aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2007-01-10 04:16:17 +0000
committerReid Spencer <rspencer@reidspencer.com>2007-01-10 04:16:17 +0000
commit93a0962e088dc184d6174c4b4b85d5c38e938317 (patch)
tree203c22243c57d23202fb6bf1ee469f86a3511387 /lib
parent39ff1e2afc07acf4c29af48853b09e15c41875d2 (diff)
downloadexternal_llvm-93a0962e088dc184d6174c4b4b85d5c38e938317.zip
external_llvm-93a0962e088dc184d6174c4b4b85d5c38e938317.tar.gz
external_llvm-93a0962e088dc184d6174c4b4b85d5c38e938317.tar.bz2
Rename Writer.cpp as CBackend.cpp so it doesn't conflict with Writer.cpp
in the bytecode writer library. This helps with debugging. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33050 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r--lib/Target/CBackend/Writer.cpp2791
1 files changed, 0 insertions, 2791 deletions
diff --git a/lib/Target/CBackend/Writer.cpp b/lib/Target/CBackend/Writer.cpp
deleted file mode 100644
index e738c99..0000000
--- a/lib/Target/CBackend/Writer.cpp
+++ /dev/null
@@ -1,2791 +0,0 @@
-//===-- Writer.cpp - Library for converting LLVM code to C ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This library converts LLVM code to C code, compilable by GCC and other C
-// compilers.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CTargetMachine.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/PassManager.h"
-#include "llvm/SymbolTable.h"
-#include "llvm/TypeSymbolTable.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/Analysis/ConstantsScanner.h"
-#include "llvm/Analysis/FindUsedTypes.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Target/TargetMachineRegistry.h"
-#include "llvm/Target/TargetAsmInfo.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/Mangler.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Config/config.h"
-#include <algorithm>
-#include <sstream>
-using namespace llvm;
-
-namespace {
- // Register the target.
- RegisterTarget<CTargetMachine> X("c", " C backend");
-
- /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
- /// any unnamed structure types that are used by the program, and merges
- /// external functions with the same name.
- ///
- class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<FindUsedTypes>();
- }
-
- virtual const char *getPassName() const {
- return "C backend type canonicalizer";
- }
-
- virtual bool runOnModule(Module &M);
- };
-
- /// CWriter - This class is the main chunk of code that converts an LLVM
- /// module to a C translation unit.
- class CWriter : public FunctionPass, public InstVisitor<CWriter> {
- std::ostream &Out;
- IntrinsicLowering IL;
- Mangler *Mang;
- LoopInfo *LI;
- const Module *TheModule;
- const TargetAsmInfo* TAsm;
- std::map<const Type *, std::string> TypeNames;
-
- std::map<const ConstantFP *, unsigned> FPConstantMap;
- public:
- CWriter(std::ostream &o) : Out(o), TAsm(0) {}
-
- virtual const char *getPassName() const { return "C backend"; }
-
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<LoopInfo>();
- AU.setPreservesAll();
- }
-
- virtual bool doInitialization(Module &M);
-
- bool runOnFunction(Function &F) {
- LI = &getAnalysis<LoopInfo>();
-
- // Get rid of intrinsics we can't handle.
- lowerIntrinsics(F);
-
- // Output all floating point constants that cannot be printed accurately.
- printFloatingPointConstants(F);
-
- // Ensure that no local symbols conflict with global symbols.
- F.renameLocalSymbols();
-
- printFunction(F);
- FPConstantMap.clear();
- return false;
- }
-
- virtual bool doFinalization(Module &M) {
- // Free memory...
- delete Mang;
- TypeNames.clear();
- return false;
- }
-
- std::ostream &printType(std::ostream &Out, const Type *Ty,
- bool isSigned = false,
- const std::string &VariableName = "",
- bool IgnoreName = false);
- std::ostream &printPrimitiveType(std::ostream &Out, const Type *Ty,
- bool isSigned,
- const std::string &NameSoFar = "");
-
- void printStructReturnPointerFunctionType(std::ostream &Out,
- const PointerType *Ty);
-
- void writeOperand(Value *Operand);
- void writeOperandRaw(Value *Operand);
- void writeOperandInternal(Value *Operand);
- void writeOperandWithCast(Value* Operand, unsigned Opcode);
- void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate);
- bool writeInstructionCast(const Instruction &I);
-
- private :
- std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
-
- void lowerIntrinsics(Function &F);
-
- void printModule(Module *M);
- void printModuleTypes(const TypeSymbolTable &ST);
- void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
- void printFloatingPointConstants(Function &F);
- void printFunctionSignature(const Function *F, bool Prototype);
-
- void printFunction(Function &);
- void printBasicBlock(BasicBlock *BB);
- void printLoop(Loop *L);
-
- void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
- void printConstant(Constant *CPV);
- void printConstantWithCast(Constant *CPV, unsigned Opcode);
- bool printConstExprCast(const ConstantExpr *CE);
- void printConstantArray(ConstantArray *CPA);
- void printConstantPacked(ConstantPacked *CP);
-
- // isInlinableInst - Attempt to inline instructions into their uses to build
- // trees as much as possible. To do this, we have to consistently decide
- // what is acceptable to inline, so that variable declarations don't get
- // printed and an extra copy of the expr is not emitted.
- //
- static bool isInlinableInst(const Instruction &I) {
- // Always inline cmp instructions, even if they are shared by multiple
- // expressions. GCC generates horrible code if we don't.
- if (isa<CmpInst>(I))
- return true;
-
- // Must be an expression, must be used exactly once. If it is dead, we
- // emit it inline where it would go.
- if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
- isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
- isa<LoadInst>(I) || isa<VAArgInst>(I))
- // Don't inline a load across a store or other bad things!
- return false;
-
- // Must not be used in inline asm
- if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
-
- // Only inline instruction it if it's use is in the same BB as the inst.
- return I.getParent() == cast<Instruction>(I.use_back())->getParent();
- }
-
- // isDirectAlloca - Define fixed sized allocas in the entry block as direct
- // variables which are accessed with the & operator. This causes GCC to
- // generate significantly better code than to emit alloca calls directly.
- //
- static const AllocaInst *isDirectAlloca(const Value *V) {
- const AllocaInst *AI = dyn_cast<AllocaInst>(V);
- if (!AI) return false;
- if (AI->isArrayAllocation())
- return 0; // FIXME: we can also inline fixed size array allocas!
- if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
- return 0;
- return AI;
- }
-
- // isInlineAsm - Check if the instruction is a call to an inline asm chunk
- static bool isInlineAsm(const Instruction& I) {
- if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
- return true;
- return false;
- }
-
- // Instruction visitation functions
- friend class InstVisitor<CWriter>;
-
- void visitReturnInst(ReturnInst &I);
- void visitBranchInst(BranchInst &I);
- void visitSwitchInst(SwitchInst &I);
- void visitInvokeInst(InvokeInst &I) {
- assert(0 && "Lowerinvoke pass didn't work!");
- }
-
- void visitUnwindInst(UnwindInst &I) {
- assert(0 && "Lowerinvoke pass didn't work!");
- }
- void visitUnreachableInst(UnreachableInst &I);
-
- void visitPHINode(PHINode &I);
- void visitBinaryOperator(Instruction &I);
- void visitICmpInst(ICmpInst &I);
- void visitFCmpInst(FCmpInst &I);
-
- void visitCastInst (CastInst &I);
- void visitSelectInst(SelectInst &I);
- void visitCallInst (CallInst &I);
- void visitInlineAsm(CallInst &I);
- void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
-
- void visitMallocInst(MallocInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitFreeInst (FreeInst &I);
- void visitLoadInst (LoadInst &I);
- void visitStoreInst (StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitVAArgInst (VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- cerr << "C Writer does not know about " << I;
- abort();
- }
-
- void outputLValue(Instruction *I) {
- Out << " " << Mang->getValueName(I) << " = ";
- }
-
- bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
- void printPHICopiesForSuccessor(BasicBlock *CurBlock,
- BasicBlock *Successor, unsigned Indent);
- void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
- unsigned Indent);
- void printIndexingExpression(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E);
- };
-}
-
-/// This method inserts names for any unnamed structure types that are used by
-/// the program, and removes names from structure types that are not used by the
-/// program.
-///
-bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
- // Get a set of types that are used by the program...
- std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
-
- // Loop over the module symbol table, removing types from UT that are
- // already named, and removing names for types that are not used.
- //
- TypeSymbolTable &TST = M.getTypeSymbolTable();
- for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
- TI != TE; ) {
- TypeSymbolTable::iterator I = TI++;
-
- // If this is not used, remove it from the symbol table.
- std::set<const Type *>::iterator UTI = UT.find(I->second);
- if (UTI == UT.end())
- TST.remove(I);
- else
- UT.erase(UTI); // Only keep one name for this type.
- }
-
- // UT now contains types that are not named. Loop over it, naming
- // structure types.
- //
- bool Changed = false;
- unsigned RenameCounter = 0;
- for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
- I != E; ++I)
- if (const StructType *ST = dyn_cast<StructType>(*I)) {
- while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
- ++RenameCounter;
- Changed = true;
- }
-
-
- // Loop over all external functions and globals. If we have two with
- // identical names, merge them.
- // FIXME: This code should disappear when we don't allow values with the same
- // names when they have different types!
- std::map<std::string, GlobalValue*> ExtSymbols;
- for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
- Function *GV = I++;
- if (GV->isExternal() && GV->hasName()) {
- std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
- = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
- if (!X.second) {
- // Found a conflict, replace this global with the previous one.
- GlobalValue *OldGV = X.first->second;
- GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
- GV->eraseFromParent();
- Changed = true;
- }
- }
- }
- // Do the same for globals.
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E;) {
- GlobalVariable *GV = I++;
- if (GV->isExternal() && GV->hasName()) {
- std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
- = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
- if (!X.second) {
- // Found a conflict, replace this global with the previous one.
- GlobalValue *OldGV = X.first->second;
- GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
- GV->eraseFromParent();
- Changed = true;
- }
- }
- }
-
- return Changed;
-}
-
-/// printStructReturnPointerFunctionType - This is like printType for a struct
-/// return type, except, instead of printing the type as void (*)(Struct*, ...)
-/// print it as "Struct (*)(...)", for struct return functions.
