aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2004-06-23 17:21:17 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2004-06-23 17:21:17 +0000
commit909db65e672be71239b482986333c3a7dcce2da4 (patch)
treec1d5b5e9ebcbed000286e091f9f671666af28995 /lib
parentc5b6705f04078aadb6c4c62725a4154a6915d763 (diff)
downloadexternal_llvm-909db65e672be71239b482986333c3a7dcce2da4.zip
external_llvm-909db65e672be71239b482986333c3a7dcce2da4.tar.gz
external_llvm-909db65e672be71239b482986333c3a7dcce2da4.tar.bz2
Moved to lib/VMCore
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14348 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/Transforms/Utils/Linker.cpp927
1 files changed, 0 insertions, 927 deletions
diff --git a/lib/Transforms/Utils/Linker.cpp b/lib/Transforms/Utils/Linker.cpp
deleted file mode 100644
index 00906a4..0000000
--- a/lib/Transforms/Utils/Linker.cpp
+++ /dev/null
@@ -1,927 +0,0 @@
-//===- Linker.cpp - Module Linker Implementation --------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the LLVM module linker.
-//
-// Specifically, this:
-// * Merges global variables between the two modules
-// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
-// * Merges functions between two modules
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/Linker.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/SymbolTable.h"
-#include "llvm/iOther.h"
-#include "llvm/Assembly/Writer.h"
-using namespace llvm;
-
-// Error - Simple wrapper function to conditionally assign to E and return true.
-// This just makes error return conditions a little bit simpler...
-//
-static inline bool Error(std::string *E, const std::string &Message) {
- if (E) *E = Message;
- return true;
-}
-
-//
-// Function: ResolveTypes()
-//
-// Description:
-// Attempt to link the two specified types together.
-//
-// Inputs:
-// DestTy - The type to which we wish to resolve.
-// SrcTy - The original type which we want to resolve.
-// Name - The name of the type.
-//
-// Outputs:
-// DestST - The symbol table in which the new type should be placed.
-//
-// Return value:
-// true - There is an error and the types cannot yet be linked.
-// false - No errors.
-//
-static bool ResolveTypes(const Type *DestTy, const Type *SrcTy,
- SymbolTable *DestST, const std::string &Name) {
- if (DestTy == SrcTy) return false; // If already equal, noop
-
- // Does the type already exist in the module?
- if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists...
- if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
- const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
- } else {
- return true; // Cannot link types... neither is opaque and not-equal
- }
- } else { // Type not in dest module. Add it now.
- if (DestTy) // Type _is_ in module, just opaque...
- const_cast<OpaqueType*>(cast<OpaqueType>(DestTy))
- ->refineAbstractTypeTo(SrcTy);
- else if (!Name.empty())
- DestST->insert(Name, const_cast<Type*>(SrcTy));
- }
- return false;
-}
-
-static const FunctionType *getFT(const PATypeHolder &TH) {
- return cast<FunctionType>(TH.get());
-}
-static const StructType *getST(const PATypeHolder &TH) {
- return cast<StructType>(TH.get());
-}
-
-// RecursiveResolveTypes - This is just like ResolveTypes, except that it
-// recurses down into derived types, merging the used types if the parent types
-// are compatible.
-//
-static bool RecursiveResolveTypesI(const PATypeHolder &DestTy,
- const PATypeHolder &SrcTy,
- SymbolTable *DestST, const std::string &Name,
- std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) {
- const Type *SrcTyT = SrcTy.get();
- const Type *DestTyT = DestTy.get();
- if (DestTyT == SrcTyT) return false; // If already equal, noop
-
- // If we found our opaque type, resolve it now!
- if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT))
- return ResolveTypes(DestTyT, SrcTyT, DestST, Name);
-
- // Two types cannot be resolved together if they are of different primitive
- // type. For example, we cannot resolve an int to a float.
- if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true;
-
- // Otherwise, resolve the used type used by this derived type...
