aboutsummaryrefslogtreecommitdiffstats
path: root/tools/llvm2cpp
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2006-05-29 00:57:22 +0000
committerReid Spencer <rspencer@reidspencer.com>2006-05-29 00:57:22 +0000
commitfb0c0dc9604ffba751bdaf272a7ba8cbd29f5860 (patch)
tree0b2aeef2d20af282b285658bffe4a269797baf90 /tools/llvm2cpp
parentbd82277cbbd93f8704a6bf52c4842c5e71fb675f (diff)
downloadexternal_llvm-fb0c0dc9604ffba751bdaf272a7ba8cbd29f5860.zip
external_llvm-fb0c0dc9604ffba751bdaf272a7ba8cbd29f5860.tar.gz
external_llvm-fb0c0dc9604ffba751bdaf272a7ba8cbd29f5860.tar.bz2
Initial Commit of llvm2cpp
This is a safekeeping commit. The program is not finished. It currently handles modules, types, global variables and function declarations. Blocks and instructions remain to be done. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28528 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'tools/llvm2cpp')
-rw-r--r--tools/llvm2cpp/CppWriter.cpp1995
-rw-r--r--tools/llvm2cpp/CppWriter.h18
-rw-r--r--tools/llvm2cpp/Makefile23
-rw-r--r--tools/llvm2cpp/llvm2cpp.cpp138
4 files changed, 2174 insertions, 0 deletions
diff --git a/tools/llvm2cpp/CppWriter.cpp b/tools/llvm2cpp/CppWriter.cpp
new file mode 100644
index 0000000..54a28e9
--- /dev/null
+++ b/tools/llvm2cpp/CppWriter.cpp
@@ -0,0 +1,1995 @@
+//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the writing of the LLVM IR as a set of C++ calls to the
+// LLVM IR interface. The input module is assumed to be verified.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <iostream>
+
+using namespace llvm;
+
+namespace {
+/// This class provides computation of slot numbers for LLVM Assembly writing.
+/// @brief LLVM Assembly Writing Slot Computation.
+class SlotMachine {
+
+/// @name Types
+/// @{
+public:
+
+ /// @brief A mapping of Values to slot numbers
+ typedef std::map<const Value*, unsigned> ValueMap;
+ typedef std::map<const Type*, unsigned> TypeMap;
+
+ /// @brief A plane with next slot number and ValueMap
+ struct ValuePlane {
+ unsigned next_slot; ///< The next slot number to use
+ ValueMap map; ///< The map of Value* -> unsigned
+ ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
+ };
+
+ struct TypePlane {
+ unsigned next_slot;
+ TypeMap map;
+ TypePlane() { next_slot = 0; }
+ void clear() { map.clear(); next_slot = 0; }
+ };
+
+ /// @brief The map of planes by Type
+ typedef std::map<const Type*, ValuePlane> TypedPlanes;
+
+/// @}
+/// @name Constructors
+/// @{
+public:
+ /// @brief Construct from a module
+ SlotMachine(const Module *M );
+
+/// @}
+/// @name Accessors
+/// @{
+public:
+ /// Return the slot number of the specified value in it's type
+ /// plane. Its an error to ask for something not in the SlotMachine.
+ /// Its an error to ask for a Type*
+ int getSlot(const Value *V);
+ int getSlot(const Type*Ty);
+
+ /// Determine if a Value has a slot or not
+ bool hasSlot(const Value* V);
+ bool hasSlot(const Type* Ty);
+
+/// @}
+/// @name Mutators
+/// @{
+public:
+ /// If you'd like to deal with a function instead of just a module, use
+ /// this method to get its data into the SlotMachine.
+ void incorporateFunction(const Function *F) {
+ TheFunction = F;
+ FunctionProcessed = false;
+ }
+
+ /// After calling incorporateFunction, use this method to remove the
+ /// most recently incorporated function from the SlotMachine. This
+ /// will reset the state of the machine back to just the module contents.
+ void purgeFunction();
+
+/// @}
+/// @name Implementation Details
+/// @{
+private:
+ /// Values can be crammed into here at will. If they haven't
+ /// been inserted already, they get inserted, otherwise they are ignored.
+ /// Either way, the slot number for the Value* is returned.
+ unsigned createSlot(const Value *V);
+ unsigned createSlot(const Type* Ty);
+
+ /// Insert a value into the value table. Return the slot number
+ /// that it now occupies. BadThings(TM) will happen if you insert a
+ /// Value that's already been inserted.
+ unsigned insertValue( const Value *V );
+ unsigned insertValue( const Type* Ty);
+
+ /// Add all of the module level global variables (and their initializers)
+ /// and function declarations, but not the contents of those functions.
+ void processModule();
+
+ /// Add all of the functions arguments, basic blocks, and instructions
+ void processFunction();
+
+ SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
+ void operator=(const SlotMachine &); // DO NOT IMPLEMENT
+
+/// @}
+/// @name Data
+/// @{
+public:
+
+ /// @brief The module for which we are holding slot numbers
+ const Module* TheModule;
+
+ /// @brief The function for which we are holding slot numbers
+ const Function* TheFunction;
+ bool FunctionProcessed;
+
+ /// @brief The TypePlanes map for the module level data
+ TypedPlanes mMap;
+ TypePlane mTypes;
+
+ /// @brief The TypePlanes map for the function level data
+ TypedPlanes fMap;
+ TypePlane fTypes;
+
+/// @}
+
+};
+
+typedef std::vector<const Type*> TypeList;
+typedef std::map<const Type*,std::string> TypeMap;
+typedef std::map<const Value*,std::string> ValueMap;
+
+void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+ bool PrintName, TypeMap &TypeTable,
+ SlotMachine *Machine);
+
+void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+ bool PrintName, TypeMap& TypeTable,
+ SlotMachine *Machine);
+
+const Module *getModuleFromVal(const Value *V) {
+ if (const Argument *MA = dyn_cast<Argument>(V))
+ return MA->getParent() ? MA->getParent()->getParent() : 0;
+ else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return BB->getParent() ? BB->getParent()->getParent() : 0;
+ else if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
+ return M ? M->getParent() : 0;
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return GV->getParent();
+ return 0;
+}
+
+// getLLVMName - Turn the specified string into an 'LLVM name', which is either
+// prefixed with % (if the string only contains simple characters) or is
+// surrounded with ""'s (if it has special chars in it).
+std::string getLLVMName(const std::string &Name,
+ bool prefixName = true) {
+ assert(!Name.empty() && "Cannot get empty name!");
+
+ // First character cannot start with a number...
+ if (Name[0] >= '0' && Name[0] <= '9')
+ return "\"" + Name + "\"";
+
+ // Scan to see if we have any characters that are not on the "white list"
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ char C = Name[i];
+ assert(C != '"' && "Illegal character in LLVM value name!");
+ if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
+ C != '-' && C != '.' && C != '_')
+ return "\"" + Name + "\"";
+ }
+
+ // If we get here, then the identifier is legal to use as a "VarID".
+ if (prefixName)
+ return "%"+Name;
+ else
+ return Name;
+}
+
+
+/// fillTypeNameTable - If the module has a symbol table, take all global types
+/// and stuff their names into the TypeNames map.
+///
+void fillTypeNameTable(const Module *M, TypeMap& TypeNames) {
+ if (!M) return;
+ const SymbolTable &ST = M->getSymbolTable();
+ SymbolTable::type_const_iterator TI = ST.type_begin();
+ for (; TI != ST.type_end(); ++TI ) {
+ // As a heuristic, don't insert pointer to primitive types, because
+ // they are used too often to have a single useful name.
+ //
+ const Type *Ty = cast<Type>(TI->second);
+ if (!isa<PointerType>(Ty) ||
+ !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
+ isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
+ TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
+ }
+}
+
+void calcTypeName(const Type *Ty,
+ std::vector<const Type *> &TypeStack,
+ TypeMap& TypeNames,
+ std::string & Result){
+ if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
+ Result += Ty->getDescription(); // Base case
+ return;
+ }
+
+ // Check to see if the type is named.
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end()) {
+ Result += I->second;
+ return;
+ }
+
+ if (isa<OpaqueType>(Ty)) {
+ Result += "opaque";
+ return;
+ }
+
+ // Check to see if the Type is already on the stack...
+ unsigned Slot = 0, CurSize = TypeStack.size();
+ while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
+
+ // This is another base case for the recursion. In this case, we know
+ // that we have looped back to a type that we have previously visited.
+ // Generate the appropriate upreference to handle this.
