aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--lib/Target/SparcV9/Makefile14
-rw-r--r--lib/Target/SparcV9/SparcV9InstrSelection.cpp2016
-rw-r--r--lib/Target/SparcV9/SparcV9RegInfo.cpp301
-rw-r--r--lib/Target/SparcV9/SparcV9TargetMachine.cpp123
4 files changed, 2454 insertions, 0 deletions
diff --git a/lib/Target/SparcV9/Makefile b/lib/Target/SparcV9/Makefile
new file mode 100644
index 0000000..2daca1f
--- /dev/null
+++ b/lib/Target/SparcV9/Makefile
@@ -0,0 +1,14 @@
+LEVEL = ../../../..
+
+DIRS =
+
+LIBRARYNAME = sparc
+
+## List source files in link order
+Source = \
+ Sparc.o \
+ Sparc.burm.o \
+ SparcInstrSelection.o
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
new file mode 100644
index 0000000..c73264c
--- /dev/null
+++ b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
@@ -0,0 +1,2016 @@
+//***************************************************************************
+// File:
+// SparcInstrSelection.cpp
+//
+// Purpose:
+//
+// History:
+// 7/02/01 - Vikram Adve - Created
+//**************************************************************************/
+
+#include "SparcInternals.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/InstrForest.h"
+#include "llvm/CodeGen/InstrSelection.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/ConstPoolVals.h"
+
+
+//******************** Internal Data Declarations ************************/
+
+// to be used later
+struct BranchPattern {
+ bool flipCondition; // should the sense of the test be reversed
+ BasicBlock* targetBB; // which basic block to branch to
+ MachineInstr* extraBranch; // if neither branch is fall-through, then this
+ // BA must be inserted after the cond'l one
+};
+
+//************************* Forward Declarations ***************************/
+
+
+static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode,
+ bool& isFPBranch);
+
+static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode,
+ const BinaryOperator* setCCInst);
+
+static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode,
+ const BinaryOperator* setCCInst);
+
+static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*);
+
+static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode,
+ bool& mustClearReg,
+ int& valueToMove);
+
+static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*,
+ const Type* opType);
+
+static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode,
+ const Type* opType);
+
+static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode,
+ bool checkCasts);
+
+static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseLoadInstruction (const Type* resultType);
+
+static MachineOpCode ChooseStoreInstruction (const Type* valueType);
+
+static void SetOperandsForMemInstr(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& target);
+
+static void SetMemOperands_Internal (MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target);
+
+static unsigned FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& target);
+
+static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr,
+ Value* val,
+ TmpInstruction*& tmpReg,
+ MachineInstr*& getMinstr2);
+
+static void ForwardOperand (InstructionNode* treeNode,
+ InstructionNode* parent,
+ int operandNum);
+
+
+//************************ Internal Functions ******************************/
+
+// Convenience function to get the value of an integer constant, for an
+// appropriate integer or non-integer type that can be held in an integer.
+// The type of the argument must be the following:
+// GetConstantValueAsSignedInt: any of the above, but the value
+// must fit into a int64_t.
+//
+// isValidConstant is set to true if a valid constant was found.
+//
+
+static int64_t GetConstantValueAsSignedInt(const Value *V,
+ bool &isValidConstant) {
+ if (!V->isConstant()) { isValidConstant = false; return 0; }
+ isValidConstant = true;
+
+ if (V->getType() == Type::BoolTy)
+ return ((ConstPoolBool*)V)->getValue();
+ if (V->getType()->isIntegral()) {
+ if (V->getType()->isSigned())
+ return ((ConstPoolSInt*)V)->getValue();
+
+ assert(V->getType()->isUnsigned());
+ uint64_t Val = ((ConstPoolUInt*)V)->getValue();
+
+ if (Val < INT64_MAX) // then safe to cast to signed
+ return (int64_t)Val;
+ }
+
+ isValidConstant = false;
+ return 0;
+}
+
+
+
+//------------------------------------------------------------------------
+// External Function: ThisIsAChainRule
+//
+// Purpose:
+// Check if a given BURG rule is a chain rule.