-void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
- const PointerType *TheTy) {
- const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
- std::stringstream FunctionInnards;
- FunctionInnards << " (*) (";
- bool PrintedType = false;
-
- FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
- const Type *RetTy = cast<PointerType>(I->get())->getElementType();
- unsigned Idx = 1;
- for (++I; I != E; ++I) {
- if (PrintedType)
- FunctionInnards << ", ";
- printType(FunctionInnards, *I,
- /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute), "");
- PrintedType = true;
- }
- if (FTy->isVarArg()) {
- if (PrintedType)
- FunctionInnards << ", ...";
- } else if (!PrintedType) {
- FunctionInnards << "void";
- }
- FunctionInnards << ')';
- std::string tstr = FunctionInnards.str();
- printType(Out, RetTy,
- /*isSigned=*/FTy->paramHasAttr(0, FunctionType::SExtAttribute), tstr);
-}
-
-std::ostream &
-CWriter::printPrimitiveType(std::ostream &Out, const Type *Ty, bool isSigned,
- const std::string &NameSoFar) {
- assert(Ty->isPrimitiveType() && "Invalid type for printPrimitiveType");
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return Out << "void " << NameSoFar;
- case Type::BoolTyID: return Out << "bool " << NameSoFar;
- case Type::Int8TyID:
- return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
- case Type::Int16TyID:
- return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
- case Type::Int32TyID:
- return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
- case Type::Int64TyID:
- return Out << (isSigned?"signed":"unsigned") << " long long " << NameSoFar;
- case Type::FloatTyID: return Out << "float " << NameSoFar;
- case Type::DoubleTyID: return Out << "double " << NameSoFar;
- default :
- cerr << "Unknown primitive type: " << *Ty << "\n";
- abort();
- }
-}
-
-// Pass the Type* and the variable name and this prints out the variable
-// declaration.
-//
-std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
- bool isSigned, const std::string &NameSoFar,
- bool IgnoreName) {
- if (Ty->isPrimitiveType()) {
- // FIXME:Signedness. When integer types are signless, this should just
- // always pass "false" for the sign of the primitive type. The instructions
- // will figure out how the value is to be interpreted.
- printPrimitiveType(Out, Ty, isSigned, NameSoFar);
- return Out;
- }
-
- // Check to see if the type is named.
- if (!IgnoreName || isa<OpaqueType>(Ty)) {
- std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
- if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
- }
-
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: {
- const FunctionType *FTy = cast<FunctionType>(Ty);
- std::stringstream FunctionInnards;
- FunctionInnards << " (" << NameSoFar << ") (";
- unsigned Idx = 1;
- for (FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end(); I != E; ++I) {
- if (I != FTy->param_begin())
- FunctionInnards << ", ";
- printType(FunctionInnards, *I,
- /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute), "");
- ++Idx;
- }
- if (FTy->isVarArg()) {
- if (FTy->getNumParams())
- FunctionInnards << ", ...";
- } else if (!FTy->getNumParams()) {
- FunctionInnards << "void";
- }
- FunctionInnards << ')';
- std::string tstr = FunctionInnards.str();
- printType(Out, FTy->getReturnType(),
- /*isSigned=*/FTy->paramHasAttr(0, FunctionType::SExtAttribute), tstr);
- return Out;
- }
- case Type::StructTyID: {
- const StructType *STy = cast<StructType>(Ty);
- Out << NameSoFar + " {\n";
- unsigned Idx = 0;
- for (StructType::element_iterator I = STy->element_begin(),
- E = STy->element_end(); I != E; ++I) {
- Out << " ";
- printType(Out, *I, false, "field" + utostr(Idx++));
- Out << ";\n";
- }
- return Out << '}';
- }
-
- case Type::PointerTyID: {
- const PointerType *PTy = cast<PointerType>(Ty);
- std::string ptrName = "*" + NameSoFar;
-
- if (isa<ArrayType>(PTy->getElementType()) ||
- isa<PackedType>(PTy->getElementType()))
- ptrName = "(" + ptrName + ")";
-
- return printType(Out, PTy->getElementType(), false, ptrName);
- }
-
- case Type::ArrayTyID: {
- const ArrayType *ATy = cast<ArrayType>(Ty);
- unsigned NumElements = ATy->getNumElements();
- if (NumElements == 0) NumElements = 1;
- return printType(Out, ATy->getElementType(), false,
- NameSoFar + "[" + utostr(NumElements) + "]");
- }
-
- case Type::PackedTyID: {
- const PackedType *PTy = cast<PackedType>(Ty);
- unsigned NumElements = PTy->getNumElements();
- if (NumElements == 0) NumElements = 1;
- return printType(Out, PTy->getElementType(), false,
- NameSoFar + "[" + utostr(NumElements) + "]");
- }
-
- case Type::OpaqueTyID: {
- static int Count = 0;
- std::string TyName = "struct opaque_" + itostr(Count++);
- assert(TypeNames.find(Ty) == TypeNames.end());
- TypeNames[Ty] = TyName;
- return Out << TyName << ' ' << NameSoFar;
- }
- default:
- assert(0 && "Unhandled case in getTypeProps!");
- abort();
- }
-
- return Out;
-}
-
-void CWriter::printConstantArray(ConstantArray *CPA) {
-
- // As a special case, print the array as a string if it is an array of
- // ubytes or an array of sbytes with positive values.
- //
- const Type *ETy = CPA->getType()->getElementType();
- bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
-
- // Make sure the last character is a null char, as automatically added by C
- if (isString && (CPA->getNumOperands() == 0 ||
- !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
- isString = false;
-
- if (isString) {
- Out << '\"';
- // Keep track of whether the last number was a hexadecimal escape
- bool LastWasHex = false;
-
- // Do not include the last character, which we know is null
- for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
- unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
-
- // Print it out literally if it is a printable character. The only thing
- // to be careful about is when the last letter output was a hex escape
- // code, in which case we have to be careful not to print out hex digits
- // explicitly (the C compiler thinks it is a continuation of the previous
- // character, sheesh...)
- //
- if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
- LastWasHex = false;
- if (C == '"' || C == '\\')
- Out << "\\" << C;
- else
- Out << C;
- } else {
- LastWasHex = false;
- switch (C) {
- case '\n': Out << "\\n"; break;
- case '\t': Out << "\\t"; break;
- case '\r': Out << "\\r"; break;
- case '\v': Out << "\\v"; break;
- case '\a': Out << "\\a"; break;
- case '\"': Out << "\\\""; break;
- case '\'': Out << "\\\'"; break;
- default:
- Out << "\\x";
- Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
- Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
- LastWasHex = true;
- break;
- }
- }
- }
- Out << '\"';
- } else {
- Out << '{';
- if (CPA->getNumOperands()) {
- Out << ' ';
- printConstant(cast<Constant>(CPA->getOperand(0)));
- for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printConstant(cast<Constant>(CPA->getOperand(i)));
- }
- }
- Out << " }";
- }
-}
-
-void CWriter::printConstantPacked(ConstantPacked *CP) {
- Out << '{';
- if (CP->getNumOperands()) {
- Out << ' ';
- printConstant(cast<Constant>(CP->getOperand(0)));
- for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printConstant(cast<Constant>(CP->getOperand(i)));
- }
- }
- Out << " }";
-}
-
-// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
-// textually as a double (rather than as a reference to a stack-allocated
-// variable). We decide this by converting CFP to a string and back into a
-// double, and then checking whether the conversion results in a bit-equal
-// double to the original value of CFP. This depends on us and the target C
-// compiler agreeing on the conversion process (which is pretty likely since we
-// only deal in IEEE FP).
-//
-static bool isFPCSafeToPrint(const ConstantFP *CFP) {
-#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
- char Buffer[100];
- sprintf(Buffer, "%a", CFP->getValue());
-
- if (!strncmp(Buffer, "0x", 2) ||
- !strncmp(Buffer, "-0x", 3) ||
- !strncmp(Buffer, "+0x", 3))
- return atof(Buffer) == CFP->getValue();
- return false;
-#else
- std::string StrVal = ftostr(CFP->getValue());
-
- while (StrVal[0] == ' ')
- StrVal.erase(StrVal.begin());
-
- // Check to make sure that the stringized number is not some string like "Inf"
- // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
- if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
- ((StrVal[0] == '-' || StrVal[0] == '+') &&
- (StrVal[1] >= '0' && StrVal[1] <= '9')))
- // Reparse stringized version!
- return atof(StrVal.c_str()) == CFP->getValue();
- return false;
-#endif
-}
-
-/// Print out the casting for a cast operation. This does the double casting
-/// necessary for conversion to the destination type, if necessary.
-/// @brief Print a cast
-void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
- // Print the destination type cast
- switch (opc) {
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::IntToPtr:
- case Instruction::Trunc:
- case Instruction::BitCast:
- case Instruction::FPExt:
- case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
- Out << '(';
- printType(Out, DstTy);
- Out << ')';
- break;
- case Instruction::ZExt:
- case Instruction::PtrToInt:
- case Instruction::FPToUI: // For these, make sure we get an unsigned dest
- Out << '(';
- printPrimitiveType(Out, DstTy, false);
- Out << ')';
- break;
- case Instruction::SExt:
- case Instruction::FPToSI: // For these, make sure we get a signed dest
- Out << '(';
- printPrimitiveType(Out, DstTy, true);
- Out << ')';
- break;
- default:
- assert(0 && "Invalid cast opcode");
- }
-
- // Print the source type cast
- switch (opc) {
- case Instruction::UIToFP:
- case Instruction::ZExt:
- Out << '(';
- printPrimitiveType(Out, SrcTy, false);
- Out << ')';
- break;
- case Instruction::SIToFP:
- case Instruction::SExt:
- Out << '(';
- printPrimitiveType(Out, SrcTy, true);
- Out << ')';
- break;
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- // Avoid "cast to pointer from integer of different size" warnings
- Out << "(unsigned long)";
- break;
- case Instruction::Trunc:
- case Instruction::BitCast:
- case Instruction::FPExt:
- case Instruction::FPTrunc:
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- break; // These don't need a source cast.
- default:
- assert(0 && "Invalid cast opcode");
- break;
- }
-}
-
-// printConstant - The LLVM Constant to C Constant converter.