+ if (Slot < CurSize) {
+ Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
+ return;
+ }
+
+ TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
+
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ const FunctionType *FTy = cast<FunctionType>(Ty);
+ calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
+ Result += " (";
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ Result += ", ";
+ calcTypeName(*I, TypeStack, TypeNames, Result);
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams()) Result += ", ";
+ Result += "...";
+ }
+ Result += ")";
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(Ty);
+ Result += "{ ";
+ for (StructType::element_iterator I = STy->element_begin(),
+ E = STy->element_end(); I != E; ++I) {
+ if (I != STy->element_begin())
+ Result += ", ";
+ calcTypeName(*I, TypeStack, TypeNames, Result);
+ }
+ Result += " }";
+ break;
+ }
+ case Type::PointerTyID:
+ calcTypeName(cast<PointerType>(Ty)->getElementType(),
+ TypeStack, TypeNames, Result);
+ Result += "*";
+ break;
+ case Type::ArrayTyID: {
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ Result += "[" + utostr(ATy->getNumElements()) + " x ";
+ calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
+ Result += "]";
+ break;
+ }
+ case Type::PackedTyID: {
+ const PackedType *PTy = cast<PackedType>(Ty);
+ Result += "<" + utostr(PTy->getNumElements()) + " x ";
+ calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
+ Result += ">";
+ break;
+ }
+ case Type::OpaqueTyID:
+ Result += "opaque";
+ break;
+ default:
+ Result += "<unrecognized-type>";
+ }
+
+ TypeStack.pop_back(); // Remove self from stack...
+ return;
+}
+
+
+/// printTypeInt - The internal guts of printing out a type that has a
+/// potentially named portion.
+///
+std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){
+ // Primitive types always print out their description, regardless of whether
+ // they have been named or not.
+ //
+ if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
+ return Out << Ty->getDescription();
+
+ // Check to see if the type is named.
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end()) return Out << I->second;
+
+ // Otherwise we have a type that has not been named but is a derived type.
+ // Carefully recurse the type hierarchy to print out any contained symbolic
+ // names.
+ //
+ std::vector<const Type *> TypeStack;
+ std::string TypeName;
+ calcTypeName(Ty, TypeStack, TypeNames, TypeName);
+ TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
+ return (Out << TypeName);
+}
+
+
+/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
+/// type, iff there is an entry in the modules symbol table for the specified
+/// type or one of it's component types. This is slower than a simple x << Type
+///
+std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
+ const Module *M) {
+ Out << ' ';
+
+ // If they want us to print out a type, attempt to make it symbolic if there
+ // is a symbol table in the module...
+ if (M) {
+ TypeMap TypeNames;
+ fillTypeNameTable(M, TypeNames);
+
+ return printTypeInt(Out, Ty, TypeNames);
+ } else {
+ return Out << Ty->getDescription();
+ }
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+void PrintEscapedString(const std::string &Str, std::ostream &Out) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '"' && C != '\\') {
+ Out << C;
+ } else {
+ Out << '\\'
+ << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+ << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+ }
+ }
+}
+
+/// @brief Internal constant writer.
+void WriteConstantInternal(std::ostream &Out, const Constant *CV,
+ bool PrintName,
+ TypeMap& TypeTable,
+ SlotMachine *Machine) {
+ const int IndentSize = 4;
+ static std::string Indent = "\n";
+ if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+ Out << (CB == ConstantBool::True ? "true" : "false");
+ } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+ Out << CI->getValue();
+ } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+ Out << CI->getValue();
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ // We would like to output the FP constant value in exponential notation,
+ // but we cannot do this if doing so will lose precision. Check here to
+ // make sure that we only output it in exponential format if we can parse
+ // the value back and get the same value.
+ //
+ std::string StrVal = ftostr(CFP->getValue());
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN, that atof will accept, but the lexer will not. Check that
+ // the string matches the "[-+]?[0-9]" regex.
+ //
+ if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9')))
+ // Reparse stringized version!
+ if (atof(StrVal.c_str()) == CFP->getValue()) {
+ Out << StrVal;
+ return;
+ }
+
+ // Otherwise we could not reparse it to exactly the same value, so we must
+ // output the string in hexadecimal format!
+ assert(sizeof(double) == sizeof(uint64_t) &&
+ "assuming that double is 64 bits!");
+ Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
+
+ } else if (isa<ConstantAggregateZero>(CV)) {
+ Out << "zeroinitializer";
+ } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ // As a special case, print the array as a string if it is an array of
+ // ubytes or an array of sbytes with positive values.
+ //
+ const Type *ETy = CA->getType()->getElementType();
+ if (CA->isString()) {
+ Out << "c\"";
+ PrintEscapedString(CA->getAsString(), Out);
+ Out << "\"";
+
+ } else { // Cannot output in string format...
+ Out << '[';
+ if (CA->getNumOperands()) {
+ Out << ' ';
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CA->getOperand(0),
+ PrintName, TypeTable, Machine);
+ for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
+ TypeTable, Machine);
+ }
+ }
+ Out << " ]";
+ }
+ } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ Out << '{';
+ unsigned N = CS->getNumOperands();
+ if (N) {
+ if (N > 2) {
+ Indent += std::string(IndentSize, ' ');
+ Out << Indent;
+ } else {
+ Out << ' ';
+ }
+ printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
+
+ WriteAsOperandInternal(Out, CS->getOperand(0),
+ PrintName, TypeTable, Machine);
+
+ for (unsigned i = 1; i < N; i++) {
+ Out << ", ";
+ if (N > 2) Out << Indent;
+ printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
+
+ WriteAsOperandInternal(Out, CS->getOperand(i),
+ PrintName, TypeTable, Machine);
+ }
+ if (N > 2) Indent.resize(Indent.size() - IndentSize);
+ }
+
+ Out << " }";
+ } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+ const Type *ETy = CP->getType()->getElementType();
+ assert(CP->getNumOperands() > 0 &&
+ "Number of operands for a PackedConst must be > 0");
+ Out << '<';
+ Out << ' ';
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CP->getOperand(0),
+ PrintName, TypeTable, Machine);
+ for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
+ TypeTable, Machine);
+ }
+ Out << " >";
+ } else if (isa<ConstantPointerNull>(CV)) {
+ Out << "null";
+
+ } else if (isa<UndefValue>(CV)) {
+ Out << "undef";
+
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ Out << CE->getOpcodeName() << " (";
+
+ for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+ printTypeInt(Out, (*OI)->getType(), TypeTable);
+ WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+ if (OI+1 != CE->op_end())
+ Out << ", ";
+ }
+
+ if (CE->getOpcode() == Instruction::Cast) {
+ Out << " to ";
+ printTypeInt(Out, CE->getType(), TypeTable);
+ }
+ Out << ')';
+
+ } else {
+ Out << "<placeholder or erroneous Constant>";
+ }
+}
+
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+ bool PrintName, TypeMap& TypeTable,
+ SlotMachine *Machine) {
+ Out << ' ';
+ if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
+ Out << getLLVMName(V->getName());
+ else {
+ const Constant *CV = dyn_cast<Constant>(V);
+ if (CV && !isa<GlobalValue>(CV)) {
+ WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine);
+ } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Out << "asm ";
+ if (IA->hasSideEffects())
+ Out << "sideeffect ";
+ Out << '"';
+ PrintEscapedString(IA->getAsmString(), Out);
+ Out << "\", \"";
+ PrintEscapedString(IA->getConstraintString(), Out);
+ Out << '"';
+ } else {
+ int Slot = Machine->getSlot(V);
+ if (Slot != -1)
+ Out << '%' << Slot;
+ else
+ Out << "<badref>";
+ }
+ }
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+std::ostream &WriteAsOperand(std::ostream &Out, const Value *V,
+ bool PrintType, bool PrintName,
+ const Module *Context) {
+ TypeMap TypeNames;
+ if (Context == 0) Context = getModuleFromVal(V);
+
+ if (Context)
+ fillTypeNameTable(Context, TypeNames);
+
+ if (PrintType)
+ printTypeInt(Out, V->getType(), TypeNames);
+
+ WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
+ return Out;
+}
+
+/// WriteAsOperandInternal - Write the name of the specified value out to
+/// the specified ostream. This can be useful when you just want to print
+/// int %reg126, not the whole instruction that generated it.
