diff options
author | Reid Spencer <rspencer@reidspencer.com> | 2007-01-10 04:16:17 +0000 |
---|---|---|
committer | Reid Spencer <rspencer@reidspencer.com> | 2007-01-10 04:16:17 +0000 |
commit | 93a0962e088dc184d6174c4b4b85d5c38e938317 (patch) | |
tree | 203c22243c57d23202fb6bf1ee469f86a3511387 /lib | |
parent | 39ff1e2afc07acf4c29af48853b09e15c41875d2 (diff) | |
download | external_llvm-93a0962e088dc184d6174c4b4b85d5c38e938317.zip external_llvm-93a0962e088dc184d6174c4b4b85d5c38e938317.tar.gz external_llvm-93a0962e088dc184d6174c4b4b85d5c38e938317.tar.bz2 |
Rename Writer.cpp as CBackend.cpp so it doesn't conflict with Writer.cpp
in the bytecode writer library. This helps with debugging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33050 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Target/CBackend/Writer.cpp | 2791 |
1 files changed, 0 insertions, 2791 deletions
diff --git a/lib/Target/CBackend/Writer.cpp b/lib/Target/CBackend/Writer.cpp deleted file mode 100644 index e738c99..0000000 --- a/lib/Target/CBackend/Writer.cpp +++ /dev/null @@ -1,2791 +0,0 @@ -//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This library converts LLVM code to C code, compilable by GCC and other C -// compilers. -// -//===----------------------------------------------------------------------===// - -#include "CTargetMachine.h" -#include "llvm/CallingConv.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/PassManager.h" -#include "llvm/SymbolTable.h" -#include "llvm/TypeSymbolTable.h" -#include "llvm/Intrinsics.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/InlineAsm.h" -#include "llvm/Analysis/ConstantsScanner.h" -#include "llvm/Analysis/FindUsedTypes.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Target/TargetMachineRegistry.h" -#include "llvm/Target/TargetAsmInfo.h" -#include "llvm/Support/CallSite.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/Mangler.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Config/config.h" -#include <algorithm> -#include <sstream> -using namespace llvm; - -namespace { - // Register the target. - RegisterTarget<CTargetMachine> X("c", " C backend"); - - /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for - /// any unnamed structure types that are used by the program, and merges - /// external functions with the same name. - /// - class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass { - void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<FindUsedTypes>(); - } - - virtual const char *getPassName() const { - return "C backend type canonicalizer"; - } - - virtual bool runOnModule(Module &M); - }; - - /// CWriter - This class is the main chunk of code that converts an LLVM - /// module to a C translation unit. - class CWriter : public FunctionPass, public InstVisitor<CWriter> { - std::ostream &Out; - IntrinsicLowering IL; - Mangler *Mang; - LoopInfo *LI; - const Module *TheModule; - const TargetAsmInfo* TAsm; - std::map<const Type *, std::string> TypeNames; - - std::map<const ConstantFP *, unsigned> FPConstantMap; - public: - CWriter(std::ostream &o) : Out(o), TAsm(0) {} - - virtual const char *getPassName() const { return "C backend"; } - - void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<LoopInfo>(); - AU.setPreservesAll(); - } - - virtual bool doInitialization(Module &M); - - bool runOnFunction(Function &F) { - LI = &getAnalysis<LoopInfo>(); - - // Get rid of intrinsics we can't handle. - lowerIntrinsics(F); - - // Output all floating point constants that cannot be printed accurately. - printFloatingPointConstants(F); - - // Ensure that no local symbols conflict with global symbols. - F.renameLocalSymbols(); - - printFunction(F); - FPConstantMap.clear(); - return false; - } - - virtual bool doFinalization(Module &M) { - // Free memory... - delete Mang; - TypeNames.clear(); - return false; - } - - std::ostream &printType(std::ostream &Out, const Type *Ty, - bool isSigned = false, - const std::string &VariableName = "", - bool IgnoreName = false); - std::ostream &printPrimitiveType(std::ostream &Out, const Type *Ty, - bool isSigned, - const std::string &NameSoFar = ""); - - void printStructReturnPointerFunctionType(std::ostream &Out, - const PointerType *Ty); - - void writeOperand(Value *Operand); - void writeOperandRaw(Value *Operand); - void writeOperandInternal(Value *Operand); - void writeOperandWithCast(Value* Operand, unsigned Opcode); - void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate); - bool writeInstructionCast(const Instruction &I); - - private : - std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); - - void lowerIntrinsics(Function &F); - - void printModule(Module *M); - void printModuleTypes(const TypeSymbolTable &ST); - void printContainedStructs(const Type *Ty, std::set<const StructType *> &); - void printFloatingPointConstants(Function &F); - void printFunctionSignature(const Function *F, bool Prototype); - - void printFunction(Function &); - void printBasicBlock(BasicBlock *BB); - void printLoop(Loop *L); - - void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy); - void printConstant(Constant *CPV); - void printConstantWithCast(Constant *CPV, unsigned Opcode); - bool printConstExprCast(const ConstantExpr *CE); - void printConstantArray(ConstantArray *CPA); - void printConstantPacked(ConstantPacked *CP); - - // isInlinableInst - Attempt to inline instructions into their uses to build - // trees as much as possible. To do this, we have to consistently decide - // what is acceptable to inline, so that variable declarations don't get - // printed and an extra copy of the expr is not emitted. - // - static bool isInlinableInst(const Instruction &I) { - // Always inline cmp instructions, even if they are shared by multiple - // expressions. GCC generates horrible code if we don't. - if (isa<CmpInst>(I)) - return true; - - // Must be an expression, must be used exactly once. If it is dead, we - // emit it inline where it would go. - if (I.getType() == Type::VoidTy || !I.hasOneUse() || - isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || - isa<LoadInst>(I) || isa<VAArgInst>(I)) - // Don't inline a load across a store or other bad things! - return false; - - // Must not be used in inline asm - if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false; - - // Only inline instruction it if it's use is in the same BB as the inst. - return I.getParent() == cast<Instruction>(I.use_back())->getParent(); - } - - // isDirectAlloca - Define fixed sized allocas in the entry block as direct - // variables which are accessed with the & operator. This causes GCC to - // generate significantly better code than to emit alloca calls directly. - // - static const AllocaInst *isDirectAlloca(const Value *V) { - const AllocaInst *AI = dyn_cast<AllocaInst>(V); - if (!AI) return false; - if (AI->isArrayAllocation()) - return 0; // FIXME: we can also inline fixed size array allocas! - if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) - return 0; - return AI; - } - - // isInlineAsm - Check if the instruction is a call to an inline asm chunk - static bool isInlineAsm(const Instruction& I) { - if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0))) - return true; - return false; - } - - // Instruction visitation functions - friend class InstVisitor<CWriter>; - - void visitReturnInst(ReturnInst &I); - void visitBranchInst(BranchInst &I); - void visitSwitchInst(SwitchInst &I); - void visitInvokeInst(InvokeInst &I) { - assert(0 && "Lowerinvoke pass didn't work!"); - } - - void visitUnwindInst(UnwindInst &I) { - assert(0 && "Lowerinvoke pass didn't work!"); - } - void visitUnreachableInst(UnreachableInst &I); - - void visitPHINode(PHINode &I); - void visitBinaryOperator(Instruction &I); - void visitICmpInst(ICmpInst &I); - void visitFCmpInst(FCmpInst &I); - - void visitCastInst (CastInst &I); - void visitSelectInst(SelectInst &I); - void visitCallInst (CallInst &I); - void visitInlineAsm(CallInst &I); - void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } - - void visitMallocInst(MallocInst &I); - void visitAllocaInst(AllocaInst &I); - void visitFreeInst (FreeInst &I); - void visitLoadInst (LoadInst &I); - void visitStoreInst (StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitVAArgInst (VAArgInst &I); - - void visitInstruction(Instruction &I) { - cerr << "C Writer does not know about " << I; - abort(); - } - - void outputLValue(Instruction *I) { - Out << " " << Mang->getValueName(I) << " = "; - } - - bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); - void printPHICopiesForSuccessor(BasicBlock *CurBlock, - BasicBlock *Successor, unsigned Indent); - void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, - unsigned Indent); - void printIndexingExpression(Value *Ptr, gep_type_iterator I, - gep_type_iterator E); - }; -} - -/// This method inserts names for any unnamed structure types that are used by -/// the program, and removes names from structure types that are not used by the -/// program. -/// -bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) { - // Get a set of types that are used by the program... - std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes(); - - // Loop over the module symbol table, removing types from UT that are - // already named, and removing names for types that are not used. - // - TypeSymbolTable &TST = M.getTypeSymbolTable(); - for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end(); - TI != TE; ) { - TypeSymbolTable::iterator I = TI++; - - // If this is not used, remove it from the symbol table. - std::set<const Type *>::iterator UTI = UT.find(I->second); - if (UTI == UT.end()) - TST.remove(I); - else - UT.erase(UTI); // Only keep one name for this type. - } - - // UT now contains types that are not named. Loop over it, naming - // structure types. - // - bool Changed = false; - unsigned RenameCounter = 0; - for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); - I != E; ++I) - if (const StructType *ST = dyn_cast<StructType>(*I)) { - while (M.addTypeName("unnamed"+utostr(RenameCounter), ST)) - ++RenameCounter; - Changed = true; - } - - - // Loop over all external functions and globals. If we have two with - // identical names, merge them. - // FIXME: This code should disappear when we don't allow values with the same - // names when they have different types! - std::map<std::string, GlobalValue*> ExtSymbols; - for (Module::iterator I = M.begin(), E = M.end(); I != E;) { - Function *GV = I++; - if (GV->isExternal() && GV->hasName()) { - std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X - = ExtSymbols.insert(std::make_pair(GV->getName(), GV)); - if (!X.second) { - // Found a conflict, replace this global with the previous one. - GlobalValue *OldGV = X.first->second; - GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType())); - GV->eraseFromParent(); - Changed = true; - } - } - } - // Do the same for globals. - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E;) { - GlobalVariable *GV = I++; - if (GV->isExternal() && GV->hasName()) { - std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X - = ExtSymbols.insert(std::make_pair(GV->getName(), GV)); - if (!X.second) { - // Found a conflict, replace this global with the previous one. - GlobalValue *OldGV = X.first->second; - GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType())); - GV->eraseFromParent(); - Changed = true; - } - } - } - - return Changed; -} - -/// printStructReturnPointerFunctionType - This is like printType for a struct -/// return type, except, instead of printing the type as void (*)(Struct*, ...) -/// print it as "Struct (*)(...)", for struct return functions. -void CWriter::printStructReturnPointerFunctionType(std::ostream &Out, - const PointerType *TheTy) { - const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType()); - std::stringstream FunctionInnards; - FunctionInnards << " (*) ("; - bool PrintedType = false; - - FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); - const Type *RetTy = cast<PointerType>(I->get())->getElementType(); - unsigned Idx = 1; - for (++I; I != E; ++I) { - if (PrintedType) - FunctionInnards << ", "; - printType(FunctionInnards, *I, - /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute), ""); - PrintedType = true; - } - if (FTy->isVarArg()) { - if (PrintedType) - FunctionInnards << ", ..."; - } else if (!PrintedType) { - FunctionInnards << "void"; - } - FunctionInnards << ')'; - std::string tstr = FunctionInnards.str(); - printType(Out, RetTy, - /*isSigned=*/FTy->paramHasAttr(0, FunctionType::SExtAttribute), tstr); -} - -std::ostream & -CWriter::printPrimitiveType(std::ostream &Out, const Type *Ty, bool isSigned, - const std::string &NameSoFar) { - assert(Ty->isPrimitiveType() && "Invalid type for printPrimitiveType"); - switch (Ty->getTypeID()) { - case Type::VoidTyID: return Out << "void " << NameSoFar; - case Type::BoolTyID: return Out << "bool " << NameSoFar; - case Type::Int8TyID: - return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; - case Type::Int16TyID: - return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; - case Type::Int32TyID: - return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; - case Type::Int64TyID: - return Out << (isSigned?"signed":"unsigned") << " long long " << NameSoFar; - case Type::FloatTyID: return Out << "float " << NameSoFar; - case Type::DoubleTyID: return Out << "double " << NameSoFar; - default : - cerr << "Unknown primitive type: " << *Ty << "\n"; - abort(); - } -} - -// Pass the Type* and the variable name and this prints out the variable -// declaration. -// -std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, - bool isSigned, const std::string &NameSoFar, - bool IgnoreName) { - if (Ty->isPrimitiveType()) { - // FIXME:Signedness. When integer types are signless, this should just - // always pass "false" for the sign of the primitive type. The instructions - // will figure out how the value is to be interpreted. - printPrimitiveType(Out, Ty, isSigned, NameSoFar); - return Out; - } - - // Check to see if the type is named. - if (!IgnoreName || isa<OpaqueType>(Ty)) { - std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar; - } - - switch (Ty->getTypeID()) { - case Type::FunctionTyID: { - const FunctionType *FTy = cast<FunctionType>(Ty); - std::stringstream FunctionInnards; - FunctionInnards << " (" << NameSoFar << ") ("; - unsigned Idx = 1; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - FunctionInnards << ", "; - printType(FunctionInnards, *I, - /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute), ""); - ++Idx; - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) - FunctionInnards << ", ..."; - } else if (!FTy->getNumParams()) { - FunctionInnards << "void"; - } - FunctionInnards << ')'; - std::string tstr = FunctionInnards.str(); - printType(Out, FTy->getReturnType(), - /*isSigned=*/FTy->paramHasAttr(0, FunctionType::SExtAttribute), tstr); - return Out; - } - case Type::StructTyID: { - const StructType *STy = cast<StructType>(Ty); - Out << NameSoFar + " {\n"; - unsigned Idx = 0; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - Out << " "; - printType(Out, *I, false, "field" + utostr(Idx++)); - Out << ";\n"; - } - return Out << '}'; - } - - case Type::PointerTyID: { - const PointerType *PTy = cast<PointerType>(Ty); - std::string ptrName = "*" + NameSoFar; - - if (isa<ArrayType>(PTy->getElementType()) || - isa<PackedType>(PTy->getElementType())) - ptrName = "(" + ptrName + ")"; - - return printType(Out, PTy->getElementType(), false, ptrName); - } - - case Type::ArrayTyID: { - const ArrayType *ATy = cast<ArrayType>(Ty); - unsigned NumElements = ATy->getNumElements(); - if (NumElements == 0) NumElements = 1; - return printType(Out, ATy->getElementType(), false, - NameSoFar + "[" + utostr(NumElements) + "]"); - } - - case Type::PackedTyID: { - const PackedType *PTy = cast<PackedType>(Ty); - unsigned NumElements = PTy->getNumElements(); - if (NumElements == 0) NumElements = 1; - return printType(Out, PTy->getElementType(), false, - NameSoFar + "[" + utostr(NumElements) + "]"); - } - - case Type::OpaqueTyID: { - static int Count = 0; - std::string TyName = "struct opaque_" + itostr(Count++); - assert(TypeNames.find(Ty) == TypeNames.end()); - TypeNames[Ty] = TyName; - return Out << TyName << ' ' << NameSoFar; - } - default: - assert(0 && "Unhandled case in getTypeProps!"); - abort(); - } - - return Out; -} - -void CWriter::printConstantArray(ConstantArray *CPA) { - - // As a special case, print the array as a string if it is an array of - // ubytes or an array of sbytes with positive values. - // - const Type *ETy = CPA->getType()->getElementType(); - bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty); - - // Make sure the last character is a null char, as automatically added by C - if (isString && (CPA->getNumOperands() == 0 || - !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) - isString = false; - - if (isString) { - Out << '\"'; - // Keep track of whether the last number was a hexadecimal escape - bool LastWasHex = false; - - // Do not include the last character, which we know is null - for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { - unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue(); - - // Print it out literally if it is a printable character. The only thing - // to be careful about is when the last letter output was a hex escape - // code, in which case we have to be careful not to print out hex digits - // explicitly (the C compiler thinks it is a continuation of the previous - // character, sheesh...) - // - if (isprint(C) && (!LastWasHex || !isxdigit(C))) { - LastWasHex = false; - if (C == '"' || C == '\\') - Out << "\\" << C; - else - Out << C; - } else { - LastWasHex = false; - switch (C) { - case '\n': Out << "\\n"; break; - case '\t': Out << "\\t"; break; - case '\r': Out << "\\r"; break; - case '\v': Out << "\\v"; break; - case '\a': Out << "\\a"; break; - case '\"': Out << "\\\""; break; - case '\'': Out << "\\\'"; break; - default: - Out << "\\x"; - Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); - Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); - LastWasHex = true; - break; - } - } - } - Out << '\"'; - } else { - Out << '{'; - if (CPA->getNumOperands()) { - Out << ' '; - printConstant(cast<Constant>(CPA->getOperand(0))); - for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CPA->getOperand(i))); - } - } - Out << " }"; - } -} - -void CWriter::printConstantPacked(ConstantPacked *CP) { - Out << '{'; - if (CP->getNumOperands()) { - Out << ' '; - printConstant(cast<Constant>(CP->getOperand(0))); - for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CP->getOperand(i))); - } - } - Out << " }"; -} - -// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out -// textually as a double (rather than as a reference to a stack-allocated -// variable). We decide this by converting CFP to a string and back into a -// double, and then checking whether the conversion results in a bit-equal -// double to the original value of CFP. This depends on us and the target C -// compiler agreeing on the conversion process (which is pretty likely since we -// only deal in IEEE FP). -// -static bool isFPCSafeToPrint(const ConstantFP *CFP) { -#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A - char Buffer[100]; - sprintf(Buffer, "%a", CFP->getValue()); - - if (!strncmp(Buffer, "0x", 2) || - !strncmp(Buffer, "-0x", 3) || - !strncmp(Buffer, "+0x", 3)) - return atof(Buffer) == CFP->getValue(); - return false; -#else - std::string StrVal = ftostr(CFP->getValue()); - - while (StrVal[0] == ' ') - StrVal.erase(StrVal.begin()); - - // Check to make sure that the stringized number is not some string like "Inf" - // or NaN. Check that the string matches the "[-+]?