+//------------------------------------------------------------------------
+
+extern bool
+ThisIsAChainRule(int eruleno)
+{
+ switch(eruleno)
+ {
+ case 111: // stmt: reg
+ case 112: // stmt: boolconst
+ case 113: // stmt: bool
+ case 121:
+ case 122:
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 153:
+ case 155: return true; break;
+
+ default: return false; break;
+ }
+}
+
+
+static inline MachineOpCode
+ChooseBprInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode;
+
+ Instruction* setCCInstr =
+ ((InstructionNode*) instrNode->leftChild())->getInstruction();
+
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BRZ; break;
+ case Instruction::SetNE: opCode = BRNZ; break;
+ case Instruction::SetLE: opCode = BRLEZ; break;
+ case Instruction::SetGE: opCode = BRGEZ; break;
+ case Instruction::SetLT: opCode = BRLZ; break;
+ case Instruction::SetGT: opCode = BRGZ; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ opCode = INVALID_OPCODE;
+ break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseBccInstruction(const InstructionNode* instrNode,
+ bool& isFPBranch)
+{
+ InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+ BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+ const Type* setCCType = setCCInstr->getOperand(0)->getType();
+
+ isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
+
+ if (isFPBranch)
+ return ChooseBFpccInstruction(instrNode, setCCInstr);
+ else
+ return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static inline MachineOpCode
+ChooseBpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+
+ if (isSigned)
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLE; break;
+ case Instruction::SetGE: opCode = BGE; break;
+ case Instruction::SetLT: opCode = BL; break;
+ case Instruction::SetGT: opCode = BG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+ else
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLEU; break;
+ case Instruction::SetGE: opCode = BCC; break;
+ case Instruction::SetLT: opCode = BCS; break;
+ case Instruction::SetGT: opCode = BGU; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+
+ return opCode;
+}
+
+static inline MachineOpCode
+ChooseBFpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = FBE; break;
+ case Instruction::SetNE: opCode = FBNE; break;
+ case Instruction::SetLE: opCode = FBLE; break;
+ case Instruction::SetGE: opCode = FBGE; break;
+ case Instruction::SetLT: opCode = FBL; break;
+ case Instruction::SetGT: opCode = FBG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseMovFpccInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(instrNode->getInstruction()->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = MOVFE; break;
+ case Instruction::SetNE: opCode = MOVFNE; break;
+ case Instruction::SetLE: opCode = MOVFLE; break;
+ case Instruction::SetGE: opCode = MOVFGE; break;
+ case Instruction::SetLT: opCode = MOVFL; break;
+ case Instruction::SetGT: opCode = MOVFG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+
+// Assumes that SUBcc v1, v2 -> v3 has been executed.
+// In most cases, we want to clear v3 and then follow it by instruction
+// MOVcc 1 -> v3.
+// Set mustClearReg=false if v3 need not be cleared before conditional move.
+// Set valueToMove=0 if we want to conditionally move 0 instead of 1
+// (i.e., we want to test inverse of a condition)
+//
+//
+static MachineOpCode
+ChooseMovpccAfterSub(const InstructionNode* instrNode,
+ bool& mustClearReg,
+ int& valueToMove)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+ mustClearReg = true;
+ valueToMove = 1;
+
+ switch(instrNode->getInstruction()->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false;
+ valueToMove = 0; break;
+ case Instruction::SetLE: opCode = MOVLE; break;
+ case Instruction::SetGE: opCode = MOVGE; break;
+ case Instruction::SetLT: opCode = MOVL; break;
+ case Instruction::SetGT: opCode = MOVG; break;
+
+ case Instruction::SetNE: assert(0 && "No move required!");
+
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+ const Type* opType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(instrNode->getOpLabel())
+ {
+ case ToFloatTy:
+ if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+ opCode = FITOS;
+ else if (opType == Type::LongTy)
+ opCode = FXTOS;
+ else if (opType == Type::DoubleTy)
+ opCode = FDTOS;
+ else if (opType == Type::FloatTy)
+ ;
+ else
+ assert(0 && "Cannot convert this type to FLOAT on SPARC");
+ break;
+
+ case ToDoubleTy:
+ if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+ opCode = FITOD;
+ else if (opType == Type::LongTy)
+ opCode = FXTOD;
+ else if (opType == Type::FloatTy)
+ opCode = FSTOD;
+ else if (opType == Type::DoubleTy)
+ ;
+ else
+ assert(0 && "Cannot convert this type to DOUBLE on SPARC");
+ break;
+
+ default:
+ break;
+ }
+
+ return opCode;
+}
+
+static inline MachineOpCode
+ChooseConvertToIntInstr(const InstructionNode* instrNode,
+ const Type* opType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;;
+
+ int instrType = (int) instrNode->getOpLabel();
+
+ if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
+ {
+ switch (opType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSTOI; break;
+ case Type::DoubleTyID: opCode = FDTOI; break;
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+ break;
+ }
+ }
+ else if (instrType == ToLongTy)
+ {
+ switch (opType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSTOX; break;
+ case Type::DoubleTyID: opCode = FDTOX; break;
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+ break;
+ }
+ }
+ else
+ assert(0 && "Should not get here, Mo!");
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral() ||
+ resultType->isPointerType() ||
+ resultType->isMethodType() ||
+ resultType->isLabelType())
+ {
+ opCode = ADD;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FADDS; break;
+ case Type::DoubleTyID: opCode = FADDD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateMovFloatInstruction(const InstructionNode* instrNode,
+ const Type* resultType)
+{
+ MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FMOVS : FMOVD);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+ return minstr;
+}
+
+static inline MachineInstr*
+CreateAddConstInstruction(const InstructionNode* instrNode)
+{
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Add with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType == Type::FloatTy || resultType == Type::DoubleTy) {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseSubInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral() ||
+ resultType->isPointerType())
+ {
+ opCode = SUB;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSUBS; break;
+ case Type::DoubleTyID: opCode = FSUBD; break;
+ default: assert(0 && "Invalid type for SUB instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateSubConstInstruction(const InstructionNode* instrNode)
+{
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID()) {
+ case Type::FloatTyID: opCode = FCMPS; break;
+ case Type::DoubleTyID: opCode = FCMPD; break;
+ default: assert(0 && "Invalid type for FCMP instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+// Assumes that leftArg and rightArg are both cast instructions.