+///
+void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+ bool PrintName, TypeMap& TypeTable,
+ SlotMachine *Machine) {
+ Out << ' ';
+ int Slot = Machine->getSlot(T);
+ if (Slot != -1)
+ Out << '%' << Slot;
+ else
+ Out << "<badref>";
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty,
+ bool PrintType, bool PrintName,
+ const Module *Context) {
+ TypeMap TypeNames;
+ assert(Context != 0 && "Can't write types as operand without module context");
+
+ fillTypeNameTable(Context, TypeNames);
+
+ // if (PrintType)
+ // printTypeInt(Out, V->getType(), TypeNames);
+
+ printTypeInt(Out, Ty, TypeNames);
+
+ WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
+ return Out;
+}
+
+class CppWriter {
+ std::ostream &Out;
+ SlotMachine &Machine;
+ const Module *TheModule;
+ unsigned long uniqueNum;
+ TypeMap TypeNames;
+ ValueMap ValueNames;
+ TypeMap UnresolvedTypes;
+ TypeList TypeStack;
+
+public:
+ inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M)
+ : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(),
+ ValueNames(), UnresolvedTypes(), TypeStack() { }
+
+ inline void write(const Module *M) { printModule(M); }
+ inline void write(const GlobalVariable *G) { printGlobal(G); }
+ inline void write(const Function *F) { printFunction(F); }
+ inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
+ inline void write(const Instruction *I) { printInstruction(*I); }
+ inline void write(const Constant *CPV) { printConstant(CPV); }
+ inline void write(const Type *Ty) { printType(Ty); }
+
+ void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
+
+ const Module* getModule() { return TheModule; }
+
+private:
+ void printModule(const Module *M);
+ void printTypes(const Module* M);
+ void printConstants(const Module* M);
+ void printConstant(const Constant *CPV);
+ void printGlobal(const GlobalVariable *GV);
+ void printFunction(const Function *F);
+ void printArgument(const Argument *FA);
+ void printBasicBlock(const BasicBlock *BB);
+ void printInstruction(const Instruction &I);
+ void printSymbolTable(const SymbolTable &ST);
+ void printLinkageType(GlobalValue::LinkageTypes LT);
+ void printCallingConv(unsigned cc);
+
+
+ // printType - Go to extreme measures to attempt to print out a short,
+ // symbolic version of a type name.
+ //
+ std::ostream &printType(const Type *Ty) {
+ return printTypeInt(Out, Ty, TypeNames);
+ }
+
+ // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+ // without considering any symbolic types that we may have equal to it.
+ //
+ std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
+
+ // printInfoComment - Print a little comment after the instruction indicating
+ // which slot it occupies.
+ void printInfoComment(const Value &V);
+
+ std::string getCppName(const Type* val);
+ std::string getCppName(const Value* val);
+ inline void printCppName(const Value* val);
+ inline void printCppName(const Type* val);
+ bool isOnStack(const Type*) const;
+ inline void printTypeDef(const Type* Ty);
+ bool printTypeDefInternal(const Type* Ty);
+};
+
+std::string
+CppWriter::getCppName(const Value* val) {
+ std::string name;
+ ValueMap::iterator I = ValueNames.find(val);
+ if (I != ValueNames.end()) {
+ name = I->second;
+ } else {
+ const char* prefix;
+ switch (val->getType()->getTypeID()) {
+ case Type::VoidTyID: prefix = "void_"; break;
+ case Type::BoolTyID: prefix = "bool_"; break;
+ case Type::UByteTyID: prefix = "ubyte_"; break;
+ case Type::SByteTyID: prefix = "sbyte_"; break;
+ case Type::UShortTyID: prefix = "ushort_"; break;
+ case Type::ShortTyID: prefix = "short_"; break;
+ case Type::UIntTyID: prefix = "uint_"; break;
+ case Type::IntTyID: prefix = "int_"; break;
+ case Type::ULongTyID: prefix = "ulong_"; break;
+ case Type::LongTyID: prefix = "long_"; break;
+ case Type::FloatTyID: prefix = "float_"; break;
+ case Type::DoubleTyID: prefix = "double_"; break;
+ case Type::LabelTyID: prefix = "label_"; break;
+ case Type::FunctionTyID: prefix = "func_"; break;
+ case Type::StructTyID: prefix = "struct_"; break;
+ case Type::ArrayTyID: prefix = "array_"; break;
+ case Type::PointerTyID: prefix = "ptr_"; break;
+ case Type::PackedTyID: prefix = "packed_"; break;
+ default: prefix = "other_"; break;
+ }
+ name = ValueNames[val] = std::string(prefix) +
+ (val->hasName() ? val->getName() : utostr(uniqueNum++));
+ }
+ return name;
+}
+
+void
+CppWriter::printCppName(const Value* val) {
+ PrintEscapedString(getCppName(val),Out);
+}
+
+void
+CppWriter::printCppName(const Type* Ty)
+{
+ PrintEscapedString(getCppName(Ty),Out);
+}
+
+// Gets the C++ name for a type. Returns true if we already saw the type,
+// false otherwise.
+//
+inline const std::string*
+findTypeName(const SymbolTable& ST, const Type* Ty)
+{
+ SymbolTable::type_const_iterator TI = ST.type_begin();
+ SymbolTable::type_const_iterator TE = ST.type_end();
+ for (;TI != TE; ++TI)
+ if (TI->second == Ty)
+ return &(TI->first);
+ return 0;
+}
+
+std::string
+CppWriter::getCppName(const Type* Ty)
+{
+ // First, handle the primitive types .. easy
+ if (Ty->isPrimitiveType()) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return "Type::VoidTy";
+ case Type::BoolTyID: return "Type::BoolTy";
+ case Type::UByteTyID: return "Type::UByteTy";
+ case Type::SByteTyID: return "Type::SByteTy";
+ case Type::UShortTyID: return "Type::UShortTy";
+ case Type::ShortTyID: return "Type::ShortTy";
+ case Type::UIntTyID: return "Type::UIntTy";
+ case Type::IntTyID: return "Type::IntTy";
+ case Type::ULongTyID: return "Type::ULongTy";
+ case Type::LongTyID: return "Type::LongTy";
+ case Type::FloatTyID: return "Type::FloatTy";
+ case Type::DoubleTyID: return "Type::DoubleTy";
+ case Type::LabelTyID: return "Type::LabelTy";
+ default:
+ assert(!"Can't get here");
+ break;
+ }
+ return "Type::VoidTy"; // shouldn't be returned, but make it sensible
+ }
+
+ // Now, see if we've seen the type before and return that
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end())
+ return I->second;
+
+ // Okay, let's build a new name for this type. Start with a prefix
+ const char* prefix = 0;
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: prefix = "FuncTy_"; break;
+ case Type::StructTyID: prefix = "StructTy_"; break;
+ case Type::ArrayTyID: prefix = "ArrayTy_"; break;
+ case Type::PointerTyID: prefix = "PointerTy_"; break;
+ case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
+ case Type::PackedTyID: prefix = "PackedTy_"; break;
+ default: prefix = "OtherTy_"; break; // prevent breakage
+ }
+
+ // See if the type has a name in the symboltable and build accordingly
+ const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
+ std::string name;
+ if (tName)
+ name = std::string(prefix) + *tName;
+ else
+ name = std::string(prefix) + utostr(uniqueNum++);
+
+ // Save the name
+ return TypeNames[Ty] = name;
+}
+
+/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+/// without considering any symbolic types that we may have equal to it.
+///
+std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) {
+ if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
+ printType(FTy->getReturnType()) << " (";
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ Out << ", ";
+ printType(*I);
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams()) Out << ", ";
+ Out << "...";
+ }
+ Out << ')';
+ } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ Out << "{ ";
+ for (StructType::element_iterator I = STy->element_begin(),
+ E = STy->element_end(); I != E; ++I) {
+ if (I != STy->element_begin())
+ Out << ", ";
+ printType(*I);
+ }
+ Out << " }";
+ } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+ printType(PTy->getElementType()) << '*';
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Out << '[' << ATy->getNumElements() << " x ";
+ printType(ATy->getElementType()) << ']';
+ } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
+ Out << '<' << PTy->getNumElements() << " x ";
+ printType(PTy->getElementType()) << '>';
+ }
+ else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
+ Out << "opaque";
+ } else {
+ if (!Ty->isPrimitiveType())
+ Out << "<unknown derived type>";
+ printType(Ty);
+ }
+ return Out;
+}
+
+
+void CppWriter::writeOperand(const Value *Operand, bool PrintType,
+ bool PrintName) {
+ if (Operand != 0) {
+ if (PrintType) { Out << ' '; printType(Operand->getType()); }
+ WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
+ } else {
+ Out << "<null operand!>";
+ }
+}
+
+
+void CppWriter::printModule(const Module *M) {
+ Out << "\n// Module Construction\n";
+ Out << "Module* mod = new Module(\"";
+ PrintEscapedString(M->getModuleIdentifier(),Out);
+ Out << "\");\n";
+ Out << "mod->setEndianness(";
+ switch (M->getEndianness()) {
+ case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
+ case Module::BigEndian: Out << "Module::BigEndian);\n"; break;
+ case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break;
+ }
+ Out << "mod->setPointerSize(";
+ switch (M->getPointerSize()) {
+ case Module::Pointer32: Out << "Module::Pointer32);\n"; break;
+ case Module::Pointer64: Out << "Module::Pointer64);\n"; break;
+ case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
+ }
+ if (!M->getTargetTriple().empty())
+ Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
+
+ if (!M->getModuleInlineAsm().empty()) {
+ Out << "mod->setModuleInlineAsm(\"";
+ PrintEscapedString(M->getModuleInlineAsm(),Out);
+ Out << "\");\n";
+ }
+
+ // Loop over the dependent libraries and emit them.
