diff options
author | Misha Brukman <brukman+llvm@gmail.com> | 2004-06-23 17:21:17 +0000 |
---|---|---|
committer | Misha Brukman <brukman+llvm@gmail.com> | 2004-06-23 17:21:17 +0000 |
commit | 909db65e672be71239b482986333c3a7dcce2da4 (patch) | |
tree | c1d5b5e9ebcbed000286e091f9f671666af28995 /lib | |
parent | c5b6705f04078aadb6c4c62725a4154a6915d763 (diff) | |
download | external_llvm-909db65e672be71239b482986333c3a7dcce2da4.zip external_llvm-909db65e672be71239b482986333c3a7dcce2da4.tar.gz external_llvm-909db65e672be71239b482986333c3a7dcce2da4.tar.bz2 |
Moved to lib/VMCore
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14348 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Transforms/Utils/Linker.cpp | 927 |
1 files changed, 0 insertions, 927 deletions
diff --git a/lib/Transforms/Utils/Linker.cpp b/lib/Transforms/Utils/Linker.cpp deleted file mode 100644 index 00906a4..0000000 --- a/lib/Transforms/Utils/Linker.cpp +++ /dev/null @@ -1,927 +0,0 @@ -//===- Linker.cpp - Module Linker Implementation --------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the LLVM module linker. -// -// Specifically, this: -// * Merges global variables between the two modules -// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if != -// * Merges functions between two modules -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Utils/Linker.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/SymbolTable.h" -#include "llvm/iOther.h" -#include "llvm/Assembly/Writer.h" -using namespace llvm; - -// Error - Simple wrapper function to conditionally assign to E and return true. -// This just makes error return conditions a little bit simpler... -// -static inline bool Error(std::string *E, const std::string &Message) { - if (E) *E = Message; - return true; -} - -// -// Function: ResolveTypes() -// -// Description: -// Attempt to link the two specified types together. -// -// Inputs: -// DestTy - The type to which we wish to resolve. -// SrcTy - The original type which we want to resolve. -// Name - The name of the type. -// -// Outputs: -// DestST - The symbol table in which the new type should be placed. -// -// Return value: -// true - There is an error and the types cannot yet be linked. -// false - No errors. -// -static bool ResolveTypes(const Type *DestTy, const Type *SrcTy, - SymbolTable *DestST, const std::string &Name) { - if (DestTy == SrcTy) return false; // If already equal, noop - - // Does the type already exist in the module? - if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists... - if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) { - const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy); - } else { - return true; // Cannot link types... neither is opaque and not-equal - } - } else { // Type not in dest module. Add it now. - if (DestTy) // Type _is_ in module, just opaque... - const_cast<OpaqueType*>(cast<OpaqueType>(DestTy)) - ->refineAbstractTypeTo(SrcTy); - else if (!Name.empty()) - DestST->insert(Name, const_cast<Type*>(SrcTy)); - } - return false; -} - -static const FunctionType *getFT(const PATypeHolder &TH) { - return cast<FunctionType>(TH.get()); -} -static const StructType *getST(const PATypeHolder &TH) { - return cast<StructType>(TH.get()); -} - -// RecursiveResolveTypes - This is just like ResolveTypes, except that it -// recurses down into derived types, merging the used types if the parent types -// are compatible. -// -static bool RecursiveResolveTypesI(const PATypeHolder &DestTy, - const PATypeHolder &SrcTy, - SymbolTable *DestST, const std::string &Name, - std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) { - const Type *SrcTyT = SrcTy.get(); - const Type *DestTyT = DestTy.get(); - if (DestTyT == SrcTyT) return false; // If already equal, noop - - // If we found our opaque type, resolve it now! - if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT)) - return ResolveTypes(DestTyT, SrcTyT, DestST, Name); - - // Two types cannot be resolved together if they are of different primitive - // type. For example, we cannot resolve an int to a float. - if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true; - - // Otherwise, resolve the used type used by this derived type... - switch (DestTyT->getTypeID()) { - case Type::FunctionTyID: { - if (cast<FunctionType>(DestTyT)->isVarArg() != - cast<FunctionType>(SrcTyT)->isVarArg() || - cast<FunctionType>(DestTyT)->getNumContainedTypes() != - cast<FunctionType>(SrcTyT)->getNumContainedTypes()) - return