-void CWriter::printConstant(Constant *CPV) {
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- Out << "(";
- printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
- if (CE->getOpcode() == Instruction::SExt &&
- CE->getOperand(0)->getType() == Type::BoolTy) {
- // Make sure we really sext from bool here by subtracting from 0
- Out << "0-";
- }
- printConstant(CE->getOperand(0));
- if (CE->getType() == Type::BoolTy &&
- (CE->getOpcode() == Instruction::Trunc ||
- CE->getOpcode() == Instruction::FPToUI ||
- CE->getOpcode() == Instruction::FPToSI ||
- CE->getOpcode() == Instruction::PtrToInt)) {
- // Make sure we really truncate to bool here by anding with 1
- Out << "&1u";
- }
- Out << ')';
- return;
-
- case Instruction::GetElementPtr:
- Out << "(&(";
- printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
- gep_type_end(CPV));
- Out << "))";
- return;
- case Instruction::Select:
- Out << '(';
- printConstant(CE->getOperand(0));
- Out << '?';
- printConstant(CE->getOperand(1));
- Out << ':';
- printConstant(CE->getOperand(2));
- Out << ')';
- return;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- {
- Out << '(';
- bool NeedsClosingParens = printConstExprCast(CE);
- printConstantWithCast(CE->getOperand(0), CE->getOpcode());
- switch (CE->getOpcode()) {
- case Instruction::Add: Out << " + "; break;
- case Instruction::Sub: Out << " - "; break;
- case Instruction::Mul: Out << " * "; break;
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem: Out << " % "; break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv: Out << " / "; break;
- case Instruction::And: Out << " & "; break;
- case Instruction::Or: Out << " | "; break;
- case Instruction::Xor: Out << " ^ "; break;
- case Instruction::Shl: Out << " << "; break;
- case Instruction::LShr:
- case Instruction::AShr: Out << " >> "; break;
- case Instruction::ICmp:
- switch (CE->getPredicate()) {
- case ICmpInst::ICMP_EQ: Out << " == "; break;
- case ICmpInst::ICMP_NE: Out << " != "; break;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_ULT: Out << " < "; break;
- case ICmpInst::ICMP_SLE:
- case ICmpInst::ICMP_ULE: Out << " <= "; break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_UGT: Out << " > "; break;
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_UGE: Out << " >= "; break;
- default: assert(0 && "Illegal ICmp predicate");
- }
- break;
- default: assert(0 && "Illegal opcode here!");
- }
- printConstantWithCast(CE->getOperand(1), CE->getOpcode());
- if (NeedsClosingParens)
- Out << "))";
- Out << ')';
- return;
- }
- case Instruction::FCmp: {
- Out << '(';
- bool NeedsClosingParens = printConstExprCast(CE);
- if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
- Out << "0";
- else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
- Out << "1";
- else {
- const char* op = 0;
- switch (CE->getPredicate()) {
- default: assert(0 && "Illegal FCmp predicate");
- case FCmpInst::FCMP_ORD: op = "ord"; break;
- case FCmpInst::FCMP_UNO: op = "uno"; break;
- case FCmpInst::FCMP_UEQ: op = "ueq"; break;
- case FCmpInst::FCMP_UNE: op = "une"; break;
- case FCmpInst::FCMP_ULT: op = "ult"; break;
- case FCmpInst::FCMP_ULE: op = "ule"; break;
- case FCmpInst::FCMP_UGT: op = "ugt"; break;
- case FCmpInst::FCMP_UGE: op = "uge"; break;
- case FCmpInst::FCMP_OEQ: op = "oeq"; break;
- case FCmpInst::FCMP_ONE: op = "one"; break;
- case FCmpInst::FCMP_OLT: op = "olt"; break;
- case FCmpInst::FCMP_OLE: op = "ole"; break;
- case FCmpInst::FCMP_OGT: op = "ogt"; break;
- case FCmpInst::FCMP_OGE: op = "oge"; break;
- }
- Out << "llvm_fcmp_" << op << "(";
- printConstantWithCast(CE->getOperand(0), CE->getOpcode());
- Out << ", ";
- printConstantWithCast(CE->getOperand(1), CE->getOpcode());
- Out << ")";
- }
- if (NeedsClosingParens)
- Out << "))";
- Out << ')';
- }
- default:
- cerr << "CWriter Error: Unhandled constant expression: "
- << *CE << "\n";
- abort();
- }
- } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
- Out << "((";
- printType(Out, CPV->getType()); // sign doesn't matter
- Out << ")/*UNDEF*/0)";
- return;
- }
-
- if (ConstantBool *CB = dyn_cast<ConstantBool>(CPV)) {
- Out << (CB->getValue() ? '1' : '0') ;
- return;
- }
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
- const Type* Ty = CI->getType();
- Out << "((";
- printPrimitiveType(Out, Ty, false) << ')';
- if (CI->isMinValue(true))
- Out << CI->getZExtValue() << 'u';
- else
- Out << CI->getSExtValue();
- if (Ty->getPrimitiveSizeInBits() > 32)
- Out << "ll";
- Out << ')';
- return;
- }
-
- switch (CPV->getType()->getTypeID()) {
- case Type::FloatTyID:
- case Type::DoubleTyID: {
- ConstantFP *FPC = cast<ConstantFP>(CPV);
- std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
- if (I != FPConstantMap.end()) {
- // Because of FP precision problems we must load from a stack allocated
- // value that holds the value in hex.
- Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
- << "*)&FPConstant" << I->second << ')';
- } else {
- if (IsNAN(FPC->getValue())) {
- // The value is NaN
-
- // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
- // it's 0x7ff4.
- const unsigned long QuietNaN = 0x7ff8UL;
- //const unsigned long SignalNaN = 0x7ff4UL;
-
- // We need to grab the first part of the FP #
- char Buffer[100];
-
- uint64_t ll = DoubleToBits(FPC->getValue());
- sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
-
- std::string Num(&Buffer[0], &Buffer[6]);
- unsigned long Val = strtoul(Num.c_str(), 0, 16);
-
- if (FPC->getType() == Type::FloatTy)
- Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
- << Buffer << "\") /*nan*/ ";
- else
- Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
- << Buffer << "\") /*nan*/ ";
- } else if (IsInf(FPC->getValue())) {
- // The value is Inf
- if (FPC->getValue() < 0) Out << '-';
- Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
- << " /*inf*/ ";
- } else {
- std::string Num;
-#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
- // Print out the constant as a floating point number.
- char Buffer[100];
- sprintf(Buffer, "%a", FPC->getValue());
- Num = Buffer;
-#else
- Num = ftostr(FPC->getValue());
-#endif
- Out << Num;
- }
- }
- break;
- }
-
- case Type::ArrayTyID:
- if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
- const ArrayType *AT = cast<ArrayType>(CPV->getType());
- Out << '{';
- if (AT->getNumElements()) {
- Out << ' ';
- Constant *CZ = Constant::getNullValue(AT->getElementType());
- printConstant(CZ);
- for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(CZ);
- }
- }
- Out << " }";
- } else {
- printConstantArray(cast<ConstantArray>(CPV));
- }
- break;
-
- case Type::PackedTyID:
- if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
- const PackedType *AT = cast<PackedType>(CPV->getType());
- Out << '{';
- if (AT->getNumElements()) {
- Out << ' ';
- Constant *CZ = Constant::getNullValue(AT->getElementType());
- printConstant(CZ);
- for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(CZ);
- }
- }
- Out << " }";
- } else {
- printConstantPacked(cast<ConstantPacked>(CPV));
- }
- break;
-
- case Type::StructTyID:
- if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
- const StructType *ST = cast<StructType>(CPV->getType());
- Out << '{';
- if (ST->getNumElements()) {
- Out << ' ';
- printConstant(Constant::getNullValue(ST->getElementType(0)));
- for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(Constant::getNullValue(ST->getElementType(i)));
- }
- }
- Out << " }";
- } else {
- Out << '{';
- if (CPV->getNumOperands()) {
- Out << ' ';
- printConstant(cast<Constant>(CPV->getOperand(0)));
- for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printConstant(cast<Constant>(CPV->getOperand(i)));
- }
- }
- Out << " }";
- }
- break;
-
- case Type::PointerTyID:
- if (isa<ConstantPointerNull>(CPV)) {
- Out << "((";
- printType(Out, CPV->getType()); // sign doesn't matter
- Out << ")/*NULL*/0)";
- break;
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
- writeOperand(GV);
- break;
- }
- // FALL THROUGH
- default:
- cerr << "Unknown constant type: " << *CPV << "\n";
- abort();
- }
-}
-
-// Some constant expressions need to be casted back to the original types
-// because their operands were casted to the expected type. This function takes
-// care of detecting that case and printing the cast for the ConstantExpr.
-bool CWriter::printConstExprCast(const ConstantExpr* CE) {
- bool NeedsExplicitCast = false;
- const Type *Ty = CE->getOperand(0)->getType();
- bool TypeIsSigned = false;
- switch (CE->getOpcode()) {
- case Instruction::LShr:
- case Instruction::URem:
- case Instruction::UDiv: NeedsExplicitCast = true; break;
- case Instruction::AShr:
- case Instruction::SRem:
- case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
- case Instruction::SExt:
- Ty = CE->getType();
- NeedsExplicitCast = true;
- TypeIsSigned = true;
- break;
- case Instruction::ZExt:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- Ty = CE->getType();
- NeedsExplicitCast = true;
- break;
- default: break;
- }
- if (NeedsExplicitCast) {
- Out << "((";
- if (Ty->isInteger())
- printPrimitiveType(Out, Ty, TypeIsSigned);
- else
- printType(Out, Ty); // not integer, sign doesn't matter
- Out << ")(";
- }
- return NeedsExplicitCast;
-}
-
-// Print a constant assuming that it is the operand for a given Opcode. The
-// opcodes that care about sign need to cast their operands to the expected
-// type before the operation proceeds. This function does the casting.
-void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
-
- // Extract the operand's type, we'll need it.
- const Type* OpTy = CPV->getType();
-
- // Indicate whether to do the cast or not.
- bool shouldCast = false;
- bool typeIsSigned = false;
-
- // Based on the Opcode for which this Constant is being written, determine
- // the new type to which the operand should be casted by setting the value
- // of OpTy. If we change OpTy, also set shouldCast to true so it gets
- // casted below.
