()), + totalInstrCount(graph->getNumNodes() - 2), + nextEarliestIssueTime(0), + choicesForSlot(nslots), + numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0 + nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(), + (cycles_t) 0) // set all to 0 +{ + updateTime(0); + + // Note that an upper bound on #choices for each slot is = nslots since + // we use this vector to hold a feasible set of instructions, and more + // would be infeasible. Reserve that much memory since it is probably small. + for (unsigned int i=0; i < nslots; i++) + choicesForSlot[i].resize(nslots); +} + + +void +SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node, + cycles_t schedTime) +{ + if (schedInfo.numBubblesAfter(node->getOpCode()) > 0) + { // Update next earliest time before which *nothing* can issue. + nextEarliestIssueTime = max(nextEarliestIssueTime, + curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode())); + } + + const vector<MachineOpCode>* + conflictVec = schedInfo.getConflictList(node->getOpCode()); + + if (conflictVec != NULL) + for (unsigned i=0; i < conflictVec->size(); i++) + { + MachineOpCode toOp = (*conflictVec)[i]; + cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(), + toOp); + assert(toOp < (int) nextEarliestStartTime.size()); + if (nextEarliestStartTime[toOp] < est) + nextEarliestStartTime[toOp] = est; + } +} + +//************************* External Functions *****************************/ + + +//--------------------------------------------------------------------------- +// Function: ScheduleInstructionsWithSSA +// +// Purpose: +// Entry point for instruction scheduling on SSA form. +// Schedules the machine instructions generated by instruction selection. +// Assumes that register allocation has not been done, i.e., operands +// are still in SSA form. +//--------------------------------------------------------------------------- + +bool +ScheduleInstructionsWithSSA(Method* method, + const TargetMachine &target) +{ + SchedGraphSet graphSet(method, target); + + if (SchedDebugLevel >= Sched_PrintSchedGraphs) + { + cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING" + << endl; + graphSet.dump(); + } + + for (SchedGraphSet::const_iterator GI=graphSet.begin(); + GI != graphSet.end(); ++GI) + { + SchedGraph* graph = (*GI).second; + const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks(); + assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks"); + const BasicBlock* bb = bbvec[0]; + + if (SchedDebugLevel >= Sched_PrintSchedTrace) + cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n"; + + SchedPriorities schedPrio(method, graph); // expensive! + SchedulingManager S(target, graph, schedPrio); + + ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph + + ForwardListSchedule(S); // computes schedule in S + + RecordSchedule((*GI).first, S); // records schedule in BB + } + + if (SchedDebugLevel >= Sched_PrintMachineCode) + { + cout << endl + << "*** Machine instructions after INSTRUCTION SCHEDULING" << endl; + PrintMachineInstructions(method); + } + + return false; // no reason to fail yet +} + + +// Check minimum gap requirements relative to instructions scheduled in +// previous cycles. +// Note that we do not need to consider `nextEarliestIssueTime' here because +// that is also captured in the earliest start times for each opcode. +// +static inline bool +ViolatesMinimumGap(const SchedulingManager& S, + MachineOpCode opCode, + const cycles_t inCycle) +{ + return (inCycle < S.getEarliestStartTimeForOp(opCode)); +} + + +// Check if the instruction would conflict with instructions already +// chosen for the current cycle +// +static inline bool +ConflictsWithChoices(const SchedulingManager& S, + MachineOpCode opCode) +{ + // Check if the instruction must issue by itself, and some feasible + // choices have already been made for this cycle + if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode)) + return true; + + // For each class that opCode belongs to, check if there are too many + // instructions of that class. + // + const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode); + return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc)); +} + + +// Check if any issue restrictions would prevent the instruction from +// being issued in the current cycle +// +bool +instrIsFeasible(const SchedulingManager& S, + MachineOpCode opCode) +{ + // skip the instruction if it cannot be issued due to issue restrictions + // caused by previously issued instructions + if (ViolatesMinimumGap(S, opCode, S.getTime())) + return false; + + // skip the instruction if it cannot be issued due to issue restrictions + // caused by previously chosen instructions for the current cycle + if (ConflictsWithChoices(S, opCode)) + return false; + + return true; +} + +//************************* Internal Functions *****************************/ + + +static void +ForwardListSchedule(SchedulingManager& S) +{ + unsigned N; + const SchedGraphNode* node; + + S.schedPrio.initialize(); + + while ((N = S.schedPrio.getNumReady()) > 0) + { + // Choose one group of instructions for a cycle. This will + // advance S.getTime() to the first cycle instructions can be issued. + // It may also schedule delay slot instructions in later cycles, + // but those are ignored here because they are outside the graph. + // + unsigned numIssued = ChooseOneGroup(S); + assert(numIssued > 0 && "Deadlock in list scheduling algorithm?"); + + // Notify the priority manager of scheduled instructions and mark + // any successors that may now be ready + // + const InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (unsigned int s=0; s < S.nslots; s++) + if ((node = (*igroup)[s]) != NULL) + { + S.schedPrio.issuedReadyNodeAt(S.getTime(), node); + MarkSuccessorsReady(S, node); + } + + // Move to the next the next earliest cycle for which + // an instruction can be issued, or the next earliest in which + // one will be ready, or to the next cycle, whichever is latest. + // + S.updateTime(max(S.getTime() + 1, + max(S.getEarliestIssueTime(), + S.schedPrio.getEarliestReadyTime()))); + } +} + + +// +// For now, just assume we are scheduling within a single basic block. +// Get the machine instruction vector for the basic block and clear it, +// then append instructions in scheduled order. +// Also, re-insert the dummy PHI instructions that were at the beginning +// of the basic block, since they are not part of the schedule. +// +static void +RecordSchedule(const BasicBlock* bb, const SchedulingManager& S) +{ + if (S.isched.getNumInstructions() == 0) + return; // empty basic block! + + MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec(); + unsigned int oldSize = mvec.size(); + + // First find the dummy instructions at the start of the basic block + const MachineInstrInfo& mii = S.schedInfo.getInstrInfo(); + MachineCodeForBasicBlock::iterator I = mvec.begin(); + for ( ; I != mvec.end(); ++I) + if (! mii.isDummyPhiInstr((*I)->getOpCode())) + break; + + // Erase all except the dummy PHI instructions from mvec, and + // pre-allocate create space for the ones we will be put back in. + mvec.erase(I, mvec.end()); + mvec.reserve(mvec.size() + S.isched.getNumInstructions()); + + InstrSchedule::const_iterator NIend = S.isched.end(); + for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI) + mvec.push_back((*NI)->getMachineInstr()); +} + + +static unsigned +ChooseOneGroup(SchedulingManager& S) +{ + assert(S.schedPrio.getNumReady() > 0 + && "Don't get here without ready instructions."); + + DelaySlotInfo* getDelaySlotInfo; + + // Choose up to `nslots' feasible instructions and their possible slots. + unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo); + + while (numIssued == 0) + { + S.updateTime(S.getTime()+1); + numIssued = FindSlotChoices(S, getDelaySlotInfo); + } + + AssignInstructionsToSlots(S, numIssued); + + if (getDelaySlotInfo != NULL) + getDelaySlotInfo->scheduleDelayedNode(S); + + // Print trace of scheduled instructions before newly ready ones + if (SchedDebugLevel >= Sched_PrintSchedTrace) + { + printIndent(2); + cout << "Cycle " << S.getTime() << " : Scheduled instructions:\n"; + const InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (unsigned int s=0; s < S.nslots; s++) + { + printIndent(4); + if ((*igroup)[s] != NULL) + cout << * ((*igroup)[s])->getMachineInstr() << endl; + else + cout << "<none>" << endl; + } + } + + return numIssued; +} + + +static void +MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node) +{ + // Check if any successors are now ready that were not already marked + // ready before, and that have not yet been scheduled. + // + for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI) + if (! (*SI)->isDummyNode() + && ! S.isScheduled(*SI) + && ! S.schedPrio.nodeIsReady(*SI)) + {// successor not scheduled and not marked ready; check *its* preds. + + bool succIsReady = true; + for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P) + if (! (*P)->isDummyNode() + && ! S.isScheduled(*P)) + { + succIsReady = false; + break; + } + + if (succIsReady) // add the successor to the ready list + S.schedPrio.insertReady(*SI); + } +} + + +// Choose up to `nslots' FEASIBLE instructions and assign each +// instruction to all possible slots that do not violate feasibility. +// FEASIBLE means it should be guaranteed that the set +// of chosen instructions can be issued in a single group. +// +// Return value: +// maxIssue : total number of feasible instructions +// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i +// +static unsigned +FindSlotChoices(SchedulingManager& S, + DelaySlotInfo*& getDelaySlotInfo) +{ + // initialize result vectors to empty + S.resetChoices(); + + // find the slot to start from, in the current cycle + unsigned int startSlot = 0; + InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (int s = S.nslots - 1; s >= 0; s--) + if ((*igroup)[s] != NULL) + { + startSlot = s+1; + break; + } + + // Make sure we pick at most one instruction that would break the group. + // Also, if we do pick one, remember which it was. + unsigned int indexForBreakingNode = S.nslots; + unsigned int indexForDelayedInstr = S.nslots; + DelaySlotInfo* delaySlotInfo = NULL; + + getDelaySlotInfo = NULL; + + // Choose instructions in order of priority. + // Add choices to the choice vector in the SchedulingManager class as + // we choose them so that subsequent choices will be correctly tested + // for feasibility, w.r.t. higher priority choices for the same cycle. + // + while (S.getNumChoices() < S.nslots - startSlot) + { + const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime()); + if (nextNode == NULL) + break; // no more instructions for this cycle + + if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0) + { + delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode); + if (delaySlotInfo != NULL) + { + if (indexForBreakingNode < S.nslots) + // cannot issue a delayed instr in the same cycle as one + // that breaks the issue group or as another delayed instr + nextNode = NULL; + else + indexForDelayedInstr = S.getNumChoices(); + } + } + else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode())) + { + if (indexForBreakingNode < S.nslots) + // have a breaking instruction already so throw this one away + nextNode = NULL; + else + indexForBreakingNode = S.getNumChoices(); + } + + if (nextNode != NULL) + S.addChoice(nextNode); + + if (S.schedInfo.isSingleIssue(nextNode->getOpCode())) + { + assert(S.getNumChoices() == 1 && + "Prioritizer returned invalid instr for this cycle!"); + break; + } + + if (indexForDelayedInstr < S.nslots) + break; // leave the rest for delay slots + } + + assert(S.getNumChoices() <= S.nslots); + assert(! (indexForDelayedInstr < S.nslots && + indexForBreakingNode < S.nslots) && "Cannot have both in a cycle"); + + // Assign each chosen instruction to all possible slots for that instr. + // But if only one instruction was chosen, put it only in the first + // feasible slot; no more analysis will be needed. + // + if (indexForDelayedInstr >= S.nslots && + indexForBreakingNode >= S.nslots) + { // No instructions that break the issue group or that have delay slots. + // This is the common case, so handle it separately for efficiency. + + if (S.getNumChoices() == 1) + { + MachineOpCode opCode = S.getChoice(0)->getOpCode(); + unsigned int s; + for (s=startSlot; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + break; + assert(s < S.nslots && "No feasible slot for this opCode?"); + S.addChoiceToSlot(s, S.getChoice(0)); + } + else + { + for (unsigned i=0; i < S.getNumChoices(); i++) + { + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + for (unsigned int s=startSlot; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + S.addChoiceToSlot(s, S.getChoice(i)); + } + } + } + else if (indexForDelayedInstr < S.nslots) + { + // There is an instruction that needs delay slots. + // Try to assign that instruction to a higher slot than any other + // instructions in the group, so that its delay slots can go + // right after it. + // + + assert(indexForDelayedInstr == S.getNumChoices() - 1 && + "Instruction with delay slots should be last choice!"); + assert(delaySlotInfo != NULL && "No delay slot info for instr?"); + + const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr); + MachineOpCode delayOpCode = delayedNode->getOpCode(); + unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode); + + unsigned delayedNodeSlot = S.nslots; + int highestSlotUsed; + + // Find the last possible slot for the delayed instruction that leaves + // at least `d' slots vacant after it (d = #delay slots) + for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--) + if (S.schedInfo.instrCanUseSlot(delayOpCode, s)) + { + delayedNodeSlot = s; + break; + } + + highestSlotUsed = -1; + for (unsigned i=0; i < S.getNumChoices() - 1; i++) + { + // Try to assign every other instruction to a lower numbered + // slot than delayedNodeSlot. + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + bool noSlotFound = true; + unsigned int s; + for (s=startSlot; s < delayedNodeSlot; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + { + S.addChoiceToSlot(s, S.getChoice(i)); + noSlotFound = false; + } + + // No slot before `delayedNodeSlot' was found for this opCode + // Use a later slot, and allow some delay slots to fall in + // the next cycle. + if (noSlotFound) + for ( ; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + { + S.addChoiceToSlot(s, S.getChoice(i)); + break; + } + + assert(s < S.nslots && "No feasible slot for instruction?"); + + highestSlotUsed = max(highestSlotUsed, (int) s); + } + + assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?"); + + // We will put the delayed node in the first slot after the + // highest slot used. But we just mark that for now, and + // schedule it separately because we want to schedule the delay + // slots for the node at the same time. + cycles_t dcycle = S.getTime(); + unsigned int dslot = highestSlotUsed + 1; + if (dslot == S.nslots) + { + dslot = 0; + ++dcycle; + } + delaySlotInfo->recordChosenSlot(dcycle, dslot); + getDelaySlotInfo = delaySlotInfo; + } + else + { // There is an instruction that breaks the issue group. + // For such an instruction, assign to the last possible slot in + // the current group, and then don't assign any other instructions + // to later slots. + assert(indexForBreakingNode < S.nslots); + const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode); + unsigned breakingSlot = INT_MAX; + unsigned int nslotsToUse = S.nslots; + + // Find the last possible slot for this instruction. + for (int s = S.nslots-1; s >= (int) startSlot; s--) + if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s)) + { + breakingSlot = s; + break; + } + assert(breakingSlot < S.nslots && + "No feasible slot for `breakingNode'?"); + + // Higher priority instructions than the one that breaks the group: + // These can be assigned to all slots, but will be assigned only + // to earlier slots if possible. + for (unsigned i=0; + i < S.getNumChoices() && i < indexForBreakingNode; i++) + { + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + + // If a higher priority instruction cannot be assigned to + // any earlier slots, don't schedule the breaking instruction. + // + bool foundLowerSlot = false; + nslotsToUse = S.nslots; // May be modified in the loop + for (unsigned int s=startSlot; s < nslotsToUse; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + { + if (breakingSlot < S.nslots && s < breakingSlot) + { + foundLowerSlot = true; + nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND! + } + + S.addChoiceToSlot(s, S.getChoice(i)); + } + + if (!foundLowerSlot) + breakingSlot = INT_MAX; // disable breaking instr + } + + // Assign the breaking instruction (if any) to a single slot + // Otherwise, just ignore the instruction. It will simply be + // scheduled in a later cycle. + if (breakingSlot < S.nslots) + { + S.addChoiceToSlot(breakingSlot, breakingNode); + nslotsToUse = breakingSlot; + } + else + nslotsToUse = S.nslots; + + // For lower priority instructions than the one that breaks the + // group, only assign them to slots lower than the breaking slot. + // Otherwise, just ignore the instruction. + for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++) + { + bool foundLowerSlot = false; + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + for (unsigned int s=startSlot; s < nslotsToUse; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + S.addChoiceToSlot(s, S.getChoice(i)); + } + } // endif (no delay slots and no breaking slots) + + return S.getNumChoices(); +} + + +static void +AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue) +{ + // find the slot to start from, in the current cycle + unsigned int startSlot = 0; + cycles_t curTime = S.getTime(); + + assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot); + + // If only one instruction can be issued, do so. + if (maxIssue == 1) + for (unsigned s=startSlot; s < S.nslots; s++) + if (S.getChoicesForSlot(s).size() > 0) + {// found the one instruction + S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime); + return; + } + + // Otherwise, choose from the choices for each slot + // + InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + assert(igroup != NULL && "Group creation failed?"); + + // Find a slot that has only a single choice, and take it. + // If all slots have 0 or multiple choices, pick the first slot with + // choices and use its last instruction (just to avoid shifting the vector). + unsigned numIssued; + for (numIssued = 0; numIssued < maxIssue; numIssued++) + { + int chosenSlot = -1, chosenNodeIndex = -1; + for (unsigned s=startSlot; s < S.nslots; s++) + if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1) + { + chosenSlot = (int) s; + break; + } + + if (chosenSlot == -1) + for (unsigned s=startSlot; s < S.nslots; s++) + if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0) + { + chosenSlot = (int) s; + break; + } + + if (chosenSlot != -1) + { // Insert the chosen instr in the chosen slot and + // erase it from all slots. + const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin(); + S.scheduleInstr(node, chosenSlot, curTime); + } + } + + assert(numIssued > 0 && "Should not happen when maxIssue > 0!"); +} + + + +//--------------------------------------------------------------------- +// Code for filling delay slots for delayed terminator instructions +// (e.g., BRANCH and RETURN). Delay slots for non-terminator +// instructions (e.g., CALL) are not handled here because they almost +// always can be filled with instructions from the call sequence code +// before a call. That's preferable because we incur many tradeoffs here +// when we cannot find single-cycle instructions that can be reordered. +//---------------------------------------------------------------------- + +static void +ChooseInstructionsForDelaySlots(SchedulingManager& S, + const BasicBlock* bb, + SchedGraph* graph) +{ + // Look for instructions that can be used for delay slots. + // Remove them from the graph, and mark them to be used for delay slots. + const MachineInstrInfo& mii = S.getInstrInfo(); + const TerminatorInst* term = bb->getTerminator(); + MachineCodeForVMInstr& termMvec = term->getMachineInstrVec(); + + // Find the first branch instr in the sequence of machine instrs for term + // + unsigned first = 0; + while (! mii.isBranch(termMvec[first]->getOpCode())) + ++first; + assert(first < termMvec.size() && + "No branch instructions for BR? Ok, but weird! Delete assertion."); + if (first == termMvec.size()) + return; + + SchedGraphNode* brNode = graph->getGraphNodeForInstr(termMvec[first]); + assert(! mii.isCall(brNode->getOpCode()) && "Call used as terminator?"); + + unsigned ndelays = mii.getNumDelaySlots(brNode->getOpCode()); + if (ndelays == 0) + return; + + // Use vectors to remember the nodes chosen for delay slots, and the + // NOPs that will be unused. We cannot remove them from the graph while + // walking through the preds and succs of the brNode here, so we + // remember the nodes in the vectors and remove them later. + // We use separate vectors for the single-cycle and multi-cycle nodes, + // so that we can give preference to single-cycle nodes. + // + vector<SchedGraphNode*> sdelayNodeVec; + vector<SchedGraphNode*> mdelayNodeVec; + vector<SchedGraphNode*> nopNodeVec; + unsigned numUseful = 0; + + sdelayNodeVec.reserve(ndelays); + + for (sg_pred_iterator P = pred_begin(brNode); + P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P) + if (! (*P)->isDummyNode() && + ! mii.isNop((*P)->getOpCode()) && + NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true)) + { + ++numUseful; + if (mii.maxLatency((*P)->getOpCode()) > 1) + mdelayNodeVec.push_back(*P); + else + sdelayNodeVec.push_back(*P); + } + + // If not enough single-cycle instructions were found, select the + // lowest-latency multi-cycle instructions and use them. + // Note that this is the most efficient code when only 1 (or even 2) + // values need to be selected. + // + while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0) + { + unsigned latency; + unsigned minLatency = mii.maxLatency(mdelayNodeVec[0]->getOpCode()); + unsigned minIndex = 0; + for (unsigned i=1; i < mdelayNodeVec.size(); i++) + if (minLatency >= + (latency = mii.maxLatency(mdelayNodeVec[i]->getOpCode()))) + { + minLatency = latency; + minIndex = i; + } + sdelayNodeVec.push_back(mdelayNodeVec[minIndex]); + if (sdelayNodeVec.size() < ndelays) // avoid the last erase! + mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex); + } + + // Now, remove the NOPs currently in delay slots from the graph. + // If not enough useful instructions were found, use the NOPs to + // fill delay slots, otherwise, just discard them. + for (sg_succ_iterator I=succ_begin(brNode); I != succ_end(brNode); ++I) + if (! (*I)->isDummyNode() + && mii.isNop((*I)->getOpCode())) + { + if (sdelayNodeVec.size() < ndelays) + sdelayNodeVec.push_back(*I); + else + nopNodeVec.push_back(*I); + } + + // Mark the nodes chosen for delay slots. This removes them from the graph. + for (unsigned i=0; i < sdelayNodeVec.size(); i++) + MarkNodeForDelaySlot(S, sdelayNodeVec[i], brNode, true); + + // And remove the unused NOPs the graph. + for (unsigned i=0; i < nopNodeVec.size(); i++) + nopNodeVec[i]->eraseAllEdges(); +} + + +bool +NodeCanFillDelaySlot(const SchedulingManager& S, + const SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor) +{ + assert(! node->isDummyNode()); + + // don't put a branch in the delay slot of another branch + if (S.getInstrInfo().isBranch(node->getOpCode())) + return false; + + // don't put a single-issue instruction in the delay slot of a branch + if (S.schedInfo.isSingleIssue(node->getOpCode())) + return false; + + // don't put a load-use dependence in the delay slot of a branch + const MachineInstrInfo& mii = S.getInstrInfo(); + + for (SchedGraphNode::const_iterator EI = node->beginInEdges(); + EI != node->endInEdges(); ++EI) + if (! (*EI)->getSrc()->isDummyNode() + && mii.isLoad((*EI)->getSrc()->getOpCode()) + && (*EI)->getDepType() == SchedGraphEdge::CtrlDep) + return false; + + // for now, don't put an instruction that does not have operand + // interlocks in the delay slot of a branch + if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode())) + return false; + + // Finally, if the instruction preceeds the branch, we make sure the + // instruction can be reordered relative to the branch. We simply check + // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch. + // + if (nodeIsPredecessor) + { + bool onlyCDEdgeToBranch = true; + for (SchedGraphNode::const_iterator OEI = node->beginOutEdges(); + OEI != node->endOutEdges(); ++OEI) + if (! (*OEI)->getSink()->isDummyNode() + && ((*OEI)->getSink() != brNode + || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep)) + { + onlyCDEdgeToBranch = false; + break; + } + + if (!onlyCDEdgeToBranch) + return false; + } + + return true; +} + + +void +MarkNodeForDelaySlot(SchedulingManager& S, + SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor) +{ + if (nodeIsPredecessor) + { // If node is in the same basic block (i.e., preceeds brNode), + // remove it and all its incident edges from the graph. + node->eraseAllEdges(); + } + else + { // If the node was from a target block, add the node to the graph + // and add a CD edge from brNode to node. + assert(0 && "NOT IMPLEMENTED YET"); + } + + DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true); + dinfo->addDelayNode(node); +} + + +// +// Schedule the delayed branch and its delay slots +// +void +DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S) +{ + assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch"); + assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL + && "Slot for branch should be empty"); + + unsigned int nextSlot = delayedNodeSlotNum; + cycles_t nextTime = delayedNodeCycle; + + S.scheduleInstr(brNode, nextSlot, nextTime); + + for (unsigned d=0; d < ndelays; d++) + { + ++nextSlot; + if (nextSlot == S.nslots) + { + nextSlot = 0; + nextTime++; + } + + // Find the first feasible instruction for this delay slot + // Note that we only check for issue restrictions here. + // We do *not* check for flow dependences but rely on pipeline + // interlocks to resolve them. Machines without interlocks + // will require this code to be modified. + for (unsigned i=0; i < delayNodeVec.size(); i++) + { + const SchedGraphNode* dnode = delayNodeVec[i]; + if ( ! S.isScheduled(dnode) + && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot) + && instrIsFeasible(S, dnode->getOpCode())) + { + assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode()) + && "Instructions without interlocks not yet supported " + "when filling branch delay slots"); + S.scheduleInstr(dnode, nextSlot, nextTime); + break; + } + } + } + + // Update current time if delay slots overflowed into later cycles. + // Do this here because we know exactly which cycle is the last cycle + // that contains delay slots. The next loop doesn't compute that. + if (nextTime > S.getTime()) + S.updateTime(nextTime); + + // Now put any remaining instructions in the unfilled delay slots. + // This could lead to suboptimal performance but needed for correctness. + nextSlot = delayedNodeSlotNum; + nextTime = delayedNodeCycle; + for (unsigned i=0; i < delayNodeVec.size(); i++) + if (! S.isScheduled(delayNodeVec[i])) + { + do { // find the next empty slot + ++nextSlot; + if (nextSlot == S.nslots) + { + nextSlot = 0; + nextTime++; + } + } while (S.isched.getInstr(nextSlot, nextTime) != NULL); + + S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime); + break; + } +} + diff --git a/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp b/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp new file mode 100644 index 0000000..d58988e --- /dev/null +++ b/lib/Target/SparcV9/InstrSched/InstrScheduling.cpp @@ -0,0 +1,1464 @@ +// $Id$ +//*************************************************************************** +// File: +// InstrScheduling.cpp +// +// Purpose: +// +// History: +// 7/23/01 - Vikram Adve - Created +//*************************************************************************** + + +//************************* System Include Files ***************************/ + +#include <hash_set> +#include <vector> +#include <algorithm> +#include <iterator> + +//*************************** User Include Files ***************************/ + +#include "llvm/Support/CommandLine.h" +#include "llvm/Method.h" +#include "llvm/BasicBlock.h" +#include "llvm/Instruction.h" +#include "llvm/Analysis/LiveVar/BBLiveVar.h" +#include "llvm/CodeGen/TargetMachine.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/SchedGraph.h" +#include "llvm/CodeGen/SchedPriorities.h" +#include "llvm/CodeGen/InstrScheduling.h" + +cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags, + "enable instruction scheduling debugging information", + clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"), + clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"), + clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"), + clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0); + + +//************************* Forward Declarations ***************************/ + +class InstrSchedule; +class SchedulingManager; +class DelaySlotInfo; + +static void ForwardListSchedule (SchedulingManager& S); + +static void RecordSchedule (const BasicBlock* bb, + const SchedulingManager& S); + +static unsigned ChooseOneGroup (SchedulingManager& S); + +static void MarkSuccessorsReady (SchedulingManager& S, + const SchedGraphNode* node); + +static unsigned FindSlotChoices (SchedulingManager& S, + DelaySlotInfo*& getDelaySlotInfo); + +static void AssignInstructionsToSlots(class SchedulingManager& S, + unsigned maxIssue); + +static void ScheduleInstr (class SchedulingManager& S, + const SchedGraphNode* node, + unsigned int slotNum, + cycles_t curTime); + +static bool ViolatesMinimumGap (const SchedulingManager& S, + MachineOpCode opCode, + const cycles_t inCycle); + +static bool ConflictsWithChoices (const SchedulingManager& S, + MachineOpCode opCode); + +static void ChooseInstructionsForDelaySlots(SchedulingManager& S, + const BasicBlock* bb, + SchedGraph* graph); + +static bool NodeCanFillDelaySlot (const SchedulingManager& S, + const SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor); + +static void MarkNodeForDelaySlot (SchedulingManager& S, + SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor); + +//************************* Internal Data Types *****************************/ + + +//---------------------------------------------------------------------- +// class InstrGroup: +// +// Represents a group of instructions scheduled to be issued +// in a single cycle. +//---------------------------------------------------------------------- + +class InstrGroup: public NonCopyable { +public: + inline const SchedGraphNode* operator[](unsigned int slotNum) const { + assert(slotNum < group.size()); + return group[slotNum]; + } + +private: + friend class InstrSchedule; + + inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) { + assert(slotNum < group.size()); + group[slotNum] = node; + } + + /*ctor*/ InstrGroup(unsigned int nslots) + : group(nslots, NULL) {} + + /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT + +private: + vector<const SchedGraphNode*> group; +}; + + +//---------------------------------------------------------------------- +// class ScheduleIterator: +// +// Iterates over the machine instructions in the for a single basic block. +// The schedule is represented by an InstrSchedule object. +//---------------------------------------------------------------------- + +template<class _NodeType> +class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> { +private: + unsigned cycleNum; + unsigned slotNum; + const InstrSchedule& S; +public: + typedef ScheduleIterator<_NodeType> _Self; + + /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule, + unsigned _cycleNum, + unsigned _slotNum) + : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) { + skipToNextInstr(); + } + + /*ctor*/ inline ScheduleIterator(const _Self& x) + : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {} + + inline bool operator==(const _Self& x) const { + return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S); + } + + inline bool operator!=(const _Self& x) const { return !operator==(x); } + + inline _NodeType* operator*() const { + assert(cycleNum < S.groups.size()); + return (*S.groups[cycleNum])[slotNum]; + } + inline _NodeType* operator->() const { return operator*(); } + + _Self& operator++(); // Preincrement + inline _Self operator++(int) { // Postincrement + _Self tmp(*this); ++*this; return tmp; + } + + static _Self begin(const InstrSchedule& _schedule); + static _Self end( const InstrSchedule& _schedule); + +private: + inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT + void skipToNextInstr(); +}; + + +//---------------------------------------------------------------------- +// class InstrSchedule: +// +// Represents the schedule of machine instructions for a single basic block. +//---------------------------------------------------------------------- + +class InstrSchedule: public NonCopyable { +private: + const unsigned int nslots; + unsigned int numInstr; + vector<InstrGroup*> groups; // indexed by cycle number + vector<cycles_t> startTime; // indexed by node id + +public: // iterators + typedef ScheduleIterator<SchedGraphNode> iterator; + typedef ScheduleIterator<const SchedGraphNode> const_iterator; + + iterator begin(); + const_iterator begin() const; + iterator end(); + const_iterator end() const; + +public: // constructors and destructor + /*ctor*/ InstrSchedule (unsigned int _nslots, + unsigned int _numNodes); + /*dtor*/ ~InstrSchedule (); + +public: // accessor functions to query chosen schedule + const SchedGraphNode* getInstr (unsigned int slotNum, + cycles_t c) const { + const InstrGroup* igroup = this->getIGroup(c); + return (igroup == NULL)? NULL : (*igroup)[slotNum]; + } + + inline InstrGroup* getIGroup (cycles_t c) { + if (c >= groups.size()) + groups.resize(c+1); + if (groups[c] == NULL) + groups[c] = new InstrGroup(nslots); + return groups[c]; + } + + inline const InstrGroup* getIGroup (cycles_t c) const { + assert(c < groups.size()); + return groups[c]; + } + + inline cycles_t getStartTime (unsigned int nodeId) const { + assert(nodeId < startTime.size()); + return startTime[nodeId]; + } + + unsigned int getNumInstructions() const { + return numInstr; + } + + inline void scheduleInstr (const SchedGraphNode* node, + unsigned int slotNum, + cycles_t cycle) { + InstrGroup* igroup = this->getIGroup(cycle); + assert((*igroup)[slotNum] == NULL && "Slot already filled?"); + igroup->addInstr(node, slotNum); + assert(node->getNodeId() < startTime.size()); + startTime[node->getNodeId()] = cycle; + ++numInstr; + } + +private: + friend class iterator; + friend class const_iterator; + /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT. +}; + + +/*ctor*/ +InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes) + : nslots(_nslots), + numInstr(0), + groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles + startTime(_numNodes, (cycles_t) -1) // set all to -1 +{ +} + + +/*dtor*/ +InstrSchedule::~InstrSchedule() +{ + for (unsigned c=0, NC=groups.size(); c < NC; c++) + if (groups[c] != NULL) + delete groups[c]; // delete InstrGroup objects +} + + +template<class _NodeType> +inline +void +ScheduleIterator<_NodeType>::skipToNextInstr() +{ + while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) + ++cycleNum; // skip cycles with no instructions + + while (cycleNum < S.groups.size() && + (*S.groups[cycleNum])[slotNum] == NULL) + { + ++slotNum; + if (slotNum == S.nslots) + { + ++cycleNum; + slotNum = 0; + while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) + ++cycleNum; // skip cycles with no instructions + } + } +} + +template<class _NodeType> +inline +ScheduleIterator<_NodeType>& +ScheduleIterator<_NodeType>::operator++() // Preincrement +{ + ++slotNum; + if (slotNum == S.nslots) + { + ++cycleNum; + slotNum = 0; + } + skipToNextInstr(); + return *this; +} + +template<class _NodeType> +ScheduleIterator<_NodeType> +ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule) +{ + return _Self(_schedule, 0, 0); +} + +template<class _NodeType> +ScheduleIterator<_NodeType> +ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule) +{ + return _Self(_schedule, _schedule.groups.size(), 0); +} + +InstrSchedule::iterator +InstrSchedule::begin() +{ + return iterator::begin(*this); +} + +InstrSchedule::const_iterator +InstrSchedule::begin() const +{ + return const_iterator::begin(*this); +} + +InstrSchedule::iterator +InstrSchedule::end() +{ + return iterator::end(*this); +} + +InstrSchedule::const_iterator +InstrSchedule::end() const +{ + return const_iterator::end( *this); +} + + +//---------------------------------------------------------------------- +// class DelaySlotInfo: +// +// Record information about delay slots for a single branch instruction. +// Delay slots are simply indexed by slot number 1 ... numDelaySlots +//---------------------------------------------------------------------- + +class DelaySlotInfo: public NonCopyable { +private: + const SchedGraphNode* brNode; + unsigned int ndelays; + vector<const SchedGraphNode*> delayNodeVec; + cycles_t delayedNodeCycle; + unsigned int delayedNodeSlotNum; + +public: + /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode, + unsigned _ndelays) + : brNode(_brNode), ndelays(_ndelays), + delayedNodeCycle(0), delayedNodeSlotNum(0) {} + + inline unsigned getNumDelays () { + return ndelays; + } + + inline const vector<const SchedGraphNode*>& getDelayNodeVec() { + return delayNodeVec; + } + + inline void addDelayNode (const SchedGraphNode* node) { + delayNodeVec.push_back(node); + assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!"); + } + + inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) { + delayedNodeCycle = cycle; + delayedNodeSlotNum = slotNum; + } + + void scheduleDelayedNode (SchedulingManager& S); +}; + + +//---------------------------------------------------------------------- +// class SchedulingManager: +// +// Represents the schedule of machine instructions for a single basic block. +//---------------------------------------------------------------------- + +class SchedulingManager: public NonCopyable { +public: // publicly accessible data members + const unsigned int nslots; + const MachineSchedInfo& schedInfo; + SchedPriorities& schedPrio; + InstrSchedule isched; + +private: + unsigned int totalInstrCount; + cycles_t curTime; + cycles_t nextEarliestIssueTime; // next cycle we can issue + vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot# + vector<const SchedGraphNode*> choiceVec; // indexed by node ptr + vector<int> numInClass; // indexed by sched class + vector<cycles_t> nextEarliestStartTime; // indexed by opCode + hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches; + // indexed by branch node ptr + +public: + /*ctor*/ SchedulingManager (const TargetMachine& _target, + const SchedGraph* graph, + SchedPriorities& schedPrio); + /*dtor*/ ~SchedulingManager () {} + + //---------------------------------------------------------------------- + // Simplify access to the machine instruction info + //---------------------------------------------------------------------- + + inline const MachineInstrInfo& getInstrInfo () const { + return schedInfo.getInstrInfo(); + } + + //---------------------------------------------------------------------- + // Interface for checking and updating the current time + //---------------------------------------------------------------------- + + inline cycles_t getTime () const { + return curTime; + } + + inline cycles_t getEarliestIssueTime() const { + return nextEarliestIssueTime; + } + + inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const { + assert(opCode < (int) nextEarliestStartTime.size()); + return nextEarliestStartTime[opCode]; + } + + // Update current time to specified cycle + inline void updateTime (cycles_t c) { + curTime = c; + schedPrio.updateTime(c); + } + + //---------------------------------------------------------------------- + // Functions to manage the choices for the current cycle including: + // -- a vector of choices by priority (choiceVec) + // -- vectors of the choices for each instruction slot (choicesForSlot[]) + // -- number of choices in each sched class, used to check issue conflicts + // between choices for a single cycle + //---------------------------------------------------------------------- + + inline unsigned int getNumChoices () const { + return choiceVec.size(); + } + + inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const { + assert(sc < (int) numInClass.size() && "Invalid op code or sched class!"); + return numInClass[sc]; + } + + inline const SchedGraphNode* getChoice(unsigned int i) const { + // assert(i < choiceVec.size()); don't check here. + return choiceVec[i]; + } + + inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) { + assert(slotNum < nslots); + return choicesForSlot[slotNum]; + } + + inline void addChoice (const SchedGraphNode* node) { + // Append the instruction to the vector of choices for current cycle. + // Increment numInClass[c] for the sched class to which the instr belongs. + choiceVec.push_back(node); + const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode()); + assert(sc < (int) numInClass.size()); + numInClass[sc]++; + } + + inline void addChoiceToSlot (unsigned int slotNum, + const SchedGraphNode* node) { + // Add the instruction to the choice set for the specified slot + assert(slotNum < nslots); + choicesForSlot[slotNum].insert(node); + } + + inline void resetChoices () { + choiceVec.clear(); + for (unsigned int s=0; s < nslots; s++) + choicesForSlot[s].clear(); + for (unsigned int c=0; c < numInClass.size(); c++) + numInClass[c] = 0; + } + + //---------------------------------------------------------------------- + // Code to query and manage the partial instruction schedule so far + //---------------------------------------------------------------------- + + inline unsigned int getNumScheduled () const { + return isched.getNumInstructions(); + } + + inline unsigned int getNumUnscheduled() const { + return totalInstrCount - isched.getNumInstructions(); + } + + inline bool isScheduled (const SchedGraphNode* node) const { + return (isched.getStartTime(node->getNodeId()) >= 0); + } + + inline void scheduleInstr (const SchedGraphNode* node, + unsigned int slotNum, + cycles_t cycle) + { + assert(! isScheduled(node) && "Instruction already scheduled?"); + + // add the instruction to the schedule + isched.scheduleInstr(node, slotNum, cycle); + + // update the earliest start times of all nodes that conflict with `node' + // and the next-earliest time anything can issue if `node' causes bubbles + updateEarliestStartTimes(node, cycle); + + // remove the instruction from the choice sets for all slots + for (unsigned s=0; s < nslots; s++) + choicesForSlot[s].erase(node); + + // and decrement the instr count for the sched class to which it belongs + const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode()); + assert(sc < (int) numInClass.size()); + numInClass[sc]--; + } + + //---------------------------------------------------------------------- + // Create and retrieve delay slot info for delayed instructions + //---------------------------------------------------------------------- + + inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn, + bool createIfMissing=false) + { + DelaySlotInfo* dinfo; + hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator + I = delaySlotInfoForBranches.find(bn); + if (I == delaySlotInfoForBranches.end()) + { + if (createIfMissing) + { + dinfo = new DelaySlotInfo(bn, + getInstrInfo().getNumDelaySlots(bn->getOpCode())); + delaySlotInfoForBranches[bn] = dinfo; + } + else + dinfo = NULL; + } + else + dinfo = (*I).second; + + return dinfo; + } + +private: + /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT. + void updateEarliestStartTimes(const SchedGraphNode* node, + cycles_t schedTime); +}; + + +/*ctor*/ +SchedulingManager::SchedulingManager(const TargetMachine& target, + const SchedGraph* graph, + SchedPriorities& _schedPrio) + : nslots(target.getSchedInfo().getMaxNumIssueTotal()), + schedInfo(target.getSchedInfo()), + schedPrio(_schedPrio), + isched(nslots, graph->getNumNodes()), + totalInstrCount(graph->getNumNodes() - 2), + nextEarliestIssueTime(0), + choicesForSlot(nslots), + numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0 + nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(), + (cycles_t) 0) // set all to 0 +{ + updateTime(0); + + // Note that an upper bound on #choices for each slot is = nslots since + // we use this vector to hold a feasible set of instructions, and more + // would be infeasible. Reserve that much memory since it is probably small. + for (unsigned int i=0; i < nslots; i++) + choicesForSlot[i].resize(nslots); +} + + +void +SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node, + cycles_t schedTime) +{ + if (schedInfo.numBubblesAfter(node->getOpCode()) > 0) + { // Update next earliest time before which *nothing* can issue. + nextEarliestIssueTime = max(nextEarliestIssueTime, + curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode())); + } + + const vector<MachineOpCode>* + conflictVec = schedInfo.getConflictList(node->getOpCode()); + + if (conflictVec != NULL) + for (unsigned i=0; i < conflictVec->size(); i++) + { + MachineOpCode toOp = (*conflictVec)[i]; + cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(), + toOp); + assert(toOp < (int) nextEarliestStartTime.size()); + if (nextEarliestStartTime[toOp] < est) + nextEarliestStartTime[toOp] = est; + } +} + +//************************* External Functions *****************************/ + + +//--------------------------------------------------------------------------- +// Function: ScheduleInstructionsWithSSA +// +// Purpose: +// Entry point for instruction scheduling on SSA form. +// Schedules the machine instructions generated by instruction selection. +// Assumes that register allocation has not been done, i.e., operands +// are still in SSA form. +//--------------------------------------------------------------------------- + +bool +ScheduleInstructionsWithSSA(Method* method, + const TargetMachine &target) +{ + SchedGraphSet graphSet(method, target); + + if (SchedDebugLevel >= Sched_PrintSchedGraphs) + { + cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING" + << endl; + graphSet.dump(); + } + + for (SchedGraphSet::const_iterator GI=graphSet.begin(); + GI != graphSet.end(); ++GI) + { + SchedGraph* graph = (*GI).second; + const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks(); + assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks"); + const BasicBlock* bb = bbvec[0]; + + if (SchedDebugLevel >= Sched_PrintSchedTrace) + cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n"; + + SchedPriorities schedPrio(method, graph); // expensive! + SchedulingManager S(target, graph, schedPrio); + + ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph + + ForwardListSchedule(S); // computes schedule in S + + RecordSchedule((*GI).first, S); // records schedule in BB + } + + if (SchedDebugLevel >= Sched_PrintMachineCode) + { + cout << endl + << "*** Machine instructions after INSTRUCTION SCHEDULING" << endl; + PrintMachineInstructions(method); + } + + return false; // no reason to fail yet +} + + +// Check minimum gap requirements relative to instructions scheduled in +// previous cycles. +// Note that we do not need to consider `nextEarliestIssueTime' here because +// that is also captured in the earliest start times for each opcode. +// +static inline bool +ViolatesMinimumGap(const SchedulingManager& S, + MachineOpCode opCode, + const cycles_t inCycle) +{ + return (inCycle < S.getEarliestStartTimeForOp(opCode)); +} + + +// Check if the instruction would conflict with instructions already +// chosen for the current cycle +// +static inline bool +ConflictsWithChoices(const SchedulingManager& S, + MachineOpCode opCode) +{ + // Check if the instruction must issue by itself, and some feasible + // choices have already been made for this cycle + if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode)) + return true; + + // For each class that opCode belongs to, check if there are too many + // instructions of that class. + // + const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode); + return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc)); +} + + +// Check if any issue restrictions would prevent the instruction from +// being issued in the current cycle +// +bool +instrIsFeasible(const SchedulingManager& S, + MachineOpCode opCode) +{ + // skip the instruction if it cannot be issued due to issue restrictions + // caused by previously issued instructions + if (ViolatesMinimumGap(S, opCode, S.getTime())) + return false; + + // skip the instruction if it cannot be issued due to issue restrictions + // caused by previously chosen instructions for the current cycle + if (ConflictsWithChoices(S, opCode)) + return false; + + return true; +} + +//************************* Internal Functions *****************************/ + + +static void +ForwardListSchedule(SchedulingManager& S) +{ + unsigned N; + const SchedGraphNode* node; + + S.schedPrio.initialize(); + + while ((N = S.schedPrio.getNumReady()) > 0) + { + // Choose one group of instructions for a cycle. This will + // advance S.getTime() to the first cycle instructions can be issued. + // It may also schedule delay slot instructions in later cycles, + // but those are ignored here because they are outside the graph. + // + unsigned numIssued = ChooseOneGroup(S); + assert(numIssued > 0 && "Deadlock in list scheduling algorithm?"); + + // Notify the priority manager of scheduled instructions and mark + // any successors that may now be ready + // + const InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (unsigned int s=0; s < S.nslots; s++) + if ((node = (*igroup)[s]) != NULL) + { + S.schedPrio.issuedReadyNodeAt(S.getTime(), node); + MarkSuccessorsReady(S, node); + } + + // Move to the next the next earliest cycle for which + // an instruction can be issued, or the next earliest in which + // one will be ready, or to the next cycle, whichever is latest. + // + S.updateTime(max(S.getTime() + 1, + max(S.getEarliestIssueTime(), + S.schedPrio.getEarliestReadyTime()))); + } +} + + +// +// For now, just assume we are scheduling within a single basic block. +// Get the machine instruction vector for the basic block and clear it, +// then append instructions in scheduled order. +// Also, re-insert the dummy PHI instructions that were at the beginning +// of the basic block, since they are not part of the schedule. +// +static void +RecordSchedule(const BasicBlock* bb, const SchedulingManager& S) +{ + if (S.isched.getNumInstructions() == 0) + return; // empty basic block! + + MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec(); + unsigned int oldSize = mvec.size(); + + // First find the dummy instructions at the start of the basic block + const MachineInstrInfo& mii = S.schedInfo.getInstrInfo(); + MachineCodeForBasicBlock::iterator I = mvec.begin(); + for ( ; I != mvec.end(); ++I) + if (! mii.isDummyPhiInstr((*I)->getOpCode())) + break; + + // Erase all except the dummy PHI instructions from mvec, and + // pre-allocate create space for the ones we will be put back in. + mvec.erase(I, mvec.end()); + mvec.reserve(mvec.size() + S.isched.getNumInstructions()); + + InstrSchedule::const_iterator NIend = S.isched.end(); + for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI) + mvec.push_back((*NI)->getMachineInstr()); +} + + +static unsigned +ChooseOneGroup(SchedulingManager& S) +{ + assert(S.schedPrio.getNumReady() > 0 + && "Don't get here without ready instructions."); + + DelaySlotInfo* getDelaySlotInfo; + + // Choose up to `nslots' feasible instructions and their possible slots. + unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo); + + while (numIssued == 0) + { + S.updateTime(S.getTime()+1); + numIssued = FindSlotChoices(S, getDelaySlotInfo); + } + + AssignInstructionsToSlots(S, numIssued); + + if (getDelaySlotInfo != NULL) + getDelaySlotInfo->scheduleDelayedNode(S); + + // Print trace of scheduled instructions before newly ready ones + if (SchedDebugLevel >= Sched_PrintSchedTrace) + { + printIndent(2); + cout << "Cycle " << S.getTime() << " : Scheduled instructions:\n"; + const InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (unsigned int s=0; s < S.nslots; s++) + { + printIndent(4); + if ((*igroup)[s] != NULL) + cout << * ((*igroup)[s])->getMachineInstr() << endl; + else + cout << "<none>" << endl; + } + } + + return numIssued; +} + + +static void +MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node) +{ + // Check if any successors are now ready that were not already marked + // ready before, and that have not yet been scheduled. + // + for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI) + if (! (*SI)->isDummyNode() + && ! S.isScheduled(*SI) + && ! S.schedPrio.nodeIsReady(*SI)) + {// successor not scheduled and not marked ready; check *its* preds. + + bool succIsReady = true; + for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P) + if (! (*P)->isDummyNode() + && ! S.isScheduled(*P)) + { + succIsReady = false; + break; + } + + if (succIsReady) // add the successor to the ready list + S.schedPrio.insertReady(*SI); + } +} + + +// Choose up to `nslots' FEASIBLE instructions and assign each +// instruction to all possible slots that do not violate feasibility. +// FEASIBLE means it should be guaranteed that the set +// of chosen instructions can be issued in a single group. +// +// Return value: +// maxIssue : total number of feasible instructions +// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i +// +static unsigned +FindSlotChoices(SchedulingManager& S, + DelaySlotInfo*& getDelaySlotInfo) +{ + // initialize result vectors to empty + S.resetChoices(); + + // find the slot to start from, in the current cycle + unsigned int startSlot = 0; + InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + for (int s = S.nslots - 1; s >= 0; s--) + if ((*igroup)[s] != NULL) + { + startSlot = s+1; + break; + } + + // Make sure we pick at most one instruction that would break the group. + // Also, if we do pick one, remember which it was. + unsigned int indexForBreakingNode = S.nslots; + unsigned int indexForDelayedInstr = S.nslots; + DelaySlotInfo* delaySlotInfo = NULL; + + getDelaySlotInfo = NULL; + + // Choose instructions in order of priority. + // Add choices to the choice vector in the SchedulingManager class as + // we choose them so that subsequent choices will be correctly tested + // for feasibility, w.r.t. higher priority choices for the same cycle. + // + while (S.getNumChoices() < S.nslots - startSlot) + { + const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime()); + if (nextNode == NULL) + break; // no more instructions for this cycle + + if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0) + { + delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode); + if (delaySlotInfo != NULL) + { + if (indexForBreakingNode < S.nslots) + // cannot issue a delayed instr in the same cycle as one + // that breaks the issue group or as another delayed instr + nextNode = NULL; + else + indexForDelayedInstr = S.getNumChoices(); + } + } + else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode())) + { + if (indexForBreakingNode < S.nslots) + // have a breaking instruction already so throw this one away + nextNode = NULL; + else + indexForBreakingNode = S.getNumChoices(); + } + + if (nextNode != NULL) + S.addChoice(nextNode); + + if (S.schedInfo.isSingleIssue(nextNode->getOpCode())) + { + assert(S.getNumChoices() == 1 && + "Prioritizer returned invalid instr for this cycle!"); + break; + } + + if (indexForDelayedInstr < S.nslots) + break; // leave the rest for delay slots + } + + assert(S.getNumChoices() <= S.nslots); + assert(! (indexForDelayedInstr < S.nslots && + indexForBreakingNode < S.nslots) && "Cannot have both in a cycle"); + + // Assign each chosen instruction to all possible slots for that instr. + // But if only one instruction was chosen, put it only in the first + // feasible slot; no more analysis will be needed. + // + if (indexForDelayedInstr >= S.nslots && + indexForBreakingNode >= S.nslots) + { // No instructions that break the issue group or that have delay slots. + // This is the common case, so handle it separately for efficiency. + + if (S.getNumChoices() == 1) + { + MachineOpCode opCode = S.getChoice(0)->getOpCode(); + unsigned int s; + for (s=startSlot; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + break; + assert(s < S.nslots && "No feasible slot for this opCode?"); + S.addChoiceToSlot(s, S.getChoice(0)); + } + else + { + for (unsigned i=0; i < S.getNumChoices(); i++) + { + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + for (unsigned int s=startSlot; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + S.addChoiceToSlot(s, S.getChoice(i)); + } + } + } + else if (indexForDelayedInstr < S.nslots) + { + // There is an instruction that needs delay slots. + // Try to assign that instruction to a higher slot than any other + // instructions in the group, so that its delay slots can go + // right after it. + // + + assert(indexForDelayedInstr == S.getNumChoices() - 1 && + "Instruction with delay slots should be last choice!"); + assert(delaySlotInfo != NULL && "No delay slot info for instr?"); + + const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr); + MachineOpCode delayOpCode = delayedNode->getOpCode(); + unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode); + + unsigned delayedNodeSlot = S.nslots; + int highestSlotUsed; + + // Find the last possible slot for the delayed instruction that leaves + // at least `d' slots vacant after it (d = #delay slots) + for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--) + if (S.schedInfo.instrCanUseSlot(delayOpCode, s)) + { + delayedNodeSlot = s; + break; + } + + highestSlotUsed = -1; + for (unsigned i=0; i < S.getNumChoices() - 1; i++) + { + // Try to assign every other instruction to a lower numbered + // slot than delayedNodeSlot. + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + bool noSlotFound = true; + unsigned int s; + for (s=startSlot; s < delayedNodeSlot; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + { + S.addChoiceToSlot(s, S.getChoice(i)); + noSlotFound = false; + } + + // No slot before `delayedNodeSlot' was found for this opCode + // Use a later slot, and allow some delay slots to fall in + // the next cycle. + if (noSlotFound) + for ( ; s < S.nslots; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + { + S.addChoiceToSlot(s, S.getChoice(i)); + break; + } + + assert(s < S.nslots && "No feasible slot for instruction?"); + + highestSlotUsed = max(highestSlotUsed, (int) s); + } + + assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?"); + + // We will put the delayed node in the first slot after the + // highest slot used. But we just mark that for now, and + // schedule it separately because we want to schedule the delay + // slots for the node at the same time. + cycles_t dcycle = S.getTime(); + unsigned int dslot = highestSlotUsed + 1; + if (dslot == S.nslots) + { + dslot = 0; + ++dcycle; + } + delaySlotInfo->recordChosenSlot(dcycle, dslot); + getDelaySlotInfo = delaySlotInfo; + } + else + { // There is an instruction that breaks the issue group. + // For such an instruction, assign to the last possible slot in + // the current group, and then don't assign any other instructions + // to later slots. + assert(indexForBreakingNode < S.nslots); + const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode); + unsigned breakingSlot = INT_MAX; + unsigned int nslotsToUse = S.nslots; + + // Find the last possible slot for this instruction. + for (int s = S.nslots-1; s >= (int) startSlot; s--) + if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s)) + { + breakingSlot = s; + break; + } + assert(breakingSlot < S.nslots && + "No feasible slot for `breakingNode'?"); + + // Higher priority instructions than the one that breaks the group: + // These can be assigned to all slots, but will be assigned only + // to earlier slots if possible. + for (unsigned i=0; + i < S.getNumChoices() && i < indexForBreakingNode; i++) + { + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + + // If a higher priority instruction cannot be assigned to + // any earlier slots, don't schedule the breaking instruction. + // + bool foundLowerSlot = false; + nslotsToUse = S.nslots; // May be modified in the loop + for (unsigned int s=startSlot; s < nslotsToUse; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + { + if (breakingSlot < S.nslots && s < breakingSlot) + { + foundLowerSlot = true; + nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND! + } + + S.addChoiceToSlot(s, S.getChoice(i)); + } + + if (!foundLowerSlot) + breakingSlot = INT_MAX; // disable breaking instr + } + + // Assign the breaking instruction (if any) to a single slot + // Otherwise, just ignore the instruction. It will simply be + // scheduled in a later cycle. + if (breakingSlot < S.nslots) + { + S.addChoiceToSlot(breakingSlot, breakingNode); + nslotsToUse = breakingSlot; + } + else + nslotsToUse = S.nslots; + + // For lower priority instructions than the one that breaks the + // group, only assign them to slots lower than the breaking slot. + // Otherwise, just ignore the instruction. + for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++) + { + bool foundLowerSlot = false; + MachineOpCode opCode = S.getChoice(i)->getOpCode(); + for (unsigned int s=startSlot; s < nslotsToUse; s++) + if (S.schedInfo.instrCanUseSlot(opCode, s)) + S.addChoiceToSlot(s, S.getChoice(i)); + } + } // endif (no delay slots and no breaking slots) + + return S.getNumChoices(); +} + + +static void +AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue) +{ + // find the slot to start from, in the current cycle + unsigned int startSlot = 0; + cycles_t curTime = S.getTime(); + + assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot); + + // If only one instruction can be issued, do so. + if (maxIssue == 1) + for (unsigned s=startSlot; s < S.nslots; s++) + if (S.getChoicesForSlot(s).size() > 0) + {// found the one instruction + S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime); + return; + } + + // Otherwise, choose from the choices for each slot + // + InstrGroup* igroup = S.isched.getIGroup(S.getTime()); + assert(igroup != NULL && "Group creation failed?"); + + // Find a slot that has only a single choice, and take it. + // If all slots have 0 or multiple choices, pick the first slot with + // choices and use its last instruction (just to avoid shifting the vector). + unsigned numIssued; + for (numIssued = 0; numIssued < maxIssue; numIssued++) + { + int chosenSlot = -1, chosenNodeIndex = -1; + for (unsigned s=startSlot; s < S.nslots; s++) + if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1) + { + chosenSlot = (int) s; + break; + } + + if (chosenSlot == -1) + for (unsigned s=startSlot; s < S.nslots; s++) + if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0) + { + chosenSlot = (int) s; + break; + } + + if (chosenSlot != -1) + { // Insert the chosen instr in the chosen slot and + // erase it from all slots. + const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin(); + S.scheduleInstr(node, chosenSlot, curTime); + } + } + + assert(numIssued > 0 && "Should not happen when maxIssue > 0!"); +} + + + +//--------------------------------------------------------------------- +// Code for filling delay slots for delayed terminator instructions +// (e.g., BRANCH and RETURN). Delay slots for non-terminator +// instructions (e.g., CALL) are not handled here because they almost +// always can be filled with instructions from the call sequence code +// before a call. That's preferable because we incur many tradeoffs here +// when we cannot find single-cycle instructions that can be reordered. +//---------------------------------------------------------------------- + +static void +ChooseInstructionsForDelaySlots(SchedulingManager& S, + const BasicBlock* bb, + SchedGraph* graph) +{ + // Look for instructions that can be used for delay slots. + // Remove them from the graph, and mark them to be used for delay slots. + const MachineInstrInfo& mii = S.getInstrInfo(); + const TerminatorInst* term = bb->getTerminator(); + MachineCodeForVMInstr& termMvec = term->getMachineInstrVec(); + + // Find the first branch instr in the sequence of machine instrs for term + // + unsigned first = 0; + while (! mii.isBranch(termMvec[first]->getOpCode())) + ++first; + assert(first < termMvec.size() && + "No branch instructions for BR? Ok, but weird! Delete assertion."); + if (first == termMvec.size()) + return; + + SchedGraphNode* brNode = graph->getGraphNodeForInstr(termMvec[first]); + assert(! mii.isCall(brNode->getOpCode()) && "Call used as terminator?"); + + unsigned ndelays = mii.getNumDelaySlots(brNode->getOpCode()); + if (ndelays == 0) + return; + + // Use vectors to remember the nodes chosen for delay slots, and the + // NOPs that will be unused. We cannot remove them from the graph while + // walking through the preds and succs of the brNode here, so we + // remember the nodes in the vectors and remove them later. + // We use separate vectors for the single-cycle and multi-cycle nodes, + // so that we can give preference to single-cycle nodes. + // + vector<SchedGraphNode*> sdelayNodeVec; + vector<SchedGraphNode*> mdelayNodeVec; + vector<SchedGraphNode*> nopNodeVec; + unsigned numUseful = 0; + + sdelayNodeVec.reserve(ndelays); + + for (sg_pred_iterator P = pred_begin(brNode); + P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P) + if (! (*P)->isDummyNode() && + ! mii.isNop((*P)->getOpCode()) && + NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true)) + { + ++numUseful; + if (mii.maxLatency((*P)->getOpCode()) > 1) + mdelayNodeVec.push_back(*P); + else + sdelayNodeVec.push_back(*P); + } + + // If not enough single-cycle instructions were found, select the + // lowest-latency multi-cycle instructions and use them. + // Note that this is the most efficient code when only 1 (or even 2) + // values need to be selected. + // + while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0) + { + unsigned latency; + unsigned minLatency = mii.maxLatency(mdelayNodeVec[0]->getOpCode()); + unsigned minIndex = 0; + for (unsigned i=1; i < mdelayNodeVec.size(); i++) + if (minLatency >= + (latency = mii.maxLatency(mdelayNodeVec[i]->getOpCode()))) + { + minLatency = latency; + minIndex = i; + } + sdelayNodeVec.push_back(mdelayNodeVec[minIndex]); + if (sdelayNodeVec.size() < ndelays) // avoid the last erase! + mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex); + } + + // Now, remove the NOPs currently in delay slots from the graph. + // If not enough useful instructions were found, use the NOPs to + // fill delay slots, otherwise, just discard them. + for (sg_succ_iterator I=succ_begin(brNode); I != succ_end(brNode); ++I) + if (! (*I)->isDummyNode() + && mii.isNop((*I)->getOpCode())) + { + if (sdelayNodeVec.size() < ndelays) + sdelayNodeVec.push_back(*I); + else + nopNodeVec.push_back(*I); + } + + // Mark the nodes chosen for delay slots. This removes them from the graph. + for (unsigned i=0; i < sdelayNodeVec.size(); i++) + MarkNodeForDelaySlot(S, sdelayNodeVec[i], brNode, true); + + // And remove the unused NOPs the graph. + for (unsigned i=0; i < nopNodeVec.size(); i++) + nopNodeVec[i]->eraseAllEdges(); +} + + +bool +NodeCanFillDelaySlot(const SchedulingManager& S, + const SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor) +{ + assert(! node->isDummyNode()); + + // don't put a branch in the delay slot of another branch + if (S.getInstrInfo().isBranch(node->getOpCode())) + return false; + + // don't put a single-issue instruction in the delay slot of a branch + if (S.schedInfo.isSingleIssue(node->getOpCode())) + return false; + + // don't put a load-use dependence in the delay slot of a branch + const MachineInstrInfo& mii = S.getInstrInfo(); + + for (SchedGraphNode::const_iterator EI = node->beginInEdges(); + EI != node->endInEdges(); ++EI) + if (! (*EI)->getSrc()->isDummyNode() + && mii.isLoad((*EI)->getSrc()->getOpCode()) + && (*EI)->getDepType() == SchedGraphEdge::CtrlDep) + return false; + + // for now, don't put an instruction that does not have operand + // interlocks in the delay slot of a branch + if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode())) + return false; + + // Finally, if the instruction preceeds the branch, we make sure the + // instruction can be reordered relative to the branch. We simply check + // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch. + // + if (nodeIsPredecessor) + { + bool onlyCDEdgeToBranch = true; + for (SchedGraphNode::const_iterator OEI = node->beginOutEdges(); + OEI != node->endOutEdges(); ++OEI) + if (! (*OEI)->getSink()->isDummyNode() + && ((*OEI)->getSink() != brNode + || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep)) + { + onlyCDEdgeToBranch = false; + break; + } + + if (!onlyCDEdgeToBranch) + return false; + } + + return true; +} + + +void +MarkNodeForDelaySlot(SchedulingManager& S, + SchedGraphNode* node, + const SchedGraphNode* brNode, + bool nodeIsPredecessor) +{ + if (nodeIsPredecessor) + { // If node is in the same basic block (i.e., preceeds brNode), + // remove it and all its incident edges from the graph. + node->eraseAllEdges(); + } + else + { // If the node was from a target block, add the node to the graph + // and add a CD edge from brNode to node. + assert(0 && "NOT IMPLEMENTED YET"); + } + + DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true); + dinfo->addDelayNode(node); +} + + +// +// Schedule the delayed branch and its delay slots +// +void +DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S) +{ + assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch"); + assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL + && "Slot for branch should be empty"); + + unsigned int nextSlot = delayedNodeSlotNum; + cycles_t nextTime = delayedNodeCycle; + + S.scheduleInstr(brNode, nextSlot, nextTime); + + for (unsigned d=0; d < ndelays; d++) + { + ++nextSlot; + if (nextSlot == S.nslots) + { + nextSlot = 0; + nextTime++; + } + + // Find the first feasible instruction for this delay slot + // Note that we only check for issue restrictions here. + // We do *not* check for flow dependences but rely on pipeline + // interlocks to resolve them. Machines without interlocks + // will require this code to be modified. + for (unsigned i=0; i < delayNodeVec.size(); i++) + { + const SchedGraphNode* dnode = delayNodeVec[i]; + if ( ! S.isScheduled(dnode) + && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot) + && instrIsFeasible(S, dnode->getOpCode())) + { + assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode()) + && "Instructions without interlocks not yet supported " + "when filling branch delay slots"); + S.scheduleInstr(dnode, nextSlot, nextTime); + break; + } + } + } + + // Update current time if delay slots overflowed into later cycles. + // Do this here because we know exactly which cycle is the last cycle + // that contains delay slots. The next loop doesn't compute that. + if (nextTime > S.getTime()) + S.updateTime(nextTime); + + // Now put any remaining instructions in the unfilled delay slots. + // This could lead to suboptimal performance but needed for correctness. + nextSlot = delayedNodeSlotNum; + nextTime = delayedNodeCycle; + for (unsigned i=0; i < delayNodeVec.size(); i++) + if (! S.isScheduled(delayNodeVec[i])) + { + do { // find the next empty slot + ++nextSlot; + if (nextSlot == S.nslots) + { + nextSlot = 0; + nextTime++; + } + } while (S.isched.getInstr(nextSlot, nextTime) != NULL); + + S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime); + break; + } +} + |