true; - for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i) - if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i), - getFT(SrcTy)->getContainedType(i), DestST, "", - Pointers)) - return true; - return false; - } - case Type::StructTyID: { - if (getST(DestTy)->getNumContainedTypes() != - getST(SrcTy)->getNumContainedTypes()) return 1; - for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i) - if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i), - getST(SrcTy)->getContainedType(i), DestST, "", - Pointers)) - return true; - return false; - } - case Type::ArrayTyID: { - const ArrayType *DAT = cast<ArrayType>(DestTy.get()); - const ArrayType *SAT = cast<ArrayType>(SrcTy.get()); - if (DAT->getNumElements() != SAT->getNumElements()) return true; - return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(), - DestST, "", Pointers); - } - case Type::PointerTyID: { - // If this is a pointer type, check to see if we have already seen it. If - // so, we are in a recursive branch. Cut off the search now. We cannot use - // an associative container for this search, because the type pointers (keys - // in the container) change whenever types get resolved... - // - for (unsigned i = 0, e = Pointers.size(); i != e; ++i) - if (Pointers[i].first == DestTy) - return Pointers[i].second != SrcTy; - - // Otherwise, add the current pointers to the vector to stop recursion on - // this pair. - Pointers.push_back(std::make_pair(DestTyT, SrcTyT)); - bool Result = - RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(), - cast<PointerType>(SrcTy.get())->getElementType(), - DestST, "", Pointers); - Pointers.pop_back(); - return Result; - } - default: assert(0 && "Unexpected type!"); return true; - } -} - -static bool RecursiveResolveTypes(const PATypeHolder &DestTy, - const PATypeHolder &SrcTy, - SymbolTable *DestST, const std::string &Name){ - std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes; - return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes); -} - - -// LinkTypes - Go through the symbol table of the Src module and see if any -// types are named in the src module that are not named in the Dst module. -// Make sure there are no type name conflicts. -// -static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { - SymbolTable *DestST = &Dest->getSymbolTable(); - const SymbolTable *SrcST = &Src->getSymbolTable(); - - // Look for a type plane for Type's... - SymbolTable::type_const_iterator TI = SrcST->type_begin(); - SymbolTable::type_const_iterator TE = SrcST->type_end(); - if (TI == TE) return false; // No named types, do nothing. - - // Some types cannot be resolved immediately because they depend on other - // types being resolved to each other first. This contains a list of types we - // are waiting to recheck. - std::vector<std::string> DelayedTypesToResolve; - - for ( ; TI != TE; ++TI ) { - const std::string &Name = TI->first; - Type *RHS = TI->second; - - // Check to see if this type name is already in the dest module... - Type *Entry = DestST->lookupType(Name); - - if (ResolveTypes(Entry, RHS, DestST, Name)) { - // They look different, save the types 'till later to resolve. - DelayedTypesToResolve.push_back(Name); - } - } - - // Iteratively resolve types while we can... - while (!DelayedTypesToResolve.empty()) { - // Loop over all of the types, attempting to resolve them if possible... - unsigned OldSize = DelayedTypesToResolve.size(); - - // Try direct resolution by name... - for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) { - const std::string &Name = DelayedTypesToResolve[i]; - Type *T1 = SrcST->lookupType(Name); - Type *T2 = DestST->lookupType(Name); - if (!ResolveTypes(T2, T1, DestST, Name)) { - // We are making progress! - DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); - --i; - } - } - - // Did we not eliminate any types? - if (DelayedTypesToResolve.size() == OldSize) { - // Attempt to resolve subelements of types. This allows us to merge these - // two types: { int* } and { opaque* } - for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { - const std::string &Name = DelayedTypesToResolve[i]; - PATypeHolder T1(SrcST->lookupType(Name)); - PATypeHolder T2(DestST->lookupType(Name)); - - if (!RecursiveResolveTypes(T2, T1, DestST, Name)) { - // We are making progress! - DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); - - // Go back to the main loop, perhaps we can resolve directly by name - // now... - break; - } - } - - // If we STILL cannot resolve the types, then there is something wrong. - // Report the warning and delete one of the names. - if (DelayedTypesToResolve.size() == OldSize) { - const std::string &Name = DelayedTypesToResolve.back(); - - const Type *T1 = SrcST->lookupType(Name); - const Type *T2 = DestST->lookupType(Name); - std::cerr << "WARNING: Type conflict between types named '" << Name - << "'.