- switch (Opcode) {
- default:
- // for most instructions, it doesn't matter
- break;
- case Instruction::LShr:
- case Instruction::UDiv:
- case Instruction::URem:
- shouldCast = true;
- break;
- case Instruction::AShr:
- case Instruction::SDiv:
- case Instruction::SRem:
- shouldCast = true;
- typeIsSigned = true;
- break;
- }
-
- // Write out the casted constant if we should, otherwise just write the
- // operand.
- if (shouldCast) {
- Out << "((";
- printPrimitiveType(Out, OpTy, typeIsSigned);
- Out << ")";
- printConstant(CPV);
- Out << ")";
- } else
- printConstant(CPV);
-}
-
-void CWriter::writeOperandInternal(Value *Operand) {
- if (Instruction *I = dyn_cast<Instruction>(Operand))
- if (isInlinableInst(*I) && !isDirectAlloca(I)) {
- // Should we inline this instruction to build a tree?
- Out << '(';
- visit(*I);
- Out << ')';
- return;
- }
-
- Constant* CPV = dyn_cast<Constant>(Operand);
- if (CPV && !isa<GlobalValue>(CPV)) {
- printConstant(CPV);
- } else {
- Out << Mang->getValueName(Operand);
- }
-}
-
-void CWriter::writeOperandRaw(Value *Operand) {
- Constant* CPV = dyn_cast<Constant>(Operand);
- if (CPV && !isa<GlobalValue>(CPV)) {
- printConstant(CPV);
- } else {
- Out << Mang->getValueName(Operand);
- }
-}
-
-void CWriter::writeOperand(Value *Operand) {
- if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
- Out << "(&"; // Global variables are referenced as their addresses by llvm
-
- writeOperandInternal(Operand);
-
- if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
- Out << ')';
-}
-
-// Some instructions need to have their result value casted back to the
-// original types because their operands were casted to the expected type.
-// This function takes care of detecting that case and printing the cast
-// for the Instruction.
-bool CWriter::writeInstructionCast(const Instruction &I) {
- const Type *Ty = I.getOperand(0)->getType();
- switch (I.getOpcode()) {
- case Instruction::LShr:
- case Instruction::URem:
- case Instruction::UDiv:
- Out << "((";
- printPrimitiveType(Out, Ty, false);
- Out << ")(";
- return true;
- case Instruction::AShr:
- case Instruction::SRem:
- case Instruction::SDiv:
- Out << "((";
- printPrimitiveType(Out, Ty, true);
- Out << ")(";
- return true;
- default: break;
- }
- return false;
-}
-
-// Write the operand with a cast to another type based on the Opcode being used.
-// This will be used in cases where an instruction has specific type
-// requirements (usually signedness) for its operands.
-void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
-
- // Extract the operand's type, we'll need it.
- const Type* OpTy = Operand->getType();
-
- // Indicate whether to do the cast or not.
- bool shouldCast = false;
-
- // Indicate whether the cast should be to a signed type or not.
- bool castIsSigned = false;
-
- // Based on the Opcode for which this Operand is being written, determine
- // the new type to which the operand should be casted by setting the value
- // of OpTy. If we change OpTy, also set shouldCast to true.
- switch (Opcode) {
- default:
- // for most instructions, it doesn't matter
- break;
- case Instruction::LShr:
- case Instruction::UDiv:
- case Instruction::URem: // Cast to unsigned first
- shouldCast = true;
- castIsSigned = false;
- break;
- case Instruction::AShr:
- case Instruction::SDiv:
- case Instruction::SRem: // Cast to signed first
- shouldCast = true;
- castIsSigned = true;
- break;
- }
-
- // Write out the casted operand if we should, otherwise just write the
- // operand.
- if (shouldCast) {
- Out << "((";
- printPrimitiveType(Out, OpTy, castIsSigned);
- Out << ")";
- writeOperand(Operand);
- Out << ")";
- } else
- writeOperand(Operand);
-}
-
-// Write the operand with a cast to another type based on the icmp predicate
-// being used.
-void CWriter::writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate) {
-
- // Extract the operand's type, we'll need it.
- const Type* OpTy = Operand->getType();
-
- // Indicate whether to do the cast or not.
- bool shouldCast = false;
-
- // Indicate whether the cast should be to a signed type or not.
- bool castIsSigned = false;
-
- // Based on the Opcode for which this Operand is being written, determine
- // the new type to which the operand should be casted by setting the value
- // of OpTy. If we change OpTy, also set shouldCast to true.
- switch (predicate) {
- default:
- // for eq and ne, it doesn't matter
- break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- shouldCast = true;
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- shouldCast = true;
- castIsSigned = true;
- break;
- }
-
- // Write out the casted operand if we should, otherwise just write the
- // operand.
- if (shouldCast) {
- Out << "((";
- if (OpTy->isInteger())
- printPrimitiveType(Out, OpTy, castIsSigned);
- else
- printType(Out, OpTy); // not integer, sign doesn't matter
- Out << ")";
- writeOperand(Operand);
- Out << ")";
- } else
- writeOperand(Operand);
-}
-
-// generateCompilerSpecificCode - This is where we add conditional compilation
-// directives to cater to specific compilers as need be.
-//
-static void generateCompilerSpecificCode(std::ostream& Out) {
- // Alloca is hard to get, and we don't want to include stdlib.h here.
- Out << "/* get a declaration for alloca */\n"
- << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
- << "extern void *_alloca(unsigned long);\n"
- << "#define alloca(x) _alloca(x)\n"
- << "#elif defined(__APPLE__)\n"
- << "extern void *__builtin_alloca(unsigned long);\n"
- << "#define alloca(x) __builtin_alloca(x)\n"
- << "#define longjmp _longjmp\n"
- << "#define setjmp _setjmp\n"
- << "#elif defined(__sun__)\n"
- << "#if defined(__sparcv9)\n"
- << "extern void *__builtin_alloca(unsigned long);\n"
- << "#else\n"
- << "extern void *__builtin_alloca(unsigned int);\n"
- << "#endif\n"
- << "#define alloca(x) __builtin_alloca(x)\n"
- << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
- << "#define alloca(x) __builtin_alloca(x)\n"
- << "#elif !defined(_MSC_VER)\n"
- << "#include <alloca.h>\n"
- << "#endif\n\n";
-
- // We output GCC specific attributes to preserve 'linkonce'ness on globals.
- // If we aren't being compiled with GCC, just drop these attributes.
- Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
- << "#define __attribute__(X)\n"
- << "#endif\n\n";
-
- // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
- Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
- << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
- << "#elif defined(__GNUC__)\n"
- << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
- << "#else\n"
- << "#define __EXTERNAL_WEAK__\n"
- << "#endif\n\n";
-
- // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
- Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
- << "#define __ATTRIBUTE_WEAK__\n"
- << "#elif defined(__GNUC__)\n"
- << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
- << "#else\n"
- << "#define __ATTRIBUTE_WEAK__\n"
- << "#endif\n\n";
-
- // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
- // From the GCC documentation:
- //
- // double __builtin_nan (const char *str)
- //
- // This is an implementation of the ISO C99 function nan.
- //
- // Since ISO C99 defines this function in terms of strtod, which we do
- // not implement, a description of the parsing is in order. The string is
- // parsed as by strtol; that is, the base is recognized by leading 0 or
- // 0x prefixes. The number parsed is placed in the significand such that
- // the least significant bit of the number is at the least significant
- // bit of the significand. The number is truncated to fit the significand
- // field provided. The significand is forced to be a quiet NaN.
- //
- // This function, if given a string literal, is evaluated early enough
- // that it is considered a compile-time constant.
- //
- // float __builtin_nanf (const char *str)
- //
- // Similar to __builtin_nan, except the return type is float.
- //
- // double __builtin_inf (void)
- //
- // Similar to __builtin_huge_val, except a warning is generated if the
- // target floating-point format does not support infinities. This
- // function is suitable for implementing the ISO C99 macro INFINITY.
- //
- // float __builtin_inff (void)
- //
- // Similar to __builtin_inf, except the return type is float.
- Out << "#ifdef __GNUC__\n"
- << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
- << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
- << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
- << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
- << "#define LLVM_INF __builtin_inf() /* Double */\n"
- << "#define LLVM_INFF __builtin_inff() /* Float */\n"
- << "#define LLVM_PREFETCH(addr,rw,locality) "
- "__builtin_prefetch(addr,rw,locality)\n"
- << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
- << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
- << "#define LLVM_ASM __asm__\n"
- << "#else\n"
- << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
- << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
- << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
- << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
- << "#define LLVM_INF ((double)0.0) /* Double */\n"
- << "#define LLVM_INFF 0.0F /* Float */\n"
- << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
- << "#define __ATTRIBUTE_CTOR__\n"
- << "#define __ATTRIBUTE_DTOR__\n"
- << "#define LLVM_ASM(X)\n"
- << "#endif\n\n";
-
- // Output target-specific code that should be inserted into main.
- Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
- // On X86, set the FP control word to 64-bits of precision instead of 80 bits.
- Out << "#if defined(__GNUC__) && !defined(__llvm__)\n"
- << "#if defined(i386) || defined(__i386__) || defined(__i386) || "
- << "defined(__x86_64__)\n"
- << "#undef CODE_FOR_MAIN\n"
- << "#define CODE_FOR_MAIN() \\\n"
- << " {short F;__asm__ (\"fnstcw %0\" : \"=m\" (*&F)); \\\n"
- << " F=(F&~0x300)|0x200;__asm__(\"fldcw %0\"::\"m\"(*&F));}\n"
- << "#endif\n#endif\n";
-
-}
-
-/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
-/// the StaticTors set.
-static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
- ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
- if (!InitList) return;
-
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
- if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
-
- if (CS->getOperand(1)->isNullValue())
- return; // Found a null terminator, exit printing.
- Constant *FP = CS->getOperand(1);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
- if (CE->isCast())
- FP = CE->getOperand(0);
- if (Function *F = dyn_cast<Function>(FP))
- StaticTors.insert(F);
- }
-}
-
-enum SpecialGlobalClass {
- NotSpecial = 0,
- GlobalCtors, GlobalDtors,
- NotPrinted
-};
-
-/// getGlobalVariableClass - If this is a global that is specially recognized
-/// by LLVM, return a code that indicates how we should handle it.
-static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
- // If this is a global ctors/dtors list, handle it now.