+ Module::lib_iterator LI = M->lib_begin();
+ Module::lib_iterator LE = M->lib_end();
+ while (LI != LE) {
+ Out << "mod->addLibrary(\"" << *LI << "\");\n";
+ ++LI;
+ }
+
+ // Print out all the type definitions
+ Out << "\n// Type Definitions\n";
+ printTypes(M);
+
+ // Print out all the constants declarations
+ Out << "\n// Constants Construction\n";
+ printConstants(M);
+
+ // Process the global variables
+ Out << "\n// Global Variable Construction\n";
+ for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I) {
+ printGlobal(I);
+ }
+
+ // Output all of the functions.
+ Out << "\n// Function Construction\n";
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ printFunction(I);
+}
+
+void
+CppWriter::printCallingConv(unsigned cc){
+ // Print the calling convention.
+ switch (cc) {
+ default:
+ case CallingConv::C: Out << "CallingConv::C"; break;
+ case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
+ case CallingConv::Fast: Out << "CallingConv::Fast"; break;
+ case CallingConv::Cold: Out << "CallingConv::Cold"; break;
+ case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
+ }
+}
+
+void
+CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
+ switch (LT) {
+ case GlobalValue::InternalLinkage:
+ Out << "GlobalValue::InternalLinkage"; break;
+ case GlobalValue::LinkOnceLinkage:
+ Out << "GlobalValue::LinkOnceLinkage "; break;
+ case GlobalValue::WeakLinkage:
+ Out << "GlobalValue::WeakLinkage"; break;
+ case GlobalValue::AppendingLinkage:
+ Out << "GlobalValue::AppendingLinkage"; break;
+ case GlobalValue::ExternalLinkage:
+ Out << "GlobalValue::ExternalLinkage"; break;
+ case GlobalValue::GhostLinkage:
+ Out << "GlobalValue::GhostLinkage"; break;
+ }
+}
+void CppWriter::printGlobal(const GlobalVariable *GV) {
+ Out << "\n";
+ Out << "GlobalVariable* ";
+ printCppName(GV);
+ Out << " = new GlobalVariable(\n";
+ Out << " /*Type=*/";
+ printCppName(GV->getType()->getElementType());
+ Out << ",\n";
+ Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false")
+ << ",\n /*Linkage=*/";
+ printLinkageType(GV->getLinkage());
+ Out << ",\n /*Initializer=*/";
+ if (GV->hasInitializer()) {
+ printCppName(GV->getInitializer());
+ } else {
+ Out << "0";
+ }
+ Out << ",\n /*Name=*/\"";
+ PrintEscapedString(GV->getName(),Out);
+ Out << "\",\n mod);\n";
+
+ if (GV->hasSection()) {
+ printCppName(GV);
+ Out << "->setSection(\"";
+ PrintEscapedString(GV->getSection(),Out);
+ Out << "\");\n";
+ }
+ if (GV->getAlignment()) {
+ printCppName(GV);
+ Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n";
+ };
+}
+
+bool
+CppWriter::isOnStack(const Type* Ty) const {
+ TypeList::const_iterator TI =
+ std::find(TypeStack.begin(),TypeStack.end(),Ty);
+ return TI != TypeStack.end();
+}
+
+// Prints a type definition. Returns true if it could not resolve all the types
+// in the definition but had to use a forward reference.
+void
+CppWriter::printTypeDef(const Type* Ty) {
+ assert(TypeStack.empty());
+ TypeStack.clear();
+ printTypeDefInternal(Ty);
+ assert(TypeStack.empty());
+ // early resolve as many unresolved types as possible. Search the unresolved
+ // types map for the type we just printed. Now that its definition is complete
+ // we can resolve any preview references to it. This prevents a cascade of
+ // unresolved types.
+ TypeMap::iterator I = UnresolvedTypes.find(Ty);
+ if (I != UnresolvedTypes.end()) {
+ Out << "cast<OpaqueType>(" << I->second
+ << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n";
+ Out << I->second << " = cast<";
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: Out << "FunctionType"; break;
+ case Type::ArrayTyID: Out << "ArrayType"; break;
+ case Type::StructTyID: Out << "StructType"; break;
+ case Type::PackedTyID: Out << "PackedType"; break;
+ case Type::PointerTyID: Out << "PointerType"; break;
+ case Type::OpaqueTyID: Out << "OpaqueType"; break;
+ default: Out << "NoSuchDerivedType"; break;
+ }
+ Out << ">(" << I->second << "_fwd.get());\n";
+ UnresolvedTypes.erase(I);
+ }
+ Out << "\n";
+}
+
+bool
+CppWriter::printTypeDefInternal(const Type* Ty) {
+ // We don't print definitions for primitive types
+ if (Ty->isPrimitiveType())
+ return false;
+
+ // Determine if the name is in the name list before we modify that list.
+ TypeMap::const_iterator TNI = TypeNames.find(Ty);
+
+ // Everything below needs the name for the type so get it now
+ std::string typeName(getCppName(Ty));
+
+ // Search the type stack for recursion. If we find it, then generate this
+ // as an OpaqueType, but make sure not to do this multiple times because
+ // the type could appear in multiple places on the stack. Once the opaque
+ // definition is issues, it must not be re-issued. Consequently we have to
+ // check the UnresolvedTypes list as well.
+ if (isOnStack(Ty)) {
+ TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
+ if (I == UnresolvedTypes.end()) {
+ Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n";
+ UnresolvedTypes[Ty] = typeName;
+ return true;
+ }
+ }
+
+ // Avoid printing things we have already printed. Since TNI was obtained
+ // before the name was inserted with getCppName and because we know the name
+ // is not on the stack (currently being defined), we can surmise here that if
+ // we got the name we've also already emitted its definition.
+ if (TNI != TypeNames.end())
+ return false;
+
+ // We're going to print a derived type which, by definition, contains other
+ // types. So, push this one we're printing onto the type stack to assist with
+ // recursive definitions.
+ TypeStack.push_back(Ty); // push on type stack
+ bool didRecurse = false;
+
+ // Print the type definition
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ const FunctionType* FT = cast<FunctionType>(Ty);
+ Out << "std::vector<const Type*>" << typeName << "_args;\n";
+ FunctionType::param_iterator PI = FT->param_begin();
+ FunctionType::param_iterator PE = FT->param_end();
+ for (; PI != PE; ++PI) {
+ const Type* argTy = static_cast<const Type*>(*PI);
+ bool isForward = printTypeDefInternal(argTy);
+ std::string argName(getCppName(argTy));
+ Out << typeName << "_args.push_back(" << argName;
+ if (isForward)
+ Out << "_fwd";
+ Out << ");\n";
+ }
+ bool isForward = printTypeDefInternal(FT->getReturnType());
+ std::string retTypeName(getCppName(FT->getReturnType()));
+ Out << "FunctionType* " << typeName << " = FunctionType::get(\n"
+ << " /*Result=*/" << retTypeName;
+ if (isForward)
+ Out << "_fwd";
+ Out << ",\n /*Params=*/" << typeName << "_args,\n /*isVarArg=*/"
+ << (FT->isVarArg() ? "true" : "false") << ");\n";
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType* ST = cast<StructType>(Ty);
+ Out << "std::vector<const Type*>" << typeName << "_fields;\n";
+ StructType::element_iterator EI = ST->element_begin();
+ StructType::element_iterator EE = ST->element_end();
+ for (; EI != EE; ++EI) {
+ const Type* fieldTy = static_cast<const Type*>(*EI);
+ bool isForward = printTypeDefInternal(fieldTy);
+ std::string fieldName(getCppName(fieldTy));
+ Out << typeName << "_fields.push_back(" << fieldName;
+ if (isForward)
+ Out << "_fwd";
+ Out << ");\n";
+ }
+ Out << "StructType* " << typeName << " = StructType::get("
+ << typeName << "_fields);\n";
+ break;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType* AT = cast<ArrayType>(Ty);
+ const Type* ET = AT->getElementType();
+ bool isForward = printTypeDefInternal(ET);
+ std::string elemName(getCppName(ET));
+ Out << "ArrayType* " << typeName << " = ArrayType::get("
+ << elemName << (isForward ? "_fwd" : "")
+ << ", " << utostr(AT->getNumElements()) << ");\n";
+ break;
+ }
+ case Type::PointerTyID: {
+ const PointerType* PT = cast<PointerType>(Ty);
+ const Type* ET = PT->getElementType();
+ bool isForward = printTypeDefInternal(ET);
+ std::string elemName(getCppName(ET));
+ Out << "PointerType* " << typeName << " = PointerType::get("
+ << elemName << (isForward ? "_fwd" : "") << ");\n";
+ break;
+ }
+ case Type::PackedTyID: {
+ const PackedType* PT = cast<PackedType>(Ty);
+ const Type* ET = PT->getElementType();
+ bool isForward = printTypeDefInternal(ET);
+ std::string elemName(getCppName(ET));
+ Out << "PackedType* " << typeName << " = PackedType::get("
+ << elemName << (isForward ? "_fwd" : "")
+ << ", " << utostr(PT->getNumElements()) << ");\n";
+ break;
+ }
+ case Type::OpaqueTyID: {
+ const OpaqueType* OT = cast<OpaqueType>(Ty);
+ Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n";
+ break;
+ }
+ default:
+ assert(!"Invalid TypeID");
+ }
+
+ // Pop us off the type stack
+ TypeStack.pop_back();
+
+ // We weren't a recursive type
+ return false;
+}
+
+void
+CppWriter::printTypes(const Module* M) {
+ // Add all of the global variables to the value table...