\n Src='"; - WriteTypeSymbolic(std::cerr, T1, Src); - std::cerr << "'.\n Dest='"; - WriteTypeSymbolic(std::cerr, T2, Dest); - std::cerr << "'\n"; - - // Remove the symbol name from the destination. - DelayedTypesToResolve.pop_back(); - } - } - } - - - return false; -} - -static void PrintMap(const std::map<const Value*, Value*> &M) { - for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end(); - I != E; ++I) { - std::cerr << " Fr: " << (void*)I->first << " "; - I->first->dump(); - std::cerr << " To: " << (void*)I->second << " "; - I->second->dump(); - std::cerr << "\n"; - } -} - - -// RemapOperand - Use LocalMap and GlobalMap to convert references from one -// module to another. This is somewhat sophisticated in that it can -// automatically handle constant references correctly as well... -// -static Value *RemapOperand(const Value *In, - std::map<const Value*, Value*> &LocalMap, - std::map<const Value*, Value*> *GlobalMap) { - std::map<const Value*,Value*>::const_iterator I = LocalMap.find(In); - if (I != LocalMap.end()) return I->second; - - if (GlobalMap) { - I = GlobalMap->find(In); - if (I != GlobalMap->end()) return I->second; - } - - // Check to see if it's a constant that we are interesting in transforming... - if (const Constant *CPV = dyn_cast<Constant>(In)) { - if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) || - isa<ConstantAggregateZero>(CPV)) - return const_cast<Constant*>(CPV); // Simple constants stay identical... - - Constant *Result = 0; - - if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) { - const std::vector<Use> &Ops = CPA->getValues(); - std::vector<Constant*> Operands(Ops.size()); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - Operands[i] = - cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap)); - Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands); - } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) { - const std::vector<Use> &Ops = CPS->getValues(); - std::vector<Constant*> Operands(Ops.size()); - for (unsigned i = 0; i < Ops.size(); ++i) - Operands[i] = - cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap)); - Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands); - } else if (isa<ConstantPointerNull>(CPV)) { - Result = const_cast<Constant*>(CPV); - } else if (const ConstantPointerRef *CPR = - dyn_cast<ConstantPointerRef>(CPV)) { - Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap); - Result = ConstantPointerRef::get(cast<GlobalValue>(V)); - } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - if (CE->getOpcode() == Instruction::GetElementPtr) { - Value *Ptr = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); - std::vector<Constant*> Indices; - Indices.reserve(CE->getNumOperands()-1); - for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) - Indices.push_back(cast<Constant>(RemapOperand(CE->getOperand(i), - LocalMap, GlobalMap))); - - Result = ConstantExpr::getGetElementPtr(cast<Constant>(Ptr), Indices); - } else if (CE->getNumOperands() == 1) { - // Cast instruction - assert(CE->getOpcode() == Instruction::Cast); - Value *V = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); - Result = ConstantExpr::getCast(cast<Constant>(V), CE->getType()); - } else if (CE->getNumOperands() == 3) { - // Select instruction - assert(CE->getOpcode() == Instruction::Select); - Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); - Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap); - Value *V3 = RemapOperand(CE->getOperand(2), LocalMap, GlobalMap); - Result = ConstantExpr::getSelect(cast<Constant>(V1), cast<Constant>(V2), - cast<Constant>(V3)); - } else if (CE->getNumOperands() == 2) { - // Binary operator... - Value *V1 = RemapOperand(CE->getOperand(0), LocalMap, GlobalMap); - Value *V2 = RemapOperand(CE->getOperand(1), LocalMap, GlobalMap); - - Result = ConstantExpr::get(CE->getOpcode(), cast<Constant>(V1), - cast<Constant>(V2)); - } else { - assert(0 && "Unknown constant expr