aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorEvan Cheng <evan.cheng@apple.com>2011-07-25 18:43:53 +0000
committerEvan Cheng <evan.cheng@apple.com>2011-07-25 18:43:53 +0000
commit8c3fee59038d8fd98db2a01b6a309a8941a16a3f (patch)
tree03e4f1aff53b9251333b8f11cee43786f41554f1 /lib
parentc57e7dbfaff2e5cfe668da9f68868826368407a1 (diff)
downloadexternal_llvm-8c3fee59038d8fd98db2a01b6a309a8941a16a3f.zip
external_llvm-8c3fee59038d8fd98db2a01b6a309a8941a16a3f.tar.gz
external_llvm-8c3fee59038d8fd98db2a01b6a309a8941a16a3f.tar.bz2
Refactor X86 target to separate MC code from Target code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135930 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/MC/ELFObjectWriter.cpp2
-rw-r--r--lib/MC/WinCOFFObjectWriter.cpp2
-rw-r--r--lib/Target/X86/MCTargetDesc/X86BaseInfo.h544
-rw-r--r--lib/Target/X86/MCTargetDesc/X86FixupKinds.h (renamed from lib/Target/X86/X86FixupKinds.h)0
-rw-r--r--lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h8
-rw-r--r--lib/Target/X86/X86.h5
-rw-r--r--lib/Target/X86/X86AsmBackend.cpp2
-rw-r--r--lib/Target/X86/X86CodeEmitter.cpp2
-rw-r--r--lib/Target/X86/X86InstrInfo.cpp25
-rw-r--r--lib/Target/X86/X86InstrInfo.h503
-rw-r--r--lib/Target/X86/X86MCCodeEmitter.cpp49
-rw-r--r--lib/Target/X86/X86MachObjectWriter.cpp2
12 files changed, 589 insertions, 555 deletions
diff --git a/lib/MC/ELFObjectWriter.cpp b/lib/MC/ELFObjectWriter.cpp
index 44ede6c..61fd85e 100644
--- a/lib/MC/ELFObjectWriter.cpp
+++ b/lib/MC/ELFObjectWriter.cpp
@@ -28,7 +28,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
-#include "../Target/X86/X86FixupKinds.h"
+#include "../Target/X86/MCTargetDesc/X86FixupKinds.h"
#include "../Target/ARM/MCTargetDesc/ARMFixupKinds.h"
#include <vector>
diff --git a/lib/MC/WinCOFFObjectWriter.cpp b/lib/MC/WinCOFFObjectWriter.cpp
index 101237a..b15e225 100644
--- a/lib/MC/WinCOFFObjectWriter.cpp
+++ b/lib/MC/WinCOFFObjectWriter.cpp
@@ -33,7 +33,7 @@
#include "llvm/Support/TimeValue.h"
-#include "../Target/X86/X86FixupKinds.h"
+#include "../Target/X86/MCTargetDesc/X86FixupKinds.h"
#include <cstdio>
diff --git a/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
new file mode 100644
index 0000000..8b2d026
--- /dev/null
+++ b/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -0,0 +1,544 @@
+//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains small standalone helper functions and enum definitions for
+// the X86 target useful for the compiler back-end and the MC libraries.
+// As such, it deliberately does not include references to LLVM core
+// code gen types, passes, etc..
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86BASEINFO_H
+#define X86BASEINFO_H
+
+#include "X86MCTargetDesc.h"
+#include "llvm/Support/DataTypes.h"
+#include <cassert>
+
+namespace llvm {
+
+namespace X86 {
+ // Enums for memory operand decoding. Each memory operand is represented with
+ // a 5 operand sequence in the form:
+ // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
+ // These enums help decode this.
+ enum {
+ AddrBaseReg = 0,
+ AddrScaleAmt = 1,
+ AddrIndexReg = 2,
+ AddrDisp = 3,
+
+ /// AddrSegmentReg - The operand # of the segment in the memory operand.
+ AddrSegmentReg = 4,
+
+ /// AddrNumOperands - Total number of operands in a memory reference.
+ AddrNumOperands = 5
+ };
+} // end namespace X86;
+
+
+/// X86II - This namespace holds all of the target specific flags that
+/// instruction info tracks.
+///
+namespace X86II {
+ /// Target Operand Flag enum.
+ enum TOF {
+ //===------------------------------------------------------------------===//
+ // X86 Specific MachineOperand flags.
+
+ MO_NO_FLAG,
+
+ /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
+ /// relocation of:
+ /// SYMBOL_LABEL + [. - PICBASELABEL]
+ MO_GOT_ABSOLUTE_ADDRESS,
+
+ /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
+ /// immediate should get the value of the symbol minus the PIC base label:
+ /// SYMBOL_LABEL - PICBASELABEL
+ MO_PIC_BASE_OFFSET,
+
+ /// MO_GOT - On a symbol operand this indicates that the immediate is the
+ /// offset to the GOT entry for the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOT
+ MO_GOT,
+
+ /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
+ /// the offset to the location of the symbol name from the base of the GOT.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTOFF
+ MO_GOTOFF,
+
+ /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
+ /// offset to the GOT entry for the symbol name from the current code
+ /// location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @GOTPCREL
+ MO_GOTPCREL,
+
+ /// MO_PLT - On a symbol operand this indicates that the immediate is
+ /// offset to the PLT entry of symbol name from the current code location.
