diff options
author | Quentin Colombet <qcolombet@apple.com> | 2013-09-17 22:01:26 +0000 |
---|---|---|
committer | Quentin Colombet <qcolombet@apple.com> | 2013-09-17 22:01:26 +0000 |
commit | 5383a377476529e55e3c244e83ec8ad66159cc22 (patch) | |
tree | 05ececd11dd9e04ef7046d1e8f87f02558adbded /test/Transforms/InstCombine | |
parent | 3168868bb91ac871dbb83c879e763d39a39e607e (diff) | |
download | external_llvm-5383a377476529e55e3c244e83ec8ad66159cc22.zip external_llvm-5383a377476529e55e3c244e83ec8ad66159cc22.tar.gz external_llvm-5383a377476529e55e3c244e83ec8ad66159cc22.tar.bz2 |
Revert the load slicing done in r190870.
To avoid regressions with bitfield optimizations, this slicing should take place
later, like ISel time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190891 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'test/Transforms/InstCombine')
-rw-r--r-- | test/Transforms/InstCombine/load-slice.ll | 330 |
1 files changed, 0 insertions, 330 deletions
diff --git a/test/Transforms/InstCombine/load-slice.ll b/test/Transforms/InstCombine/load-slice.ll deleted file mode 100644 index 8926653..0000000 --- a/test/Transforms/InstCombine/load-slice.ll +++ /dev/null @@ -1,330 +0,0 @@ -; RUN: opt -default-data-layout="E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" -instcombine -instcombine-stress-load-slicing -S < %s -o - | FileCheck %s --check-prefix=BIG -; RUN: opt -default-data-layout="e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" -instcombine -instcombine-stress-load-slicing -S < %s -o - | FileCheck %s --check-prefix=LITTLE -; -; <rdar://problem/14477220> - -%class.Complex = type { float, float } - - -; Check that independant slices leads to independant loads. -; -; The 64-bits should have been split in two 32-bits slices. -; The big endian layout is: -; MSB 7 6 5 4 | 3 2 1 0 LSB -; High Low -; The base address points to 7 and is 8-bytes aligned. -; Low slice starts at 3 (base + 4-bytes) and is 4-bytes aligned. -; High slice starts at 7 (base) and is 8-bytes aligned. -; -; The little endian layout is: -; LSB 0 1 2 3 | 4 5 6 7 MSB -; Low High -; The base address points to 0 and is 8-bytes aligned. -; Low slice starts at 0 (base) and is 8-bytes aligned. -; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned. -; -define void @t1(%class.Complex* nocapture %out, i64 %out_start) { -; BIG-LABEL: @t1 -; Original load should have been sliced. -; BIG-NOT: load i64* -; BIG-NOT: trunc i64 -; BIG-NOT: lshr i64 -; -; First 32-bits slice. -; BIG: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start -; BIG: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[HIGH_SLICE_BASEADDR]] to i32* -; BIG: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[HIGH_SLICE_ADDR]], align 8 -; -; Second 32-bits slice. -; BIG: [[LOW_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1 -; BIG: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOW_SLICE_BASEADDR]] to i32* -; BIG: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 4 -; -; Cast to the final type. -; BIG: [[LOW_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[LOW_SLICE]] to float -; BIG: [[HIGH_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[HIGH_SLICE]] to float -; -; Uses of the slices. -; BIG: fadd float {{%[a-zA-Z.0-9_]+}}, [[LOW_SLICE_FLOAT]] -; BIG: fadd float {{%[a-zA-Z.0-9_]+}}, [[HIGH_SLICE_FLOAT]] -; -; LITTLE-LABEL: @t1 -; Original load should have been sliced. -; LITTLE-NOT: load i64* -; LITTLE-NOT: trunc i64 -; LITTLE-NOT: lshr i64 -; -; LITTLE: [[BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start -; -; First 32-bits slice. -; LITTLE: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1 -; LITTLE: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[HIGH_SLICE_BASEADDR]] to i32* -; LITTLE: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[HIGH_SLICE_ADDR]], align 4 -; -; Second 32-bits slice. -; LITTLE: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i32* -; LITTLE: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 