- switch (DestTyT->getTypeID()) {
- case Type::FunctionTyID: {
- if (cast<FunctionType>(DestTyT)->isVarArg() !=
- cast<FunctionType>(SrcTyT)->isVarArg() ||
- cast<FunctionType>(DestTyT)->getNumContainedTypes() !=
- cast<FunctionType>(SrcTyT)->getNumContainedTypes())
- return true;
- for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i)
- if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i),
- getFT(SrcTy)->getContainedType(i), DestST, "",
- Pointers))
- return true;
- return false;
- }
- case Type::StructTyID: {
- if (getST(DestTy)->getNumContainedTypes() !=
- getST(SrcTy)->getNumContainedTypes()) return 1;
- for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i)
- if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i),
- getST(SrcTy)->getContainedType(i), DestST, "",
- Pointers))
- return true;
- return false;
- }
- case Type::ArrayTyID: {
- const ArrayType *DAT = cast<ArrayType>(DestTy.get());
- const ArrayType *SAT = cast<ArrayType>(SrcTy.get());
- if (DAT->getNumElements() != SAT->getNumElements()) return true;
- return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
- DestST, "", Pointers);
- }
- case Type::PointerTyID: {
- // If this is a pointer type, check to see if we have already seen it. If
- // so, we are in a recursive branch. Cut off the search now. We cannot use
- // an associative container for this search, because the type pointers (keys
- // in the container) change whenever types get resolved...
- //
- for (unsigned i = 0, e = Pointers.size(); i != e; ++i)
- if (Pointers[i].first == DestTy)
- return Pointers[i].second != SrcTy;
-
- // Otherwise, add the current pointers to the vector to stop recursion on
- // this pair.
- Pointers.push_back(std::make_pair(DestTyT, SrcTyT));
- bool Result =
- RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(),
- cast<PointerType>(SrcTy.get())->getElementType(),
- DestST, "", Pointers);
- Pointers.pop_back();
- return Result;
- }
- default: assert(0 && "Unexpected type!"); return true;
- }
-}
-
-static bool RecursiveResolveTypes(const PATypeHolder &DestTy,
- const PATypeHolder &SrcTy,
- SymbolTable *DestST, const std::string &Name){
- std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes;
- return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes);
-}
-
-
-// LinkTypes - Go through the symbol table of the Src module and see if any
-// types are named in the src module that are not named in the Dst module.
-// Make sure there are no type name conflicts.
-//
-static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
- SymbolTable *DestST = &Dest->getSymbolTable();
- const SymbolTable *SrcST = &Src->getSymbolTable();
-
- // Look for a type plane for Type's...
- SymbolTable::type_const_iterator TI = SrcST->type_begin();
- SymbolTable::type_const_iterator TE = SrcST->type_end();
- if (TI == TE) return false; // No named types, do nothing.
-
- // Some types cannot be resolved immediately because they depend on other
- // types being resolved to each other first. This contains a list of types we
- // are waiting to recheck.
- std::vector<std::string> DelayedTypesToResolve;
-
- for ( ; TI != TE; ++TI ) {
- const std::string &Name = TI->first;
- Type *RHS = TI->second;
-
- // Check to see if this type name is already in the dest module...
- Type *Entry = DestST->lookupType(Name);
-
- if (ResolveTypes(Entry, RHS, DestST, Name)) {
- // They look different, save the types 'till later to resolve.
- DelayedTypesToResolve.push_back(Name);
- }
- }
-
- // Iteratively resolve types while we can...
- while (!DelayedTypesToResolve.empty()) {
- // Loop over all of the types, attempting to resolve them if possible...
- unsigned OldSize = DelayedTypesToResolve.size();
-
- // Try direct resolution by name...
- for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
- const std::string &Name = DelayedTypesToResolve[i];
- Type *T1 = SrcST->lookupType(Name);
- Type *T2 = DestST->lookupType(Name);
- if (!ResolveTypes(T2, T1, DestST, Name)) {
- // We are making progress!
- DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
- --i;
- }
- }
-
- // Did we not eliminate any types?