+ ///
+ /// See the X86-64 ELF ABI supplement for more details.
+ /// SYMBOL_LABEL @PLT
+ MO_PLT,
+
+ /// MO_TLSGD - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TLSGD
+ MO_TLSGD,
+
+ /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @GOTTPOFF
+ MO_GOTTPOFF,
+
+ /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @INDNTPOFF
+ MO_INDNTPOFF,
+
+ /// MO_TPOFF - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @TPOFF
+ MO_TPOFF,
+
+ /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// See 'ELF Handling for Thread-Local Storage' for more details.
+ /// SYMBOL_LABEL @NTPOFF
+ MO_NTPOFF,
+
+ /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "__imp_FOO" symbol. This is used for
+ /// dllimport linkage on windows.
+ MO_DLLIMPORT,
+
+ /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$stub" symbol. This is used for calls
+ /// and jumps to external functions on Tiger and earlier.
+ MO_DARWIN_STUB,
+
+ /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
+ /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
+ /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY,
+
+ /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
+ /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
+ /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+ MO_DARWIN_NONLAZY_PIC_BASE,
+
+ /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
+ /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
+ /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
+ /// stub.
+ MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
+
+ /// MO_TLVP - On a symbol operand this indicates that the immediate is
+ /// some TLS offset.
+ ///
+ /// This is the TLS offset for the Darwin TLS mechanism.
+ MO_TLVP,
+
+ /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
+ /// is some TLS offset from the picbase.
+ ///
+ /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
+ MO_TLVP_PIC_BASE
+ };
+
+ enum {
+ //===------------------------------------------------------------------===//
+ // Instruction encodings. These are the standard/most common forms for X86
+ // instructions.
+ //
+
+ // PseudoFrm - This represents an instruction that is a pseudo instruction
+ // or one that has not been implemented yet. It is illegal to code generate
+ // it, but tolerated for intermediate implementation stages.
+ Pseudo = 0,
+
+ /// Raw - This form is for instructions that don't have any operands, so
+ /// they are just a fixed opcode value, like 'leave'.
+ RawFrm = 1,
+
+ /// AddRegFrm - This form is used for instructions like 'push r32' that have
+ /// their one register operand added to their opcode.
+ AddRegFrm = 2,
+
+ /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is a register.
+ ///
+ MRMDestReg = 3,
+
+ /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a destination, which in this case is memory.
+ ///
+ MRMDestMem = 4,
+
+ /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is a register.
+ ///
+ MRMSrcReg = 5,
+
+ /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
+ /// to specify a source, which in this case is memory.
+ ///
+ MRMSrcMem = 6,
+
+ /// MRM[0-7][rm] - These forms are used to represent instructions that use
+ /// a Mod/RM byte, and use the middle field to hold extended opcode
+ /// information. In the intel manual these are represented as /0, /1, ...
+ ///
+
+ // First, instructions that operate on a register r/m operand...
+ MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
+ MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
+
+ // Next, instructions that operate on a memory r/m operand...
+ MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
+ MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
+
+ // MRMInitReg - This form is used for instructions whose source and
+ // destinations are the same register.
+ MRMInitReg = 32,
+
+ //// MRM_C1 - A mod/rm byte of exactly 0xC1.
+ MRM_C1 = 33,
+ MRM_C2 = 34,
+ MRM_C3 = 35,
+ MRM_C4 = 36,
+ MRM_C8 = 37,
+ MRM_C9 = 38,
+ MRM_E8 = 39,
+ MRM_F0 = 40,
+ MRM_F8 = 41,
+ MRM_F9 = 42,
+ MRM_D0 = 45,
+ MRM_D1 = 46,
+
+ /// RawFrmImm8 - This is used for the ENTER instruction, which has two
+ /// immediates, the first of which is a 16-bit immediate (specified by
+ /// the imm encoding) and the second is a 8-bit fixed value.
+ RawFrmImm8 = 43,
+
+ /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
+ /// immediates, the first of which is a 16 or 32-bit immediate (specified by
+ /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
+ /// manual, this operand is described as pntr16:32 and pntr16:16
+ RawFrmImm16 = 44,
+
+ FormMask = 63,
+
+ //===------------------------------------------------------------------===//
+ // Actual flags...
+
+ // OpSize - Set if this instruction requires an operand size prefix (0x66),
+ // which most often indicates that the instruction operates on 16 bit data
+ // instead of 32 bit data.
+ OpSize = 1 << 6,
+
+ // AsSize - Set if this instruction requires an operand size prefix (0x67),
+ // which most often indicates that the instruction address 16 bit address
+ // instead of 32 bit address (or 32 bit address in 64 bit mode).
+ AdSize = 1 << 7,
+
+ //===------------------------------------------------------------------===//
+ // Op0Mask - There are several prefix bytes that are used to form two byte
+ // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
+ // used to obtain the setting of this field. If no bits in this field is
+ // set, there is no prefix byte for obtaining a multibyte opcode.
+ //
+ Op0Shift = 8,
+ Op0Mask = 0x1F << Op0Shift,
+
+ // TB - TwoByte - Set if this instruction has a two byte opcode, which
+ // starts with a 0x0F byte before the real opcode.
+ TB = 1 << Op0Shift,
+
+ // REP - The 0xF3 prefix byte indicating repetition of the following
+ // instruction.