- if (GV->hasAppendingLinkage() && GV->use_empty()) {
- if (GV->getName() == "llvm.global_ctors")
- return GlobalCtors;
- else if (GV->getName() == "llvm.global_dtors")
- return GlobalDtors;
- }
-
- // Otherwise, it it is other metadata, don't print it. This catches things
- // like debug information.
- if (GV->getSection() == "llvm.metadata")
- return NotPrinted;
-
- return NotSpecial;
-}
-
-
-bool CWriter::doInitialization(Module &M) {
- // Initialize
- TheModule = &M;
-
- IL.AddPrototypes(M);
-
- // Ensure that all structure types have names...
- Mang = new Mangler(M);
- Mang->markCharUnacceptable('.');
-
- // Keep track of which functions are static ctors/dtors so they can have
- // an attribute added to their prototypes.
- std::set<Function*> StaticCtors, StaticDtors;
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- switch (getGlobalVariableClass(I)) {
- default: break;
- case GlobalCtors:
- FindStaticTors(I, StaticCtors);
- break;
- case GlobalDtors:
- FindStaticTors(I, StaticDtors);
- break;
- }
- }
-
- // get declaration for alloca
- Out << "/* Provide Declarations */\n";
- Out << "#include <stdarg.h>\n"; // Varargs support
- Out << "#include <setjmp.h>\n"; // Unwind support
- generateCompilerSpecificCode(Out);
-
- // Provide a definition for `bool' if not compiling with a C++ compiler.
- Out << "\n"
- << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
-
- << "\n\n/* Support for floating point constants */\n"
- << "typedef unsigned long long ConstantDoubleTy;\n"
- << "typedef unsigned int ConstantFloatTy;\n"
-
- << "\n\n/* Global Declarations */\n";
-
- // First output all the declarations for the program, because C requires
- // Functions & globals to be declared before they are used.
- //
-
- // Loop over the symbol table, emitting all named constants...
- printModuleTypes(M.getTypeSymbolTable());
-
- // Global variable declarations...
- if (!M.global_empty()) {
- Out << "\n/* External Global Variable Declarations */\n";
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- if (I->hasExternalLinkage()) {
- Out << "extern ";
- printType(Out, I->getType()->getElementType(), false,
- Mang->getValueName(I));
- Out << ";\n";
- } else if (I->hasDLLImportLinkage()) {
- Out << "__declspec(dllimport) ";
- printType(Out, I->getType()->getElementType(), false,
- Mang->getValueName(I));
- Out << ";\n";
- } else if (I->hasExternalWeakLinkage()) {
- Out << "extern ";
- printType(Out, I->getType()->getElementType(), false,
- Mang->getValueName(I));
- Out << " __EXTERNAL_WEAK__ ;\n";
- }
- }
- }
-
- // Function declarations
- Out << "\n/* Function Declarations */\n";
- Out << "double fmod(double, double);\n"; // Support for FP rem
- Out << "float fmodf(float, float);\n";
-
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- // Don't print declarations for intrinsic functions.
- if (!I->getIntrinsicID() && I->getName() != "setjmp" &&
- I->getName() != "longjmp" && I->getName() != "_setjmp") {
- if (I->hasExternalWeakLinkage())
- Out << "extern ";
- printFunctionSignature(I, true);
- if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
- Out << " __ATTRIBUTE_WEAK__";
- if (I->hasExternalWeakLinkage())
- Out << " __EXTERNAL_WEAK__";
- if (StaticCtors.count(I))
- Out << " __ATTRIBUTE_CTOR__";
- if (StaticDtors.count(I))
- Out << " __ATTRIBUTE_DTOR__";
-
- if (I->hasName() && I->getName()[0] == 1)
- Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
-
- Out << ";\n";
- }
- }
-
- // Output the global variable declarations
- if (!M.global_empty()) {
- Out << "\n\n/* Global Variable Declarations */\n";
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (!I->isExternal()) {
- // Ignore special globals, such as debug info.
- if (getGlobalVariableClass(I))
- continue;
-
- if (I->hasInternalLinkage())
- Out << "static ";
- else
- Out << "extern ";
- printType(Out, I->getType()->getElementType(), false,
- Mang->getValueName(I));
-
- if (I->hasLinkOnceLinkage())
- Out << " __attribute__((common))";
- else if (I->hasWeakLinkage())
- Out << " __ATTRIBUTE_WEAK__";
- else if (I->hasExternalWeakLinkage())
- Out << " __EXTERNAL_WEAK__";
- Out << ";\n";
- }
- }
-
- // Output the global variable definitions and contents...
- if (!M.global_empty()) {
- Out << "\n\n/* Global Variable Definitions and Initialization */\n";
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (!I->isExternal()) {
- // Ignore special globals, such as debug info.
- if (getGlobalVariableClass(I))
- continue;
-
- if (I->hasInternalLinkage())
- Out << "static ";
- else if (I->hasDLLImportLinkage())
- Out << "__declspec(dllimport) ";
- else if (I->hasDLLExportLinkage())
- Out << "__declspec(dllexport) ";
-
- printType(Out, I->getType()->getElementType(), false,
- Mang->getValueName(I));
- if (I->hasLinkOnceLinkage())
- Out << " __attribute__((common))";
- else if (I->hasWeakLinkage())
- Out << " __ATTRIBUTE_WEAK__";
-
- // If the initializer is not null, emit the initializer. If it is null,
- // we try to avoid emitting large amounts of zeros. The problem with
- // this, however, occurs when the variable has weak linkage. In this
- // case, the assembler will complain about the variable being both weak
- // and common, so we disable this optimization.
- if (!I->getInitializer()->isNullValue()) {
- Out << " = " ;
- writeOperand(I->getInitializer());
- } else if (I->hasWeakLinkage()) {
- // We have to specify an initializer, but it doesn't have to be
- // complete. If the value is an aggregate, print out { 0 }, and let
- // the compiler figure out the rest of the zeros.
- Out << " = " ;
- if (isa<StructType>(I->getInitializer()->getType()) ||
- isa<ArrayType>(I->getInitializer()->getType()) ||
- isa<PackedType>(I->getInitializer()->getType())) {
- Out << "{ 0 }";
- } else {
- // Just print it out normally.
- writeOperand(I->getInitializer());
- }
- }
- Out << ";\n";
- }
- }
-
- if (!M.empty())
- Out << "\n\n/* Function Bodies */\n";
-
- // Emit some helper functions for dealing with FCMP instruction's
- // predicates
- Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
- Out << "return X == X && Y == Y; }\n";
- Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
- Out << "return X != X || Y != Y; }\n";
- Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
- Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
- Out << "return X != Y; }\n";
- Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
- Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
- Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
- Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
- Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
- Out << "return X == Y ; }\n";
- Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
- Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
- Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
- Out << "return X < Y ; }\n";
- Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
- Out << "return X > Y ; }\n";
- Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
- Out << "return X <= Y ; }\n";
- Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
- Out << "return X >= Y ; }\n";
- return false;
-}
-
-
-/// Output all floating point constants that cannot be printed accurately...
-void CWriter::printFloatingPointConstants(Function &F) {
- // Scan the module for floating point constants. If any FP constant is used
- // in the function, we want to redirect it here so that we do not depend on
- // the precision of the printed form, unless the printed form preserves
- // precision.
- //
- static unsigned FPCounter = 0;
- for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
- I != E; ++I)
- if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
- if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
- !FPConstantMap.count(FPC)) {
- double Val = FPC->getValue();
-
- FPConstantMap[FPC] = FPCounter; // Number the FP constants
-
- if (FPC->getType() == Type::DoubleTy) {
- Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
- << " = 0x" << std::hex << DoubleToBits(Val) << std::dec
- << "ULL; /* " << Val << " */\n";
- } else if (FPC->getType() == Type::FloatTy) {
- Out << "static const ConstantFloatTy FPConstant" << FPCounter++
- << " = 0x" << std::hex << FloatToBits(Val) << std::dec
- << "U; /* " << Val << " */\n";
- } else
- assert(0 && "Unknown float type!");
- }
-
- Out << '\n';
-}
-
-
-/// printSymbolTable - Run through symbol table looking for type names. If a
-/// type name is found, emit its declaration...
-///
-void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
- Out << "/* Helper union for bitcasts */\n";
- Out << "typedef union {\n";
- Out << " unsigned int Int32;\n";
- Out << " unsigned long long Int64;\n";
- Out << " float Float;\n";
- Out << " double Double;\n";
- Out << "} llvmBitCastUnion;\n";
-
- // We are only interested in the type plane of the symbol table.
- TypeSymbolTable::const_iterator I = TST.begin();
- TypeSymbolTable::const_iterator End = TST.end();
-
- // If there are no type names, exit early.
- if (I == End) return;
-
- // Print out forward declarations for structure types before anything else!
- Out << "/* Structure forward decls */\n";
- for (; I != End; ++I)
- if (const Type *STy = dyn_cast<StructType>(I->second)) {
- std::string Name = "struct l_" + Mang->makeNameProper(I->first);
- Out << Name << ";\n";
- TypeNames.insert(std::make_pair(STy, Name));
- }
-
- Out << '\n';
-
- // Now we can print out typedefs...
- Out << "/* Typedefs */\n";
- for (I = TST.begin(); I != End; ++I) {
- const Type *Ty = cast<Type>(I->second);
- std::string Name = "l_" + Mang->makeNameProper(I->first);
- Out << "typedef ";
- printType(Out, Ty, false, Name);
- Out << ";\n";
- }
-
- Out << '\n';
-
- // Keep track of which structures have been printed so far...
- std::set<const StructType *> StructPrinted;
-
- // Loop over all structures then push them into the stack so they are
- // printed in the correct order.
- //
- Out << "/* Structure contents */\n";
- for (I = TST.begin(); I != End; ++I)
- if (const StructType *STy = dyn_cast<StructType>(I->second))
- // Only print out used types!
- printContainedStructs(STy, StructPrinted);
-}
-
-// Push the struct onto the stack and recursively push all structs
-// this one depends on.
-//
-// TODO: Make this work properly with packed types
-//
-void CWriter::printContainedStructs(const Type *Ty,
- std::set<const StructType*> &StructPrinted){
- // Don't walk through pointers.
- if (isa<PointerType>(Ty) || Ty->isPrimitiveType()) return;
-
- // Print all contained types first.
- for (Type::subtype_iterator I = Ty->subtype_begin(),
- E = Ty->subtype_end(); I != E; ++I)
- printContainedStructs(*I, StructPrinted);
-
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- // Check to see if we have already printed this struct.