type!"); - } - - } else { - assert(0 && "Unknown type of derived type constant value!"); - } - - // Cache the mapping in our local map structure... - if (GlobalMap) - GlobalMap->insert(std::make_pair(In, Result)); - else - LocalMap.insert(std::make_pair(In, Result)); - return Result; - } - - std::cerr << "XXX LocalMap: \n"; - PrintMap(LocalMap); - - if (GlobalMap) { - std::cerr << "XXX GlobalMap: \n"; - PrintMap(*GlobalMap); - } - - std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; - assert(0 && "Couldn't remap value!"); - return 0; -} - -/// FindGlobalNamed - Look in the specified symbol table for a global with the -/// specified name and type. If an exactly matching global does not exist, see -/// if there is a global which is "type compatible" with the specified -/// name/type. This allows us to resolve things like '%x = global int*' with -/// '%x = global opaque*'. -/// -static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty, - SymbolTable *ST) { - // See if an exact match exists in the symbol table... - if (Value *V = ST->lookup(Ty, Name)) return cast<GlobalValue>(V); - - // It doesn't exist exactly, scan through all of the type planes in the symbol - // table, checking each of them for a type-compatible version. - // - for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end(); - PI != PE; ++PI) { - SymbolTable::ValueMap &VM = PI->second; - - // Does this type plane contain an entry with the specified name? - SymbolTable::value_iterator VI = VM.find(Name); - if (VI != VM.end()) { - // - // Ensure that this type if placed correctly into the symbol table. - // - assert(VI->second->getType() == PI->first && "Type conflict!"); - - // - // Save a reference to the new type. Resolving the type can modify the - // symbol table, invalidating the TI variable. - // - Value *ValPtr = VI->second; - - // - // Determine whether we can fold the two types together, resolving them. - // If so, we can use this value. - // - if (!RecursiveResolveTypes(Ty, PI->first, ST, "")) - return cast<GlobalValue>(ValPtr); - } - } - return 0; // Otherwise, nothing could be found. -} - - -// LinkGlobals - Loop through the global variables in the src module and merge -// them into the dest module. -// -static bool LinkGlobals(Module *Dest, const Module *Src, - std::map<const Value*, Value*> &ValueMap, - std::multimap<std::string, GlobalVariable *> &AppendingVars, - std::string *Err) { - // We will need a module level symbol table if the src module has a module - // level symbol table... - SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); - - // Loop over all of the globals in the src module, mapping them over as we go - // - for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){ - const GlobalVariable *SGV = I; - GlobalVariable *DGV = 0; - if (SGV->hasName()) { - // A same named thing is a global variable, because the only two things - // that may be in a module level symbol table are Global Vars and - // Functions, and they both have distinct, nonoverlapping, possible types. - // - DGV = cast_or_null<GlobalVariable>(FindGlobalNamed(SGV->getName(), - SGV->getType(), ST)); - } - - assert(SGV->hasInitializer() || SGV->hasExternalLinkage() && - "Global must either be external or have an initializer!"); - - bool SGExtern = SGV->isExternal(); - bool DGExtern = DGV ? DGV->isExternal() : false; - - if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) { - // No linking to be performed, simply create an identical version of the - // symbol over in the dest module... the initializer will be filled in - // later by LinkGlobalInits... - // - GlobalVariable *NewDGV = - new GlobalVariable(SGV->getType()->getElementType(), - SGV->isConstant(), SGV->getLinkage(), /*init*/0, - SGV->getName(), Dest); - - // If the LLVM runtime renamed the global, but it is an externally visible - // symbol, DGV must be an existing global with internal linkage. Rename - // it. - if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){ - assert(DGV && DGV->getName() == SGV->getName() && - DGV->hasInternalLinkage()); - DGV->setName(""); - NewDGV->setName(SGV->getName()); // Force the name back - DGV->setName(SGV->getName()); // This will cause a renaming - assert(NewDGV->getName() == SGV->getName() && - DGV->getName() != SGV->getName()); - } - - // Make sure to remember this mapping... - ValueMap.insert(std::make_pair(SGV, NewDGV)); - if (SGV->hasAppendingLinkage()) - // Keep track that