+ REP = 2 << Op0Shift,
+
+ // D8-DF - These escape opcodes are used by the floating point unit. These
+ // values must remain sequential.
+ D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
+ DA = 5 << Op0Shift, DB = 6 << Op0Shift,
+ DC = 7 << Op0Shift, DD = 8 << Op0Shift,
+ DE = 9 << Op0Shift, DF = 10 << Op0Shift,
+
+ // XS, XD - These prefix codes are for single and double precision scalar
+ // floating point operations performed in the SSE registers.
+ XD = 11 << Op0Shift, XS = 12 << Op0Shift,
+
+ // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
+ T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
+ A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
+
+ // TF - Prefix before and after 0x0F
+ TF = 17 << Op0Shift,
+
+ //===------------------------------------------------------------------===//
+ // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+ // They are used to specify GPRs and SSE registers, 64-bit operand size,
+ // etc. We only cares about REX.W and REX.R bits and only the former is
+ // statically determined.
+ //
+ REXShift = Op0Shift + 5,
+ REX_W = 1 << REXShift,
+
+ //===------------------------------------------------------------------===//
+ // This three-bit field describes the size of an immediate operand. Zero is
+ // unused so that we can tell if we forgot to set a value.
+ ImmShift = REXShift + 1,
+ ImmMask = 7 << ImmShift,
+ Imm8 = 1 << ImmShift,
+ Imm8PCRel = 2 << ImmShift,
+ Imm16 = 3 << ImmShift,
+ Imm16PCRel = 4 << ImmShift,
+ Imm32 = 5 << ImmShift,
+ Imm32PCRel = 6 << ImmShift,
+ Imm64 = 7 << ImmShift,
+
+ //===------------------------------------------------------------------===//
+ // FP Instruction Classification... Zero is non-fp instruction.
+
+ // FPTypeMask - Mask for all of the FP types...
+ FPTypeShift = ImmShift + 3,
+ FPTypeMask = 7 << FPTypeShift,
+
+ // NotFP - The default, set for instructions that do not use FP registers.
+ NotFP = 0 << FPTypeShift,
+
+ // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+ ZeroArgFP = 1 << FPTypeShift,
+
+ // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+ OneArgFP = 2 << FPTypeShift,
+
+ // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+ // result back to ST(0). For example, fcos, fsqrt, etc.
+ //
+ OneArgFPRW = 3 << FPTypeShift,
+
+ // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+ // explicit argument, storing the result to either ST(0) or the implicit
+ // argument. For example: fadd, fsub, fmul, etc...
+ TwoArgFP = 4 << FPTypeShift,
+
+ // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+ // explicit argument, but have no destination. Example: fucom, fucomi, ...
+ CompareFP = 5 << FPTypeShift,
+
+ // CondMovFP - "2 operand" floating point conditional move instructions.
+ CondMovFP = 6 << FPTypeShift,
+
+ // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
+ SpecialFP = 7 << FPTypeShift,
+
+ // Lock prefix
+ LOCKShift = FPTypeShift + 3,
+ LOCK = 1 << LOCKShift,
+
+ // Segment override prefixes. Currently we just need ability to address
+ // stuff in gs and fs segments.
+ SegOvrShift = LOCKShift + 1,
+ SegOvrMask = 3 << SegOvrShift,
+ FS = 1 << SegOvrShift,
+ GS = 2 << SegOvrShift,
+
+ // Execution domain for SSE instructions in bits 23, 24.
+ // 0 in bits 23-24 means normal, non-SSE instruction.
+ SSEDomainShift = SegOvrShift + 2,
+
+ OpcodeShift = SSEDomainShift + 2,
+
+ //===------------------------------------------------------------------===//
+ /// VEX - The opcode prefix used by AVX instructions
+ VEXShift = OpcodeShift + 8,
+ VEX = 1U << 0,
+
+ /// VEX_W - Has a opcode specific functionality, but is used in the same
+ /// way as REX_W is for regular SSE instructions.
+ VEX_W = 1U << 1,
+
+ /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
+ /// address instructions in SSE are represented as 3 address ones in AVX
+ /// and the additional register is encoded in VEX_VVVV prefix.
+ VEX_4V = 1U << 2,
+
+ /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
+ /// must be encoded in the i8 immediate field. This usually happens in
+ /// instructions with 4 operands.
+ VEX_I8IMM = 1U << 3,
+
+ /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
+ /// instruction uses 256-bit wide registers. This is usually auto detected
+ /// if a VR256 register is used, but some AVX instructions also have this
+ /// field marked when using a f256 memory references.
+ VEX_L = 1U << 4,
+
+ /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
+ /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
+ /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
+ /// storing a classifier in the imm8 field. To simplify our implementation,
+ /// we handle this by storeing the classifier in the opcode field and using
+ /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
+ Has3DNow0F0FOpcode = 1U << 5
+ };
+
+ // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
+ // specified machine instruction.
+ //
+ static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
+ return TSFlags >> X86II::OpcodeShift;
+ }
+
+ static inline bool hasImm(uint64_t TSFlags) {
+ return (TSFlags & X86II::ImmMask) != 0;
+ }
+
+ /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
+ /// of the specified instruction.