[0-9]" regex. - if ((StrVal[0] >= '0' && StrVal[0] <= '9') || - ((StrVal[0] == '-' || StrVal[0] == '+') && - (StrVal[1] >= '0' && StrVal[1] <= '9'))) - // Reparse stringized version! - return atof(StrVal.c_str()) == CFP->getValue(); - return false; -#endif -} - -/// Print out the casting for a cast operation. This does the double casting -/// necessary for conversion to the destination type, if necessary. -/// @brief Print a cast -void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) { - // Print the destination type cast - switch (opc) { - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::IntToPtr: - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::FPExt: - case Instruction::FPTrunc: // For these the DstTy sign doesn't matter - Out << '('; - printType(Out, DstTy); - Out << ')'; - break; - case Instruction::ZExt: - case Instruction::PtrToInt: - case Instruction::FPToUI: // For these, make sure we get an unsigned dest - Out << '('; - printPrimitiveType(Out, DstTy, false); - Out << ')'; - break; - case Instruction::SExt: - case Instruction::FPToSI: // For these, make sure we get a signed dest - Out << '('; - printPrimitiveType(Out, DstTy, true); - Out << ')'; - break; - default: - assert(0 && "Invalid cast opcode"); - } - - // Print the source type cast - switch (opc) { - case Instruction::UIToFP: - case Instruction::ZExt: - Out << '('; - printPrimitiveType(Out, SrcTy, false); - Out << ')'; - break; - case Instruction::SIToFP: - case Instruction::SExt: - Out << '('; - printPrimitiveType(Out, SrcTy, true); - Out << ')'; - break; - case Instruction::IntToPtr: - case Instruction::PtrToInt: - // Avoid "cast to pointer from integer of different size" warnings - Out << "(unsigned long)"; - break; - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::FPExt: - case Instruction::FPTrunc: - case Instruction::FPToSI: - case Instruction::FPToUI: - break; // These don't need a source cast. - default: - assert(0 && "Invalid cast opcode"); - break; - } -} - -// printConstant - The LLVM Constant to C Constant converter. -void CWriter::printConstant(Constant *CPV) { - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - switch (CE->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - Out << "("; - printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); - if (CE->getOpcode() == Instruction::SExt && - CE->getOperand(0)->getType() == Type::BoolTy) { - // Make sure we really sext from bool here by subtracting from 0 - Out << "0-"; - } - printConstant(CE->getOperand(0)); - if (CE->getType() == Type::BoolTy && - (CE->getOpcode() == Instruction::Trunc || - CE->getOpcode() == Instruction::FPToUI || - CE->getOpcode() == Instruction::FPToSI || - CE->getOpcode() == Instruction::PtrToInt)) { - // Make sure we really truncate to bool here by anding with 1 - Out << "&1u"; - } - Out << ')'; - return; - - case Instruction::GetElementPtr: - Out << "(&("; - printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), - gep_type_end(CPV)); - Out << "))"; - return; - case Instruction::Select: - Out << '('; - printConstant(CE->getOperand(0)); - Out << '?'; - printConstant(CE->getOperand(1)); - Out << ':'; - printConstant(CE->getOperand(2)); - Out << ')'; - return; - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - case Instruction::ICmp: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - { - Out << '('; - bool NeedsClosingParens = printConstExprCast(CE); - printConstantWithCast(CE->getOperand(0), CE->getOpcode()); - switch (CE->getOpcode()) { - case Instruction::Add: Out << " + "; break; - case Instruction::Sub: Out << " - "; break; - case Instruction::Mul: Out << " * "; break; - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: Out << " % "; break; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: Out << " / "; break; - case Instruction::And: Out << " & "; break; - case Instruction::Or: Out << " | "; break; - case Instruction::Xor: Out << " ^ "; break; - case Instruction::Shl: Out << " << "; break; - case Instruction::LShr: - case Instruction::AShr: Out << " >> "; break; - case Instruction::ICmp: - switch (CE->getPredicate()) { - case ICmpInst::ICMP_EQ: Out << " == "; break; - case ICmpInst::ICMP_NE: Out << " != "; break; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_ULT: Out << " < "; break; - case ICmpInst::ICMP_SLE: - case ICmpInst::ICMP_ULE: Out << " <= "; break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_UGT: Out << " > "; break; - case ICmpInst::ICMP_SGE: - case ICmpInst::ICMP_UGE: Out << " >= "; break; - default: assert(0 && "Illegal ICmp predicate"); - } - break; - default: assert(0 && "Illegal opcode here!"); - } - printConstantWithCast(CE->getOperand(1), CE->getOpcode()); - if (NeedsClosingParens) - Out << "))"; - Out << ')'; - return; - } - case Instruction::FCmp: { - Out << '('; - bool NeedsClosingParens = printConstExprCast(CE); - if (CE->getPredicate() == FCmpInst::FCMP_FALSE) - Out << "0"; - else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) - Out << "1"; - else { - const char* op = 0; - switch (CE->getPredicate()) { - default: assert(0 && "Illegal FCmp predicate"); - case FCmpInst::FCMP_ORD: op = "ord"; break; - case FCmpInst::FCMP_UNO: op = "uno"; break; - case FCmpInst::FCMP_UEQ: op = "ueq"; break; - case FCmpInst::FCMP_UNE: op = "une"; break; - case FCmpInst::FCMP_ULT: op = "ult"; break; - case FCmpInst::FCMP_ULE: op = "ule"; break; - case FCmpInst::FCMP_UGT: op = "ugt"; break; - case FCmpInst::FCMP_UGE: op = "uge"; break; - case FCmpInst::FCMP_OEQ: op = "oeq"; break; - case FCmpInst::FCMP_ONE: op = "one"; break; - case FCmpInst::FCMP_OLT: op = "olt"; break; - case FCmpInst::FCMP_OLE: op = "ole"; break; - case FCmpInst::FCMP_OGT: op = "ogt"; break; - case FCmpInst::FCMP_OGE: op = "oge"; break; - } - Out << "llvm_fcmp_" << op << "("; - printConstantWithCast(CE->getOperand(0), CE->getOpcode()); - Out << ", "; - printConstantWithCast(CE->getOperand(1), CE->getOpcode()); - Out << ")"; - } - if (NeedsClosingParens) - Out << "))"; - Out << ')'; - } - default: - cerr << "CWriter Error: Unhandled constant expression: " - << *CE << "\n"; - abort(); - } - } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) { - Out << "(("; - printType(Out, CPV->getType()); // sign doesn't matter - Out << ")/*UNDEF*/0)"; - return; - } - - if (ConstantBool *CB = dyn_cast<ConstantBool>(CPV)) { - Out << (CB->getValue() ? '1' : '0') ; - return; - } - - if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { - const Type* Ty = CI->getType(); - Out << "(("; - printPrimitiveType(Out, Ty, false) << ')'; - if (CI->isMinValue(true)) - Out << CI->getZExtValue() << 'u'; - else - Out << CI->getSExtValue(); - if (Ty->getPrimitiveSizeInBits() > 32) - Out << "ll"; - Out << ')'; - return; - } - - switch (CPV->getType()->getTypeID()) { - case Type::FloatTyID: - case Type::DoubleTyID: { - ConstantFP *FPC = cast<ConstantFP>(CPV); - std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); - if (I != FPConstantMap.end()) { - // Because of FP precision problems we must load from a stack allocated - // value that holds the value in hex. - Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") - << "*)&FPConstant" << I->second << ')'; - } else { - if (IsNAN(FPC->getValue())) { - // The value is NaN - - // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, - // it's 0x7ff4. - const unsigned long QuietNaN = 0x7ff8UL; - //const unsigned long SignalNaN = 0x7ff4UL; - - // We need to grab the first part of the FP # - char Buffer[100]; - - uint64_t ll = DoubleToBits(FPC->getValue()); - sprintf(Buffer, "0x%llx", static_cast<long long>(ll)); - - std::string Num(&Buffer[0], &Buffer[6]); - unsigned long Val = strtoul(Num.c_str(), 0, 16); - - if (FPC->getType() == Type::FloatTy) - Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" - << Buffer << "\") /*nan*/ "; - else - Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" - << Buffer << "\") /*nan*/ "; - } else if (IsInf(FPC->getValue())) { - // The value is Inf - if (FPC->getValue() < 0) Out << '-'; - Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "") - << " /*inf*/ "; - } else { - std::string Num; -#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A - // Print out the constant as a floating point number. - char Buffer[100]; - sprintf(Buffer, "%a", FPC->getValue()); - Num = Buffer; -#else - Num = ftostr(FPC->getValue()); -#endif - Out << Num; - } - } - break; - } - - case Type::ArrayTyID: - if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { - const ArrayType *AT = cast<ArrayType>(CPV->getType()); - Out << '{'; - if (AT->getNumElements()) { - Out << ' '; - Constant *CZ = Constant::getNullValue(AT->getElementType()); - printConstant(CZ); - for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CZ); - } - } - Out << " }"; - } else { - printConstantArray(cast<ConstantArray>(CPV)); - } - break; - - case Type::PackedTyID: - if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { - const PackedType *AT = cast<PackedType>(CPV->getType()); - Out << '{'; - if (AT->getNumElements()) { - Out << ' '; - Constant *CZ = Constant::getNullValue(AT->getElementType()); - printConstant(CZ); - for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CZ); - } - } - Out << " }"; - } else { - printConstantPacked(cast<ConstantPacked>(CPV)); - } - break; - - case Type::StructTyID: - if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { - const StructType *ST = cast<StructType>(CPV->getType()); - Out << '{'; - if (ST->getNumElements()) { - Out << ' '; - printConstant(Constant::getNullValue(ST->getElementType(0))); - for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(Constant::getNullValue(ST->getElementType(i))); - } - } - Out << " }"; - } else { - Out << '{'; - if (CPV->getNumOperands()) { - Out << ' '; - printConstant(cast<Constant>(CPV->getOperand(0))); - for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CPV->getOperand(i))); - } - } - Out << " }"; - } - break; - - case Type::PointerTyID: - if (isa<ConstantPointerNull>(CPV)) { - Out << "(("; - printType(Out, CPV->getType()); // sign doesn't matter - Out << ")/*NULL*/0)"; - break; - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { - writeOperand(GV); - break; - } - // FALL THROUGH - default: - cerr << "Unknown constant type: " << *CPV << "\n"; - abort(); - } -} - -// Some constant expressions need to be casted back to the original types -// because their operands were casted to the expected type. This function takes -// care of detecting that case and printing the cast for the ConstantExpr. -bool CWriter::printConstExprCast(const ConstantExpr* CE) { - bool NeedsExplicitCast = false; - const Type *Ty = CE->getOperand(0)->getType(); - bool TypeIsSigned = false; - switch (CE->getOpcode()) { - case Instruction::LShr: - case Instruction::URem: - case Instruction::UDiv: NeedsExplicitCast = true; break; - case Instruction::AShr: - case Instruction::SRem: - case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break; - case Instruction::SExt: - Ty = CE->getType(); - NeedsExplicitCast = true; - TypeIsSigned = true; - break; - case Instruction::ZExt: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - Ty = CE->getType(); - NeedsExplicitCast = true; - break; - default: break; - } - if (NeedsExplicitCast) { - Out << "(("; - if (Ty->isInteger()) - printPrimitiveType(Out, Ty, TypeIsSigned); - else - printType(Out, Ty); // not integer, sign doesn't matter - Out << ")("; - } - return NeedsExplicitCast; -} - -// Print a constant assuming that it is the operand for a given Opcode. The -// opcodes that care about sign need to cast their operands to the expected -// type before the operation proceeds. This function does the casting. -void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) { - - // Extract the operand's type, we'll need it. - const Type* OpTy = CPV->getType(); - - // Indicate whether to do the cast or not. - bool shouldCast = false; - bool typeIsSigned = false; - - // Based on the Opcode for which this Constant is being written, determine - // the new type