+//
+static inline bool
+BothFloatToDouble(const InstructionNode* instrNode)
+{
+ InstrTreeNode* leftArg = instrNode->leftChild();
+ InstrTreeNode* rightArg = instrNode->rightChild();
+ InstrTreeNode* leftArgArg = leftArg->leftChild();
+ InstrTreeNode* rightArgArg = rightArg->leftChild();
+ assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
+
+ // Check if both arguments are floats cast to double
+ return (leftArg->getValue()->getType() == Type::DoubleTy &&
+ leftArgArg->getValue()->getType() == Type::FloatTy &&
+ rightArgArg->getValue()->getType() == Type::FloatTy);
+}
+
+
+static inline MachineOpCode
+ChooseMulInstruction(const InstructionNode* instrNode,
+ bool checkCasts)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ if (checkCasts && BothFloatToDouble(instrNode))
+ {
+ return opCode = FSMULD;
+ }
+ // else fall through and use the regular multiply instructions
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = MULX;
+ }
+ else
+ {
+ switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FMULS; break;
+ case Type::DoubleTyID: opCode = FMULD; break;
+ default: assert(0 && "Invalid type for MUL instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateIntNegInstruction(Value* vreg)
+{
+ MachineInstr* minstr = new MachineInstr(SUB);
+ minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
+ return minstr;
+}
+
+
+static inline MachineInstr*
+CreateMulConstInstruction(const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
+{
+ MachineInstr* minstr = NULL;
+ getMinstr2 = NULL;
+ bool needNeg = false;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Multiply by 2^x for integer types: replace with Shift
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+ if (isValidConst)
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 0 || C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+
+ if (C == 0)
+ minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
+ else
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ minstr = new MachineInstr((resultType == Type::LongTy)
+ ? SLLX : SLL);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+ }
+ }
+ }
+ else
+ {
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst)
+ {
+ if (dval == 0)
+ {
+ minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FITOS : FITOD);
+ minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ }
+ else if (fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0,
+ MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
+ }
+ }
+
+ if (minstr != NULL)
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseDivInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = resultType->isSigned()? SDIVX : UDIVX;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FDIVS; break;
+ case Type::DoubleTyID: opCode = FDIVD; break;
+ default: assert(0 && "Invalid type for DIV instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateDivConstInstruction(const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
+{
+ MachineInstr* minstr = NULL;
+ getMinstr2 = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+ if (isValidConst)
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ MachineOpCode opCode= ((resultType->isSigned())
+ ? (resultType==Type::LongTy)? SRAX : SRA
+ : (resultType==Type::LongTy)? SRLX : SRL);
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+ }
+ }
+ }
+ else
+ {
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst && fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
+ }
+
+ if (minstr != NULL)
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseLoadInstruction(const Type* resultType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch (resultType->getPrimitiveID())
+ {
+ case Type::BoolTyID: opCode = LDUB; break;
+ case Type::UByteTyID: opCode = LDUB; break;
+ case Type::SByteTyID: opCode = LDSB; break;
+ case Type::UShortTyID: opCode = LDUH; break;
+ case Type::ShortTyID: opCode = LDSH; break;
+ case Type::UIntTyID: opCode = LDUW; break;
+ case Type::IntTyID: opCode = LDSW; break;
+ case Type::ULongTyID:
+ case Type::LongTyID: opCode = LDX; break;
+ case Type::FloatTyID: opCode = LD; break;
+ case Type::DoubleTyID: opCode = LDD; break;
+ default: assert(0 && "Invalid type for Load instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseStoreInstruction(const Type* valueType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch (valueType->getPrimitiveID())
+ {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: opCode = STB; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: opCode = STH; break;
+ case Type::UIntTyID:
+ case Type::IntTyID: opCode = STW; break;
+ case Type::ULongTyID:
+ case Type::LongTyID: opCode = STX; break;
+ case Type::FloatTyID: opCode = ST; break;
+ case Type::DoubleTyID: opCode = STD; break;
+ default: assert(0 && "Invalid type for Store instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+//------------------------------------------------------------------------
+// Function SetOperandsForMemInstr
+//
+// Choose addressing mode for the given load or store instruction.
+// Use [reg+reg] if it is an indexed reference, and the index offset is
+// not a constant or if it cannot fit in the offset field.
+// Use [reg+offset] in all other cases.
+//
+// This assumes that all array refs are "lowered" to one of these forms:
+// %x = load (subarray*) ptr, constant ; single constant offset
+// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
+// Generally, this should happen via strength reduction + LICM.
+// Also, strength reduction should take care of using the same register for
+// the loop index variable and an array index, when that is profitable.
+//------------------------------------------------------------------------
+
+static void
+SetOperandsForMemInstr(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& target)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Variables to hold the index vector, ptr value, and offset value.
+ // The major work here is to extract these for all 3 instruction types
+ // and then call the common function SetMemOperands_Internal().
+ //
+ const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
+ vector<ConstPoolVal*>* newIdxVec = NULL;
+ Value* ptrVal;
+ Value* arrayOffsetVal = NULL;
+
+ // Test if a GetElemPtr instruction is being folded into this mem instrn.
+ // If so, it will be in the left child for Load and GetElemPtr,
+ // and in the right child for Store instructions.
+ //
+ InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
+ ? vmInstrNode->rightChild()
+ : vmInstrNode->leftChild());
+
+ if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+ ptrChild->getOpLabel() == GetElemPtrIdx)
+ {
+ // There is a GetElemPtr instruction and there may be a chain of
+ // more than one. Use the pointer value of the last one in the chain.
+ // Fold the index vectors from the entire chain and from the mem
+ // instruction into one single index vector.