- if (DelayedTypesToResolve.size() == OldSize) {
- // Attempt to resolve subelements of types. This allows us to merge these
- // two types: { int* } and { opaque* }
- for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
- const std::string &Name = DelayedTypesToResolve[i];
- PATypeHolder T1(SrcST->lookupType(Name));
- PATypeHolder T2(DestST->lookupType(Name));
-
- if (!RecursiveResolveTypes(T2, T1, DestST, Name)) {
- // We are making progress!
- DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
-
- // Go back to the main loop, perhaps we can resolve directly by name
- // now...
- break;
- }
- }
-
- // If we STILL cannot resolve the types, then there is something wrong.
- // Report the warning and delete one of the names.
- if (DelayedTypesToResolve.size() == OldSize) {
- const std::string &Name = DelayedTypesToResolve.back();
-
- const Type *T1 = SrcST->lookupType(Name);
- const Type *T2 = DestST->lookupType(Name);
- std::cerr << "WARNING: Type conflict between types named '" << Name
- << "'.\n Src='";
- WriteTypeSymbolic(std::cerr, T1, Src);
- std::cerr << "'.\n Dest='";
- WriteTypeSymbolic(std::cerr, T2, Dest);
- std::cerr << "'\n";
-
- // Remove the symbol name from the destination.
- DelayedTypesToResolve.pop_back();
- }
- }
- }
-
-
- return false;
-}
-
-static void PrintMap(const std::map<const Value*, Value*> &M) {
- for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
- I != E; ++I) {
- std::cerr << " Fr: " << (void*)I->first << " ";
- I->first->dump();
- std::cerr << " To: " << (void*)I->second << " ";
- I->second->dump();
- std::cerr << "\n";
- }
-}
-
-
-// RemapOperand - Use LocalMap and GlobalMap to convert references from one
-// module to another. This is somewhat sophisticated in that it can
-// automatically handle constant references correctly as well...
-//
-static Value *RemapOperand(const Value *In,
- std::map<const Value*, Value*> &LocalMap,
- std::map<const Value*, Value*> *GlobalMap) {
- std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In);
- if (I != LocalMap.end()) return I->second;
-
- if (GlobalMap) {
- I = GlobalMap->find(In);
- if (I != GlobalMap->end()) return I->second;
- }
-
- // Check to see if it's a constant that we are interesting in transforming...
- if (const Constant *CPV = dyn_cast<Constant>(In)) {
- if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
- isa<ConstantAggregateZero>(CPV))
- return const_cast<Constant*>(CPV); // Simple constants stay identical...
-
- Constant *Result = 0;
-
- if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
- const std::vector<Use> &Ops = CPA->getValues();
- std::vector<Constant*> Operands(Ops.size());
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- Operands[i] =
- cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
- Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
- } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
- const std::vector<Use> &Ops = CPS->getValues();
- std::vector<Constant*> Operands(Ops.size());
- for (unsigned i = 0; i < Ops.size(); ++i)
- Operands[i] =
- cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
- Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
- } else if (isa<ConstantPointerNull>(CPV)) {
- Result = const_cast<Constant*>(CPV);
- } else if (const ConstantPointerRef *CPR =
- dyn_cast<ConstantPointerRef>(CPV)) {
- Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
- Result = ConstantPointerRef::get(cast<GlobalValue>(V));
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
- std::vector<Constant*> Indices;
- Indices.reserve(CE->getNumOperands()-1);
- for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
- Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),
- LocalMap, GlobalMap)));
-
- Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices);
- } else if (CE->getNumOperands() == 1) {
- // Cast instruction
- assert(CE->getOpcode() == Instruction::Cast);
- Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
- Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType());
- } else if (CE->getNumOperands() == 3) {
- // Select instruction
- assert(CE->getOpcode() == Instruction::Select);
- Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
- Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
- Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap);
- Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2),
- cast<Constant>(V3));
- } else if (CE->getNumOperands() == 2) {
- // Binary operator...
- Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap);
- Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap);
-
- Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1),
- cast<Constant>(V2));
- } else {
- assert(0 && "Unknown constant expr type!");
- }
-
- } else {
- assert(0 && "Unknown type of derived type constant value!");
- }
-
- // Cache the mapping in our local map structure...
- if (GlobalMap)
- GlobalMap->insert(std::make_pair(In, Result));
- else
- LocalMap.insert(std::make_pair(In, Result));
- return Result;
- }
-
- std::cerr << "XXX LocalMap: \n";
- PrintMap(LocalMap);
-
- if (GlobalMap) {
- std::cerr << "XXX GlobalMap: \n";
- PrintMap(*GlobalMap);
- }
-
- std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
- assert(0 && "Couldn't remap value!");
- return 0;
-}
-
-/// FindGlobalNamed - Look in the specified symbol table for a global with the
-/// specified name and type. If an exactly matching global does not exist, see
-/// if there is a global which is "type compatible" with the specified
-/// name/type. This allows us to resolve things like '%x = global int*' with
-/// '%x = global opaque*'.
-///
-static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
- SymbolTable *ST) {
- // See if an exact match exists in the symbol table...
- if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V);
-
- // It doesn't exist exactly, scan through all of the type planes in the symbol
- // table, checking each of them for a type-compatible version.
- //
- for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end();
- PI != PE; ++PI) {
- SymbolTable::ValueMap &VM = PI->second;
-
- // Does this type plane contain an entry with the specified name?
- SymbolTable::value_iterator VI = VM.find(Name);
- if (VI != VM.end()) {
- //
- // Ensure that this type if placed correctly into the symbol table.
- //
- assert(VI->second->getType() == PI->first && "Type conflict!");
-
- //
- // Save a reference to the new type. Resolving the type can modify the
- // symbol table, invalidating the TI variable.
- //
- Value *ValPtr = VI->second;
-
- //
- // Determine whether we can fold the two types together, resolving them.
- // If so, we can use this value.
- //
- if (!RecursiveResolveTypes(Ty, PI->first, ST, ""))
- return cast<GlobalValue>(ValPtr);
- }
- }
- return 0; // Otherwise, nothing could be found.
-}
-
-
-// LinkGlobals - Loop through the global variables in the src module and merge
-// them into the dest module.
-//
-static bool LinkGlobals(Module *Dest, const Module *Src,
- std::map<const Value*, Value*> &ValueMap,
- std::multimap<std::string, GlobalVariable *> &AppendingVars,
- std::string *Err) {
- // We will need a module level symbol table if the src module has a module
- // level symbol table...
- SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
-
- // Loop over all of the globals in the src module, mapping them over as we go
- //
- for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
- const GlobalVariable *SGV = I;
- GlobalVariable *DGV = 0;
- if (SGV->hasName()) {
- // A same named thing is a global variable, because the only two things
- // that may be in a module level symbol table are Global Vars and
- // Functions, and they both have distinct, nonoverlapping, possible types.
- //
- DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(),
- SGV->getType(), ST));
- }
-
- assert(SGV->hasInitializer() || SGV->hasExternalLinkage() &&
- "Global must either be external or have an initializer!");
-
- bool SGExtern = SGV->isExternal();
- bool DGExtern = DGV ? DGV->isExternal() : false;
-
- if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) {
- // No linking to be performed, simply create an identical version of the
- // symbol over in the dest module... the initializer will be filled in
- // later by LinkGlobalInits...
- //
- GlobalVariable *NewDGV =
- new GlobalVariable(SGV->getType()->getElementType(),
- SGV->isConstant(), SGV->getLinkage(), /*init*/0,
- SGV->getName(), Dest);
-
- // If the LLVM runtime renamed the global, but it is an externally visible
- // symbol, DGV must be an existing global with internal linkage. Rename
- // it.
- if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){
- assert(DGV && DGV->getName() == SGV->getName() &&
- DGV->hasInternalLinkage());
- DGV->setName("");
- NewDGV->setName(SGV->getName()); // Force the name back
- DGV->setName(SGV->getName()); // This will cause a renaming
- assert(NewDGV->getName() == SGV->getName() &&
- DGV->getName() != SGV->getName());
- }
-
- // Make sure to remember this mapping...