to which the operand should be casted by setting the value - // of OpTy. If we change OpTy, also set shouldCast to true so it gets - // casted below. - switch (Opcode) { - default: - // for most instructions, it doesn't matter - break; - case Instruction::LShr: - case Instruction::UDiv: - case Instruction::URem: - shouldCast = true; - break; - case Instruction::AShr: - case Instruction::SDiv: - case Instruction::SRem: - shouldCast = true; - typeIsSigned = true; - break; - } - - // Write out the casted constant if we should, otherwise just write the - // operand. - if (shouldCast) { - Out << "(("; - printPrimitiveType(Out, OpTy, typeIsSigned); - Out << ")"; - printConstant(CPV); - Out << ")"; - } else - printConstant(CPV); -} - -void CWriter::writeOperandInternal(Value *Operand) { - if (Instruction *I = dyn_cast<Instruction>(Operand)) - if (isInlinableInst(*I) && !isDirectAlloca(I)) { - // Should we inline this instruction to build a tree? - Out << '('; - visit(*I); - Out << ')'; - return; - } - - Constant* CPV = dyn_cast<Constant>(Operand); - if (CPV && !isa<GlobalValue>(CPV)) { - printConstant(CPV); - } else { - Out << Mang->getValueName(Operand); - } -} - -void CWriter::writeOperandRaw(Value *Operand) { - Constant* CPV = dyn_cast<Constant>(Operand); - if (CPV && !isa<GlobalValue>(CPV)) { - printConstant(CPV); - } else { - Out << Mang->getValueName(Operand); - } -} - -void CWriter::writeOperand(Value *Operand) { - if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) - Out << "(&"; // Global variables are referenced as their addresses by llvm - - writeOperandInternal(Operand); - - if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) - Out << ')'; -} - -// Some instructions need to have their result value casted back to the -// original types because their operands were casted to the expected type. -// This function takes care of detecting that case and printing the cast -// for the Instruction. -bool CWriter::writeInstructionCast(const Instruction &I) { - const Type *Ty = I.getOperand(0)->getType(); - switch (I.getOpcode()) { - case Instruction::LShr: - case Instruction::URem: - case Instruction::UDiv: - Out << "(("; - printPrimitiveType(Out, Ty, false); - Out << ")("; - return true; - case Instruction::AShr: - case Instruction::SRem: - case Instruction::SDiv: - Out << "(("; - printPrimitiveType(Out, Ty, true); - Out << ")("; - return true; - default: break; - } - return false; -} - -// Write the operand with a cast to another type based on the Opcode being used. -// This will be used in cases where an instruction has specific type -// requirements (usually signedness) for its operands. -void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) { - - // Extract the operand's type, we'll need it. - const Type* OpTy = Operand->getType(); - - // Indicate whether to do the cast or not. - bool shouldCast = false; - - // Indicate whether the cast should be to a signed type or not. - bool castIsSigned = false; - - // Based on the Opcode for which this Operand is being written, determine - // the new type to which the operand should be casted by setting the value - // of OpTy. If we change OpTy, also set shouldCast to true. - switch (Opcode) { - default: - // for most instructions, it doesn't matter - break; - case Instruction::LShr: - case Instruction::UDiv: - case Instruction::URem: // Cast to unsigned first - shouldCast = true; - castIsSigned = false; - break; - case Instruction::AShr: - case Instruction::SDiv: - case Instruction::SRem: // Cast to signed first - shouldCast = true; - castIsSigned = true; - break; - } - - // Write out the casted operand if we should, otherwise just write the - // operand. - if (shouldCast) { - Out << "(("; - printPrimitiveType(Out, OpTy, castIsSigned); - Out << ")"; - writeOperand(Operand); - Out << ")"; - } else - writeOperand(Operand); -} - -// Write the operand with a cast to another type based on the icmp predicate -// being used. -void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) { - - // Extract the operand's type, we'll need it. - const Type* OpTy = Operand->getType(); - - // Indicate whether to do the cast or not. - bool shouldCast = false; - - // Indicate whether the cast should be to a signed type or not. - bool castIsSigned = false; - - // Based on the Opcode for which this Operand is being written, determine - // the new type to which the operand should be casted by setting the value - // of OpTy. If we change OpTy, also set shouldCast to true. - switch (predicate) { - default: - // for eq and ne, it doesn't matter - break; - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - shouldCast = true; - break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: - shouldCast = true; - castIsSigned = true; - break; - } - - // Write out the casted operand if we should, otherwise just write the - // operand. - if (shouldCast) { - Out << "(("; - if (OpTy->isInteger()) - printPrimitiveType(Out, OpTy, castIsSigned); - else - printType(Out, OpTy); // not integer, sign doesn't matter - Out << ")"; - writeOperand(Operand); - Out << ")"; - } else - writeOperand(Operand); -} - -// generateCompilerSpecificCode - This is where we add conditional compilation -// directives to cater to specific compilers as need be. -// -static void generateCompilerSpecificCode(std::ostream& Out) { - // Alloca is hard to get, and we don't want to include stdlib.h here. - Out << "/* get a declaration for alloca */\n" - << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" - << "extern void *_alloca(unsigned long);\n" - << "#define alloca(x) _alloca(x)\n" - << "#elif defined(__APPLE__)\n" - << "extern void *__builtin_alloca(unsigned long);\n" - << "#define alloca(x) __builtin_alloca(x)\n" - << "#define longjmp _longjmp\n" - << "#define setjmp _setjmp\n" - << "#elif defined(__sun__)\n" - << "#if defined(__sparcv9)\n" - << "extern void *__builtin_alloca(unsigned long);\n" - << "#else\n" - << "extern void *__builtin_alloca(unsigned int);\n" - << "#endif\n" - << "#define alloca(x) __builtin_alloca(x)\n" - << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n" - << "#define alloca(x) __builtin_alloca(x)\n" - << "#elif !defined(_MSC_VER)\n" - << "#include <alloca.h>\n" - << "#endif\n\n"; - - // We output GCC specific attributes to preserve 'linkonce'ness on globals. - // If we aren't being compiled with GCC, just drop these attributes. - Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" - << "#define __attribute__(X)\n" - << "#endif\n\n"; - - // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". - Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" - << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" - << "#elif defined(__GNUC__)\n" - << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" - << "#else\n" - << "#define __EXTERNAL_WEAK__\n" - << "#endif\n\n"; - - // For now, turn off the weak linkage attribute on Mac OS X. (See above.) - Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" - << "#define __ATTRIBUTE_WEAK__\n" - << "#elif defined(__GNUC__)\n" - << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" - << "#else\n" - << "#define __ATTRIBUTE_WEAK__\n" - << "#endif\n\n"; - - // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise - // From the GCC documentation: - // - // double __builtin_nan (const char *str) - // - // This is an implementation of the ISO C99 function nan. - // - // Since ISO C99 defines this function in terms of strtod, which we do - // not implement, a description of the parsing is in order. The string is - // parsed as by strtol; that is, the base is recognized by leading 0 or - // 0x prefixes. The number parsed is placed in the significand such that - // the least significant bit of the number is at the least significant - // bit of the significand. The number is truncated to fit the significand - // field provided. The significand is forced to be a quiet NaN. - // - // This function, if given a string literal, is evaluated early enough - // that it is considered a compile-time constant. - // - // float __builtin_nanf (const char *str) - // - // Similar to __builtin_nan, except the return type is float. - // - // double __builtin_inf (void) - // - // Similar to __builtin_huge_val, except a warning is generated if the - // target floating-point format does not support infinities. This - // function is suitable for implementing the ISO C99 macro INFINITY. - // - // float __builtin_inff (void) - // - // Similar to __builtin_inf, except the return type is float. - Out << "#ifdef __GNUC__\n" - << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" - << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" - << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" - << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" - << "#define LLVM_INF __builtin_inf() /* Double */\n" - << "#define LLVM_INFF __builtin_inff() /* Float */\n" - << "#define LLVM_PREFETCH(addr,rw,locality) " - "__builtin_prefetch(addr,rw,locality)\n" - << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" - << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" - << "#define LLVM_ASM __asm__\n" - << "#else\n" - << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" - << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" - << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" - << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" - << "#define LLVM_INF ((double)0.0) /* Double */\n" - << "#define LLVM_INFF 0.0F /* Float */\n" - << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" - << "#define __ATTRIBUTE_CTOR__\n" - << "#define __ATTRIBUTE_DTOR__\n" - << "#define LLVM_ASM(X)\n" - << "#endif\n\n"; - - // Output target-specific code that should be inserted into main. - Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; - // On X86, set the FP control word to 64-bits of precision instead of 80 bits. - Out << "#if defined(__GNUC__) && !defined(__llvm__)\n" - << "#if defined(i386) || defined(__i386__) || defined(__i386) || " - << "defined(__x86_64__)\n" - << "#undef CODE_FOR_MAIN\n" - << "#define CODE_FOR_MAIN() \\\n" - << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n" - << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n" - << "#endif\n#endif\n"; - -} - -/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into -/// the StaticTors set. -static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){ - ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); - if (!InitList) return; - - for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) - if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ - if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. - - if (CS->getOperand(1)->isNullValue()) - return; // Found a null terminator, exit printing. - Constant *FP = CS->getOperand(1); - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) - if (CE->isCast()) - FP = CE->getOperand(0); - if (Function *F = dyn_cast<Function>(FP)) - StaticTors.insert(F); - } -} - -enum SpecialGlobalClass { - NotSpecial = 0, - GlobalCtors, GlobalDtors, - NotPrinted -}; - -/// getGlobalVariableClass - If this is a global that is specially recognized -/// by LLVM, return a code that indicates how we should handle it. -static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { - // If this is a global ctors/dtors list, handle it now. - if (GV->hasAppendingLinkage() && GV->use_empty()) { - if (GV->getName() == "llvm.global_ctors") - return GlobalCtors; - else if (GV->getName() == "llvm.global_dtors") - return GlobalDtors; - } - - // Otherwise, it it is other metadata, don't print it. This catches things - // like debug information. - if (GV->getSection() == "llvm.metadata") - return NotPrinted; - - return NotSpecial; -} - - -bool CWriter::doInitialization(Module &M) { - // Initialize - TheModule = &M; - - IL.AddPrototypes(M); - - // Ensure that all structure types have names... - Mang = new Mangler(M); - Mang->markCharUnacceptable('.'); - - // Keep track of which functions are static ctors/dtors so they can have - // an attribute added to their prototypes. - std::set<Function*> StaticCtors, StaticDtors; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) { - switch (getGlobalVariableClass(I)) { - default: break; - case GlobalCtors: - FindStaticTors(I, StaticCtors); - break; - case GlobalDtors: - FindStaticTors(I, StaticDtors); - break; - } - } - - // get declaration for alloca - Out << "/* Provide Declarations */\n"; - Out << "#include <stdarg.h>\n"; // Varargs support - Out << "#include <setjmp.h>\n"; // Unwind support - generateCompilerSpecificCode(Out); - - // Provide a definition for `bool' if not compiling with a C++ compiler. - Out << "\n" - << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" - - << "\n\n/* Support for floating point constants */\n" - << "typedef unsigned long long ConstantDoubleTy;\n" - << "typedef unsigned int ConstantFloatTy;\n" - - << "\n\n/* Global Declarations */\n"; - - // First output all the declarations for the program, because C requires - // Functions & globals to be declared before they are used. - // - - // Loop over the symbol table, emitting all named constants... - printModuleTypes(M.getTypeSymbolTable()); - - // Global variable declarations... - if (!M.global_empty()) { - Out << "\n/* External Global Variable Declarations */\n"; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) { - if (I->hasExternalLinkage()) { - Out << "extern "; - printType(Out, I->getType()->getElementType(), false, - Mang->getValueName(I)); - Out << ";\n"; - } else if (I->hasDLLImportLinkage()) { - Out << "__declspec(dllimport) "; - printType(Out, I->getType()->getElementType(), false, - Mang->getValueName(I)); - Out << ";\n"; - } else if (I->hasExternalWeakLinkage()) { - Out << "extern "; - printType(Out, I->getType()->getElementType(), false, - Mang->getValueName(I)); - Out << " __EXTERNAL_WEAK__ ;\n"; - } - } - } - - // Function declarations - Out << "\n/* Function Declarations */\n"; - Out << "double fmod(double, double);\n"; // Support for FP rem - Out << "float fmodf(float, float);\n"; - - for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { - // Don't print declarations for intrinsic functions. - if (!I->getIntrinsicID() && I->getName() != "setjmp" && - I->getName() != "longjmp" && I->getName() != "_setjmp") { - if (I->hasExternalWeakLinkage()) - Out << "extern "; - printFunctionSignature(I, true); - if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - if (I->hasExternalWeakLinkage()) - Out << " __EXTERNAL_WEAK__"; - if (StaticCtors.count(I)) - Out << " __ATTRIBUTE_CTOR__"; - if (StaticDtors.count(I)) - Out << " __ATTRIBUTE_DTOR__"; - - if (I->hasName() && I->getName()[0] == 1) - Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")"; - - Out << ";\n"; - } - } - - // Output the global variable declarations - if (!M.global_empty()) { - Out << "\n\n/* Global Variable Declarations */\n"; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) - if (!I->isExternal()) { - // Ignore special globals, such as debug info. - if (getGlobalVariableClass(I)) - continue; - - if (I->hasInternalLinkage()) - Out << "static "; - else - Out << "extern "; - printType(Out, I->getType()->getElementType(), false, - Mang->getValueName(I)); - - if (I->hasLinkOnceLinkage()) - Out << " __attribute__((common))"; - else if (I->hasWeakLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - else if (I->hasExternalWeakLinkage()) - Out << " __EXTERNAL_WEAK__"; - Out << ";\n"; - } - } - - // Output the global variable definitions and contents... - if (!M.global_empty()) { - Out << "\n\n/* Global Variable Definitions and Initialization */\n"; - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E; ++I) - if (!I->isExternal()) { - // Ignore special globals, such as debug info. - if (getGlobalVariableClass(I)) - continue; - - if (I->hasInternalLinkage()) - Out << "static "; - else if (I->hasDLLImportLinkage()) - Out << "__declspec(dllimport) "; - else if (I->hasDLLExportLinkage()) - Out << "__declspec(dllexport) "; - - printType(Out, I->getType()->getElementType(), false, - Mang->getValueName(I)); - if (I->hasLinkOnceLinkage()) - Out << " __attribute__((common))"; - else if (I->hasWeakLinkage()) - Out << " __ATTRIBUTE_WEAK__"; - - // If the initializer is not null, emit the initializer. If it is null, - // we try to avoid emitting large amounts of zeros. The problem with - // this, however, occurs when the variable has weak linkage. In this - // case, the assembler will complain about the variable being both weak - // and common, so we disable this optimization. - if (!I->getInitializer()->isNullValue()) { - Out << " = " ; - writeOperand(I->getInitializer()); - } else if (I->hasWeakLinkage()) { - // We have to specify an initializer, but it doesn't have to be - // complete. If the value is an aggregate, print out { 0 }, and let - // the compiler figure out the rest of the zeros. - Out << " = " ; - if (isa<StructType>(I->getInitializer()->getType()) || - isa<ArrayType>(I->getInitializer()->getType()) || - isa<PackedType>(I->getInitializer()->getType())) { - Out << "{ 0 }"; - } else { - // Just print it out normally. - writeOperand(I->getInitializer()); - } - } - Out << ";\n"; - } - } - - if (!M.empty()) - Out << "\n\n/* Function Bodies */\n"; - - // Emit some helper functions for dealing with FCMP instruction's - // predicates - Out << "static inline int llvm_fcmp_ord(double X, double Y) { "; - Out << "return X == X && Y == Y; }\n"; - Out << "static inline int llvm_fcmp_uno(double X, double Y) { "; - Out << "return X != X || Y != Y; }\n"; - Out << "static inline int llvm_fcmp_ueq(double X, double Y) { "; - Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_une(double X, double Y) { "; - Out << "return X != Y; }\n"; - Out << "static inline int llvm_fcmp_ult(double X, double Y) { "; - Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_ugt(double X, double Y) { "; - Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_ule(double X, double Y) { "; - Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_uge(double X, double Y) { "; - Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n"; - Out << "static inline int llvm_fcmp_oeq(double X, double Y) { "; - Out << "return X == Y ; }\n"; - Out << "static inline int llvm_fcmp_one(double X, double Y) { "; - Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n"; - Out << "static inline int llvm_fcmp_olt(double X, double Y) { "; - Out << "return X < Y ; }\n"; - Out << "static inline int llvm_fcmp_ogt(double X, double Y) { "; - Out << "return X > Y ; }\n"; - Out << "static inline int llvm_fcmp_ole(double X, double Y) { "; - Out << "return X <= Y ; }\n"; - Out << "static inline int llvm_fcmp_oge(double X, double Y) { "; - Out << "return X >= Y ; }\n"; - return false; -} - - -/// Output all floating point constants that cannot be printed accurately... -void CWriter::printFloatingPointConstants(Function &F) { - // Scan the module for floating point constants. If any FP constant is used - // in the function, we want to redirect it here so that we do not depend on - // the precision of the printed form, unless the printed form preserves - // precision. - // - static unsigned FPCounter = 0; - for (constant_iterator I = constant_begin(&F), E = constant_end(&F); - I != E; ++I) - if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I)) - if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. - !FPConstantMap.count(FPC)) { - double Val = FPC->getValue(); - - FPConstantMap[FPC] = FPCounter; // Number the FP constants - - if (FPC->getType() == Type::DoubleTy) { - Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ - << " = 0x" << std::hex << DoubleToBits(Val) << std::dec - << "ULL; /* " << Val << " */\n"; - } else if (FPC->getType() == Type::FloatTy) { - Out << "static const ConstantFloatTy FPConstant" << FPCounter++ - << " = 0x" << std::hex << FloatToBits(Val) << std::dec - << "U; /* " << Val << " */\n"; - } else - assert(0 && "Unknown float type!"); - } - - Out << '\n'; -} - - -/// printSymbolTable - Run through symbol table looking for type names. If a -/// type name is found, emit its declaration... -/// -void CWriter::printModuleTypes(const TypeSymbolTable &TST) { - Out << "/* Helper union for bitcasts */\n"; - Out << "typedef union {\n"; - Out << " unsigned int Int32;\n"; - Out << " unsigned long long Int64;\n"; - Out << " float Float;\n"; - Out << " double Double;\n"; - Out << "} llvmBitCastUnion;\n"; - - // We are only interested in the type plane of the symbol table. - TypeSymbolTable::const_iterator I = TST.begin(); - TypeSymbolTable::const_iterator End = TST.end(); - - // If there are no type names, exit early. - if (I == End) return; - - // Print out forward declarations for structure types before anything else! - Out << "/* Structure forward decls */\n"; - for (; I != End; ++I) - if (const Type *STy = dyn_cast<StructType>(I->second)) { - std::string Name = "struct l_" + Mang->makeNameProper(I->first); - Out << Name << ";\n"; - TypeNames.insert(std::make_pair(STy, Name)); - } - - Out << '\n'; - - // Now we can print out typedefs... - Out << "/* Typedefs */\n"; - for (I = TST.begin(); I != End; ++I) { - const Type *Ty = cast<Type>(I->second); - std::string Name = "l_" + Mang->makeNameProper(I->first); - Out << "typedef "; - printType(Out, Ty, false, Name); - Out << ";\n"; - } - - Out << '\n'; - - // Keep track of which structures have been printed so far... - std::set<const StructType *> StructPrinted; - - // Loop over all structures then push them into the stack so they are - // printed in the correct order. - // - Out << "/* Structure contents */\n"; - for (I = TST.begin(); I != End; ++I) - if (const StructType *STy = dyn_cast<StructType>(I->second)) - // Only print out used types! - printContainedStructs(STy, StructPrinted); -} - -// Push the struct onto the stack and recursively push all structs -// this one depends on. -// -// TODO: Make this work properly with packed types -// -void CWriter::printContainedStructs(const Type *Ty, - std::set<const StructType*> &StructPrinted){ - // Don't walk through pointers. - if (isa<PointerType>(Ty) || Ty->isPrimitiveType()) return; - - // Print all contained types first. - for (Type::subtype_iterator I = Ty->subtype_begin(), - E = Ty->subtype_end(); I != E; ++I) - printContainedStructs(*I, StructPrinted); - - if (const StructType *STy = dyn_cast<StructType>(Ty)) { - // Check to see if we have already printed this struct. - if (StructPrinted.insert(STy).second) { - // Print structure type out. - std::string Name = TypeNames[STy]; - printType(Out, STy, false, Name, true); - Out << ";\n\n"; - } - } -} - -void CWriter::printFunctionSignature(const Function *F, bool Prototype) { - /// isCStructReturn - Should this function actually return a struct by-value? - bool isCStructReturn = F->getCallingConv() == CallingConv::CSRet; - - if (F->hasInternalLinkage()) Out << "static "; - if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; - if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; - switch (F->getCallingConv()) { - case CallingConv::X86_StdCall: - Out << "__stdcall "; - break; - case CallingConv::X86_FastCall: - Out << "__fastcall "; - break; - } - - // Loop over the arguments, printing them... - const FunctionType *FT = cast<FunctionType>(F->getFunctionType()); - - std::stringstream FunctionInnards; - - // Print out the name... - FunctionInnards << Mang->getValueName(F) << '('; - - bool PrintedArg = false; - if (!F->isExternal()) { - if (!F->arg_empty()) { - Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - - // If this is a struct-return function, don't print the hidden - // struct-return argument. - if (isCStructReturn) { - assert(I != E && "Invalid struct return function!"); - ++I; - } - - std::string ArgName; - unsigned Idx = 1; - for (; I != E; ++I) { - if (PrintedArg) FunctionInnards << ", "; - if (I->hasName() || !Prototype) - ArgName = Mang->getValueName(I); - else - ArgName = ""; - printType(FunctionInnards, I->getType(), - /*isSigned=*/FT->paramHasAttr(Idx, FunctionType::SExtAttribute), - ArgName); - PrintedArg = true; - ++Idx; - } - } - } else { - // Loop over the arguments, printing them. - FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); - - // If this is a struct-return function, don't print the hidden - // struct-return argument. - if (isCStructReturn) { - assert(I != E && "Invalid struct return function!"); - ++I; - } - - unsigned Idx = 1; - for (; I != E; ++I) { - if (PrintedArg) FunctionInnards << ", "; - printType(FunctionInnards, *I, - /*isSigned=*/FT->paramHasAttr(Idx, FunctionType::SExtAttribute)); - PrintedArg = true; - ++Idx; - } - } - - // Finish printing arguments... if this is a vararg function, print the ..., - // unless there are no known types, in which case, we just emit (). - // - if (FT->isVarArg() && PrintedArg) { - if (PrintedArg) FunctionInnards << ", "; - FunctionInnards << "..."; // Output varargs portion of signature! - } else if (!FT->isVarArg() && !PrintedArg) { - FunctionInnards << "void"; // ret() -> ret(void) in C. - } - FunctionInnards << ')'; - - // Get the return tpe for the function. - const Type *RetTy; - if (!isCStructReturn) - RetTy = F->getReturnType(); - else { - // If this is a struct-return function, print the struct-return type. - RetTy = cast<PointerType>(FT->getParamType(0))->getElementType(); - } - - // Print out the return type and the signature built above. - printType(Out, RetTy, - /*isSigned=*/FT->paramHasAttr(0, FunctionType::SExtAttribute), - FunctionInnards.str()); -} - -static inline bool isFPIntBitCast(const Instruction &I) { - if (!isa<BitCastInst>(I)) - return false; - const Type *SrcTy = I.getOperand(0)->getType(); - const Type *DstTy = I.getType(); - return (SrcTy->isFloatingPoint() && DstTy->isInteger()) || - (DstTy->isFloatingPoint() && SrcTy->isInteger()); -} - -void CWriter::printFunction(Function &F) { - printFunctionSignature(&F, false); - Out << " {\n"; - - // If this is a struct return function, handle the result with magic. - if (F.getCallingConv() == CallingConv::CSRet) { - const Type *StructTy = - cast<PointerType>(F.arg_begin()->getType())->getElementType(); - Out << " "; - printType(Out, StructTy, false, "StructReturn"); - Out << "; /* Struct return temporary */\n"; - - Out << " "; - printType(Out, F.arg_begin()->getType(), false, - Mang->getValueName(F.arg_begin())); - Out << " = &StructReturn;\n"; - } - - bool PrintedVar = false; - - // print local variable information for the function - for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { - if (const AllocaInst *AI = isDirectAlloca(&*I)) { - Out << " "; - printType(Out, AI->getAllocatedType(), false, Mang->getValueName(AI)); - Out << "; /* Address-exposed local */\n"; - PrintedVar = true; - } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) { - Out << " "; - printType(Out, I->getType(), false, Mang->getValueName(&*I)); - Out << ";\n"; - - if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... - Out << " "; - printType(Out, I->getType(), false, - Mang->getValueName(&*I)+"__PHI_TEMPORARY"); - Out << ";\n"; - } - PrintedVar = true; - } - // We need a temporary for the BitCast to use so it can pluck a value out - // of a union to do the BitCast. This is separate from the need for a - // variable to hold the result of the BitCast. - if (isFPIntBitCast(*I)) { - Out << " llvmBitCastUnion " << Mang->getValueName(&*I) - << "__BITCAST_TEMPORARY;\n"; - PrintedVar = true; - } - } - - if (PrintedVar) - Out << '\n'; - - if (F.hasExternalLinkage() && F.getName() == "main") - Out << " CODE_FOR_MAIN();\n"; - - // print the basic blocks - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { - if (Loop *L = LI->getLoopFor(BB)) { - if (L->getHeader() == BB && L->getParentLoop() == 0) - printLoop(L); - } else { - printBasicBlock(BB); - } - } - - Out << "}\n\n"; -} - -void CWriter::printLoop(Loop *L) { - Out << " do { /* Syntactic loop '" << L->getHeader()->getName() - << "' to make GCC happy */\n"; - for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { - BasicBlock *BB = L->getBlocks()[i]; - Loop *BBLoop = LI->getLoopFor(BB); - if (BBLoop == L) - printBasicBlock(BB); - else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) - printLoop(BBLoop); - } - Out << " } while (1); /* end of syntactic loop '" - << L->getHeader()->getName() << "' */\n"; -} - -void CWriter::printBasicBlock(BasicBlock *BB) { - - // Don't print the label for the basic block if there are no uses, or if - // the only terminator use is the predecessor basic block's terminator. - // We have to scan the use list because PHI nodes use basic blocks too but - // do not require a label to be generated. - // - bool NeedsLabel = false; - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) - if (isGotoCodeNecessary(*PI, BB)) { - NeedsLabel = true; - break; - } - - if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; - - // Output all of the instructions in the basic block... - for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; - ++II) { - if (!isInlinableInst(*II) && !isDirectAlloca(II)) { - if (II->getType() != Type::VoidTy && !isInlineAsm(*II)) - outputLValue(II); - else - Out << " "; - visit(*II); - Out << ";\n"; - } - } - - // Don't emit prefix or suffix for the terminator... - visit(*BB->getTerminator()); -} - - -// Specific Instruction type classes... note that all of the casts are -// necessary because we use the instruction classes as opaque types... -// -void CWriter::visitReturnInst(ReturnInst &I) { - // If this is a struct return function, return the temporary struct. - if (I.getParent()->getParent()->getCallingConv() == CallingConv::CSRet) { - Out << " return StructReturn;\n"; - return; - } - - // Don't output a void return if this is the last basic block in the function - if (I.getNumOperands() == 0 && - &*--I.getParent()->getParent()->end() == I.getParent() && - !I.getParent()->size() == 1) { - return; - } - - Out << " return"; - if (I.getNumOperands()) { - Out << ' '; - writeOperand(I.getOperand(0)); - } - Out << ";\n"; -} - -void CWriter::visitSwitchInst(SwitchInst &SI) { - - Out << " switch ("; - writeOperand(SI.getOperand(0)); - Out << ") {\n default:\n"; - printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); - printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); - Out << ";\n"; - for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { - Out << " case "; - writeOperand(SI.getOperand(i)); - Out << ":\n"; - BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); - printPHICopiesForSuccessor (SI.getParent(), Succ, 2); - printBranchToBlock(SI.getParent(), Succ, 2); - if (Function::iterator(Succ) == next(Function::iterator(SI.getParent()))) - Out << " break;\n"; - } - Out << " }\n"; -} - -void CWriter::visitUnreachableInst(UnreachableInst &I) { - Out << " /*UNREACHABLE*/;\n"; -} - -bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { - /// FIXME: This should be reenabled, but loop reordering safe!! - return true; - - if (next(Function::iterator(From)) != Function::iterator(To)) - return true; // Not the direct successor, we need a goto. - - //isa<SwitchInst>(From->getTerminator()) - - if (LI->getLoopFor(From) != LI->getLoopFor(To)) - return true; - return false; -} - -void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, - BasicBlock *Successor, - unsigned Indent) { - for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { - PHINode *PN = cast<PHINode>(I); - // Now we have to do the printing. - Value *IV = PN->getIncomingValueForBlock(CurBlock); - if (!isa<UndefValue>(IV)) { - Out << std::string(Indent, ' '); - Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; - writeOperand(IV); - Out << "; /* for PHI node */\n"; - } - } -} - -void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, - unsigned Indent) { - if (isGotoCodeNecessary(CurBB, Succ)) { - Out << std::string(Indent, ' ') << " goto "; - writeOperand(Succ); - Out << ";\n"; - } -} - -// Branch instruction printing - Avoid printing out a branch to a basic block -// that immediately succeeds the current one. -// -void CWriter::visitBranchInst(BranchInst &I) { - - if (I.isConditional()) { - if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { - Out << " if ("; - writeOperand(I.getCondition()); - Out << ") {\n"; - - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); - printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); - - if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { - Out << " } else {\n"; - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); - printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); - } - } else { - // First goto not necessary, assume second one is... - Out << " if (!"; - writeOperand(I.getCondition()); - Out << ") {\n"; - - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); - printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); - } - - Out << " }\n"; - } else { - printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); - printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); - } - Out << "\n"; -} - -// PHI nodes get copied into temporary values at the end of predecessor basic -// blocks. We now need to copy these temporary values into the REAL value for -// the PHI. -void CWriter::visitPHINode(PHINode &I) { - writeOperand(&I); - Out << "__PHI_TEMPORARY"; -} - - -void CWriter::visitBinaryOperator(Instruction &I) { - // binary instructions, shift instructions, setCond instructions. - assert(!isa<PointerType>(I.getType())); - - // We must cast the results of binary operations which might be promoted. - bool needsCast = false; - if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty) - || (I.getType() == Type::FloatTy)) { - needsCast = true; - Out << "(("; - printType(Out, I.getType(), false); - Out << ")("; - } - - // If this is a negation operation, print it out as such. For FP, we don't - // want to print "-0.0 - X". - if (BinaryOperator::isNeg(&I)) { - Out << "-("; - writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); - Out << ")"; - } else if (I.getOpcode() == Instruction::FRem) { - // Output a call to fmod/fmodf instead of emitting a%b - if (I.getType() == Type::FloatTy) - Out << "fmodf("; - else - Out << "fmod("; - writeOperand(I.getOperand(0)); - Out << ", "; - writeOperand(I.getOperand(1)); - Out << ")"; - } else { - - // Write out the cast of the instruction's value back to the proper type - // if necessary. - bool NeedsClosingParens = writeInstructionCast(I); - - // Certain instructions require the operand to be forced to a specific type - // so we use writeOperandWithCast here instead of writeOperand. Similarly - // below for operand 1 - writeOperandWithCast(I.getOperand(0), I.getOpcode()); - - switch (I.getOpcode()) { - case Instruction::Add: Out << " + "; break; - case Instruction::Sub: Out << " - "; break; - case Instruction::Mul: Out << '*'; break; - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: Out << '%'; break; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: Out << '/'; break; - case Instruction::And: Out << " & "; break; - case Instruction::Or: Out << " | "; break; - case Instruction::Xor: Out << " ^ "; break; - case Instruction::Shl : Out << " << "; break; - case Instruction::LShr: - case Instruction::AShr: Out << " >> "; break; - default: cerr << "Invalid operator type!" << I; abort(); - } - - writeOperandWithCast(I.getOperand(1), I.getOpcode()); - if (NeedsClosingParens) - Out << "))"; - } - - if (needsCast) { - Out << "))"; - } -} - -void CWriter::visitICmpInst(ICmpInst &I) { - // We must cast the results of icmp which might be promoted. - bool needsCast = false; - - // Write out the cast of the instruction's value back to the proper type - // if necessary. - bool NeedsClosingParens = writeInstructionCast(I); - - // Certain icmp predicate require the operand to be forced to a specific type - // so we use writeOperandWithCast here instead of writeOperand. Similarly - // below for operand 1 - writeOperandWithCast(I.getOperand(0), I.getPredicate()); - - switch (I.getPredicate()) { - case ICmpInst::ICMP_EQ: Out << " == "; break; - case ICmpInst::ICMP_NE: Out << " != "; break; - case ICmpInst::ICMP_ULE: - case ICmpInst::ICMP_SLE: Out << " <= "; break; - case ICmpInst::ICMP_UGE: - case ICmpInst::ICMP_SGE: Out << " >= "; break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_SLT: Out << " < "; break; - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_SGT: Out << " > "; break; - default: cerr << "Invalid icmp predicate!" << I; abort(); - } - - writeOperandWithCast(I.getOperand(1), I.getPredicate()); - if (NeedsClosingParens) - Out << "))"; - - if (needsCast) { - Out << "))"; - } -} - -void CWriter::visitFCmpInst(FCmpInst &I) { - if (I.getPredicate() == FCmpInst::FCMP_FALSE) { - Out << "0"; - return; - } - if (I.getPredicate() == FCmpInst::FCMP_TRUE) { - Out << "1"; - return; - } - - const char* op = 0; - switch (I.getPredicate()) { - default: assert(0 && "Illegal FCmp predicate"); - case FCmpInst::FCMP_ORD: op = "ord"; break; - case FCmpInst::FCMP_UNO: op = "uno"; break; - case FCmpInst::FCMP_UEQ: op = "ueq"; break; - case FCmpInst::FCMP_UNE: op = "une"; break; - case FCmpInst::FCMP_ULT: op = "ult"; break; - case FCmpInst::FCMP_ULE: op = "ule"; break; - case FCmpInst::FCMP_UGT: op = "ugt"; break; - case FCmpInst::FCMP_UGE: op = "uge"; break; - case FCmpInst::FCMP_OEQ: op = "oeq"; break; - case FCmpInst::FCMP_ONE: op = "one"; break; - case FCmpInst::FCMP_OLT: op = "olt"; break; - case FCmpInst::FCMP_OLE: op = "ole"; break; - case FCmpInst::FCMP_OGT: op = "ogt"; break; - case FCmpInst::FCMP_OGE: op = "oge"; break; - } - - Out << "llvm_fcmp_" << op << "("; - // Write the first operand - writeOperand(I.getOperand(0)); - Out << ", "; - // Write the second operand - writeOperand(I.getOperand(1)); - Out << ")"; -} - -static const char * getFloatBitCastField(const Type *Ty) { - switch (Ty->getTypeID()) { - default: assert(0 && "Invalid Type"); - case Type::FloatTyID: return "Float"; - case Type::Int32TyID: return "Int32"; - case Type::DoubleTyID: return "Double"; - case Type::Int64TyID: return "Int64"; - } -} - -void CWriter::visitCastInst(CastInst &I) { - const Type *DstTy = I.getType(); - const Type *SrcTy = I.getOperand(0)->getType(); - Out << '('; - if (isFPIntBitCast(I)) { - // These int<->float and long<->double casts need to be handled specially - Out << Mang->getValueName(&I) << "__BITCAST_TEMPORARY." - << getFloatBitCastField(I.getOperand(0)->getType()) << " = "; - writeOperand(I.getOperand(0)); - Out << ", " << Mang->getValueName(&I) << "__BITCAST_TEMPORARY." - << getFloatBitCastField(I.getType()); - } else { - printCast(I.getOpcode(), SrcTy, DstTy); - if (I.getOpcode() == Instruction::SExt && SrcTy == Type::BoolTy) { - // Make sure we really get a sext from bool by subtracing the bool from 0 - Out << "0-"; - } - writeOperand(I.getOperand(0)); - if (DstTy == Type::BoolTy && - (I.getOpcode() == Instruction::Trunc || - I.getOpcode() == Instruction::FPToUI || - I.getOpcode() == Instruction::FPToSI || - I.getOpcode() == Instruction::PtrToInt)) { - // Make sure we really get a trunc to bool by anding the operand with 1 - Out << "&1u"; - } - } - Out << ')'; -} - -void CWriter::visitSelectInst(SelectInst &I) { - Out << "(("; - writeOperand(I.getCondition()); - Out << ") ? ("; - writeOperand(I.getTrueValue()); - Out << ") : ("; - writeOperand(I.getFalseValue()); - Out << "))"; -} - - -void CWriter::lowerIntrinsics(Function &F) { - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) - if (CallInst *CI = dyn_cast<CallInst>(I++)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::not_intrinsic: - case Intrinsic::vastart: - case Intrinsic::vacopy: - case Intrinsic::vaend: - case Intrinsic::returnaddress: - case Intrinsic::frameaddress: - case Intrinsic::setjmp: - case Intrinsic::longjmp: - case Intrinsic::prefetch: - case Intrinsic::dbg_stoppoint: - case Intrinsic::powi_f32: - case Intrinsic::powi_f64: - // We directly implement these intrinsics - break; - default: - // If this is an intrinsic that directly corresponds to a GCC - // builtin, we handle it. - const char *BuiltinName = ""; -#define GET_GCC_BUILTIN_NAME -#include "llvm/Intrinsics.gen" -#undef GET_GCC_BUILTIN_NAME - // If we handle it, don't lower it. - if (BuiltinName[0]) break; - - // All other intrinsic calls we must lower. - Instruction *Before = 0; - if (CI != &BB->front()) - Before = prior(BasicBlock::iterator(CI)); - - IL.LowerIntrinsicCall(CI); - if (Before) { // Move iterator to instruction after call - I = Before; ++I; - } else { - I = BB->begin(); - } - break; - } -} - - - -void CWriter::visitCallInst(CallInst &I) { - //check if we have inline asm - if (isInlineAsm(I)) { - visitInlineAsm(I); - return; - } - - bool WroteCallee = false; - - // Handle intrinsic function calls first... - if (Function *F = I.getCalledFunction()) - if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { - switch (ID) { - default: { - // If this is an intrinsic that directly corresponds to a GCC - // builtin, we emit it here. - const char *BuiltinName = ""; -#define GET_GCC_BUILTIN_NAME -#include "llvm/Intrinsics.gen" -#undef GET_GCC_BUILTIN_NAME - assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); - - Out << BuiltinName; - WroteCallee = true; - break; - } - case Intrinsic::vastart: - Out << "0; "; - - Out << "va_start(*(va_list*)"; - writeOperand(I.getOperand(1)); - Out << ", "; - // Output the last argument to the enclosing function... - if (I.getParent()->getParent()->arg_empty()) { - cerr << "The C backend does not currently support zero " - << "argument varargs functions, such as '" - << I.getParent()->getParent()->getName() << "'!