+ // Finally, we never fold for an array instruction so make that NULL.
+
+ newIdxVec = new vector<ConstPoolVal*>;
+ ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+
+ newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+ idxVec = newIdxVec;
+
+ assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+ && "GetElemPtr cannot be folded into array refs in selection");
+ }
+ else
+ {
+ // There is no GetElemPtr instruction.
+ // Use the pointer value and the index vector from the Mem instruction.
+ // If it is an array reference, get the array offset value.
+ //
+ ptrVal = memInst->getPtrOperand();
+
+ const Type* opType =
+ ((const PointerType*) ptrVal->getType())->getValueType();
+ if (opType->isArrayType())
+ {
+ assert((memInst->getNumOperands()
+ == (unsigned) 1 + memInst->getFirstOffsetIdx())
+ && "Array refs must be lowered before Instruction Selection");
+
+ arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+ }
+ }
+
+ SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+ *idxVec, target);
+
+ if (newIdxVec != NULL)
+ delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Initialize so we default to storing the offset in a register.
+ int64_t smallConstOffset;
+ Value* valueForRegOffset = NULL;
+ MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
+
+ // Check if there is an index vector and if so, if it translates to
+ // a small enough constant to fit in the immediate-offset field.
+ //
+ if (idxVec.size() > 0)
+ {
+ bool isConstantOffset = false;
+ unsigned offset;
+
+ const PointerType* ptrType = (PointerType*) ptrVal->getType();
+
+ if (ptrType->getValueType()->isStructType())
+ {
+ // the offset is always constant for structs
+ isConstantOffset = true;
+
+ // Compute the offset value using the index vector
+ offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
+ }
+ else
+ {
+ // It must be an array ref. Check if the offset is a constant,
+ // and that the indexing has been lowered to a single offset.
+ //
+ assert(ptrType->getValueType()->isArrayType());
+ assert(arrayOffsetVal != NULL
+ && "Expect to be given Value* for array offsets");
+
+ if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
+ {
+ isConstantOffset = true; // always constant for structs
+ assert(arrayOffsetVal->getType()->isIntegral());
+ offset = (CPV->getType()->isSigned()
+ ? ((ConstPoolSInt*)CPV)->getValue()
+ : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
+ }
+ else
+ {
+ valueForRegOffset = arrayOffsetVal;
+ }
+ }
+
+ if (isConstantOffset)
+ {
+ // create a virtual register for the constant
+ valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
+ }
+ }
+ else
+ {
+ offsetOpType = MachineOperand::MO_SignExtendedImmed;
+ smallConstOffset = 0;
+ }
+
+ // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+ // It is the left child in the instruction tree in all cases.
+ Value* leftVal = vmInstrNode->leftChild()->getValue();
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
+
+ // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+ // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+ //
+ unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+ if (offsetOpType == MachineOperand::MO_VirtualRegister)
+ {
+ assert(valueForRegOffset != NULL);
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
+ }
+ else
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+
+ if (memInst->getOpcode() == Instruction::Store)
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
+ else
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ vmInstrNode->getValue());
+}
+
+
+// Special handling for constant operands:
+// -- if the constant is 0, use the hardwired 0 register, if any;
+// -- if the constant is of float or double type but has an integer value,
+// use int-to-float conversion instruction instead of generating a load;
+// -- if the constant fits in the IMMEDIATE field, use that field;
+// -- else insert instructions to put the constant into a register, either
+// directly or by loading explicitly from the constant pool.
+//
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& target)
+{
+ static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+ unsigned numNew = 0;
+ Instruction* vmInstr = vmInstrNode->getInstruction();
+
+ for (unsigned i=0; i < numInstr; i++)
+ {
+ MachineInstr* minstr = mvec[i];
+ const MachineInstrDescriptor& instrDesc =
+ target.getInstrInfo().getDescriptor(minstr->getOpCode());
+
+ for (unsigned op=0; op < minstr->getNumOperands(); op++)
+ {
+ const MachineOperand& mop = minstr->getOperand(op);
+
+ // skip the result position (for efficiency below) and any other
+ // positions already marked as not a virtual register
+ if (instrDesc.resultPos == (int) op ||
+ mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
+ mop.getVRegValue() == NULL)
+ {
+ break;
+ }
+
+ Value* opValue = mop.getVRegValue();
+
+ if (opValue->isConstant())
+ {
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
+ /*canUseImmed*/ (op == 1),
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_MachineRegister)
+ minstr->SetMachineOperand(op, machineRegNum);
+ else if (opType == MachineOperand::MO_VirtualRegister)
+ {
+ // value is constant and must be loaded into a register
+ TmpInstruction* tmpReg;
+ MachineInstr* minstr2;
+ loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue,
+ tmpReg, minstr2);
+ minstr->SetMachineOperand(op, opType, tmpReg);
+ if (minstr2 != NULL)
+ loadConstVec[numNew++] = minstr2;
+ }
+ else
+ minstr->SetMachineOperand(op, opType, immedValue);
+ }
+ }
+ }
+
+ if (numNew > 0)
+ {
+ // Insert the new instructions *before* the old ones by moving
+ // the old ones over `numNew' positions (last-to-first, of course!).
+ // We do check *after* returning that we did not exceed the vector mvec.