this is an appending variable... - AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); - - } else if (SGV->isExternal()) { - // If SGV is external or if both SGV & DGV are external.. Just link the - // external globals, we aren't adding anything. - ValueMap.insert(std::make_pair(SGV, DGV)); - - } else if (DGV->isExternal()) { // If DGV is external but SGV is not... - ValueMap.insert(std::make_pair(SGV, DGV)); - DGV->setLinkage(SGV->getLinkage()); // Inherit linkage! - } else if (SGV->hasWeakLinkage() || SGV->hasLinkOnceLinkage()) { - // At this point we know that DGV has LinkOnce, Appending, Weak, or - // External linkage. If DGV is Appending, this is an error. - if (DGV->hasAppendingLinkage()) - return Error(Err, "Linking globals named '" + SGV->getName() + - " ' with 'weak' and 'appending' linkage is not allowed!"); - - if (SGV->isConstant() != DGV->isConstant()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + " %" + SGV->getName() + - "' - Global variables differ in const'ness"); - - // Otherwise, just perform the link. - ValueMap.insert(std::make_pair(SGV, DGV)); - - // Linkonce+Weak = Weak - if (DGV->hasLinkOnceLinkage() && SGV->hasWeakLinkage()) - DGV->setLinkage(SGV->getLinkage()); - - } else if (DGV->hasWeakLinkage() || DGV->hasLinkOnceLinkage()) { - // At this point we know that SGV has LinkOnce, Appending, or External - // linkage. If SGV is Appending, this is an error. - if (SGV->hasAppendingLinkage()) - return Error(Err, "Linking globals named '" + SGV->getName() + - " ' with 'weak' and 'appending' linkage is not allowed!"); - - if (SGV->isConstant() != DGV->isConstant()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + " %" + SGV->getName() + - "' - Global variables differ in const'ness"); - - if (!SGV->hasLinkOnceLinkage()) - DGV->setLinkage(SGV->getLinkage()); // Inherit linkage! - ValueMap.insert(std::make_pair(SGV, DGV)); - - } else if (SGV->getLinkage() != DGV->getLinkage()) { - return Error(Err, "Global variables named '" + SGV->getName() + - "' have different linkage specifiers!"); - } else if (SGV->hasExternalLinkage()) { - // Allow linking two exactly identical external global variables... - if (SGV->isConstant() != DGV->isConstant()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + " %" + SGV->getName() + - "' - Global variables differ in const'ness"); - - if (SGV->getInitializer() != DGV->getInitializer()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + " %" + SGV->getName() + - "' - External linkage globals have different initializers"); - - ValueMap.insert(std::make_pair(SGV, DGV)); - } else if (SGV->hasAppendingLinkage()) { - // No linking is performed yet. Just insert a new copy of the global, and - // keep track of the fact that it is an appending variable in the - // AppendingVars map. The name is cleared out so that no linkage is - // performed. - GlobalVariable *NewDGV = - new GlobalVariable(SGV->getType()->getElementType(), - SGV->isConstant(), SGV->getLinkage(), /*init*/0, - "", Dest); - - // Make sure to remember this mapping... - ValueMap.insert(std::make_pair(SGV, NewDGV)); - - // Keep track that this is an appending variable... - AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); - } else { - assert(0 && "Unknown linkage!"); - } - } - return false; -} - - -// LinkGlobalInits - Update the initializers in the Dest module now that all -// globals that may be referenced are in Dest. -// -static bool LinkGlobalInits(Module *Dest, const Module *Src, - std::map<const Value*, Value*> &ValueMap, - std::string *Err) { - - // Loop over all of the globals in the src module, mapping them over as we go - // - for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){ - const GlobalVariable *SGV = I; - - if (SGV->hasInitializer()) { // Only process initialized GV's - // Figure out what the initializer looks like in the dest module... - Constant *SInit = - cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap, 0)); - - GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]); - if (DGV->hasInitializer()) { - if (SGV->hasExternalLinkage()) { - if (DGV->getInitializer() != SInit) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() +"':%"+SGV->getName()+ - " - Global variables have different initializers"); - } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) { - // Nothing is required, mapped values will take the new global - // automatically. - } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) { - // Nothing