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I) {
+ if (I->hasInitializer())
+ printTypeDef(I->getInitializer()->getType());
+ printTypeDef(I->getType());
+ }
+
+ // Add all the functions to the table
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ printTypeDef(FI->getReturnType());
+ printTypeDef(FI->getFunctionType());
+ // Add all the function arguments
+ for(Function::const_arg_iterator AI = FI->arg_begin(),
+ AE = FI->arg_end(); AI != AE; ++AI) {
+ printTypeDef(AI->getType());
+ }
+
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ printTypeDef(BB->getType());
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ printTypeDef(I->getType());
+ }
+ }
+ }
+}
+
+void
+CppWriter::printConstants(const Module* M) {
+ const SymbolTable& ST = M->getSymbolTable();
+
+ // Print the constants, in type plane order.
+ for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
+ PI != ST.plane_end(); ++PI ) {
+ SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
+ SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
+
+ for (; VI != VE; ++VI) {
+ const Value* V = VI->second;
+ const Constant *CPV = dyn_cast<Constant>(V) ;
+ if (CPV && !isa<GlobalValue>(V)) {
+ printConstant(CPV);
+ }
+ }
+ }
+
+ // Add all of the global variables to the value table...
+ for (Module::const_global_iterator I = TheModule->global_begin(),
+ E = TheModule->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ printConstant(I->getInitializer());
+}
+
+// printSymbolTable - Run through symbol table looking for constants
+// and types. Emit their declarations.
+void CppWriter::printSymbolTable(const SymbolTable &ST) {
+
+ // Print the types.
+ for (SymbolTable::type_const_iterator TI = ST.type_begin();
+ TI != ST.type_end(); ++TI ) {
+ Out << "\t" << getLLVMName(TI->first) << " = type ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %FILE = type %FILE
+ //
+ printTypeAtLeastOneLevel(TI->second) << "\n";
+ }
+
+}
+
+
+/// printConstant - Print out a constant pool entry...
+///
+void CppWriter::printConstant(const Constant *CV) {
+ const int IndentSize = 2;
+ static std::string Indent = "\n";
+ std::string constName(getCppName(CV));
+ std::string typeName(getCppName(CV->getType()));
+ if (CV->isNullValue()) {
+ Out << "Constant* " << constName << " = Constant::getNullValue("
+ << typeName << ");\n";
+ return;
+ }
+ if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+ Out << "Constant* " << constName << " = ConstantBool::get("
+ << (CB == ConstantBool::True ? "true" : "false")
+ << ");";
+ } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+ Out << "Constant* " << constName << " = ConstantSInt::get("
+ << typeName << ", " << CI->getValue() << ");";
+ } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+ Out << "Constant* " << constName << " = ConstantUInt::get("
+ << typeName << ", " << CI->getValue() << ");";
+ } else if (isa<ConstantAggregateZero>(CV)) {
+ Out << "Constant* " << constName << " = ConstantAggregateZero::get("
+ << typeName << ");";
+ } else if (isa<ConstantPointerNull>(CV)) {
+ Out << "Constant* " << constName << " = ConstanPointerNull::get("
+ << typeName << ");";
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ Out << "ConstantFP::get(" << typeName << ", ";
+ // We would like to output the FP constant value in exponential notation,
+ // but we cannot do this if doing so will lose precision. Check here to
+ // make sure that we only output it in exponential format if we can parse
+ // the value back and get the same value.
+ //
+ std::string StrVal = ftostr(CFP->getValue());
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN, that atof will accept, but the lexer will not. Check that
+ // the string matches the "[-+]?[0-9]" regex.
+ //
+ if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9')))
+ // Reparse stringized version!
+ if (atof(StrVal.c_str()) == CFP->getValue()) {
+ Out << StrVal;
+ return;
+ }
+
+ // Otherwise we could not reparse it to exactly the same value, so we must
+ // output the string in hexadecimal format!
+ assert(sizeof(double) == sizeof(uint64_t) &&
+ "assuming that double is 64 bits!");
+ Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");";
+ } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ if (CA->isString()) {
+ Out << "Constant* " << constName << " = ConstantArray::get(\"";
+ PrintEscapedString(CA->getAsString(),Out);
+ Out << "\");";
+ } else {
+ Out << "std::vector<Constant*> " << constName << "_elems;\n";
+ unsigned N = CA->getNumOperands();
+ for (unsigned i = 0; i < N; ++i) {
+ printConstant(CA->getOperand(i));
+ Out << constName << "_elems.push_back("
+ << getCppName(CA->getOperand(i)) << ");\n";
+ }
+ Out << "Constant* " << constName << " = ConstantArray::get("
+ << typeName << ", " << constName << "_elems);";
+ }
+ } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_fields;\n";
+ unsigned N = CS->getNumOperands();
+ for (unsigned i = 0; i < N; i++) {
+ printConstant(CS->getOperand(i));
+ Out << constName << "_fields.push_back("
+ << getCppName(CA->getOperand(i)) << ");\n";
+ }
+ Out << "Constant* " << constName << " = ConstantStruct::get("
+ << typeName << ", " << constName << "_fields);";
+ } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+ Out << "std::vector<Constant*> " << constName << "_elems;\n";
+ unsigned N = CP->getNumOperands();
+ for (unsigned i = 0; i < N; ++i) {
+ printConstant(CP->getOperand(i));
+ Out << constName << "_elems.push_back("
+ << getCppName(CP->getOperand(i)) << ");\n";
+ }
+ Out << "Constant* " << constName << " = ConstantPacked::get("
+ << typeName << ", " << constName << "_elems);";
+ } else if (isa<UndefValue>(CV)) {
+ Out << "Constant* " << constName << " = UndefValue::get("
+ << typeName << ");\n";
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ Out << CE->getOpcodeName() << " (";
+
+ for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+ //printTypeInt(Out, (*OI)->getType(), TypeTable);
+ //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+ if (OI+1 != CE->op_end())
+ Out << ", ";
+ }
+
+ if (CE->getOpcode() == Instruction::Cast) {
+ Out << " to ";
+ // printTypeInt(Out, CE->getType(), TypeTable);
+ }
+ Out << ')';
+
+ } else {
+ Out << "<placeholder or erroneous Constant>";
+ }
+ Out << "\n";
+}
+
+/// printFunction - Print all aspects of a function.
+///
+void CppWriter::printFunction(const Function *F) {
+ std::string funcTypeName(getCppName(F->getFunctionType()));
+
+ Out << "Function* ";
+ printCppName(F);
+ Out << " = new Function(" << funcTypeName << ", " ;
+ printLinkageType(F->getLinkage());
+ Out << ", \"" << F->getName() << "\", mod);\n";
+ printCppName(F);
+ Out << "->setCallingConv(";
+ printCallingConv(F->getCallingConv());
+ Out << ");\n";
+ if (F->hasSection()) {
+ printCppName(F);
+ Out << "->setSection(" << F->getSection() << ");\n";
+ }
+ if (F->getAlignment()) {
+ printCppName(F);
+ Out << "->setAlignment(" << F->getAlignment() << ");\n";
+ }
+
+ Machine.incorporateFunction(F);
+
+ if (!F->isExternal()) {
+ Out << "{";
+ // Output all of its basic blocks... for the function
+ for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
+ printBasicBlock(I);
+ Out << "}\n";
+ }
+
+ Machine.purgeFunction();
+}
+
+/// printArgument - This member is called for every argument that is passed into
+/// the function. Simply print it out
+///
+void CppWriter::printArgument(const Argument *Arg) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
+
+ // Output type...
+ printType(Arg->getType());
+
+ // Output name, if available...
+ if (Arg->hasName())
+ Out << ' ' << getLLVMName(Arg->getName());
+}
+
+/// printBasicBlock - This member is called for each basic block in a method.
+///
+void CppWriter::printBasicBlock(const BasicBlock *BB) {
+ if (BB->hasName()) { // Print out the label if it exists...
+ Out << "\n" << getLLVMName(BB->getName(), false) << ':';
+ } else if (!BB->use_empty()) { // Don't print block # of no uses...