+ static inline unsigned getSizeOfImm(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: assert(0 && "Unknown immediate size");
+ case X86II::Imm8:
+ case X86II::Imm8PCRel: return 1;
+ case X86II::Imm16:
+ case X86II::Imm16PCRel: return 2;
+ case X86II::Imm32:
+ case X86II::Imm32PCRel: return 4;
+ case X86II::Imm64: return 8;
+ }
+ }
+
+ /// isImmPCRel - Return true if the immediate of the specified instruction's
+ /// TSFlags indicates that it is pc relative.
+ static inline unsigned isImmPCRel(uint64_t TSFlags) {
+ switch (TSFlags & X86II::ImmMask) {
+ default: assert(0 && "Unknown immediate size");
+ case X86II::Imm8PCRel:
+ case X86II::Imm16PCRel:
+ case X86II::Imm32PCRel:
+ return true;
+ case X86II::Imm8:
+ case X86II::Imm16:
+ case X86II::Imm32:
+ case X86II::Imm64:
+ return false;
+ }
+ }
+
+ /// getMemoryOperandNo - The function returns the MCInst operand # for the
+ /// first field of the memory operand. If the instruction doesn't have a
+ /// memory operand, this returns -1.
+ ///
+ /// Note that this ignores tied operands. If there is a tied register which
+ /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
+ /// counted as one operand.
+ ///
+ static inline int getMemoryOperandNo(uint64_t TSFlags) {
+ switch (TSFlags & X86II::FormMask) {
+ case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
+ default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
+ case X86II::Pseudo:
+ case X86II::RawFrm:
+ case X86II::AddRegFrm:
+ case X86II::MRMDestReg:
+ case X86II::MRMSrcReg:
+ case X86II::RawFrmImm8:
+ case X86II::RawFrmImm16:
+ return -1;
+ case X86II::MRMDestMem:
+ return 0;
+ case X86II::MRMSrcMem: {
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ unsigned FirstMemOp = 1;
+ if (HasVEX_4V)
+ ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
+
+ // FIXME: Maybe lea should have its own form? This is a horrible hack.
+ //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
+ // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
+ return FirstMemOp;
+ }
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ return -1;
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ return 0;
+ case X86II::MRM_C1:
+ case X86II::MRM_C2:
+ case X86II::MRM_C3:
+ case X86II::MRM_C4:
+ case X86II::MRM_C8:
+ case X86II::MRM_C9:
+ case X86II::MRM_E8:
+ case X86II::MRM_F0:
+ case X86II::MRM_F8:
+ case X86II::MRM_F9:
+ case X86II::MRM_D0:
+ case X86II::MRM_D1:
+ return -1;
+ }
+ }
+
+ /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
+ /// higher) register? e.g. r8, xmm8, xmm13, etc.
+ static inline bool isX86_64ExtendedReg(unsigned RegNo) {
+ switch (RegNo) {
+ default: break;
+ case X86::R8: case X86::R9: case X86::R10: case X86::R11:
+ case X86::R12: case X86::R13: case X86::R14: case X86::R15:
+ case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
+ case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
+ case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
+ case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
+ case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
+ case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
+ case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
+ case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
+ case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
+ case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
+ case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
+ case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
+ return true;
+ }
+ return false;
+ }
+
+ static inline bool isX86_64NonExtLowByteReg(unsigned reg) {
+ return (reg == X86::SPL || reg == X86::BPL ||
+ reg == X86::SIL || reg == X86::DIL);
+ }
+}
+
+} // end namespace llvm;
+
+#endif
diff --git a/lib/Target/X86/X86FixupKinds.h b/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
index 17d242a..17d242a 100644
--- a/lib/Target/X86/X86FixupKinds.h
+++ b/lib/Target/X86/MCTargetDesc/X86FixupKinds.h
diff --git a/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h b/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
index 2c5ae4e..29b9cd9 100644
--- a/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
+++ b/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.h
@@ -17,6 +17,9 @@
#include <string>
namespace llvm {
+class MCCodeEmitter;
+class MCContext;
+class MCInstrInfo;
class MCRegisterInfo;
class MCSubtargetInfo;
class Target;
@@ -63,6 +66,11 @@ namespace X86_MC {
StringRef FS);
}
+MCCodeEmitter *createX86MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx);
+
+
} // End llvm namespace
diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h
index ec52dfb..8af2764 100644
--- a/lib/Target/X86/X86.h
+++ b/lib/Target/X86/X86.h
@@ -15,6 +15,7 @@
#ifndef TARGET_X86_H
#define TARGET_X86_H
+#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Target/TargetMachine.h"
@@ -60,10 +61,6 @@ FunctionPass *createSSEDomainFixPass();
FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
JITCodeEmitter &JCE);
-MCCodeEmitter *createX86MCCodeEmitter(const MCInstrInfo &MCII,
- const MCSubtargetInfo &STI,
- MCContext &Ctx);
-
TargetAsmBackend *createX86_32AsmBackend(const Target &, const std::string &);
TargetAsmBackend *createX86_64AsmBackend(const Target &, const std::string &);
diff --git a/lib/Target/X86/X86AsmBackend.cpp b/lib/Target/X86/X86AsmBackend.cpp
index d963f33..a648bae 100644
--- a/lib/Target/X86/X86AsmBackend.cpp
+++ b/lib/Target/X86/X86AsmBackend.cpp
@@ -9,7 +9,7 @@
#include "llvm/MC/TargetAsmBackend.h"
#include "X86.h"
-#include "X86FixupKinds.h"
+#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELFObjectWriter.h"
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index b9b1128..fbef826 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -167,7 +167,7 @@ static unsigned determineREX(const MachineInstr &MI) {
const MachineOperand& MO = MI.getOperand(i);
if (MO.isReg()) {
unsigned Reg = MO.getReg();
- if (X86InstrInfo::isX86_64NonExtLowByteReg(Reg))
+ if (X86II::isX86_64NonExtLowByteReg(Reg))
REX |= 0x40;
}
}
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp
index 990ceef..1ab0278 100644
--- a/lib/Target/X86/X86InstrInfo.cpp
+++ b/lib/Target/X86/X86InstrInfo.cpp
@@ -3013,31 +3013,6 @@ isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
}
-
-/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
-/// register? e.g. r8, xmm8, xmm13, etc.
-bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
- switch (RegNo) {
- default: break;
- case X86::R8: case X86::R9: case X86::R10: case X86::R11:
- case X86::R12: case X86::R13: case X86::R14: case X86::R15:
- case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
- case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
- case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
- case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
- case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
- case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
- case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
- case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
- case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
- case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
- case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
- case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
- return true;
- }
- return false;
-}
-
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
index 5f2eba3..931d6ca 100644
--- a/lib/Target/X86/X86InstrInfo.h
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -27,24 +27,6 @@ namespace llvm {
class X86TargetMachine;
namespace X86 {
- // Enums for memory operand decoding. Each memory operand is represented with
- // a 5 operand sequence in the form:
- // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
- // These enums help decode this.
- enum {
- AddrBaseReg = 0,
- AddrScaleAmt = 1,
- AddrIndexReg = 2,
- AddrDisp = 3,
-
- /// AddrSegmentReg - The operand # of the segment in the memory operand.
- AddrSegmentReg = 4,
-
- /// AddrNumOperands - Total number of operands in a memory reference.
- AddrNumOperands = 5
- };
-
-
// X86 specific condition code. These correspond to X86_*_COND in
// X86InstrInfo.td. They must be kept in synch.
enum CondCode {
@@ -82,133 +64,8 @@ namespace X86 {
/// GetOppositeBranchCondition - Return the inverse of the specified cond,
/// e.g. turning COND_E to COND_NE.
CondCode GetOppositeBranchCondition(X86::CondCode CC);
+} // end namespace X86;
-}
-
-/// X86II - This namespace holds all of the target specific flags that
-/// instruction info tracks.
-///
-namespace X86II {
- /// Target Operand Flag enum.
- enum TOF {
- //===------------------------------------------------------------------===//
- // X86 Specific MachineOperand flags.
-
- MO_NO_FLAG,
-
- /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
- /// relocation of:
- /// SYMBOL_LABEL + [. - PICBASELABEL]
- MO_GOT_ABSOLUTE_ADDRESS,
-
- /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
- /// immediate should get the value of the symbol minus the PIC base label:
- /// SYMBOL_LABEL - PICBASELABEL
- MO_PIC_BASE_OFFSET,
-
- /// MO_GOT - On a symbol operand this indicates that the immediate is the
- /// offset to the GOT entry for the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOT
- MO_GOT,
-
- /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
- /// the offset to the location of the symbol name from the base of the GOT.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTOFF
- MO_GOTOFF,
-
- /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
- /// offset to the GOT entry for the symbol name from the current code
- /// location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @GOTPCREL
- MO_GOTPCREL,
-
- /// MO_PLT - On a symbol operand this indicates that the immediate is
- /// offset to the PLT entry of symbol name from the current code location.
- ///
- /// See the X86-64 ELF ABI supplement for more details.
- /// SYMBOL_LABEL @PLT
- MO_PLT,
-
- /// MO_TLSGD - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TLSGD
- MO_TLSGD,
-
- /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @GOTTPOFF
- MO_GOTTPOFF,
-
- /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @INDNTPOFF
- MO_INDNTPOFF,
-
- /// MO_TPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @TPOFF
- MO_TPOFF,
-
- /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// See 'ELF Handling for Thread-Local Storage' for more details.
- /// SYMBOL_LABEL @NTPOFF
- MO_NTPOFF,
-
- /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "__imp_FOO" symbol. This is used for
- /// dllimport linkage on windows.
- MO_DLLIMPORT,
-
- /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "FOO$stub" symbol. This is used for calls
- /// and jumps to external functions on Tiger and earlier.
- MO_DARWIN_STUB,
-
- /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
- /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
- /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY,
-
- /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
- /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
- /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
- MO_DARWIN_NONLAZY_PIC_BASE,
-
- /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
- /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
- /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
- /// stub.
- MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
-
- /// MO_TLVP - On a symbol operand this indicates that the immediate is
- /// some TLS offset.
- ///
- /// This is the TLS offset for the Darwin TLS mechanism.
- MO_TLVP,
-
- /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
- /// is some TLS offset from the picbase.
- ///
- /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
- MO_TLVP_PIC_BASE
- };
-}
/// isGlobalStubReference - Return true if the specified TargetFlag operand is
/// a reference to a stub for a global, not the global itself.
@@ -243,353 +100,6 @@ inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
}
}
-/// X86II - This namespace holds all of the target specific flags that
-/// instruction info tracks.