- ValueMap.insert(std::make_pair(SGV, NewDGV));
- if (SGV->hasAppendingLinkage())
- // Keep track that this is an appending variable...
- AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
-
- } else if (SGV->isExternal()) {
- // If SGV is external or if both SGV & DGV are external.. Just link the
- // external globals, we aren't adding anything.
- ValueMap.insert(std::make_pair(SGV, DGV));
-
- } else if (DGV->isExternal()) { // If DGV is external but SGV is not...
- ValueMap.insert(std::make_pair(SGV, DGV));
- DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
- } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) {
- // At this point we know that DGV has LinkOnce, Appending, Weak, or
- // External linkage. If DGV is Appending, this is an error.
- if (DGV->hasAppendingLinkage())
- return Error(Err, "Linking globals named '" + SGV->getName() +
- " ' with 'weak' and 'appending' linkage is not allowed!");
-
- if (SGV->isConstant() != DGV->isConstant())
- return Error(Err, "Global Variable Collision on '" +
- SGV->getType()->getDescription() + " %" + SGV->getName() +
- "' - Global variables differ in const'ness");
-
- // Otherwise, just perform the link.
- ValueMap.insert(std::make_pair(SGV, DGV));
-
- // Linkonce+Weak = Weak
- if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage())
- DGV->setLinkage(SGV->getLinkage());
-
- } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) {
- // At this point we know that SGV has LinkOnce, Appending, or External
- // linkage. If SGV is Appending, this is an error.
- if (SGV->hasAppendingLinkage())
- return Error(Err, "Linking globals named '" + SGV->getName() +
- " ' with 'weak' and 'appending' linkage is not allowed!");
-
- if (SGV->isConstant() != DGV->isConstant())
- return Error(Err, "Global Variable Collision on '" +
- SGV->getType()->getDescription() + " %" + SGV->getName() +
- "' - Global variables differ in const'ness");
-
- if (!SGV->hasLinkOnceLinkage())
- DGV->setLinkage(SGV->getLinkage()); // Inherit linkage!
- ValueMap.insert(std::make_pair(SGV, DGV));
-
- } else if (SGV->getLinkage() != DGV->getLinkage()) {
- return Error(Err, "Global variables named '" + SGV->getName() +
- "' have different linkage specifiers!");
- } else if (SGV->hasExternalLinkage()) {
- // Allow linking two exactly identical external global variables...
- if (SGV->isConstant() != DGV->isConstant())
- return Error(Err, "Global Variable Collision on '" +
- SGV->getType()->getDescription() + " %" + SGV->getName() +
- "' - Global variables differ in const'ness");
-
- if (SGV->getInitializer() != DGV->getInitializer())
- return Error(Err, "Global Variable Collision on '" +
- SGV->getType()->getDescription() + " %" + SGV->getName() +
- "' - External linkage globals have different initializers");
-
- ValueMap.insert(std::make_pair(SGV, DGV));
- } else if (SGV->hasAppendingLinkage()) {
- // No linking is performed yet. Just insert a new copy of the global, and
- // keep track of the fact that it is an appending variable in the
- // AppendingVars map. The name is cleared out so that no linkage is
- // performed.
- GlobalVariable *NewDGV =
- new GlobalVariable(SGV->getType()->getElementType(),
- SGV->isConstant(), SGV->getLinkage(), /*init*/0,
- "", Dest);
-
- // Make sure to remember this mapping...
- ValueMap.insert(std::make_pair(SGV, NewDGV));
-
- // Keep track that this is an appending variable...
- AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
- } else {
- assert(0 && "Unknown linkage!");
- }
- }
- return false;
-}
-
-
-// LinkGlobalInits - Update the initializers in the Dest module now that all
-// globals that may be referenced are in Dest.