is required, mapped values will take the new global - // automatically. - } else if (DGV->hasAppendingLinkage()) { - assert(0 && "Appending linkage unimplemented!"); - } else { - assert(0 && "Unknown linkage!"); - } - } else { - // Copy the initializer over now... - DGV->setInitializer(SInit); - } - } - } - return false; -} - -// LinkFunctionProtos - Link the functions together between the two modules, -// without doing function bodies... this just adds external function prototypes -// to the Dest function... -// -static bool LinkFunctionProtos(Module *Dest, const Module *Src, - std::map<const Value*, Value*> &ValueMap, - std::string *Err) { - SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); - - // Loop over all of the functions in the src module, mapping them over as we - // go - // - for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { - const Function *SF = I; // SrcFunction - Function *DF = 0; - if (SF->hasName()) - // The same named thing is a Function, because the only two things - // that may be in a module level symbol table are Global Vars and - // Functions, and they both have distinct, nonoverlapping, possible types. - // - DF = cast_or_null<Function>(FindGlobalNamed(SF->getName(), SF->getType(), - ST)); - - if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) { - // Function does not already exist, simply insert an function signature - // identical to SF into the dest module... - Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), - SF->getName(), Dest); - - // If the LLVM runtime renamed the function, but it is an externally - // visible symbol, DF must be an existing function with internal linkage. - // Rename it. - if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) { - assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage()); - DF->setName(""); - NewDF->setName(SF->getName()); // Force the name back - DF->setName(SF->getName()); // This will cause a renaming - assert(NewDF->getName() == SF->getName() && - DF->getName() != SF->getName()); - } - - // ... and remember this mapping... - ValueMap.insert(std::make_pair(SF, NewDF)); - } else if (SF->isExternal()) { - // If SF is external or if both SF & DF are external.. Just link the - // external functions, we aren't adding anything. - ValueMap.insert(std::make_pair(SF, DF)); - } else if (DF->isExternal()) { // If DF is external but SF is not... - // Link the external functions, update linkage qualifiers - ValueMap.insert(std::make_pair(SF, DF)); - DF->setLinkage(SF->getLinkage()); - - } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) { - // At this point we know that DF has LinkOnce, Weak, or External linkage. - ValueMap.insert(std::make_pair(SF, DF)); - - // Linkonce+Weak = Weak - if (DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) - DF->setLinkage(SF->getLinkage()); - - } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) { - // At this point we know that SF has LinkOnce or External linkage. - ValueMap.insert(std::make_pair(SF, DF)); - if (!SF->hasLinkOnceLinkage()) // Don't inherit linkonce linkage - DF->setLinkage(SF->getLinkage()); - - } else if (SF->getLinkage() != DF->getLinkage()) { - return Error(Err, "Functions named '" + SF->getName() + - "' have different linkage specifiers!"); - } else if (SF->hasExternalLinkage()) { - // The function is defined in both modules!! - return Error(Err, "Function '" + - SF->getFunctionType()->getDescription() + "':\"" + - SF->getName() + "\" - Function is already defined!"); - } else { - assert(0 && "Unknown linkage configuration found!"); - } - } - return false; -} - -// LinkFunctionBody - Copy the source function over into the dest function and -// fix up references to values. At this point we know that Dest is an external -// function, and that Src is not. -// -static bool LinkFunctionBody(Function *Dest, const Function *Src, - std::map<const Value*, Value*> &GlobalMap, - std::string *Err) { - assert(Src && Dest && Dest->isExternal() && !Src->isExternal()); - std::map<const Value*, Value*> LocalMap; // Map for function local values - - // Go through and convert function arguments over... - Function::aiterator DI = Dest->abegin(); - for (Function::const_aiterator I = Src->abegin(), E = Src->aend(); - I != E; ++I, ++DI) { - DI->setName(I->getName()); // Copy the name information over... - - // Add a mapping to our local map - LocalMap.insert(std::make_pair(I, DI)); - } - - // Loop