-///
-namespace X86II {
- enum {
- //===------------------------------------------------------------------===//
- // Instruction encodings. These are the standard/most common forms for X86
- // instructions.
- //
-
- // PseudoFrm - This represents an instruction that is a pseudo instruction
- // or one that has not been implemented yet. It is illegal to code generate
- // it, but tolerated for intermediate implementation stages.
- Pseudo = 0,
-
- /// Raw - This form is for instructions that don't have any operands, so
- /// they are just a fixed opcode value, like 'leave'.
- RawFrm = 1,
-
- /// AddRegFrm - This form is used for instructions like 'push r32' that have
- /// their one register operand added to their opcode.
- AddRegFrm = 2,
-
- /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is a register.
- ///
- MRMDestReg = 3,
-
- /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a destination, which in this case is memory.
- ///
- MRMDestMem = 4,
-
- /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is a register.
- ///
- MRMSrcReg = 5,
-
- /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
- /// to specify a source, which in this case is memory.
- ///
- MRMSrcMem = 6,
-
- /// MRM[0-7][rm] - These forms are used to represent instructions that use
- /// a Mod/RM byte, and use the middle field to hold extended opcode
- /// information. In the intel manual these are represented as /0, /1, ...
- ///
-
- // First, instructions that operate on a register r/m operand...
- MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
- MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
-
- // Next, instructions that operate on a memory r/m operand...
- MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
- MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
-
- // MRMInitReg - This form is used for instructions whose source and
- // destinations are the same register.
- MRMInitReg = 32,
-
- //// MRM_C1 - A mod/rm byte of exactly 0xC1.
- MRM_C1 = 33,
- MRM_C2 = 34,
- MRM_C3 = 35,
- MRM_C4 = 36,
- MRM_C8 = 37,
- MRM_C9 = 38,
- MRM_E8 = 39,
- MRM_F0 = 40,
- MRM_F8 = 41,
- MRM_F9 = 42,
- MRM_D0 = 45,
- MRM_D1 = 46,
-
- /// RawFrmImm8 - This is used for the ENTER instruction, which has two
- /// immediates, the first of which is a 16-bit immediate (specified by
- /// the imm encoding) and the second is a 8-bit fixed value.
- RawFrmImm8 = 43,
-
- /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
- /// immediates, the first of which is a 16 or 32-bit immediate (specified by
- /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
- /// manual, this operand is described as pntr16:32 and pntr16:16
- RawFrmImm16 = 44,
-
- FormMask = 63,
-
- //===------------------------------------------------------------------===//
- // Actual flags...
-
- // OpSize - Set if this instruction requires an operand size prefix (0x66),
- // which most often indicates that the instruction operates on 16 bit data
- // instead of 32 bit data.
- OpSize = 1 << 6,
-
- // AsSize - Set if this instruction requires an operand size prefix (0x67),
- // which most often indicates that the instruction address 16 bit address
- // instead of 32 bit address (or 32 bit address in 64 bit mode).
- AdSize = 1 << 7,
-
- //===------------------------------------------------------------------===//
- // Op0Mask - There are several prefix bytes that are used to form two byte
- // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
- // used to obtain the setting of this field. If no bits in this field is
- // set, there is no prefix byte for obtaining a multibyte opcode.
- //
- Op0Shift = 8,
- Op0Mask = 0x1F << Op0Shift,
-
- // TB - TwoByte - Set if this instruction has a two byte opcode, which
- // starts with a 0x0F byte before the real opcode.
- TB = 1 << Op0Shift,
-
- // REP - The 0xF3 prefix byte indicating repetition of the following
- // instruction.
- REP = 2 << Op0Shift,
-
- // D8-DF - These escape opcodes are used by the floating point unit. These
- // values must remain sequential.
- D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
- DA = 5 << Op0Shift, DB = 6 << Op0Shift,
- DC = 7 << Op0Shift, DD = 8 << Op0Shift,
- DE = 9 << Op0Shift, DF = 10 << Op0Shift,
-
- // XS, XD - These prefix codes are for single and double precision scalar
- // floating point operations performed in the SSE registers.
- XD = 11 << Op0Shift, XS = 12 << Op0Shift,
-
- // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
- T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
- A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
-
- // TF - Prefix before and after 0x0F
- TF = 17 << Op0Shift,
-
- //===------------------------------------------------------------------===//
- // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
- // They are used to specify GPRs and SSE registers, 64-bit operand size,
- // etc. We only cares about REX.W and REX.R bits and only the former is
- // statically determined.
- //
- REXShift = Op0Shift + 5,
- REX_W = 1 << REXShift,
-
- //===------------------------------------------------------------------===//
- // This three-bit field describes the size of an immediate operand. Zero is
- // unused so that we can tell if we forgot to set a value.
- ImmShift = REXShift + 1,
- ImmMask = 7 << ImmShift,
- Imm8 = 1 << ImmShift,
- Imm8PCRel = 2 << ImmShift,
- Imm16 = 3 << ImmShift,
- Imm16PCRel = 4 << ImmShift,
- Imm32 = 5 << ImmShift,
- Imm32PCRel = 6 << ImmShift,
- Imm64 = 7 << ImmShift,
-
- //===------------------------------------------------------------------===//
- // FP Instruction Classification... Zero is non-fp instruction.