+ Out << "\n; <label>:";
+ int Slot = Machine.getSlot(BB);
+ if (Slot != -1)
+ Out << Slot;
+ else
+ Out << "<badref>";
+ }
+
+ if (BB->getParent() == 0)
+ Out << "\t\t; Error: Block without parent!";
+ else {
+ if (BB != &BB->getParent()->front()) { // Not the entry block?
+ // Output predecessors for the block...
+ Out << "\t\t;";
+ pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ if (PI == PE) {
+ Out << " No predecessors!";
+ } else {
+ Out << " preds =";
+ writeOperand(*PI, false, true);
+ for (++PI; PI != PE; ++PI) {
+ Out << ',';
+ writeOperand(*PI, false, true);
+ }
+ }
+ }
+ }
+
+ Out << "\n";
+
+ // Output all of the instructions in the basic block...
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ printInstruction(*I);
+}
+
+
+/// printInfoComment - Print a little comment after the instruction indicating
+/// which slot it occupies.
+///
+void CppWriter::printInfoComment(const Value &V) {
+ if (V.getType() != Type::VoidTy) {
+ Out << "\t\t; <";
+ printType(V.getType()) << '>';
+
+ if (!V.hasName()) {
+ int SlotNum = Machine.getSlot(&V);
+ if (SlotNum == -1)
+ Out << ":<badref>";
+ else
+ Out << ':' << SlotNum; // Print out the def slot taken.
+ }
+ Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
+ }
+}
+
+/// printInstruction - This member is called for each Instruction in a function..
+///
+void CppWriter::printInstruction(const Instruction &I) {
+ Out << "\t";
+
+ // Print out name if it exists...
+ if (I.hasName())
+ Out << getLLVMName(I.getName()) << " = ";
+
+ // If this is a volatile load or store, print out the volatile marker.
+ if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
+ (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
+ Out << "volatile ";
+ } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
+ // If this is a call, check if it's a tail call.
+ Out << "tail ";
+ }
+
+ // Print out the opcode...
+ Out << I.getOpcodeName();
+
+ // Print out the type of the operands...
+ const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
+
+ // Special case conditional branches to swizzle the condition out to the front
+ if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
+ writeOperand(I.getOperand(2), true);
+ Out << ',';
+ writeOperand(Operand, true);
+ Out << ',';
+ writeOperand(I.getOperand(1), true);
+
+ } else if (isa<SwitchInst>(I)) {
+ // Special case switch statement to get formatting nice and correct...
+ writeOperand(Operand , true); Out << ',';
+ writeOperand(I.getOperand(1), true); Out << " [";
+
+ for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
+ Out << "\n\t\t";
+ writeOperand(I.getOperand(op ), true); Out << ',';
+ writeOperand(I.getOperand(op+1), true);
+ }
+ Out << "\n\t]";
+ } else if (isa<PHINode>(I)) {
+ Out << ' ';
+ printType(I.getType());
+ Out << ' ';
+
+ for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
+ if (op) Out << ", ";
+ Out << '[';
+ writeOperand(I.getOperand(op ), false); Out << ',';
+ writeOperand(I.getOperand(op+1), false); Out << " ]";
+ }
+ } else if (isa<ReturnInst>(I) && !Operand) {
+ Out << " void";
+ } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Print the calling convention being used.
+ switch (CI->getCallingConv()) {
+ case CallingConv::C: break; // default
+ case CallingConv::CSRet: Out << " csretcc"; break;
+ case CallingConv::Fast: Out << " fastcc"; break;
+ case CallingConv::Cold: Out << " coldcc"; break;
+ default: Out << " cc" << CI->getCallingConv(); break;
+ }
+
+ const PointerType *PTy = cast<PointerType>(Operand->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const Type *RetTy = FTy->getReturnType();
+
+ // If possible, print out the short form of the call instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ if (!FTy->isVarArg() &&
+ (!isa<PointerType>(RetTy) ||
+ !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+ Out << ' '; printType(RetTy);
+ writeOperand(Operand, false);
+ } else {
+ writeOperand(Operand, true);
+ }
+ Out << '(';
+ if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
+ for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
+ Out << ',';
+ writeOperand(I.getOperand(op), true);
+ }
+
+ Out << " )";
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ const PointerType *PTy = cast<PointerType>(Operand->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const Type *RetTy = FTy->getReturnType();
+
+ // Print the calling convention being used.
+ switch (II->getCallingConv()) {
+ case CallingConv::C: break; // default
+ case CallingConv::CSRet: Out << " csretcc"; break;
+ case CallingConv::Fast: Out << " fastcc"; break;
+ case CallingConv::Cold: Out << " coldcc"; break;
+ default: Out << " cc" << II->getCallingConv(); break;
+ }
+
+ // If possible, print out the short form of the invoke instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ if (!FTy->isVarArg() &&
+ (!isa<PointerType>(RetTy) ||
+ !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+ Out << ' '; printType(RetTy);
+ writeOperand(Operand, false);
+ } else {
+ writeOperand(Operand, true);
+ }
+
+ Out << '(';
+ if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
+ for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
+ Out << ',';
+ writeOperand(I.getOperand(op), true);
+ }
+
+ Out << " )\n\t\t\tto";
+ writeOperand(II->getNormalDest(), true);
+ Out << " unwind";
+ writeOperand(II->getUnwindDest(), true);
+
+ } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
+ Out << ' ';
+ printType(AI->getType()->getElementType());
+ if (AI->isArrayAllocation()) {
+ Out << ',';
+ writeOperand(AI->getArraySize(), true);
+ }
+ if (AI->getAlignment()) {
+ Out << ", align " << AI->getAlignment();
+ }
+ } else if (isa<CastInst>(I)) {
+ if (Operand) writeOperand(Operand, true); // Work with broken code
+ Out << " to ";
+ printType(I.getType());
+ } else if (isa<VAArgInst>(I)) {
+ if (Operand) writeOperand(Operand, true); // Work with broken code
+ Out << ", ";
+ printType(I.getType());
+ } else if (Operand) { // Print the normal way...
+
+ // PrintAllTypes - Instructions who have operands of all the same type
+ // omit the type from all but the first operand. If the instruction has
+ // different type operands (for example br), then they are all printed.
+ bool PrintAllTypes = false;
+ const Type *TheType = Operand->getType();
+
+ // Shift Left & Right print both types even for Ubyte LHS, and select prints
+ // types even if all operands are bools.
+ if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
+ isa<ShuffleVectorInst>(I)) {
+ PrintAllTypes = true;
+ } else {
+ for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
+ Operand = I.getOperand(i);
+ if (Operand->getType() != TheType) {
+ PrintAllTypes = true; // We have differing types! Print them all!
+ break;
+ }
+ }
+ }
+
+ if (!PrintAllTypes) {
+ Out << ' ';
+ printType(TheType);
+ }
+
+ for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
+ if (i) Out << ',';
+ writeOperand(I.getOperand(i), PrintAllTypes);
+ }
+ }
+
+ printInfoComment(I);
+ Out << "\n";
+}
+
+
+//===----------------------------------------------------------------------===//
+// External Interface declarations
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+//===-- SlotMachine Implementation
+//===----------------------------------------------------------------------===//
+
+#if 0
+#define SC_DEBUG(X) std::cerr << X
+#else
+#define SC_DEBUG(X)
+#endif
+
+// Module level constructor. Causes the contents of the Module (sans functions)
+// to be added to the slot table.
+SlotMachine::SlotMachine(const Module *M)
+ : TheModule(M) ///< Saved for lazy initialization.
+ , mMap()
+ , mTypes()
+ , fMap()
+ , fTypes()
+{
+ assert(M != 0 && "Invalid Module");
+ processModule();
+}
+
+// Iterate through all the global variables, functions, and global
+// variable initializers and create slots for them.
+void SlotMachine::processModule() {
+ // Add all of the global variables to the value table...
+ for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
+ I != E; ++I)
+ createSlot(I);
+
+ // Add all the functions to the table
+ for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+ FI != FE; ++FI) {
+ createSlot(FI);
+ // Add all the function arguments
+ for(Function::const_arg_iterator AI = FI->arg_begin(),
+ AE = FI->arg_end(); AI != AE; ++AI)
+ createSlot(AI);
+
+ // Add all of the basic blocks and instructions
+ for (Function::const_iterator BB = FI->begin(),
+ E = FI->end(); BB != E; ++BB) {
+ createSlot(BB);
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
+ ++I) {
+ createSlot(I);
+ }
+ }
+ }
+}
+
+// Process the arguments, basic blocks, and instructions of a function.
+void SlotMachine::processFunction() {
+
+}
+
+// Clean up after incorporating a function. This is the only way
+// to get out of the function incorporation state that affects the
+// getSlot/createSlot lock. Function incorporation state is indicated
+// by TheFunction != 0.