over all of the basic blocks, copying the instructions over... - // - for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { - // Create new basic block and add to mapping and the Dest function... - BasicBlock *DBB = new BasicBlock(I->getName(), Dest); - LocalMap.insert(std::make_pair(I, DBB)); - - // Loop over all of the instructions in the src basic block, copying them - // over. Note that this is broken in a strict sense because the cloned - // instructions will still be referencing values in the Src module, not - // the remapped values. In our case, however, we will not get caught and - // so we can delay patching the values up until later... - // - for (BasicBlock::const_iterator II = I->begin(), IE = I->end(); - II != IE; ++II) { - Instruction *DI = II->clone(); - DI->setName(II->getName()); - DBB->getInstList().push_back(DI); - LocalMap.insert(std::make_pair(II, DI)); - } - } - - // At this point, all of the instructions and values of the function are now - // copied over. The only problem is that they are still referencing values in - // the Source function as operands. Loop through all of the operands of the - // functions and patch them up to point to the local versions... - // - for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) - for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); - OI != OE; ++OI) - *OI = RemapOperand(*OI, LocalMap, &GlobalMap); - - return false; -} - - -// LinkFunctionBodies - Link in the function bodies that are defined in the -// source module into the DestModule. This consists basically of copying the -// function over and fixing up references to values. -// -static bool LinkFunctionBodies(Module *Dest, const Module *Src, - std::map<const Value*, Value*> &ValueMap, - std::string *Err) { - - // Loop over all of the functions in the src module, mapping them over as we - // go - // - for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){ - if (!SF->isExternal()) { // No body if function is external - Function *DF = cast<Function>(ValueMap[SF]); // Destination function - - // DF not external SF external? - if (DF->isExternal()) { - // Only provide the function body if there isn't one already. - if (LinkFunctionBody(DF, SF, ValueMap, Err)) - return true; - } - } - } - return false; -} - -// LinkAppendingVars - If there were any appending global variables, link them -// together now. Return true on error. -// -static bool LinkAppendingVars(Module *M, - std::multimap<std::string, GlobalVariable *> &AppendingVars, - std::string *ErrorMsg) { - if (AppendingVars.empty()) return false; // Nothing to do. - - // Loop over the multimap of appending vars, processing any variables with the - // same name, forming a new appending global variable with both of the - // initializers merged together, then rewrite references to the old variables - // and delete them. - // - std::vector<Constant*> Inits; - while (AppendingVars.size() > 1) { - // Get the first two elements in the map... - std::multimap<std::string, - GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++; - - // If the first two elements are for different names, there is no pair... - // Otherwise there is a pair, so link them together... - if (First->first == Second->first) { - GlobalVariable *G1 = First->second, *G2 = Second->second; - const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType()); - const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType()); - - // Check to see that they two arrays agree on type... - if (T1->getElementType() != T2->getElementType()) - return Error(ErrorMsg, - "Appending variables with different element types need to be linked!"); - if (G1->isConstant() != G2->isConstant()) - return Error(ErrorMsg, - "Appending variables linked with different const'ness!"); - - unsigned NewSize = T1->getNumElements() + T2->getNumElements(); - ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize); - - // Create the new global variable... - GlobalVariable *NG = - new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(), - /*init*/0, First->first, M); - - // Merge the initializer... - Inits.reserve(NewSize); - if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) { - for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) - Inits.push_back(cast<Constant>(I->getValues()[i])); - } else { - assert(isa<ConstantAggregateZero>(G1->getInitializer())); - Constant *CV = Constant::getNullValue(T1->getElementType()); - for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) - Inits.push_back(CV); - } - if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) { - for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) - Inits.push_back(cast<Constant>(I->getValues()[i])); - } else { - assert(isa<ConstantAggregateZero>(G2->getInitializer())); - Constant *CV = Constant::getNullValue(T2->getElementType()); - for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) - Inits.push_back(CV); - } - NG->setInitializer(ConstantArray::get(NewType, Inits)); - Inits.clear(); - - // Replace any uses of the two global variables with uses of the new - // global... - - // FIXME: This should rewrite simple/straight-forward uses such as - // getelementptr instructions to not use the Cast! - ConstantPointerRef *NGCP = ConstantPointerRef::get(NG); - G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType())); - G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType())); - - // Remove the two globals from the module now... - M->getGlobalList().erase(G1); - M->getGlobalList().erase(G2); - - // Put the new global into the AppendingVars map so that we can handle - // linking of more than two vars... - Second->second = NG; - } - AppendingVars.erase(First); - } - - return false; -} - - -// LinkModules - This function links two modules together, with the resulting -// left module modified to be the composite of the two input modules. If an -// error occurs, true is returned and ErrorMsg (if not null) is set to indicate -// the problem. Upon failure, the Dest module could be in a modified state, and -// shouldn't be relied on to be consistent. -// -bool llvm::LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) { - if (Dest->getEndianness() == Module::AnyEndianness) - Dest->setEndianness(Src->getEndianness()); - if (Dest->getPointerSize() == Module::AnyPointerSize) - Dest->setPointerSize(Src->getPointerSize()); - - if (Src->getEndianness() != Module::AnyEndianness && - Dest->getEndianness() != Src->getEndianness()) - std::cerr << "WARNING: Linking two modules of different endianness!\n"; - if (Src->getPointerSize() != Module::AnyPointerSize && - Dest->getPointerSize() != Src->getPointerSize()) - std::cerr << "WARNING: Linking two modules of different pointer size!\n"; - - // LinkTypes - Go through the symbol table of the Src module and see if any - // types are named in the src module that are not named in the Dst module. - // Make sure there are no type name conflicts. - // - if (LinkTypes(Dest, Src, ErrorMsg)) return true; - - // ValueMap - Mapping of values from what they used to be in Src, to what they - // are now in Dest. - // - std::map<const Value*, Value*> ValueMap; - - // AppendingVars - Keep track of global variables in the destination module - // with appending linkage. After the module is linked together, they are - // appended and the module is rewritten. - // - std::multimap<std::string, GlobalVariable *> AppendingVars; - - // Add all of the appending globals already in the Dest module to - // AppendingVars. - for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) - if (I->hasAppendingLinkage()) - AppendingVars.insert(std::make_pair(I->getName(), I)); - - // Insert all of the globals in src into the Dest module... without linking - // initializers (which could refer to functions not yet mapped over). - // - if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true; - - // Link the functions together between the two modules, without doing function - // bodies... this just adds external function prototypes to the Dest - // function... We do this so that when we begin processing function bodies, - // all of the global values that may be referenced are available in our - // ValueMap. - // - if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) return true; - - // Update the initializers in the Dest module now that all globals that may - // be referenced are in Dest. - // - if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true; - - // Link in the function bodies that are defined in the source module into the - // DestModule. This consists basically of copying the function over and - // fixing up references to values. - // - if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true; - - // If there were any appending global variables, link them together now. - // - if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true; - - return false; -} - -// vim: sw=2 |