-
- // FPTypeMask - Mask for all of the FP types...
- FPTypeShift = ImmShift + 3,
- FPTypeMask = 7 << FPTypeShift,
-
- // NotFP - The default, set for instructions that do not use FP registers.
- NotFP = 0 << FPTypeShift,
-
- // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
- ZeroArgFP = 1 << FPTypeShift,
-
- // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
- OneArgFP = 2 << FPTypeShift,
-
- // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
- // result back to ST(0). For example, fcos, fsqrt, etc.
- //
- OneArgFPRW = 3 << FPTypeShift,
-
- // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
- // explicit argument, storing the result to either ST(0) or the implicit
- // argument. For example: fadd, fsub, fmul, etc...
- TwoArgFP = 4 << FPTypeShift,
-
- // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
- // explicit argument, but have no destination. Example: fucom, fucomi, ...
- CompareFP = 5 << FPTypeShift,
-
- // CondMovFP - "2 operand" floating point conditional move instructions.
- CondMovFP = 6 << FPTypeShift,
-
- // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
- SpecialFP = 7 << FPTypeShift,
-
- // Lock prefix
- LOCKShift = FPTypeShift + 3,
- LOCK = 1 << LOCKShift,
-
- // Segment override prefixes. Currently we just need ability to address
- // stuff in gs and fs segments.
- SegOvrShift = LOCKShift + 1,
- SegOvrMask = 3 << SegOvrShift,
- FS = 1 << SegOvrShift,
- GS = 2 << SegOvrShift,
-
- // Execution domain for SSE instructions in bits 23, 24.
- // 0 in bits 23-24 means normal, non-SSE instruction.
- SSEDomainShift = SegOvrShift + 2,
-
- OpcodeShift = SSEDomainShift + 2,
-
- //===------------------------------------------------------------------===//
- /// VEX - The opcode prefix used by AVX instructions
- VEXShift = OpcodeShift + 8,
- VEX = 1U << 0,
-
- /// VEX_W - Has a opcode specific functionality, but is used in the same
- /// way as REX_W is for regular SSE instructions.
- VEX_W = 1U << 1,
-
- /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
- /// address instructions in SSE are represented as 3 address ones in AVX
- /// and the additional register is encoded in VEX_VVVV prefix.
- VEX_4V = 1U << 2,
-
- /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
- /// must be encoded in the i8 immediate field. This usually happens in
- /// instructions with 4 operands.
- VEX_I8IMM = 1U << 3,
-
- /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
- /// instruction uses 256-bit wide registers. This is usually auto detected
- /// if a VR256 register is used, but some AVX instructions also have this
- /// field marked when using a f256 memory references.
- VEX_L = 1U << 4,
-
- /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
- /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
- /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
- /// storing a classifier in the imm8 field. To simplify our implementation,
- /// we handle this by storeing the classifier in the opcode field and using
- /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
- Has3DNow0F0FOpcode = 1U << 5
- };
-
- // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
- // specified machine instruction.
- //
- static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
- return TSFlags >> X86II::OpcodeShift;
- }
-
- static inline bool hasImm(uint64_t TSFlags) {
- return (TSFlags & X86II::ImmMask) != 0;
- }
-
- /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
- /// of the specified instruction.
- static inline unsigned getSizeOfImm(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: assert(0 && "Unknown immediate size");
- case X86II::Imm8:
- case X86II::Imm8PCRel: return 1;
- case X86II::Imm16:
- case X86II::Imm16PCRel: return 2;
- case X86II::Imm32:
- case X86II::Imm32PCRel: return 4;
- case X86II::Imm64: return 8;
- }
- }
-
- /// isImmPCRel - Return true if the immediate of the specified instruction's
- /// TSFlags indicates that it is pc relative.
- static inline unsigned isImmPCRel(uint64_t TSFlags) {
- switch (TSFlags & X86II::ImmMask) {
- default: assert(0 && "Unknown immediate size");
- case X86II::Imm8PCRel:
- case X86II::Imm16PCRel:
- case X86II::Imm32PCRel:
- return true;
- case X86II::Imm8:
- case X86II::Imm16:
- case X86II::Imm32:
- case X86II::Imm64:
- return false;
- }
- }
-
- /// getMemoryOperandNo - The function returns the MCInst operand # for the
- /// first field of the memory operand. If the instruction doesn't have a
- /// memory operand, this returns -1.
- ///
- /// Note that this ignores tied operands. If there is a tied register which
- /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
- /// counted as one operand.
- ///
- static inline int getMemoryOperandNo(uint64_t TSFlags) {
- switch (TSFlags & X86II::FormMask) {
- case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
- default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
- case X86II::Pseudo:
- case X86II::RawFrm:
- case X86II::AddRegFrm:
- case X86II::MRMDestReg:
- case X86II::MRMSrcReg:
- case X86II::RawFrmImm8:
- case X86II::RawFrmImm16:
- return -1;
- case X86II::MRMDestMem:
- return 0;
- case X86II::MRMSrcMem: {
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- unsigned FirstMemOp = 1;
- if (HasVEX_4V)
- ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
-
- // FIXME: Maybe lea should have its own form? This is a horrible hack.