8 -; -; Cast to the final type. -; LITTLE: [[LOW_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[LOW_SLICE]] to float -; LITTLE: [[HIGH_SLICE_FLOAT:%[a-zA-Z.0-9_]+]] = bitcast i32 [[HIGH_SLICE]] to float -; -; Uses of the slices. -; LITTLE: fadd float {{%[a-zA-Z.0-9_]+}}, [[LOW_SLICE_FLOAT]] -; LITTLE: fadd float {{%[a-zA-Z.0-9_]+}}, [[HIGH_SLICE_FLOAT]] -entry: - %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start - %tmp = bitcast %class.Complex* %arrayidx to i64* - %tmp1 = load i64* %tmp, align 8 - %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32 - %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float - %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32 - %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32 - %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float - %add = add i64 %out_start, 8 - %arrayidx2 = getelementptr inbounds %class.Complex* %out, i64 %add - %i.i = getelementptr inbounds %class.Complex* %arrayidx2, i64 0, i32 0 - %tmp4 = load float* %i.i, align 4 - %add.i = fadd float %tmp4, %tmp2 - %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0 - %r.i = getelementptr inbounds %class.Complex* %arrayidx2, i64 0, i32 1 - %tmp5 = load float* %r.i, align 4 - %add5.i = fadd float %tmp5, %tmp3 - %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1 - %ref.tmp.sroa.0.0.cast = bitcast %class.Complex* %arrayidx to <2 x float>* - store <2 x float> %retval.sroa.0.4.vec.insert.i, <2 x float>* %ref.tmp.sroa.0.0.cast, align 4 - ret void -} - -; Function Attrs: nounwind -declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1 - -; Function Attrs: nounwind -declare void @llvm.lifetime.start(i64, i8* nocapture) - -; Function Attrs: nounwind -declare void @llvm.lifetime.end(i64, i8* nocapture) - -; Check that slices not involved in arithmetic are not split in independant loads. -; BIG-LABEL: @t2 -; BIG: load i16* -; BIG: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8 -; BIG: lshr i16 {{%[a-zA-Z.0-9_]+}}, 8 -; BIG: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8 -; -; LITTLE-LABEL: @t2 -; LITTLE: load i16* -; LITTLE: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8 -; LITTLE: lshr i16 {{%[a-zA-Z.0-9_]+}}, 8 -; LITTLE: trunc i16 {{%[a-zA-Z.0-9_]+}} to i8 -define void @t2(%class.Complex* nocapture %out, i64 %out_start) { - %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start - %bitcast = bitcast %class.Complex* %arrayidx to i16* - %chunk16 = load i16* %bitcast, align 8 - %slice8_low = trunc i16 %chunk16 to i8 - %shift = lshr i16 %chunk16, 8 - %slice8_high = trunc i16 %shift to i8 - %vec = insertelement <2 x i8> undef, i8 %slice8_high, i32 0 - %vec1 = insertelement <2 x i8> %vec, i8 %slice8_low, i32 1 - %addr = bitcast %class.Complex* %arrayidx to <2 x i8>* - store <2 x i8> %vec1, <2 x i8>* %addr, align 8 - ret void -} - -; Check that we do not read outside of the chunk of bits of the original loads. -; -; The 64-bits should have been split in one 32-bits and one 16-bits slices. -; The 16-bits should be zero extended to match the final type. -; The big endian layout is: -; MSB 7 6 | 5 4 | 3 2 1 0 LSB -; High Low -; The base address points to 7 and is 8-bytes aligned. -; Low slice starts at 3 (base + 4-bytes) and is 4-bytes aligned. -; High slice starts at 7 (base) and is 8-bytes aligned. -; -; The little endian layout is: -; LSB 0 1 2 3 | 4 5 | 6 7 MSB -; Low High -; The base address points to 0 and is 8-bytes aligned. -; Low slice starts at 0 (base) and is 8-bytes aligned. -; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned. -; -; BIG-LABEL: @t3 -; Original load should have been sliced. -; BIG-NOT: load i64* -; BIG-NOT: trunc i64 -; BIG-NOT: lshr i64 -; -; First 32-bits slice where only 16-bits comes from the memory. -; BIG: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start -; BIG: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[HIGH_SLICE_BASEADDR]] to