+ for (int i=numInstr-1; i >= 0; i--)
+ mvec[i+numNew] = mvec[i];
+
+ for (unsigned i=0; i < numNew; i++)
+ mvec[i] = loadConstVec[i];
+ }
+
+ return (numInstr + numNew);
+}
+
+
+static inline MachineInstr*
+MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest)
+{
+ MachineInstr* minstr;
+ if (isSigned)
+ {
+ minstr = new MachineInstr(SETSW);
+ minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
+ }
+ else
+ {
+ minstr = new MachineInstr(SETUW);
+ minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
+ }
+
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
+
+ return minstr;
+}
+
+
+static MachineInstr*
+MakeLoadConstInstr(Instruction* vmInstr,
+ Value* val,
+ TmpInstruction*& tmpReg,
+ MachineInstr*& getMinstr2)
+{
+ assert(val->isConstant());
+
+ MachineInstr* minstr;
+
+ getMinstr2 = NULL;
+
+ // Create a TmpInstruction to mark the hidden register used for the constant
+ tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg);
+
+ // Use a "set" instruction for known constants that can go in an integer reg.
+ // Use a "set" instruction followed by a int-to-float conversion for known
+ // constants that must go in a floating point reg but have an integer value.
+ // Use a "load" instruction for all other constants, in particular,
+ // floating point constants.
+ //
+ const Type* valType = val->getType();
+
+ if (valType->isIntegral() ||
+ valType->isPointerType() ||
+ valType == Type::BoolTy)
+ {
+ bool isValidConstant;
+ int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
+ assert(isValidConstant && "Unrecognized constant");
+
+ minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg);
+ }
+ else
+ {
+ assert(valType == Type::FloatTy || valType == Type::DoubleTy);
+ double dval = ((ConstPoolFP*) val)->getValue();
+ if (dval == (int64_t) dval)
+ {
+ // The constant actually has an integer value, so use a
+ // [set; int-to-float] sequence instead of a load instruction.
+ //
+ TmpInstruction* tmpReg2 = NULL;
+ if (dval != 0.0)
+ { // First, create an integer constant of the same value as dval
+ ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
+ (int64_t) dval);
+ // Create another TmpInstruction for the hidden integer register
+ TmpInstruction* tmpReg2 =
+ new TmpInstruction(Instruction::UserOp1, ival, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
+
+ // Create the `SET' instruction
+ minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2);
+ }
+
+ // In which variable do we put the second instruction?
+ MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr;
+
+ // Create the int-to-float instruction
+ instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
+
+ if (dval == 0.0)
+ instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
+ else
+ instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ tmpReg2);
+
+ instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ tmpReg);
+ }
+ else
+ {
+ // Make a Load instruction, and make `val' both the ptr value *and*
+ // the result value, and set the offset field to 0. Final code
+ // generation will have to generate the base+offset for the constant.
+ //
+ int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
+ minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val);
+ minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ zeroOffset);
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ tmpReg);
+ }
+ }
+
+ tmpReg->addMachineInstruction(minstr);
+
+ assert(minstr);
+ return minstr;
+}
+
+//
+// Substitute operand `operandNum' of the instruction in node `treeNode'
+// in place the use(s) of that instruction in node `parent'.
+//
+static void
+ForwardOperand(InstructionNode* treeNode,
+ InstructionNode* parent,
+ int operandNum)
+{
+ Instruction* unusedOp = treeNode->getInstruction();
+ Value* fwdOp = unusedOp->getOperand(operandNum);
+ Instruction* userInstr = parent->getInstruction();
+ MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
+ for (unsigned i=0, N=mvec.size(); i < N; i++)
+ {
+ MachineInstr* minstr = mvec[i];
+ for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
+ {
+ const MachineOperand& mop = minstr->getOperand(i);
+ if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
+ mop.getVRegValue() == unusedOp)
+ {
+ minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
+ fwdOp);
+ }
+ }
+ }
+}
+
+
+// This function is currently unused and incomplete but will be
+// used if we have a linear layout of basic blocks in LLVM code.
+// It decides which branch should fall-through, and whether an
+// extra unconditional branch is needed (when neither falls through).
+//
+void
+ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
+{
+ BranchInst* brInstr = (BranchInst*) vmInstr;
+
+ brPattern.flipCondition = false;
+ brPattern.targetBB = brInstr->getSuccessor(0);
+ brPattern.extraBranch = NULL;
+
+ assert(brInstr->getNumSuccessors() > 1 &&
+ "Unnecessary analysis for unconditional branch");
+
+ assert(0 && "Fold branches in peephole optimization");
+}
+
+
+//******************* Externally Visible Functions *************************/
+
+
+//------------------------------------------------------------------------
+// External Function: GetInstructionsByRule
+//
+// Purpose:
+// Choose machine instructions for the SPARC according to the
+// patterns chosen by the BURG-generated parser.
+//------------------------------------------------------------------------
+
+unsigned
+GetInstructionsByRule(InstructionNode* subtreeRoot,
+ int ruleForNode,
+ short* nts,
+ TargetMachine &target,
+ MachineInstr** mvec)
+{
+ int numInstr = 1; // initialize for common case
+ bool checkCast = false; // initialize here to use fall-through
+ Value *leftVal, *rightVal;
+ const Type* opType;
+ int nextRule;
+ int forwardOperandNum = -1;
+ BranchPattern brPattern;
+ int64_t s0 = 0; // variables holding zero to avoid
+ uint64_t u0 = 0; // overloading ambiguities below
+
+ mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
+
+ switch(ruleForNode) {
+ case 1: // stmt: Ret
+ case 2: // stmt: RetValue(reg)
+ // NOTE: Prepass of register allocation is responsible
+ // for moving return value to appropriate register.