-//
-static bool LinkGlobalInits(Module *Dest, const Module *Src,
- std::map<const Value*, Value*> &ValueMap,
- std::string *Err) {
-
- // Loop over all of the globals in the src module, mapping them over as we go
- //
- for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
- const GlobalVariable *SGV = I;
-
- if (SGV->hasInitializer()) { // Only process initialized GV's
- // Figure out what the initializer looks like in the dest module...
- Constant *SInit =
- cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0));
-
- GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]);
- if (DGV->hasInitializer()) {
- if (SGV->hasExternalLinkage()) {
- if (DGV->getInitializer() != SInit)
- return Error(Err, "Global Variable Collision on '" +
- SGV->getType()->getDescription() +"':%"+SGV->getName()+
- " - Global variables have different initializers");
- } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) {
- // Nothing is required, mapped values will take the new global
- // automatically.
- } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) {
- // Nothing is required, mapped values will take the new global
- // automatically.
- } else if (DGV->hasAppendingLinkage()) {
- assert(0 && "Appending linkage unimplemented!");
- } else {
- assert(0 && "Unknown linkage!");
- }
- } else {
- // Copy the initializer over now...
- DGV->setInitializer(SInit);
- }
- }
- }
- return false;
-}
-
-// LinkFunctionProtos - Link the functions together between the two modules,
-// without doing function bodies... this just adds external function prototypes
-// to the Dest function...
-//
-static bool LinkFunctionProtos(Module *Dest, const Module *Src,
- std::map<const Value*, Value*> &ValueMap,
- std::string *Err) {
- SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable();
-
- // Loop over all of the functions in the src module, mapping them over as we
- // go
- //
- for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
- const Function *SF = I; // SrcFunction
- Function *DF = 0;
- if (SF->hasName())
- // The same named thing is a Function, because the only two things
- // that may be in a module level symbol table are Global Vars and
- // Functions, and they both have distinct, nonoverlapping, possible types.
- //
- DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(),
- ST));
-
- if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) {
- // Function does not already exist, simply insert an function signature
- // identical to SF into the dest module...
- Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(),
- SF->getName(), Dest);
-
- // If the LLVM runtime renamed the function, but it is an externally
- // visible symbol, DF must be an existing function with internal linkage.
- // Rename it.
- if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) {
- assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage());
- DF->setName("");
- NewDF->setName(SF->getName()); // Force the name back
- DF->setName(SF->getName()); // This will cause a renaming
- assert(NewDF->getName() == SF->getName() &&
- DF->getName() != SF->getName());
- }
-
- // ... and remember this mapping...
- ValueMap.insert(std::make_pair(SF, NewDF));
- } else if (SF->isExternal()) {
- // If SF is external or if both SF & DF are external.. Just link the
- // external functions, we aren't adding anything.
- ValueMap.insert(std::make_pair(SF, DF));
- } else if (DF->isExternal()) { // If DF is external but SF is not...
- // Link the external functions, update linkage qualifiers
- ValueMap.insert(std::make_pair(SF, DF));
- DF->setLinkage(SF->getLinkage());
-
- } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) {
- // At this point we know that DF has LinkOnce, Weak, or External linkage.
- ValueMap.insert(std::make_pair(SF, DF));
-
- // Linkonce+Weak = Weak
- if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage())
- DF->setLinkage(SF->getLinkage());
-
- } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) {
- // At this point we know that SF has LinkOnce or External linkage.
- ValueMap.insert(std::make_pair(SF, DF));
- if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage
- DF->setLinkage(SF->getLinkage());
-
- } else if (SF->getLinkage() != DF->getLinkage()) {
- return Error(Err, "Functions named '" + SF->getName() +
- "' have different linkage specifiers!");
- } else if (SF->hasExternalLinkage()) {
- // The function is defined in both modules!!
- return Error(Err, "Function '" +
- SF->getFunctionType()->getDescription() + "':\"" +
- SF->getName() + "\" - Function is already defined!");
- } else {
- assert(0 && "Unknown linkage configuration found!");
- }
- }
- return false;
-}
-
-// LinkFunctionBody - Copy the source function over into the dest function and
-// fix up references to values. At this point we know that Dest is an external
-// function, and that Src is not.