- //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
- // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
- return FirstMemOp;
- }
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- return -1;
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- return 0;
- case X86II::MRM_C1:
- case X86II::MRM_C2:
- case X86II::MRM_C3:
- case X86II::MRM_C4:
- case X86II::MRM_C8:
- case X86II::MRM_C9:
- case X86II::MRM_E8:
- case X86II::MRM_F0:
- case X86II::MRM_F8:
- case X86II::MRM_F9:
- case X86II::MRM_D0:
- case X86II::MRM_D1:
- return -1;
- }
- }
-}
-
inline static bool isScale(const MachineOperand &MO) {
return MO.isImm() &&
(MO.getImm() == 1 || MO.getImm() == 2 ||
@@ -829,20 +339,11 @@ public:
/// instruction that defines the specified register class.
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
- static bool isX86_64NonExtLowByteReg(unsigned reg) {
- return (reg == X86::SPL || reg == X86::BPL ||
- reg == X86::SIL || reg == X86::DIL);
- }
-
static bool isX86_64ExtendedReg(const MachineOperand &MO) {
if (!MO.isReg()) return false;
- return isX86_64ExtendedReg(MO.getReg());
+ return X86II::isX86_64ExtendedReg(MO.getReg());
}
- /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
- /// higher) register? e.g. r8, xmm8, xmm13, etc.
- static bool isX86_64ExtendedReg(unsigned RegNo);
-
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
diff --git a/lib/Target/X86/X86MCCodeEmitter.cpp b/lib/Target/X86/X86MCCodeEmitter.cpp
index 0ff375b..7a56e5c 100644
--- a/lib/Target/X86/X86MCCodeEmitter.cpp
+++ b/lib/Target/X86/X86MCCodeEmitter.cpp
@@ -12,12 +12,14 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mccodeemitter"
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86FixupKinds.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/raw_ostream.h"
@@ -153,6 +155,11 @@ static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
return MCFixup::getKindForSize(Size, isPCRel);
}
+namespace llvm {
+ // FIXME: TableGen this?
+ extern MCRegisterClass X86MCRegisterClasses[]; // In X86GenRegisterInfo.inc.
+}
+
/// Is32BitMemOperand - Return true if the specified instruction with a memory
/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
/// memory operand. Op specifies the operand # of the memoperand.
@@ -160,8 +167,10 @@ static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
- if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
return true;
return false;
}
@@ -506,7 +515,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
case X86II::MRMSrcMem:
case X86II::MRMSrcReg:
if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
CurOp++;
@@ -527,11 +536,11 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
for (; CurOp != NumOps; ++CurOp) {
const MCOperand &MO = MI.getOperand(CurOp);
- if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
VEX_B = 0x0;
if (!VEX_B && MO.isReg() &&
((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
- X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ X86II::isX86_64ExtendedReg(MO.getReg()))
VEX_X = 0x0;
}
break;
@@ -540,7 +549,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
break;
if (MI.getOperand(CurOp).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0;
if (HasVEX_4V)
@@ -550,7 +559,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
for (; CurOp != NumOps; ++CurOp) {
const MCOperand &MO = MI.getOperand(CurOp);
if (MO.isReg() && !HasVEX_4V &&
- X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ X86II::isX86_64ExtendedReg(MO.getReg()))
VEX_R = 0x0;
}
break;
@@ -606,7 +615,7 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
const MCOperand &MO = MI.getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
- if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
+ if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
// FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
// that returns non-zero.
REX |= 0x40; // REX fixed encoding prefix
@@ -617,25 +626,25 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
case X86II::MRMSrcReg:
if (MI.getOperand(0).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
REX |= 1 << 2; // set REX.R
i = isTwoAddr ? 2 : 1;
for (; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
- if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
REX |= 1 << 0; // set REX.B
}
break;
case X86II::MRMSrcMem: {
if (MI.getOperand(0).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
REX |= 1 << 2; // set REX.R
unsigned Bit = 0;
i = isTwoAddr ? 2 : 1;
for (; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Bit++;
}
@@ -650,13 +659,13 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
i = isTwoAddr ? 1 : 0;
if (NumOps > e && MI.getOperand(e).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
+ X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
REX |= 1 << 2; // set REX.R
unsigned Bit = 0;
for (; i != e; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Bit++;
}
@@ -665,12 +674,12 @@ static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
}
default:
if (MI.getOperand(0).isReg() &&
- X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
REX |= 1 << 0; // set REX.B
i = isTwoAddr ? 2 : 1;
for (unsigned e = NumOps; i != e; ++i) {
const MCOperand &MO = MI.getOperand(i);
- if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
REX |= 1 << 2; // set REX.R
}
break;
@@ -1009,7 +1018,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
const MCOperand &MO = MI.getOperand(CurOp++);
bool IsExtReg =
- X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
+ X86II::isX86_64ExtendedReg(MO.getReg());
unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
RegNum |= GetX86RegNum(MO) << 4;
EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
diff --git a/lib/Target/X86/X86MachObjectWriter.cpp b/lib/Target/X86/X86MachObjectWriter.cpp
index 3711038..11eff7f 100644
--- a/lib/Target/X86/X86MachObjectWriter.cpp
+++ b/lib/Target/X86/X86MachObjectWriter.cpp
@@ -8,7 +8,7 @@
//===----------------------------------------------------------------------===//
#include "X86.h"
-#include "X86FixupKinds.h"
+#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCAsmLayout.h"