- if (StructPrinted.insert(STy).second) {
- // Print structure type out.
- std::string Name = TypeNames[STy];
- printType(Out, STy, false, Name, true);
- Out << ";\n\n";
- }
- }
-}
-
-void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
- /// isCStructReturn - Should this function actually return a struct by-value?
- bool isCStructReturn = F->getCallingConv() == CallingConv::CSRet;
-
- if (F->hasInternalLinkage()) Out << "static ";
- if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
- if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
- switch (F->getCallingConv()) {
- case CallingConv::X86_StdCall:
- Out << "__stdcall ";
- break;
- case CallingConv::X86_FastCall:
- Out << "__fastcall ";
- break;
- }
-
- // Loop over the arguments, printing them...
- const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
-
- std::stringstream FunctionInnards;
-
- // Print out the name...
- FunctionInnards << Mang->getValueName(F) << '(';
-
- bool PrintedArg = false;
- if (!F->isExternal()) {
- if (!F->arg_empty()) {
- Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
-
- // If this is a struct-return function, don't print the hidden
- // struct-return argument.
- if (isCStructReturn) {
- assert(I != E && "Invalid struct return function!");
- ++I;
- }
-
- std::string ArgName;
- unsigned Idx = 1;
- for (; I != E; ++I) {
- if (PrintedArg) FunctionInnards << ", ";
- if (I->hasName() || !Prototype)
- ArgName = Mang->getValueName(I);
- else
- ArgName = "";
- printType(FunctionInnards, I->getType(),
- /*isSigned=*/FT->paramHasAttr(Idx, FunctionType::SExtAttribute),
- ArgName);
- PrintedArg = true;
- ++Idx;
- }
- }
- } else {
- // Loop over the arguments, printing them.
- FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
-
- // If this is a struct-return function, don't print the hidden
- // struct-return argument.
- if (isCStructReturn) {
- assert(I != E && "Invalid struct return function!");
- ++I;
- }
-
- unsigned Idx = 1;
- for (; I != E; ++I) {
- if (PrintedArg) FunctionInnards << ", ";
- printType(FunctionInnards, *I,
- /*isSigned=*/FT->paramHasAttr(Idx, FunctionType::SExtAttribute));
- PrintedArg = true;
- ++Idx;
- }
- }
-
- // Finish printing arguments... if this is a vararg function, print the ...,
- // unless there are no known types, in which case, we just emit ().
- //
- if (FT->isVarArg() && PrintedArg) {
- if (PrintedArg) FunctionInnards << ", ";
- FunctionInnards << "..."; // Output varargs portion of signature!
- } else if (!FT->isVarArg() && !PrintedArg) {
- FunctionInnards << "void"; // ret() -> ret(void) in C.
- }
- FunctionInnards << ')';
-
- // Get the return tpe for the function.
- const Type *RetTy;
- if (!isCStructReturn)
- RetTy = F->getReturnType();
- else {
- // If this is a struct-return function, print the struct-return type.
- RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
- }
-
- // Print out the return type and the signature built above.
- printType(Out, RetTy,
- /*isSigned=*/FT->paramHasAttr(0, FunctionType::SExtAttribute),
- FunctionInnards.str());
-}
-
-static inline bool isFPIntBitCast(const Instruction &I) {
- if (!isa<BitCastInst>(I))
- return false;
- const Type *SrcTy = I.getOperand(0)->getType();
- const Type *DstTy = I.getType();
- return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
- (DstTy->isFloatingPoint() && SrcTy->isInteger());
-}
-
-void CWriter::printFunction(Function &F) {
- printFunctionSignature(&F, false);
- Out << " {\n";
-
- // If this is a struct return function, handle the result with magic.
- if (F.getCallingConv() == CallingConv::CSRet) {
- const Type *StructTy =
- cast<PointerType>(F.arg_begin()->getType())->getElementType();
- Out << " ";
- printType(Out, StructTy, false, "StructReturn");
- Out << "; /* Struct return temporary */\n";
-
- Out << " ";
- printType(Out, F.arg_begin()->getType(), false,
- Mang->getValueName(F.arg_begin()));
- Out << " = &StructReturn;\n";
- }
-
- bool PrintedVar = false;
-
- // print local variable information for the function
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
- if (const AllocaInst *AI = isDirectAlloca(&*I)) {
- Out << " ";
- printType(Out, AI->getAllocatedType(), false, Mang->getValueName(AI));
- Out << "; /* Address-exposed local */\n";
- PrintedVar = true;
- } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
- Out << " ";
- printType(Out, I->getType(), false, Mang->getValueName(&*I));
- Out << ";\n";
-
- if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
- Out << " ";
- printType(Out, I->getType(), false,
- Mang->getValueName(&*I)+"__PHI_TEMPORARY");
- Out << ";\n";
- }
- PrintedVar = true;
- }
- // We need a temporary for the BitCast to use so it can pluck a value out
- // of a union to do the BitCast. This is separate from the need for a
- // variable to hold the result of the BitCast.
- if (isFPIntBitCast(*I)) {
- Out << " llvmBitCastUnion " << Mang->getValueName(&*I)
- << "__BITCAST_TEMPORARY;\n";
- PrintedVar = true;
- }
- }
-
- if (PrintedVar)
- Out << '\n';
-
- if (F.hasExternalLinkage() && F.getName() == "main")
- Out << " CODE_FOR_MAIN();\n";
-
- // print the basic blocks
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- if (Loop *L = LI->getLoopFor(BB)) {
- if (L->getHeader() == BB && L->getParentLoop() == 0)
- printLoop(L);
- } else {
- printBasicBlock(BB);
- }
- }
-
- Out << "}\n\n";
-}
-
-void CWriter::printLoop(Loop *L) {
- Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
- << "' to make GCC happy */\n";
- for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
- BasicBlock *BB = L->getBlocks()[i];
- Loop *BBLoop = LI->getLoopFor(BB);
- if (BBLoop == L)
- printBasicBlock(BB);
- else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
- printLoop(BBLoop);
- }
- Out << " } while (1); /* end of syntactic loop '"
- << L->getHeader()->getName() << "' */\n";
-}
-
-void CWriter::printBasicBlock(BasicBlock *BB) {
-
- // Don't print the label for the basic block if there are no uses, or if
- // the only terminator use is the predecessor basic block's terminator.
- // We have to scan the use list because PHI nodes use basic blocks too but
- // do not require a label to be generated.
- //
- bool NeedsLabel = false;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- if (isGotoCodeNecessary(*PI, BB)) {
- NeedsLabel = true;
- break;
- }
-
- if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n";
-
- // Output all of the instructions in the basic block...
- for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
- ++II) {
- if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
- if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
- outputLValue(II);
- else
- Out << " ";
- visit(*II);
- Out << ";\n";
- }
- }
-
- // Don't emit prefix or suffix for the terminator...
- visit(*BB->getTerminator());
-}
-
-
-// Specific Instruction type classes... note that all of the casts are
-// necessary because we use the instruction classes as opaque types...
-//
-void CWriter::visitReturnInst(ReturnInst &I) {
- // If this is a struct return function, return the temporary struct.
- if (I.getParent()->getParent()->getCallingConv() == CallingConv::CSRet) {
- Out << " return StructReturn;\n";
- return;
- }
-
- // Don't output a void return if this is the last basic block in the function
- if (I.getNumOperands() == 0 &&
- &*--I.getParent()->getParent()->end() == I.getParent() &&
- !I.getParent()->size() == 1) {
- return;
- }
-
- Out << " return";
- if (I.getNumOperands()) {
- Out << ' ';
- writeOperand(I.getOperand(0));
- }
- Out << ";\n";
-}
-
-void CWriter::visitSwitchInst(SwitchInst &SI) {
-
- Out << " switch (";
- writeOperand(SI.getOperand(0));
- Out << ") {\n default:\n";
- printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
- printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
- Out << ";\n";
- for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
- Out << " case ";
- writeOperand(SI.getOperand(i));
- Out << ":\n";
- BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
- printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
- printBranchToBlock(SI.getParent(), Succ, 2);
- if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
- Out << " break;\n";
- }
- Out << " }\n";
-}
-
-void CWriter::visitUnreachableInst(UnreachableInst &I) {
- Out << " /*UNREACHABLE*/;\n";
-}
-
-bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
- /// FIXME: This should be reenabled, but loop reordering safe!!
- return true;
-
- if (next(Function::iterator(From)) != Function::iterator(To))
- return true; // Not the direct successor, we need a goto.
-
- //isa<SwitchInst>(From->getTerminator())
-
- if (LI->getLoopFor(From) != LI->getLoopFor(To))
- return true;
- return false;
-}
-
-void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
- BasicBlock *Successor,
- unsigned Indent) {
- for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Now we have to do the printing.
- Value *IV = PN->getIncomingValueForBlock(CurBlock);
- if (!isa<UndefValue>(IV)) {
- Out << std::string(Indent, ' ');
- Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = ";
- writeOperand(IV);
- Out << "; /* for PHI node */\n";
- }
- }
-}
-
-void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
- unsigned Indent) {
- if (isGotoCodeNecessary(CurBB, Succ)) {
- Out << std::string(Indent, ' ') << " goto ";
- writeOperand(Succ);
- Out << ";\n";
- }
-}
-
-// Branch instruction printing - Avoid printing out a branch to a basic block
-// that immediately succeeds the current one.
-//
-void CWriter::visitBranchInst(BranchInst &I) {
-
- if (I.isConditional()) {
- if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
- Out << " if (";
- writeOperand(I.getCondition());
- Out << ") {\n";
-
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
- printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
-
- if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
- Out << " } else {\n";
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
- printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
- }
- } else {
- // First goto not necessary, assume second one is...
- Out << " if (!";
- writeOperand(I.getCondition());
- Out << ") {\n";
-
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
- printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
- }
-
- Out << " }\n";
- } else {
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
- printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
- }
- Out << "\n";
-}
-
-// PHI nodes get copied into temporary values at the end of predecessor basic
-// blocks. We now need to copy these temporary values into the REAL value for
-// the PHI.
-void CWriter::visitPHINode(PHINode &I) {
- writeOperand(&I);
- Out << "__PHI_TEMPORARY";
-}
-
-
-void CWriter::visitBinaryOperator(Instruction &I) {
- // binary instructions, shift instructions, setCond instructions.