+ // Mark the return-address register as a hidden virtual reg.
+ {
+ Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->getInstruction(), NULL);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+
+ mvec[0] = new MachineInstr(RETURN);
+ mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
+
+ returnReg->addMachineInstruction(mvec[0]);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 3: // stmt: Store(reg,reg)
+ case 4: // stmt: Store(reg,ptrreg)
+ mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 5: // stmt: BrUncond
+ mvec[0] = new MachineInstr(BA);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+
+ case 6: // stmt: BrCond(boolconst)
+ // boolconst => boolean was computed with `%b = setCC type reg1 constant'
+ // If the constant is ZERO, we can use the branch-on-integer-register
+ // instructions and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 5, so just fall through.
+ {
+ InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+ assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+ bool isValidConst;
+
+ if (constVal->getType()->isIntegral()
+ && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
+ && isValidConst)
+ {
+ // That constant ia a zero after all...
+ // Use the left child of the setCC instruction as the first argument!
+ mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ // false branch
+ mvec[numInstr++] = new MachineInstr(BA);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ break;
+ }
+ // ELSE FALL THROUGH
+ }
+
+ case 7: // stmt: BrCond(bool)
+ // bool => boolean was computed with `%b = setcc type reg1 reg2'
+ // Need to check whether the type was a FP, signed int or unsigned int,
+ // and check the branching condition in order to choose the branch to use.
+ //
+ {
+ bool isFPBranch;
+ mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ // false branch
+ mvec[numInstr++] = new MachineInstr(BA);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+ }
+
+ case 8: // stmt: BrCond(boolreg)
+ // bool => boolean is stored in an existing register.
+ // Just use the branch-on-integer-register instruction!
+ //
+ mvec[0] = new MachineInstr(BRNZ);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+
+ // false branch
+ mvec[numInstr++] = new MachineInstr(BA);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+
+ case 9: // stmt: Switch(reg)
+ assert(0 && "*** SWITCH instruction is not implemented yet.");
+ numInstr = 0;
+ break;
+
+ case 10: // reg: VRegList(reg, reg)
+ assert(0 && "VRegList should never be the topmost non-chain rule");
+ break;
+
+ case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
+ mvec[0] = new MachineInstr(XNOR);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ break;
+
+ case 22: // reg: ToBoolTy(reg):
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 23: // reg: ToUByteTy(reg)
+ case 25: // reg: ToUShortTy(reg)
+ case 27: // reg: ToUIntTy(reg)
+ case 29: // reg: ToULongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() ||
+ opType->isPointerType() ||
+ opType == Type::BoolTy && "Ignoring cast: illegal for other types");
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 24: // reg: ToSByteTy(reg)
+ case 26: // reg: ToShortTy(reg)
+ case 28: // reg: ToIntTy(reg)
+ case 30: // reg: ToLongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ if (opType->isIntegral() || opType == Type::BoolTy)
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ break;
+
+ case 31: // reg: ToFloatTy(reg):
+ case 32: // reg: ToDoubleTy(reg):
+
+ // If this instruction has a parent (a user) in the tree
+ // and the user is translated as an FsMULd instruction,
+ // then the cast is unnecessary. So check that first.
+ // In the future, we'll want to do the same for the FdMULq instruction,
+ // so do the check here instead of only for ToFloatTy(reg).
+ //
+ if (subtreeRoot->parent() != NULL &&
+ ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType);
+ if (opCode == INVALID_OPCODE) // no conversion needed
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ mvec[0] = new MachineInstr(opCode);
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ }
+ break;
+
+ case 19: // reg: ToArrayTy(reg):
+ case 20: // reg: ToPointerTy(reg):
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 233: // reg: Add(reg, Constant)
+ mvec[0] = CreateAddConstInstruction(subtreeRoot);
+ if (mvec[0] != NULL)
+ break;
+ // ELSE FALL THROUGH
+
+ case 33: // reg: Add(reg, reg)
+ mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 234: // reg: Sub(reg, Constant)
+ mvec[0] = CreateSubConstInstruction(subtreeRoot);
+ if (mvec[0] != NULL)
+ break;
+ // ELSE FALL THROUGH
+
+ case 34: // reg: Sub(reg, reg)
+ mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 135: // reg: Mul(todouble, todouble)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 35: // reg: Mul(reg, reg)
+ mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 335: // reg: Mul(todouble, todoubleConst)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 235: // reg: Mul(reg, Constant)
+ mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]);
+ if (mvec[0] == NULL)
+ {
+ mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ else
+ if (mvec[1] != NULL)
+ ++numInstr;
+ break;
+
+ case 236: // reg: Div(reg, Constant)
+ mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]);
+ if (mvec[0] != NULL)
+ {
+ if (mvec[1] != NULL)
+ ++numInstr;
+ }
+ else
+ // ELSE FALL THROUGH
+
+ case 36: // reg: Div(reg, reg)
+ mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 37: // reg: Rem(reg, reg)
+ case 237: // reg: Rem(reg, Constant)
+ assert(0 && "REM instruction unimplemented for the SPARC.");
+ break;
+
+ case 38: // reg: And(reg, reg)
+ case 238: // reg: And(reg, Constant)
+ mvec[0] = new MachineInstr(AND);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 138: // reg: And(reg, not)
+ mvec[0] = new MachineInstr(ANDN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 39: // reg: Or(reg, reg)
+ case 239: // reg: Or(reg, Constant)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 139: // reg: Or(reg, not)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 40: // reg: Xor(reg, reg)
+ case 240: // reg: Xor(reg, Constant)
+ mvec[0] = new MachineInstr(XOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 140: // reg: Xor(reg, not)
+ mvec[0] = new MachineInstr(XNOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 41: // boolconst: SetCC(reg, Constant)
+ // Check if this is an integer comparison, and
+ // there is a parent, and the parent decided to use
+ // a branch-on-integer-register instead of branch-on-condition-code.