i16* -; BIG: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR]], align 8 -; BIG: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32 -; -; Second 32-bits slice. -; BIG: [[LOW_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1 -; BIG: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOW_SLICE_BASEADDR]] to i32* -; BIG: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 4 -; -; Use of the slices. -; BIG: add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]] -; -; LITTLE-LABEL: @t3 -; Original load should have been sliced. -; LITTLE-NOT: load i64* -; LITTLE-NOT: trunc i64 -; LITTLE-NOT: lshr i64 -; -; LITTLE: [[BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start -; -; First 32-bits slice where only 16-bits comes from the memory. -; LITTLE: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i8* -; LITTLE: [[HIGH_SLICE_ADDR_I8:%[a-zA-Z.0-9_]+]] = getelementptr inbounds i8* [[HIGH_SLICE_ADDR]], i64 6 -; LITTLE: [[HIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast i8* [[HIGH_SLICE_ADDR_I8]] to i16* -; LITTLE: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR_I16]], align 2 -; LITTLE: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32 -; -; Second 32-bits slice. -; LITTLE: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i32* -; LITTLE: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 8 -; -; Use of the slices. -; LITTLE: add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]] -define i32 @t3(%class.Complex* nocapture %out, i64 %out_start) { - %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start - %bitcast = bitcast %class.Complex* %arrayidx to i64* - %chunk64 = load i64* %bitcast, align 8 - %slice32_low = trunc i64 %chunk64 to i32 - %shift48 = lshr i64 %chunk64, 48 - %slice32_high = trunc i64 %shift48 to i32 - %res = add i32 %slice32_high, %slice32_low - ret i32 %res -} - -; Check that we do not optimize overlapping slices. -; -; The 64-bits should NOT have been split in as slices are overlapping. -; First slice uses bytes numbered 0 to 3. -; Second slice uses bytes numbered 6 and 7. -; Third slice uses bytes numbered 4 to 7. -; BIG-LABEL: @t4 -; BIG: load i64* {{%[a-zA-Z.0-9_]+}}, align 8 -; BIG: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32 -; BIG: lshr i64 {{%[a-zA-Z.0-9_]+}}, 48 -; BIG: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32 -; BIG: lshr i64 {{%[a-zA-Z.0-9_]+}}, 32 -; BIG: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32 -; -; LITTLE-LABEL: @t4 -; LITTLE: load i64* {{%[a-zA-Z.0-9_]+}}, align 8 -; LITTLE: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32 -; LITTLE: lshr i64 {{%[a-zA-Z.0-9_]+}}, 48 -; LITTLE: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32 -; LITTLE: lshr i64 {{%[a-zA-Z.0-9_]+}}, 32 -; LITTLE: trunc i64 {{%[a-zA-Z.0-9_]+}} to i32 -define i32 @t4(%class.Complex* nocapture %out, i64 %out_start) { - %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start - %bitcast = bitcast %class.Complex* %arrayidx to i64* - %chunk64 = load i64* %bitcast, align 8 - %slice32_low = trunc i64 %chunk64 to i32 - %shift48 = lshr i64 %chunk64, 48 - %slice32_high = trunc i64 %shift48 to i32 - %shift32 = lshr i64 %chunk64, 32 - %slice32_lowhigh = trunc i64 %shift32 to i32 - %tmpres = add i32 %slice32_high, %slice32_low - %res = add i32 %slice32_lowhigh, %tmpres - ret i32 %res -} - -; Check that we optimize when 3 slices are involved. -; The 64-bits should have been split in one 32-bits and one 16-bits slices. -; The 16-bits should be zero extended to match the final type. -; The big endian layout is: -; MSB 7 6 | 5 4 | 3 2 1 0 LSB -; High LowHigh Low -; The base address points to 7 and is 8-bytes aligned. -; Low slice starts at 3 (base + 4-bytes) and is 4-bytes aligned. -; High slice starts at 7 (base) and is 8-bytes aligned. -; LowHigh slice starts at 5 (base + 2-bytes) and is 2-bytes aligned. -; -; The little endian layout is: -; LSB 0 1 2 3 | 4 5 | 6 7 MSB -; Low LowHigh High -; The base address points to 0 and is 8-bytes