-//
-static bool LinkFunctionBody(Function *Dest, const Function *Src,
- std::map<const Value*, Value*> &GlobalMap,
- std::string *Err) {
- assert(Src && Dest && Dest->isExternal() && !Src->isExternal());
- std::map<const Value*, Value*> LocalMap; // Map for function local values
-
- // Go through and convert function arguments over...
- Function::aiterator DI = Dest->abegin();
- for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
- I != E; ++I, ++DI) {
- DI->setName(I->getName()); // Copy the name information over...
-
- // Add a mapping to our local map
- LocalMap.insert(std::make_pair(I, DI));
- }
-
- // Loop over all of the basic blocks, copying the instructions over...
- //
- for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
- // Create new basic block and add to mapping and the Dest function...
- BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
- LocalMap.insert(std::make_pair(I, DBB));
-
- // Loop over all of the instructions in the src basic block, copying them
- // over. Note that this is broken in a strict sense because the cloned
- // instructions will still be referencing values in the Src module, not
- // the remapped values. In our case, however, we will not get caught and
- // so we can delay patching the values up until later...
- //
- for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
- II != IE; ++II) {
- Instruction *DI = II->clone();
- DI->setName(II->getName());
- DBB->getInstList().push_back(DI);
- LocalMap.insert(std::make_pair(II, DI));
- }
- }
-
- // At this point, all of the instructions and values of the function are now
- // copied over. The only problem is that they are still referencing values in
- // the Source function as operands. Loop through all of the operands of the
- // functions and patch them up to point to the local versions...
- //
- for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
- OI != OE; ++OI)
- *OI = RemapOperand(*OI, LocalMap, &GlobalMap);
-
- return false;
-}
-
-
-// LinkFunctionBodies - Link in the function bodies that are defined in the
-// source module into the DestModule. This consists basically of copying the
-// function over and fixing up references to values.
-//
-static bool LinkFunctionBodies(Module *Dest, const Module *Src,
- std::map<const Value*, Value*> &ValueMap,
- std::string *Err) {
-
- // Loop over all of the functions in the src module, mapping them over as we
- // go
- //
- for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
- if (!SF->isExternal()) { // No body if function is external
- Function *DF = cast<Function>(ValueMap[SF]); // Destination function
-
- // DF not external SF external?
- if (DF->isExternal()) {
- // Only provide the function body if there isn't one already.
- if (LinkFunctionBody(DF, SF, ValueMap, Err))
- return true;
- }
- }
- }
- return false;
-}
-
-// LinkAppendingVars - If there were any appending global variables, link them
-// together now. Return true on error.
-//
-static bool LinkAppendingVars(Module *M,
- std::multimap<std::string, GlobalVariable *> &AppendingVars,
- std::string *ErrorMsg) {
- if (AppendingVars.empty()) return false; // Nothing to do.
-
- // Loop over the multimap of appending vars, processing any variables with the
- // same name, forming a new appending global variable with both of the
- // initializers merged together, then rewrite references to the old variables
- // and delete them.
- //
- std::vector<Constant*> Inits;
- while (AppendingVars.size() > 1) {
- // Get the first two elements in the map...
- std::multimap<std::string,
- GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
-
- // If the first two elements are for different names, there is no pair...
- // Otherwise there is a pair, so link them together...
- if (First->first == Second->first) {
- GlobalVariable *G1 = First->second, *G2 = Second->second;
- const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
- const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
-
- // Check to see that they two arrays agree on type...
- if (T1->getElementType() != T2->getElementType())
- return Error(ErrorMsg,
- "Appending variables with different element types need to be linked!");
- if (G1->isConstant() != G2->isConstant())
- return Error(ErrorMsg,
- "Appending variables linked with different const'ness!");
-
- unsigned NewSize = T1->getNumElements() + T2->getNumElements();
- ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize);
-
- // Create the new global variable...