+ // If so, the SUBcc instruction is not required.
+ // (However, we must still check for constants to be loaded from
+ // the constant pool so that such a load can be associated with
+ // this instruction.)
+ //
+ // Otherwise this is just the same as case 42, so just fall through.
+ //
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+ subtreeRoot->parent() != NULL)
+ {
+ InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
+ assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+ const vector<MachineInstr*>&
+ minstrVec = parentNode->getInstruction()->getMachineInstrVec();
+ MachineOpCode parentOpCode;
+ if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
+ (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+ parentOpCode <= BRGEZ)
+ {
+ numInstr = 0; // don't forward the operand!
+ break;
+ }
+ }
+ // ELSE FALL THROUGH
+
+ case 42: // bool: SetCC(reg, reg):
+ {
+ // If result of the SetCC is only used for a branch, we can
+ // discard the result. otherwise, it must go into an integer register.
+ // Note that the user may or may not be in the same tree, so we have
+ // to follow SSA def-use edges here, not BURG tree edges.
+ //
+ Instruction* result = subtreeRoot->getInstruction();
+ Value* firstUse = (Value*) * result->use_begin();
+ bool discardResult =
+ (result->use_size() == 1
+ && firstUse->isInstruction()
+ && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
+
+ bool mustClearReg;
+ int valueToMove;
+ MachineOpCode movOpCode;
+
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
+ subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
+ {
+ // integer condition: destination should be %g0 or integer register
+ // if result must be saved but condition is not SetEQ then we need
+ // a separate instruction to compute the bool result, so discard
+ // result of SUBcc instruction anyway.
+ //
+ mvec[0] = new MachineInstr(SUBcc);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
+
+ // mark the 4th operand as being a CC register, and a "result"
+ mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue(), /*def*/ true);
+
+ if (!discardResult)
+ { // recompute bool if needed, using the integer condition codes
+ if (result->getOpcode() == Instruction::SetNE)
+ discardResult = true;
+ else
+ movOpCode =
+ ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
+ }
+ }
+ else
+ {
+ // FP condition: dest of FCMP should be some FCCn register
+ mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->rightChild()->getValue());
+
+ if (!discardResult)
+ {// recompute bool using the FP condition codes
+ mustClearReg = true;
+ valueToMove = 1;
+ movOpCode = ChooseMovFpccInstruction(subtreeRoot);
+ }
+ }
+
+ if (!discardResult)
+ {
+ if (mustClearReg)
+ {// Unconditionally set register to 0
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(SETHI);
+ mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ }
+
+ // Now conditionally move `valueToMove' (0 or 1) into the register
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(movOpCode);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ valueToMove);
+ mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ }
+ break;
+ }
+
+ case 43: // boolreg: VReg
+ case 44: // boolreg: Constant
+ numInstr = 0;
+ break;
+
+ case 51: // reg: Load(reg)
+ case 52: // reg: Load(ptrreg)
+ case 53: // reg: LoadIdx(reg,reg)
+ case 54: // reg: LoadIdx(ptrreg,reg)
+ mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 55: // reg: GetElemPtr(reg)
+ case 56: // reg: GetElemPtrIdx(reg,reg)
+ if (subtreeRoot->parent() != NULL)
+ {
+ // Check if the parent was an array access.
+ // If so, we still need to generate this instruction.
+ MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
+ const PointerType* ptrType =
+ (const PointerType*) memInst->getPtrOperand()->getType();
+ if (! ptrType->getValueType()->isArrayType())
+ {// we don't need a separate instr
+ numInstr = 0; // don't forward operand!
+ break;
+ }
+ }
+ // else in all other cases we need to a separate ADD instruction
+ mvec[0] = new MachineInstr(ADD);
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 57: // reg: Alloca: Implement as 2 instructions:
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType());
+ int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
+ assert(tsize != 0 && "Just to check when this can happen");
+ // if (tsize == 0)
+ // {
+ // numInstr = 0;
+ // break;
+ // }
+ //else go on to create the instructions needed...
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
+
+ // Instruction 1: sub %sp, tsize -> %sp
+ // tsize is always constant, but it may have to be put into a
+ // register if it doesn't fit in the immediate field.