aligned. -; Low slice starts at 0 (base) and is 8-bytes aligned. -; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned. -; LowHigh slice starts at 4 (base + 4-bytes) and is 4-bytes aligned. -; -; Original load should have been sliced. -; BIG-LABEL: @t5 -; BIG-NOT: load i64* -; BIG-NOT: trunc i64 -; BIG-NOT: lshr i64 -; -; LowHigh 32-bits slice where only 16-bits comes from the memory. -; BIG: [[LOWHIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start -; BIG: [[LOWHIGH_SLICE_BASEADDR_I8:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[LOWHIGH_SLICE_BASEADDR]] to i8* -; BIG: [[LOWHIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds i8* [[LOWHIGH_SLICE_BASEADDR_I8]], i64 2 -; BIG: [[LOWHIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast i8* [[LOWHIGH_SLICE_ADDR]] to i16* -; BIG: [[LOWHIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[LOWHIGH_SLICE_ADDR_I16]], align 2 -; -; First 32-bits slice where only 16-bits comes from the memory. -; BIG: [[HIGH_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[LOWHIGH_SLICE_BASEADDR]] to i16* -; BIG: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR]], align 8 -; BIG: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32 -; -; Second 32-bits slice. -; BIG: [[LOW_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1 -; BIG: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOW_SLICE_BASEADDR]] to i32* -; BIG: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 4 -; -; Original sext is still here. -; BIG: [[LOWHIGH_SLICE_SEXT:%[a-zA-Z.0-9_]+]] = sext i16 [[LOWHIGH_SLICE]] to i32 -; -; Uses of the slices. -; BIG: [[RES:%[a-zA-Z.0-9_]+]] = add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]] -; BIG: add i32 [[LOWHIGH_SLICE_SEXT]], [[RES]] -; -; LITTLE-LABEL: @t5 -; LITTLE-NOT: load i64* -; LITTLE-NOT: trunc i64 -; LITTLE-NOT: lshr i64 -; -; LITTLE: [[BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start -; -; LowHigh 32-bits slice where only 16-bits comes from the memory. -; LITTLE: [[LOWHIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = getelementptr inbounds %class.Complex* %out, i64 %out_start, i32 1 -; LITTLE: [[LOWHIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast float* [[LOWHIGH_SLICE_BASEADDR]] to i16* -; LITTLE: [[LOWHIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[LOWHIGH_SLICE_ADDR_I16]], align 4 -; -; First 32-bits slice where only 16-bits comes from the memory. -; LITTLE: [[HIGH_SLICE_BASEADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i8* -; LITTLE: [[HIGH_SLICE_ADDR_I8:%[a-zA-Z.0-9_]+]] = getelementptr inbounds i8* [[HIGH_SLICE_BASEADDR]], i64 6 -; LITTLE: [[HIGH_SLICE_ADDR_I16:%[a-zA-Z.0-9_]+]] = bitcast i8* [[HIGH_SLICE_ADDR_I8]] to i16* -; LITTLE: [[HIGH_SLICE:%[a-zA-Z.0-9_]+]] = load i16* [[HIGH_SLICE_ADDR_I16]], align 2 -; LITTLE: [[HIGH_SLICE_ZEXT:%[a-zA-Z.0-9_]+]] = zext i16 [[HIGH_SLICE]] to i32 -; -; Second 32-bits slice. -; LITTLE: [[LOW_SLICE_ADDR:%[a-zA-Z.0-9_]+]] = bitcast %class.Complex* [[BASEADDR]] to i32* -; LITTLE: [[LOW_SLICE:%[a-zA-Z.0-9_]+]] = load i32* [[LOW_SLICE_ADDR]], align 8 -; -; Original sext is still here. -; LITTLE: [[LOWHIGH_SLICE_SEXT:%[a-zA-Z.0-9_]+]] = sext i16 [[LOWHIGH_SLICE]] to i32 -; -; Uses of the slices. -; LITTLE: [[RES:%[a-zA-Z.0-9_]+]] = add i32 [[HIGH_SLICE_ZEXT]], [[LOW_SLICE]] -; LITTLE: add i32 [[LOWHIGH_SLICE_SEXT]], [[RES]] -define i32 @t5(%class.Complex* nocapture %out, i64 %out_start) { - %arrayidx = getelementptr inbounds %class.Complex* %out, i64 %out_start - %bitcast = bitcast %class.Complex* %arrayidx to i64* - %chunk64 = load i64* %bitcast, align 8 - %slice32_low = trunc i64 %chunk64 to i32 - %shift48 = lshr i64 %chunk64, 48 - %slice32_high = trunc i64 %shift48 to i32 - %shift32 = lshr i64 %chunk64, 32 - %slice16_lowhigh = trunc i64 %shift32 to i16 - %slice32_lowhigh = sext i16 %slice16_lowhigh to i32 - %tmpres = add i32 %slice32_high, %slice32_low - %res = add i32 %slice32_lowhigh, %tmpres - ret i32 %res -} |