diff options
author | Arnold Schwaighofer <aschwaighofer@apple.com> | 2013-03-02 04:02:52 +0000 |
---|---|---|
committer | Arnold Schwaighofer <aschwaighofer@apple.com> | 2013-03-02 04:02:52 +0000 |
commit | 5f0d9dbdf48a9efe16bfadf88e5335f7b9a8ec3f (patch) | |
tree | e39c3262177b95d29a2415f009cabade61fdd135 /test/Analysis/CostModel/X86 | |
parent | 1c01af8f26f1ddca69d332dd8456fdeab3d1936e (diff) | |
download | external_llvm-5f0d9dbdf48a9efe16bfadf88e5335f7b9a8ec3f.zip external_llvm-5f0d9dbdf48a9efe16bfadf88e5335f7b9a8ec3f.tar.gz external_llvm-5f0d9dbdf48a9efe16bfadf88e5335f7b9a8ec3f.tar.bz2 |
X86 cost model: Adjust cost for custom lowered vector multiplies
This matters for example in following matrix multiply:
int **mmult(int rows, int cols, int **m1, int **m2, int **m3) {
int i, j, k, val;
for (i=0; i<rows; i++) {
for (j=0; j<cols; j++) {
val = 0;
for (k=0; k<cols; k++) {
val += m1[i][k] * m2[k][j];
}
m3[i][j] = val;
}
}
return(m3);
}
Taken from the test-suite benchmark Shootout.
We estimate the cost of the multiply to be 2 while we generate 9 instructions
for it and end up being quite a bit slower than the scalar version (48% on my
machine).
Also, properly differentiate between avx1 and avx2. On avx-1 we still split the
vector into 2 128bits and handle the subvector muls like above with 9
instructions.
Only on avx-2 will we have a cost of 9 for v4i64.
I changed the test case in test/Transforms/LoopVectorize/X86/avx1.ll to use an
add instead of a mul because with a mul we now no longer vectorize. I did
verify that the mul would be indeed more expensive when vectorized with 3
kernels:
for (i ...)
r += a[i] * 3;
for (i ...)
m1[i] = m1[i] * 3; // This matches the test case in avx1.ll
and a matrix multiply.
In each case the vectorized version was considerably slower.
radar://13304919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176403 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'test/Analysis/CostModel/X86')
-rw-r--r-- | test/Analysis/CostModel/X86/arith.ll | 32 |
1 files changed, 32 insertions, 0 deletions
diff --git a/test/Analysis/CostModel/X86/arith.ll b/test/Analysis/CostModel/X86/arith.ll index ae78d44..f0521ba 100644 --- a/test/Analysis/CostModel/X86/arith.ll +++ b/test/Analysis/CostModel/X86/arith.ll @@ -1,4 +1,6 @@ ; RUN: opt < %s -cost-model -analyze -mtriple=x86_64-apple-macosx10.8.0 -mcpu=corei7-avx | FileCheck %s +; RUN: opt < %s -cost-model -analyze -mtriple=x86_64-apple-macosx10.8.0 -mcpu=core2 | FileCheck %s --check-prefix=SSE3 +; RUN: opt < %s -cost-model -analyze -mtriple=x86_64-apple-macosx10.8.0 -mcpu=core-avx2 | FileCheck %s --check-prefix=AVX2 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.8.0" @@ -32,7 +34,37 @@ define i32 @xor(i32 %arg) { ret i32 undef } +; CHECK: mul +define void @mul() { + ; A <2 x i32> gets expanded to a <2 x i64> vector. + ; A <2 x i64> vector multiply is implemented using + ; 3 PMULUDQ and 2 PADDS and 4 shifts. + ;CHECK: cost of 9 {{.*}} mul + %A0 = mul <2 x i32> undef, undef + ;CHECK: cost of 9 {{.*}} mul + %A1 = mul <2 x i64> undef, undef + ;CHECK: cost of 18 {{.*}} mul + %A2 = mul <4 x i64> undef, undef + ret void +} + +; SSE3: sse3mull +define void @sse3mull() { + ; SSE3: cost of 6 {{.*}} mul + %A0 = mul <4 x i32> undef, undef + ret void + ; SSE3: avx2mull +} + +; AVX2: avx2mull +define void @avx2mull() { + ; AVX2: cost of 9 {{.*}} mul + %A0 = mul <4 x i64> undef, undef + ret void + ; AVX2: fmul +} +; CHECK: fmul define i32 @fmul(i32 %arg) { ;CHECK: cost of 1 {{.*}} fmul %A = fmul <4 x float> undef, undef |