+void SlotMachine::purgeFunction() {
+ SC_DEBUG("begin purgeFunction!\n");
+ fMap.clear(); // Simply discard the function level map
+ fTypes.clear();
+ TheFunction = 0;
+ FunctionProcessed = false;
+ SC_DEBUG("end purgeFunction!\n");
+}
+
+/// Get the slot number for a value. This function will assert if you
+/// ask for a Value that hasn't previously been inserted with createSlot.
+/// Types are forbidden because Type does not inherit from Value (any more).
+int SlotMachine::getSlot(const Value *V) {
+ assert( V && "Can't get slot for null Value" );
+ assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+ "Can't insert a non-GlobalValue Constant into SlotMachine");
+
+ // Get the type of the value
+ const Type* VTy = V->getType();
+
+ // Find the type plane in the module map
+ TypedPlanes::const_iterator MI = mMap.find(VTy);
+
+ if ( TheFunction ) {
+ // Lookup the type in the function map too
+ TypedPlanes::const_iterator FI = fMap.find(VTy);
+ // If there is a corresponding type plane in the function map
+ if ( FI != fMap.end() ) {
+ // Lookup the Value in the function map
+ ValueMap::const_iterator FVI = FI->second.map.find(V);
+ // If the value doesn't exist in the function map
+ if ( FVI == FI->second.map.end() ) {
+ // Look up the value in the module map.
+ if (MI == mMap.end()) return -1;
+ ValueMap::const_iterator MVI = MI->second.map.find(V);
+ // If we didn't find it, it wasn't inserted
+ if (MVI == MI->second.map.end()) return -1;
+ assert( MVI != MI->second.map.end() && "Value not found");
+ // We found it only at the module level
+ return MVI->second;
+
+ // else the value exists in the function map
+ } else {
+ // Return the slot number as the module's contribution to
+ // the type plane plus the index in the function's contribution
+ // to the type plane.
+ if (MI != mMap.end())
+ return MI->second.next_slot + FVI->second;
+ else
+ return FVI->second;
+ }
+ }
+ }
+
+ // N.B. Can get here only if either !TheFunction or the function doesn't
+ // have a corresponding type plane for the Value
+
+ // Make sure the type plane exists
+ if (MI == mMap.end()) return -1;
+ // Lookup the value in the module's map
+ ValueMap::const_iterator MVI = MI->second.map.find(V);
+ // Make sure we found it.
+ if (MVI == MI->second.map.end()) return -1;
+ // Return it.
+ return MVI->second;
+}
+
+/// Get the slot number for a type. This function will assert if you
+/// ask for a Type that hasn't previously been inserted with createSlot.
+int SlotMachine::getSlot(const Type *Ty) {
+ assert( Ty && "Can't get slot for null Type" );
+
+ if ( TheFunction ) {
+ // Lookup the Type in the function map
+ TypeMap::const_iterator FTI = fTypes.map.find(Ty);
+ // If the Type doesn't exist in the function map
+ if ( FTI == fTypes.map.end() ) {
+ TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+ // If we didn't find it, it wasn't inserted
+ if (MTI == mTypes.map.end())
+ return -1;
+ // We found it only at the module level
+ return MTI->second;
+
+ // else the value exists in the function map
+ } else {
+ // Return the slot number as the module's contribution to
+ // the type plane plus the index in the function's contribution
+ // to the type plane.
+ return mTypes.next_slot + FTI->second;
+ }
+ }
+
+ // N.B. Can get here only if !TheFunction
+
+ // Lookup the value in the module's map
+ TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+ // Make sure we found it.
+ if (MTI == mTypes.map.end()) return -1;
+ // Return it.
+ return MTI->second;
+}
+
+// Create a new slot, or return the existing slot if it is already
+// inserted. Note that the logic here parallels getSlot but instead
+// of asserting when the Value* isn't found, it inserts the value.
+unsigned SlotMachine::createSlot(const Value *V) {
+ assert( V && "Can't insert a null Value to SlotMachine");
+ assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+ "Can't insert a non-GlobalValue Constant into SlotMachine");
+
+ const Type* VTy = V->getType();
+
+ // Just ignore void typed things
+ if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
+
+ // Look up the type plane for the Value's type from the module map
+ TypedPlanes::const_iterator MI = mMap.find(VTy);
+
+ if ( TheFunction ) {
+ // Get the type plane for the Value's type from the function map
+ TypedPlanes::const_iterator FI = fMap.find(VTy);
+ // If there is a corresponding type plane in the function map
+ if ( FI != fMap.end() ) {
+ // Lookup the Value in the function map
+ ValueMap::const_iterator FVI = FI->second.map.find(V);
+ // If the value doesn't exist in the function map
+ if ( FVI == FI->second.map.end() ) {
+ // If there is no corresponding type plane in the module map
+ if ( MI == mMap.end() )
+ return insertValue(V);
+ // Look up the value in the module map
+ ValueMap::const_iterator MVI = MI->second.map.find(V);
+ // If we didn't find it, it wasn't inserted
+ if ( MVI == MI->second.map.end() )
+ return insertValue(V);
+ else
+ // We found it only at the module level
+ return MVI->second;
+
+ // else the value exists in the function map
+ } else {
+ if ( MI == mMap.end() )
+ return FVI->second;
+ else
+ // Return the slot number as the module's contribution to
+ // the type plane plus the index in the function's contribution
+ // to the type plane.
+ return MI->second.next_slot + FVI->second;
+ }
+
+ // else there is not a corresponding type plane in the function map
+ } else {
+ // If the type plane doesn't exists at the module level
+ if ( MI == mMap.end() ) {
+ return insertValue(V);
+ // else type plane exists at the module level, examine it
+ } else {
+ // Look up the value in the module's map
+ ValueMap::const_iterator MVI = MI->second.map.find(V);
+ // If we didn't find it there either
+ if ( MVI == MI->second.map.end() )
+ // Return the slot number as the module's contribution to
+ // the type plane plus the index of the function map insertion.
+ return MI->second.next_slot + insertValue(V);
+ else
+ return MVI->second;
+ }
+ }
+ }
+
+ // N.B. Can only get here if !TheFunction
+
+ // If the module map's type plane is not for the Value's type
+ if ( MI != mMap.end() ) {
+ // Lookup the value in the module's map
+ ValueMap::const_iterator MVI = MI->second.map.find(V);
+ if ( MVI != MI->second.map.end() )
+ return MVI->second;
+ }
+
+ return insertValue(V);
+}
+
+// Create a new slot, or return the existing slot if it is already
+// inserted. Note that the logic here parallels getSlot but instead
+// of asserting when the Value* isn't found, it inserts the value.
+unsigned SlotMachine::createSlot(const Type *Ty) {
+ assert( Ty && "Can't insert a null Type to SlotMachine");
+
+ if ( TheFunction ) {
+ // Lookup the Type in the function map
+ TypeMap::const_iterator FTI = fTypes.map.find(Ty);
+ // If the type doesn't exist in the function map
+ if ( FTI == fTypes.map.end() ) {
+ // Look up the type in the module map
+ TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+ // If we didn't find it, it wasn't inserted
+ if ( MTI == mTypes.map.end() )
+ return insertValue(Ty);
+ else
+ // We found it only at the module level
+ return MTI->second;
+
+ // else the value exists in the function map
+ } else {
+ // Return the slot number as the module's contribution to
+ // the type plane plus the index in the function's contribution
+ // to the type plane.
+ return mTypes.next_slot + FTI->second;
+ }
+ }
+
+ // N.B. Can only get here if !TheFunction
+
+ // Lookup the type in the module's map
+ TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+ if ( MTI != mTypes.map.end() )
+ return MTI->second;
+
+ return insertValue(Ty);
+}
+
+// Low level insert function. Minimal checking is done. This
+// function is just for the convenience of createSlot (above).
+unsigned SlotMachine::insertValue(const Value *V ) {
+ assert(V && "Can't insert a null Value into SlotMachine!");
+ assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+ "Can't insert a non-GlobalValue Constant into SlotMachine");
+
+ // If this value does not contribute to a plane (is void)
+ // or if the value already has a name then ignore it.
+ if (V->getType() == Type::VoidTy || V->hasName() ) {
+ SC_DEBUG("ignored value " << *V << "\n");
+ return 0; // FIXME: Wrong return value
+ }
+
+ const Type *VTy = V->getType();
+ unsigned DestSlot = 0;
+
+ if ( TheFunction ) {
+ TypedPlanes::iterator I = fMap.find( VTy );
+ if ( I == fMap.end() )
+ I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
+ DestSlot = I->second.map[V] = I->second.next_slot++;
+ } else {
+ TypedPlanes::iterator I = mMap.find( VTy );
+ if ( I == mMap.end() )
+ I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
+ DestSlot = I->second.map[V] = I->second.next_slot++;
+ }
+
+ SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
+ DestSlot << " [");
+ // G = Global, C = Constant, T = Type, F = Function, o = other
+ SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
+ (isa<Constant>(V) ? 'C' : 'o'))));
+ SC_DEBUG("]\n");
+ return DestSlot;
+}
+
+// Low level insert function. Minimal checking is done. This
+// function is just for the convenience of createSlot (above).