- assert(!isa<PointerType>(I.getType()));
-
- // We must cast the results of binary operations which might be promoted.
- bool needsCast = false;
- if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
- || (I.getType() == Type::FloatTy)) {
- needsCast = true;
- Out << "((";
- printType(Out, I.getType(), false);
- Out << ")(";
- }
-
- // If this is a negation operation, print it out as such. For FP, we don't
- // want to print "-0.0 - X".
- if (BinaryOperator::isNeg(&I)) {
- Out << "-(";
- writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
- Out << ")";
- } else if (I.getOpcode() == Instruction::FRem) {
- // Output a call to fmod/fmodf instead of emitting a%b
- if (I.getType() == Type::FloatTy)
- Out << "fmodf(";
- else
- Out << "fmod(";
- writeOperand(I.getOperand(0));
- Out << ", ";
- writeOperand(I.getOperand(1));
- Out << ")";
- } else {
-
- // Write out the cast of the instruction's value back to the proper type
- // if necessary.
- bool NeedsClosingParens = writeInstructionCast(I);
-
- // Certain instructions require the operand to be forced to a specific type
- // so we use writeOperandWithCast here instead of writeOperand. Similarly
- // below for operand 1
- writeOperandWithCast(I.getOperand(0), I.getOpcode());
-
- switch (I.getOpcode()) {
- case Instruction::Add: Out << " + "; break;
- case Instruction::Sub: Out << " - "; break;
- case Instruction::Mul: Out << '*'; break;
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem: Out << '%'; break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv: Out << '/'; break;
- case Instruction::And: Out << " & "; break;
- case Instruction::Or: Out << " | "; break;
- case Instruction::Xor: Out << " ^ "; break;
- case Instruction::Shl : Out << " << "; break;
- case Instruction::LShr:
- case Instruction::AShr: Out << " >> "; break;
- default: cerr << "Invalid operator type!" << I; abort();
- }
-
- writeOperandWithCast(I.getOperand(1), I.getOpcode());
- if (NeedsClosingParens)
- Out << "))";
- }
-
- if (needsCast) {
- Out << "))";
- }
-}
-
-void CWriter::visitICmpInst(ICmpInst &I) {
- // We must cast the results of icmp which might be promoted.
- bool needsCast = false;
-
- // Write out the cast of the instruction's value back to the proper type
- // if necessary.
- bool NeedsClosingParens = writeInstructionCast(I);
-
- // Certain icmp predicate require the operand to be forced to a specific type
- // so we use writeOperandWithCast here instead of writeOperand. Similarly
- // below for operand 1
- writeOperandWithCast(I.getOperand(0), I.getPredicate());
-
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: Out << " == "; break;
- case ICmpInst::ICMP_NE: Out << " != "; break;
- case ICmpInst::ICMP_ULE:
- case ICmpInst::ICMP_SLE: Out << " <= "; break;
- case ICmpInst::ICMP_UGE:
- case ICmpInst::ICMP_SGE: Out << " >= "; break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT: Out << " < "; break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT: Out << " > "; break;
- default: cerr << "Invalid icmp predicate!" << I; abort();
- }
-
- writeOperandWithCast(I.getOperand(1), I.getPredicate());
- if (NeedsClosingParens)
- Out << "))";
-
- if (needsCast) {
- Out << "))";
- }
-}
-
-void CWriter::visitFCmpInst(FCmpInst &I) {
- if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
- Out << "0";
- return;
- }
- if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
- Out << "1";
- return;
- }
-
- const char* op = 0;
- switch (I.getPredicate()) {
- default: assert(0 && "Illegal FCmp predicate");
- case FCmpInst::FCMP_ORD: op = "ord"; break;
- case FCmpInst::FCMP_UNO: op = "uno"; break;
- case FCmpInst::FCMP_UEQ: op = "ueq"; break;
- case FCmpInst::FCMP_UNE: op = "une"; break;
- case FCmpInst::FCMP_ULT: op = "ult"; break;
- case FCmpInst::FCMP_ULE: op = "ule"; break;
- case FCmpInst::FCMP_UGT: op = "ugt"; break;
- case FCmpInst::FCMP_UGE: op = "uge"; break;
- case FCmpInst::FCMP_OEQ: op = "oeq"; break;
- case FCmpInst::FCMP_ONE: op = "one"; break;
- case FCmpInst::FCMP_OLT: op = "olt"; break;
- case FCmpInst::FCMP_OLE: op = "ole"; break;
- case FCmpInst::FCMP_OGT: op = "ogt"; break;
- case FCmpInst::FCMP_OGE: op = "oge"; break;
- }
-
- Out << "llvm_fcmp_" << op << "(";
- // Write the first operand
- writeOperand(I.getOperand(0));
- Out << ", ";
- // Write the second operand
- writeOperand(I.getOperand(1));
- Out << ")";
-}
-
-static const char * getFloatBitCastField(const Type *Ty) {
- switch (Ty->getTypeID()) {
- default: assert(0 && "Invalid Type");
- case Type::FloatTyID: return "Float";
- case Type::Int32TyID: return "Int32";
- case Type::DoubleTyID: return "Double";
- case Type::Int64TyID: return "Int64";
- }
-}
-
-void CWriter::visitCastInst(CastInst &I) {
- const Type *DstTy = I.getType();
- const Type *SrcTy = I.getOperand(0)->getType();
- Out << '(';
- if (isFPIntBitCast(I)) {
- // These int<->float and long<->double casts need to be handled specially
- Out << Mang->getValueName(&I) << "__BITCAST_TEMPORARY."
- << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
- writeOperand(I.getOperand(0));
- Out << ", " << Mang->getValueName(&I) << "__BITCAST_TEMPORARY."
- << getFloatBitCastField(I.getType());
- } else {
- printCast(I.getOpcode(), SrcTy, DstTy);
- if (I.getOpcode() == Instruction::SExt && SrcTy == Type::BoolTy) {
- // Make sure we really get a sext from bool by subtracing the bool from 0
- Out << "0-";
- }
- writeOperand(I.getOperand(0));
- if (DstTy == Type::BoolTy &&
- (I.getOpcode() == Instruction::Trunc ||
- I.getOpcode() == Instruction::FPToUI ||
- I.getOpcode() == Instruction::FPToSI ||
- I.getOpcode() == Instruction::PtrToInt)) {
- // Make sure we really get a trunc to bool by anding the operand with 1
- Out << "&1u";
- }
- }
- Out << ')';
-}
-
-void CWriter::visitSelectInst(SelectInst &I) {
- Out << "((";
- writeOperand(I.getCondition());
- Out << ") ? (";
- writeOperand(I.getTrueValue());
- Out << ") : (";
- writeOperand(I.getFalseValue());
- Out << "))";
-}
-
-
-void CWriter::lowerIntrinsics(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- case Intrinsic::setjmp:
- case Intrinsic::longjmp:
- case Intrinsic::prefetch:
- case Intrinsic::dbg_stoppoint:
- case Intrinsic::powi_f32:
- case Intrinsic::powi_f64:
- // We directly implement these intrinsics
- break;
- default:
- // If this is an intrinsic that directly corresponds to a GCC
- // builtin, we handle it.
- const char *BuiltinName = "";
-#define GET_GCC_BUILTIN_NAME
-#include "llvm/Intrinsics.gen"
-#undef GET_GCC_BUILTIN_NAME
- // If we handle it, don't lower it.
- if (BuiltinName[0]) break;
-
- // All other intrinsic calls we must lower.
- Instruction *Before = 0;
- if (CI != &BB->front())
- Before = prior(BasicBlock::iterator(CI));
-
- IL.LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- break;
- }
-}
-
-
-
-void CWriter::visitCallInst(CallInst &I) {
- //check if we have inline asm
- if (isInlineAsm(I)) {
- visitInlineAsm(I);
- return;
- }
-
- bool WroteCallee = false;
-
- // Handle intrinsic function calls first...
- if (Function *F = I.getCalledFunction())
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
- switch (ID) {
- default: {
- // If this is an intrinsic that directly corresponds to a GCC
- // builtin, we emit it here.
- const char *BuiltinName = "";
-#define GET_GCC_BUILTIN_NAME
-#include "llvm/Intrinsics.gen"
-#undef GET_GCC_BUILTIN_NAME
- assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
-
- Out << BuiltinName;
- WroteCallee = true;
- break;
- }
- case Intrinsic::vastart:
- Out << "0; ";
-
- Out << "va_start(*(va_list*)";
- writeOperand(I.getOperand(1));
- Out << ", ";
- // Output the last argument to the enclosing function...
- if (I.getParent()->getParent()->arg_empty()) {
- cerr << "The C backend does not currently support zero "
- << "argument varargs functions, such as '"
- << I.getParent()->getParent()->getName() << "'!\n";
- abort();
- }
- writeOperand(--I.getParent()->getParent()->arg_end());
- Out << ')';
- return;
- case Intrinsic::vaend:
- if (!isa<ConstantPointerNull>(I.getOperand(1))) {
- Out << "0; va_end(*(va_list*)";
- writeOperand(I.getOperand(1));
- Out << ')';
- } else {
- Out << "va_end(*(va_list*)0)";
- }
- return;
- case Intrinsic::vacopy:
- Out << "0; ";
- Out << "va_copy(*(va_list*)";
- writeOperand(I.getOperand(1));
- Out << ", *(va_list*)";
- writeOperand(I.getOperand(2));
- Out << ')';
- return;
- case Intrinsic::returnaddress:
- Out << "__builtin_return_address(";
- writeOperand(I.getOperand(1));
- Out << ')';
- return;
- case Intrinsic::frameaddress:
- Out << "__builtin_frame_address(";
- writeOperand(I.getOperand(1));
- Out << ')';
- return;
- case Intrinsic::powi_f32:
- case Intrinsic::powi_f64:
- Out << "__builtin_powi(";
- writeOperand(I.getOperand(1));
- Out << ", ";
- writeOperand(I.getOperand(2));
- Out << ')';
- return;
- case Intrinsic::setjmp:
- Out << "setjmp(*(jmp_buf*)";
- writeOperand(I.getOperand(1));
- Out << ')';
- return;
- case Intrinsic::longjmp:
- Out << "longjmp(*(jmp_buf*)";
- writeOperand(I.getOperand(1));
- Out << ", ";
- writeOperand(I.getOperand(2));
- Out << ')';
- return;
- case Intrinsic::prefetch:
- Out << "LLVM_PREFETCH((const void *)";
- writeOperand(I.getOperand(1));
- Out << ", ";
- writeOperand(I.getOperand(2));
- Out << ", ";
- writeOperand(I.getOperand(3));
- Out << ")";
- return;
- case Intrinsic::dbg_stoppoint: {
- // If we use writeOperand directly we get a "u" suffix which is rejected
- // by gcc.
- DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
-
- Out << "\n#line "
- << SPI.getLine()
- << " \"" << SPI.getDirectory()
- << SPI.getFileName() << "\"\n";
- return;
- }
- }
- }
-
- Value *Callee = I.getCalledValue();
-
- // If this is a call to a struct-return function, assign to the first
- // parameter instead of passing it to the call.
- bool isStructRet = I.getCallingConv() == CallingConv::CSRet;
- if (isStructRet) {
- Out << "*(";
- writeOperand(I.getOperand(1));
- Out << ") = ";
- }
-
- if (I.isTailCall()) Out << " /*tail*/ ";
-
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
-
- if (!WroteCallee) {
- // If this is an indirect call to a struct return function, we need to cast
- // the pointer.
- bool NeedsCast = isStructRet && !isa<Function>(Callee);
-
- // GCC is a real PITA. It does not permit codegening casts of functions to
- // function pointers if they are in a call (it generates a trap instruction
- // instead!). We work around this by inserting a cast to void* in between
- // the function and the function pointer cast. Unfortunately, we can't just
- // form the constant expression here, because the folder will immediately
- // nuke it.
- //
- // Note finally, that this is completely unsafe. ANSI C does not guarantee
- // that void* and function pointers have the same size. :( To deal with this
- // in the common case, we handle casts where the number of arguments passed
- // match exactly.
- //
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
- if (CE->isCast())
- if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
- NeedsCast = true;
- Callee = RF;
- }
-
- if (NeedsCast) {
- // Ok, just cast the pointer type.
- Out << "((";
- if (!isStructRet)
- printType(Out, I.getCalledValue()->getType());
- else
- printStructReturnPointerFunctionType(Out,
- cast<PointerType>(I.getCalledValue()->getType()));
- Out << ")(void*)";
- }
- writeOperand(Callee);
- if (NeedsCast) Out << ')';
- }
-
- Out << '(';
-
- unsigned NumDeclaredParams = FTy->getNumParams();
-
- CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
- unsigned ArgNo = 0;
- if (isStructRet) { // Skip struct return argument.
- ++AI;
- ++ArgNo;
- }
-
- bool PrintedArg = false;
- unsigned Idx = 1;
- for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
- if (PrintedArg) Out << ", ";
- if (ArgNo < NumDeclaredParams &&
- (*AI)->getType() != FTy->getParamType(ArgNo)) {
- Out << '(';
- printType(Out, FTy->getParamType(ArgNo),
- /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute));
- Out << ')';
- }
- writeOperand(*AI);
- PrintedArg = true;
- }
- Out << ')';
-}
-
-
-//This converts the llvm constraint string to something gcc is expecting.
-//TODO: work out platform independent constraints and factor those out
-// of the per target tables
-// handle multiple constraint codes
-std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
-
- assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
-
- const char** table = 0;
-
- //Grab the translation table from TargetAsmInfo if it exists
- if (!TAsm) {
- std::string E;
- const TargetMachineRegistry::Entry* Match =
- TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
- if (Match) {
- //Per platform Target Machines don't exist, so create it
- // this must be done only once
- const TargetMachine* TM = Match->CtorFn(*TheModule, "");
- TAsm = TM->getTargetAsmInfo();
- }
- }
- if (TAsm)
- table = TAsm->getAsmCBE();
-
- //Search the translation table if it exists
- for (int i = 0; table && table[i]; i += 2)
- if (c.Codes[0] == table[i])
- return table[i+1];
-
- //default is identity
- return c.Codes[0];
-}
-
-//TODO: import logic from AsmPrinter.cpp
-static std::string gccifyAsm(std::string asmstr) {
- for (std::string::size_type i = 0; i != asmstr.size(); ++i)
- if (asmstr[i] == '\n')
- asmstr.replace(i, 1, "\\n");
- else if (asmstr[i] == '\t')
- asmstr.replace(i, 1, "\\t");
- else if (asmstr[i] == '$') {
- if (asmstr[i + 1] == '{') {
- std::string::size_type a = asmstr.find_first_of(':', i + 1);
- std::string::size_type b = asmstr.find_first_of('}', i + 1);
- std::string n = "%" +
- asmstr.substr(a + 1, b - a - 1) +
- asmstr.substr(i + 2, a - i - 2);
- asmstr.replace(i, b - i + 1, n);
- i += n.size() - 1;
- } else
- asmstr.replace(i, 1, "%");
- }
- else if (asmstr[i] == '%')//grr
- { asmstr.replace(i, 1, "%%"); ++i;}
-
- return asmstr;
-}
-
-//TODO: assumptions about what consume arguments from the call are likely wrong
-// handle communitivity
-void CWriter::visitInlineAsm(CallInst &CI) {
- InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
- std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
- std::vector<std::pair<std::string, Value*> > Input;
- std::vector<std::pair<std::string, Value*> > Output;
- std::string Clobber;
- int count = CI.getType() == Type::VoidTy ? 1 : 0;
- for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
- E = Constraints.end(); I != E; ++I) {
- assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
- std::string c =
- InterpretASMConstraint(*I);
- switch(I->Type) {
- default:
- assert(0 && "Unknown asm constraint");
- break;
- case InlineAsm::isInput: {
- if (c.size()) {
- Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
- ++count; //consume arg
- }
- break;
- }
- case InlineAsm::isOutput: {
- if (c.size()) {
- Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
- count ? CI.getOperand(count) : &CI));
- ++count; //consume arg
- }
- break;
- }
- case InlineAsm::isClobber: {
- if (c.size())
- Clobber += ",\"" + c + "\"";
- break;
- }
- }
- }
-
- //fix up the asm string for gcc
- std::string asmstr = gccifyAsm(as->getAsmString());
-
- Out << "__asm__ volatile (\"" << asmstr << "\"\n";
- Out << " :";
- for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
- E = Output.end(); I != E; ++I) {
- Out << "\"" << I->first << "\"(";
- writeOperandRaw(I->second);
- Out << ")";
- if (I + 1 != E)
- Out << ",";
- }
- Out << "\n :";
- for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
- E = Input.end(); I != E; ++I) {
- Out << "\"" << I->first << "\"(";
- writeOperandRaw(I->second);
- Out << ")";
- if (I + 1 != E)
- Out << ",";
- }
- if (Clobber.size())
- Out << "\n :" << Clobber.substr(1);
- Out << ")";
-}
-
-void CWriter::visitMallocInst(MallocInst &I) {
- assert(0 && "lowerallocations pass didn't work!");
-}
-
-void CWriter::visitAllocaInst(AllocaInst &I) {
- Out << '(';
- printType(Out, I.getType());
- Out << ") alloca(sizeof(";
- printType(Out, I.getType()->getElementType());
- Out << ')';
- if (I.isArrayAllocation()) {
- Out << " * " ;
- writeOperand(I.getOperand(0));
- }
- Out << ')';
-}
-
-void CWriter::visitFreeInst(FreeInst &I) {
- assert(0 && "lowerallocations pass didn't work!");
-}
-
-void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E) {
- bool HasImplicitAddress = false;
- // If accessing a global value with no indexing, avoid *(&GV) syndrome
- if (isa<GlobalValue>(Ptr)) {
- HasImplicitAddress = true;
- } else if (isDirectAlloca(Ptr)) {
- HasImplicitAddress = true;
- }
-
- if (I == E) {
- if (!HasImplicitAddress)
- Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
-
- writeOperandInternal(Ptr);
- return;
- }
-
- const Constant *CI = dyn_cast<Constant>(I.getOperand());
- if (HasImplicitAddress && (!CI || !CI->isNullValue()))
- Out << "(&";
-
- writeOperandInternal(Ptr);
-
- if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
- Out << ')';
- HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
- }
-
- assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
- "Can only have implicit address with direct accessing");
-
- if (HasImplicitAddress) {
- ++I;
- } else if (CI && CI->isNullValue()) {
- gep_type_iterator TmpI = I; ++TmpI;
-
- // Print out the -> operator if possible...
- if (TmpI != E && isa<StructType>(*TmpI)) {
- Out << (HasImplicitAddress ? "." : "->");
- Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
- I = ++TmpI;
- }
- }
-
- for (; I != E; ++I)
- if (isa<StructType>(*I)) {
- Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
- } else {
- Out << '[';
- writeOperand(I.getOperand());
- Out << ']';
- }
-}
-
-void CWriter::visitLoadInst(LoadInst &I) {
- Out << '*';
- if (I.isVolatile()) {
- Out << "((";
- printType(Out, I.getType(), false, "volatile*");
- Out << ")";
- }
-
- writeOperand(I.getOperand(0));
-
- if (I.isVolatile())
- Out << ')';
-}
-
-void CWriter::visitStoreInst(StoreInst &I) {
- Out << '*';
- if (I.isVolatile()) {
- Out << "((";
- printType(Out, I.getOperand(0)->getType(), false, " volatile*");
- Out << ")";
- }
- writeOperand(I.getPointerOperand());
- if (I.isVolatile()) Out << ')';
- Out << " = ";
- writeOperand(I.getOperand(0));
-}
-
-void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
- Out << '&';
- printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
- gep_type_end(I));
-}
-
-void CWriter::visitVAArgInst(VAArgInst &I) {
- Out << "va_arg(*(va_list*)";
- writeOperand(I.getOperand(0));
- Out << ", ";
- printType(Out, I.getType());
- Out << ");\n ";
-}
-
-//===----------------------------------------------------------------------===//
-// External Interface declaration
-//===----------------------------------------------------------------------===//
-
-bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
- std::ostream &o,
- CodeGenFileType FileType,
- bool Fast) {
- if (FileType != TargetMachine::AssemblyFile) return true;
-
- PM.add(createLowerGCPass());
- PM.add(createLowerAllocationsPass(true));
- PM.add(createLowerInvokePass());
- PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
- PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
- PM.add(new CWriter(o));
- return false;
-}