\n"; - abort(); - } - writeOperand(--I.getParent()->getParent()->arg_end()); - Out << ')'; - return; - case Intrinsic::vaend: - if (!isa<ConstantPointerNull>(I.getOperand(1))) { - Out << "0; va_end(*(va_list*)"; - writeOperand(I.getOperand(1)); - Out << ')'; - } else { - Out << "va_end(*(va_list*)0)"; - } - return; - case Intrinsic::vacopy: - Out << "0; "; - Out << "va_copy(*(va_list*)"; - writeOperand(I.getOperand(1)); - Out << ", *(va_list*)"; - writeOperand(I.getOperand(2)); - Out << ')'; - return; - case Intrinsic::returnaddress: - Out << "__builtin_return_address("; - writeOperand(I.getOperand(1)); - Out << ')'; - return; - case Intrinsic::frameaddress: - Out << "__builtin_frame_address("; - writeOperand(I.getOperand(1)); - Out << ')'; - return; - case Intrinsic::powi_f32: - case Intrinsic::powi_f64: - Out << "__builtin_powi("; - writeOperand(I.getOperand(1)); - Out << ", "; - writeOperand(I.getOperand(2)); - Out << ')'; - return; - case Intrinsic::setjmp: - Out << "setjmp(*(jmp_buf*)"; - writeOperand(I.getOperand(1)); - Out << ')'; - return; - case Intrinsic::longjmp: - Out << "longjmp(*(jmp_buf*)"; - writeOperand(I.getOperand(1)); - Out << ", "; - writeOperand(I.getOperand(2)); - Out << ')'; - return; - case Intrinsic::prefetch: - Out << "LLVM_PREFETCH((const void *)"; - writeOperand(I.getOperand(1)); - Out << ", "; - writeOperand(I.getOperand(2)); - Out << ", "; - writeOperand(I.getOperand(3)); - Out << ")"; - return; - case Intrinsic::dbg_stoppoint: { - // If we use writeOperand directly we get a "u" suffix which is rejected - // by gcc. - DbgStopPointInst &SPI = cast<DbgStopPointInst>(I); - - Out << "\n#line " - << SPI.getLine() - << " \"" << SPI.getDirectory() - << SPI.getFileName() << "\"\n"; - return; - } - } - } - - Value *Callee = I.getCalledValue(); - - // If this is a call to a struct-return function, assign to the first - // parameter instead of passing it to the call. - bool isStructRet = I.getCallingConv() == CallingConv::CSRet; - if (isStructRet) { - Out << "*("; - writeOperand(I.getOperand(1)); - Out << ") = "; - } - - if (I.isTailCall()) Out << " /*tail*/ "; - - const PointerType *PTy = cast<PointerType>(Callee->getType()); - const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); - - if (!WroteCallee) { - // If this is an indirect call to a struct return function, we need to cast - // the pointer. - bool NeedsCast = isStructRet && !isa<Function>(Callee); - - // GCC is a real PITA. It does not permit codegening casts of functions to - // function pointers if they are in a call (it generates a trap instruction - // instead!). We work around this by inserting a cast to void* in between - // the function and the function pointer cast. Unfortunately, we can't just - // form the constant expression here, because the folder will immediately - // nuke it. - // - // Note finally, that this is completely unsafe. ANSI C does not guarantee - // that void* and function pointers have the same size. :( To deal with this - // in the common case, we handle casts where the number of arguments passed - // match exactly. - // - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) - if (CE->isCast()) - if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { - NeedsCast = true; - Callee = RF; - } - - if (NeedsCast) { - // Ok, just cast the pointer type. - Out << "(("; - if (!isStructRet) - printType(Out, I.getCalledValue()->getType()); - else - printStructReturnPointerFunctionType(Out, - cast<PointerType>(I.getCalledValue()->getType())); - Out << ")(void*)"; - } - writeOperand(Callee); - if (NeedsCast) Out << ')'; - } - - Out << '('; - - unsigned NumDeclaredParams = FTy->getNumParams(); - - CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end(); - unsigned ArgNo = 0; - if (isStructRet) { // Skip struct return argument. - ++AI; - ++ArgNo; - } - - bool PrintedArg = false; - unsigned Idx = 1; - for (; AI != AE; ++AI, ++ArgNo, ++Idx) { - if (PrintedArg) Out << ", "; - if (ArgNo < NumDeclaredParams && - (*AI)->getType() != FTy->getParamType(ArgNo)) { - Out << '('; - printType(Out, FTy->getParamType(ArgNo), - /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute)); - Out << ')'; - } - writeOperand(*AI); - PrintedArg = true; - } - Out << ')'; -} - - -//This converts the llvm constraint string to something gcc is expecting. -//TODO: work out platform independent constraints and factor those out -// of the per target tables -// handle multiple constraint codes -std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) { - - assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle"); - - const char** table = 0; - - //Grab the translation table from TargetAsmInfo if it exists - if (!TAsm) { - std::string E; - const TargetMachineRegistry::Entry* Match = - TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E); - if (Match) { - //Per platform Target Machines don't exist, so create it - // this must be done only once - const TargetMachine* TM = Match->CtorFn(*TheModule, ""); - TAsm = TM->getTargetAsmInfo(); - } - } - if (TAsm) - table = TAsm->getAsmCBE(); - - //Search the translation table if it exists - for (int i = 0; table && table[i]; i += 2) - if (c.Codes[0] == table[i]) - return table[i+1]; - - //default is identity - return c.Codes[0]; -} - -//TODO: import logic from AsmPrinter.cpp -static std::string gccifyAsm(std::string asmstr) { - for (std::string::size_type i = 0; i != asmstr.size(); ++i) - if (asmstr[i] == '\n') - asmstr.replace(i, 1, "\\n"); - else if (asmstr[i] == '\t') - asmstr.replace(i, 1, "\\t"); - else if (asmstr[i] == '$') { - if (asmstr[i + 1] == '{') { - std::string::size_type a = asmstr.find_first_of(':', i + 1); - std::string::size_type b = asmstr.find_first_of('}', i + 1); - std::string n = "%" + - asmstr.substr(a + 1, b - a - 1) + - asmstr.substr(i + 2, a - i - 2); - asmstr.replace(i, b - i + 1, n); - i += n.size() - 1; - } else - asmstr.replace(i, 1, "%"); - } - else if (asmstr[i] == '%')//grr - { asmstr.replace(i, 1, "%%"); ++i;} - - return asmstr; -} - -//TODO: assumptions about what consume arguments from the call are likely wrong -// handle communitivity -void CWriter::visitInlineAsm(CallInst &CI) { - InlineAsm* as = cast<InlineAsm>(CI.getOperand(0)); - std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints(); - std::vector<std::pair<std::string, Value*> > Input; - std::vector<std::pair<std::string, Value*> > Output; - std::string Clobber; - int count = CI.getType() == Type::VoidTy ? 1 : 0; - for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(), - E = Constraints.end(); I != E; ++I) { - assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); - std::string c = - InterpretASMConstraint(*I); - switch(I->Type) { - default: - assert(0 && "Unknown asm constraint"); - break; - case InlineAsm::isInput: { - if (c.size()) { - Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI)); - ++count; //consume arg - } - break; - } - case InlineAsm::isOutput: { - if (c.size()) { - Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c), - count ? CI.getOperand(count) : &CI)); - ++count; //consume arg - } - break; - } - case InlineAsm::isClobber: { - if (c.size()) - Clobber += ",\"" + c + "\""; - break; - } - } - } - - //fix up the asm string for gcc - std::string asmstr = gccifyAsm(as->getAsmString()); - - Out << "__asm__ volatile (\"" << asmstr << "\"\n"; - Out << " :"; - for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(), - E = Output.end(); I != E; ++I) { - Out << "\"" << I->first << "\"("; - writeOperandRaw(I->second); - Out << ")"; - if (I + 1 != E) - Out << ","; - } - Out << "\n :"; - for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(), - E = Input.end(); I != E; ++I) { - Out << "\"" << I->first << "\"("; - writeOperandRaw(I->second); - Out << ")"; - if (I + 1 != E) - Out << ","; - } - if (Clobber.size()) - Out << "\n :" << Clobber.substr(1); - Out << ")"; -} - -void CWriter::visitMallocInst(MallocInst &I) { - assert(0 && "lowerallocations pass didn't work!"); -} - -void CWriter::visitAllocaInst(AllocaInst &I) { - Out << '('; - printType(Out, I.getType()); - Out << ") alloca(sizeof("; - printType(Out, I.getType()->getElementType()); - Out << ')'; - if (I.isArrayAllocation()) { - Out << " * " ; - writeOperand(I.getOperand(0)); - } - Out << ')'; -} - -void CWriter::visitFreeInst(FreeInst &I) { - assert(0 && "lowerallocations pass didn't work!"); -} - -void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, - gep_type_iterator E) { - bool HasImplicitAddress = false; - // If accessing a global value with no indexing, avoid *(&GV) syndrome - if (isa<GlobalValue>(Ptr)) { - HasImplicitAddress = true; - } else if (isDirectAlloca(Ptr)) { - HasImplicitAddress = true; - } - - if (I == E) { - if (!HasImplicitAddress) - Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]' - - writeOperandInternal(Ptr); - return; - } - - const Constant *CI = dyn_cast<Constant>(I.getOperand()); - if (HasImplicitAddress && (!CI || !CI->isNullValue())) - Out << "(&"; - - writeOperandInternal(Ptr); - - if (HasImplicitAddress && (!CI || !CI->isNullValue())) { - Out << ')'; - HasImplicitAddress = false; // HIA is only true if we haven't addressed yet - } - - assert(!HasImplicitAddress || (CI && CI->isNullValue()) && - "Can only have implicit address with direct accessing"); - - if (HasImplicitAddress) { - ++I; - } else if (CI && CI->isNullValue()) { - gep_type_iterator TmpI = I; ++TmpI; - - // Print out the -> operator if possible... - if (TmpI != E && isa<StructType>(*TmpI)) { - Out << (HasImplicitAddress ? "." : "->"); - Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue(); - I = ++TmpI; - } - } - - for (; I != E; ++I) - if (isa<StructType>(*I)) { - Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); - } else { - Out << '['; - writeOperand(I.getOperand()); - Out << ']'; - } -} - -void CWriter::visitLoadInst(LoadInst &I) { - Out << '*'; - if (I.isVolatile()) { - Out << "(("; - printType(Out, I.getType(), false, "volatile*"); - Out << ")"; - } - - writeOperand(I.getOperand(0)); - - if (I.isVolatile()) - Out << ')'; -} - -void CWriter::visitStoreInst(StoreInst &I) { - Out << '*'; - if (I.isVolatile()) { - Out << "(("; - printType(Out, I.getOperand(0)->getType(), false, " volatile*"); - Out << ")"; - } - writeOperand(I.getPointerOperand()); - if (I.isVolatile()) Out << ')'; - Out << " = "; - writeOperand(I.getOperand(0)); -} - -void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { - Out << '&'; - printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), - gep_type_end(I)); -} - -void CWriter::visitVAArgInst(VAArgInst &I) { - Out << "va_arg(*(va_list*)"; - writeOperand(I.getOperand(0)); - Out << ", "; - printType(Out, I.getType()); - Out << ");\n "; -} - -//===----------------------------------------------------------------------===// -// External Interface declaration -//===----------------------------------------------------------------------===// - -bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM, - std::ostream &o, - CodeGenFileType FileType, - bool Fast) { - if (FileType != TargetMachine::AssemblyFile) return true; - - PM.add(createLowerGCPass()); - PM.add(createLowerAllocationsPass(true)); - PM.add(createLowerInvokePass()); - PM.add(createCFGSimplificationPass()); // clean up after lower invoke. - PM.add(new CBackendNameAllUsedStructsAndMergeFunctions()); - PM.add(new CWriter(o)); - return false; -} |