+unsigned SlotMachine::insertValue(const Type *Ty ) {
+ assert(Ty && "Can't insert a null Type into SlotMachine!");
+
+ unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
+ SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n");
+ return DestSlot;
+}
+
+} // end anonymous llvm
+
+namespace llvm {
+
+void WriteModuleToCppFile(Module* mod, std::ostream& o) {
+ o << "#include <llvm/Module.h>\n";
+ o << "#include <llvm/DerivedTypes.h>\n";
+ o << "#include <llvm/Constants.h>\n";
+ o << "#include <llvm/GlobalVariable.h>\n";
+ o << "#include <llvm/Function.h>\n";
+ o << "#include <llvm/CallingConv.h>\n";
+ o << "#include <llvm/BasicBlock.h>\n";
+ o << "#include <llvm/Instructions.h>\n";
+ o << "#include <llvm/Pass.h>\n";
+ o << "#include <llvm/PassManager.h>\n";
+ o << "#include <llvm/Analysis/Verifier.h>\n";
+ o << "#include <llvm/Assembly/PrintModulePass.h>\n";
+ o << "#include <algorithm>\n";
+ o << "#include <iostream>\n\n";
+ o << "using namespace llvm;\n\n";
+ o << "Module* makeLLVMModule();\n\n";
+ o << "int main(int argc, char**argv) {\n";
+ o << " Module* Mod = makeLLVMModule();\n";
+ o << " verifyModule(*Mod, PrintMessageAction);\n";
+ o << " PassManager PM;\n";
+ o << " PM.add(new PrintModulePass(&std::cout));\n";
+ o << " PM.run(*Mod);\n";
+ o << " return 0;\n";
+ o << "}\n\n";
+ o << "Module* makeLLVMModule() {\n";
+ SlotMachine SlotTable(mod);
+ CppWriter W(o, SlotTable, mod);
+ W.write(mod);
+ o << "}\n";
+}
+
+}
diff --git a/tools/llvm2cpp/CppWriter.h b/tools/llvm2cpp/CppWriter.h
new file mode 100644
index 0000000..16ba30e
--- /dev/null
+++ b/tools/llvm2cpp/CppWriter.h
@@ -0,0 +1,18 @@
+//===--- CppWriter.h - Generate C++ IR to C++ Source Interface ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Reid Spencer and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares a function, WriteModuleToCppFile that will convert a
+// Module into the corresponding C++ code to construct the same module.
+//
+//===------------------------------------------------------------------------===
+#include <ostream>
+namespace llvm {
+class Module;
+void WriteModuleToCppFile(Module* mod, std::ostream& out);
+}
diff --git a/tools/llvm2cpp/Makefile b/tools/llvm2cpp/Makefile
new file mode 100644
index 0000000..44a5b6f
--- /dev/null
+++ b/tools/llvm2cpp/Makefile
@@ -0,0 +1,23 @@
+##===- tools/llvm-as/Makefile ------------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by the LLVM research group and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+LEVEL = ../..
+TOOLNAME = llvm2cpp
+USEDLIBS = LLVMAsmParser LLVMBCWriter LLVMCore \
+ LLVMSupport.a LLVMbzip2 LLVMSystem.a
+
+include $(LEVEL)/Makefile.common
+
+tryit: all-local recurty.cpp globalvars.cpp
+
+%.cpp : %.ll
+ llvm2cpp $*.ll -f -o $*.cpp
+ gcc -I$(LLVM_SRC_ROOT)/include -I$(LLVM_OBJ_ROOT)/include -g \
+ -D__STDC_LIMIT_MACROS -L$(LibDir) $(LibDir)/LLVMCore.o -lLLVMSupport \
+ $(LibDir)/LLVMbzip2.o -lLLVMSystem -lstdc++ \
+ $*.cpp -o $*
diff --git a/tools/llvm2cpp/llvm2cpp.cpp b/tools/llvm2cpp/llvm2cpp.cpp
new file mode 100644
index 0000000..2b044f8
--- /dev/null
+++ b/tools/llvm2cpp/llvm2cpp.cpp
@@ -0,0 +1,138 @@
+//===--- llvm-as.cpp - The low-level LLVM assembler -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This utility may be invoked in the following manner:
+// llvm-as --help - Output information about command line switches
+// llvm-as [options] - Read LLVM asm from stdin, write bytecode to stdout
+// llvm-as [options] x.ll - Read LLVM asm from the x.ll file, write bytecode
+// to the x.bc file.
+//
+//===------------------------------------------------------------------------===
+
+#include "llvm/Module.h"
+#include "llvm/Assembly/Parser.h"
+#include "llvm/Bytecode/Writer.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/SystemUtils.h"
+#include "llvm/System/Signals.h"
+#include "CppWriter.h"
+#include <fstream>
+#include <iostream>
+#include <memory>
+
+using namespace llvm;
+
+static cl::opt<std::string>
+InputFilename(cl::Positional, cl::desc("<input LLVM assembly file>"),
+ cl::init("-"));
+
+static cl::opt<std::string>
+OutputFilename("o", cl::desc("Override output filename"),
+ cl::value_desc("filename"));
+
+static cl::opt<bool>
+Force("f", cl::desc("Overwrite output files"));
+
+static cl::opt<bool>
+DisableVerify("disable-verify", cl::Hidden,
+ cl::desc("Do not run verifier on input LLVM (dangerous!)"));
+
+int main(int argc, char **argv) {
+ cl::ParseCommandLineOptions(argc, argv, " llvm .ll -> .cpp assembler\n");
+ sys::PrintStackTraceOnErrorSignal();
+
+ int exitCode = 0;
+ std::ostream *Out = 0;
+ try {
+ // Parse the file now...
+ std::auto_ptr<Module> M(ParseAssemblyFile(InputFilename));
+ if (M.get() == 0) {
+ std::cerr << argv[0] << ": assembly didn't read correctly.\n";
+ return 1;
+ }
+
+ try {
+ if (!DisableVerify)
+ verifyModule(*M.get(), ThrowExceptionAction);
+ } catch (const std::string &Err) {
+ std::cerr << argv[0]
+ << ": assembly parsed, but does not verify as correct!\n";
+ std::cerr << Err;
+ return 1;
+ }
+
+ if (OutputFilename != "") { // Specified an output filename?
+ if (OutputFilename != "-") { // Not stdout?
+ if (!Force && std::ifstream(OutputFilename.c_str())) {
+ // If force is not specified, make sure not to overwrite a file!
+ std::cerr << argv[0] << ": error opening '" << OutputFilename
+ << "': file exists!\n"
+ << "Use -f command line argument to force output\n";
+ return 1;
+ }
+ Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
+ std::ios::trunc | std::ios::binary);
+ } else { // Specified stdout
+ // FIXME: cout is not binary!
+ Out = &std::cout;
+ }
+ } else {
+ if (InputFilename == "-") {
+ OutputFilename = "-";
+ Out = &std::cout;
+ } else {
+ std::string IFN = InputFilename;
+ int Len = IFN.length();
+ if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') {
+ // Source ends in .ll
+ OutputFilename = std::string(IFN.begin(), IFN.end()-3);
+ } else {
+ OutputFilename = IFN; // Append a .cpp to it
+ }
+ OutputFilename += ".cpp";
+
+ if (!Force && std::ifstream(OutputFilename.c_str())) {
+ // If force is not specified, make sure not to overwrite a file!
+ std::cerr << argv[0] << ": error opening '" << OutputFilename
+ << "': file exists!\n"
+ << "Use -f command line argument to force output\n";
+ return 1;
+ }
+
+ Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
+ std::ios::trunc | std::ios::binary);
+ // Make sure that the Out file gets unlinked from the disk if we get a
+ // SIGINT
+ sys::RemoveFileOnSignal(sys::Path(OutputFilename));
+ }
+ }
+
+ if (!Out->good()) {
+ std::cerr << argv[0] << ": error opening " << OutputFilename << "!\n";
+ return 1;
+ }
+
+ WriteModuleToCppFile(M.get(), *Out);
+
+ } catch (const ParseException &E) {
+ std::cerr << argv[0] << ": " << E.getMessage() << "\n";
+ exitCode = 1;
+ } catch (const std::string& msg) {
+ std::cerr << argv[0] << ": " << msg << "\n";
+ exitCode = 1;
+ } catch (...) {
+ std::cerr << argv[0] << ": Unexpected unknown exception occurred.\n";
+ exitCode = 1;
+ }
+
+ if (Out != &std::cout) delete Out;
+ return exitCode;
+}
+