- GlobalVariable *NG =
- new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(),
- /*init*/0, First->first, M);
-
- // Merge the initializer...
- Inits.reserve(NewSize);
- if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
- for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
- Inits.push_back(cast<Constant>(I->getValues()[i]));
- } else {
- assert(isa<ConstantAggregateZero>(G1->getInitializer()));
- Constant *CV = Constant::getNullValue(T1->getElementType());
- for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
- Inits.push_back(CV);
- }
- if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
- for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
- Inits.push_back(cast<Constant>(I->getValues()[i]));
- } else {
- assert(isa<ConstantAggregateZero>(G2->getInitializer()));
- Constant *CV = Constant::getNullValue(T2->getElementType());
- for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
- Inits.push_back(CV);
- }
- NG->setInitializer(ConstantArray::get(NewType, Inits));
- Inits.clear();
-
- // Replace any uses of the two global variables with uses of the new
- // global...
-
- // FIXME: This should rewrite simple/straight-forward uses such as
- // getelementptr instructions to not use the Cast!
- ConstantPointerRef *NGCP = ConstantPointerRef::get(NG);
- G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType()));
- G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType()));
-
- // Remove the two globals from the module now...
- M->getGlobalList().erase(G1);
- M->getGlobalList().erase(G2);
-
- // Put the new global into the AppendingVars map so that we can handle
- // linking of more than two vars...
- Second->second = NG;
- }
- AppendingVars.erase(First);
- }
-
- return false;
-}
-
-
-// LinkModules - This function links two modules together, with the resulting
-// left module modified to be the composite of the two input modules. If an
-// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
-// the problem. Upon failure, the Dest module could be in a modified state, and
-// shouldn't be relied on to be consistent.
-//
-bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) {
- if (Dest->getEndianness() == Module::AnyEndianness)
- Dest->setEndianness(Src->getEndianness());
- if (Dest->getPointerSize() == Module::AnyPointerSize)
- Dest->setPointerSize(Src->getPointerSize());
-
- if (Src->getEndianness() != Module::AnyEndianness &&
- Dest->getEndianness() != Src->getEndianness())
- std::cerr << "WARNING: Linking two modules of different endianness!\n";
- if (Src->getPointerSize() != Module::AnyPointerSize &&
- Dest->getPointerSize() != Src->getPointerSize())
- std::cerr << "WARNING: Linking two modules of different pointer size!\n";
-
- // LinkTypes - Go through the symbol table of the Src module and see if any
- // types are named in the src module that are not named in the Dst module.
- // Make sure there are no type name conflicts.
- //
- if (LinkTypes(Dest, Src, ErrorMsg)) return true;
-
- // ValueMap - Mapping of values from what they used to be in Src, to what they
- // are now in Dest.
- //
- std::map<const Value*, Value*> ValueMap;
-
- // AppendingVars - Keep track of global variables in the destination module
- // with appending linkage. After the module is linked together, they are
- // appended and the module is rewritten.
- //
- std::multimap<std::string, GlobalVariable *> AppendingVars;
-
- // Add all of the appending globals already in the Dest module to
- // AppendingVars.
- for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I)
- if (I->hasAppendingLinkage())
- AppendingVars.insert(std::make_pair(I->getName(), I));
-
- // Insert all of the globals in src into the Dest module... without linking
- // initializers (which could refer to functions not yet mapped over).
- //
- if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true;
-
- // Link the functions together between the two modules, without doing function
- // bodies... this just adds external function prototypes to the Dest
- // function... We do this so that when we begin processing function bodies,
- // all of the global values that may be referenced are available in our
- // ValueMap.
- //
- if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true;
-
- // Update the initializers in the Dest module now that all globals that may
- // be referenced are in Dest.
- //
- if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
-
- // Link in the function bodies that are defined in the source module into the
- // DestModule. This consists basically of copying the function over and
- // fixing up references to values.
- //
- if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
-
- // If there were any appending global variables, link them together now.
- //
- if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
-
- return false;
-}
-
-// vim: sw=2