+ //
+ mvec[0] = new MachineInstr(SUB);
+ mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
+ mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+
+ // Instruction 2: add %sp, 0 -> result
+ numInstr++;
+ mvec[1] = new MachineInstr(ADD);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
+ break;
+ }
+
+ case 58: // reg: Alloca(reg): Implement as 3 instructions:
+ // mul num, typeSz -> tmp
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType() &&
+ instrType->getValueType()->isArrayType());
+ const Type* eltType =
+ ((ArrayType*) instrType->getValueType())->getElementType();
+ int tsize = (int) target.findOptimalStorageSize(eltType);
+
+ assert(tsize != 0 && "Just to check when this can happen");
+ // if (tsize == 0)
+ // {
+ // numInstr = 0;
+ // break;
+ // }
+ //else go on to create the instructions needed...
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
+
+ // Create a temporary value to hold `tmp'
+ Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->leftChild()->getValue(),
+ NULL /*could insert tsize here*/);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+
+ // Instruction 1: mul numElements, typeSize -> tmp
+ mvec[0] = new MachineInstr(MULX);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
+
+ tmpInstr->addMachineInstruction(mvec[0]);
+
+ // Instruction 2: sub %sp, tmp -> %sp
+ numInstr++;
+ mvec[1] = new MachineInstr(SUB);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
+ mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+
+ // Instruction 3: add %sp, 0 -> result
+ numInstr++;
+ mvec[2] = new MachineInstr(ADD);
+ mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
+ break;
+ }
+
+ case 61: // reg: Call
+ // Generate a call-indirect (i.e., JMPL) for now to expose
+ // the potential need for registers. If an absolute address
+ // is available, replace this with a CALL instruction.
+ // Mark both the indirection register and the return-address
+ { // register as hidden virtual registers.
+
+ Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
+ ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
+ Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->getValue(), NULL);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
+
+ mvec[0] = new MachineInstr(JMPL);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ (int64_t) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
+
+ // NOTE: jmpAddrReg will be loaded by a different instruction generated
+ // by the final code generator, so we just mark the CALL instruction
+ // as computing that value.
+ // The retAddrReg is actually computed by the CALL instruction.
+ //
+ jmpAddrReg->addMachineInstruction(mvec[0]);
+ retAddrReg->addMachineInstruction(mvec[0]);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 62: // reg: Shl(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 63: // reg: Shr(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ mvec[0] = new MachineInstr((opType->isSigned()
+ ? ((opType == Type::LongTy)? SRAX : SRA)
+ : ((opType == Type::LongTy)? SRLX : SRL)));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 64: // reg: Phi(reg,reg)
+ { // This instruction has variable #operands, so resultPos is 0.
+ Instruction* phi = subtreeRoot->getInstruction();
+ mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
+ mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
+ phi->getOperand(i));
+ break;
+ }
+ case 71: // reg: VReg
+ case 72: // reg: Constant
+ numInstr = 0; // don't forward the value
+ break;
+
+ case 111: // stmt: reg
+ case 112: // stmt: boolconst
+ case 113: // stmt: bool
+ case 121:
+ case 122:
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 153:
+ case 155:
+ //
+ // These are all chain rules, which have a single nonterminal on the RHS.
+ // Get the rule that matches the RHS non-terminal and use that instead.
+ //
+ assert(ThisIsAChainRule(ruleForNode));
+ assert(nts[0] && ! nts[1]
+ && "A chain rule should have only one RHS non-terminal!");
+ nextRule = burm_rule(subtreeRoot->state, nts[0]);
+ nts = burm_nts[nextRule];
+ numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
+ break;
+
+ default:
+ assert(0 && "Unrecognized BURG rule");
+ numInstr = 0;
+ break;
+ }
+
+ if (forwardOperandNum >= 0)
+ { // We did not generate a machine instruction but need to use operand.
+ // If user is in the same tree, replace Value in its machine operand.
+ // If not, insert a copy instruction which should get coalesced away
+ // by register allocation.
+ if (subtreeRoot->parent() != NULL)
+ ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(),
+ forwardOperandNum);
+ else
+ {
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(ADD);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
+ mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getInstruction());
+ }
+ }
+
+ if (! ThisIsAChainRule(ruleForNode))
+ numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
+
+ return numInstr;
+}
+
+
diff --git a/lib/Target/SparcV9/SparcV9RegInfo.cpp b/lib/Target/SparcV9/SparcV9RegInfo.cpp
new file mode 100644
index 0000000..c3a5220
--- /dev/null
+++ b/lib/Target/SparcV9/SparcV9RegInfo.cpp
@@ -0,0 +1,301 @@
+#include "SparcInternals.h"
+#include "llvm/CodeGen/IGNode.h"
+
+
+//-----------------------------------------------------------------------------
+// Int Register Class
+//-----------------------------------------------------------------------------
+
+void SparcIntRegClass::colorIGNode(IGNode * Node, bool IsColorUsedArr[]) const
+{
+
+ /* Algorithm:
+ Record the color of all neighbors.
+
+ If there is no call interf, try to allocate volatile, then non volatile
+ If there is call interf, try to allocate non-volatile. If that fails
+ try to allocate a volatile and insert save across calls
+ If both above fail, spill.
+
+ */
+
+ unsigned NumNeighbors = Node->getNumOfNeighbors(); // total # of neighbors
+
+ for(unsigned n=0; n < NumNeighbors; n++) { // for each neigh
+ IGNode *NeighIGNode = Node->getAdjIGNode(n);
+ if( NeighIGNode->hasColor() ) { // if neigh has a color
+ IsColorUsedArr[ NeighIGNode->getColor() ] = true; // record that color
+ }
+ }
+
+
+
+ unsigned SearchStart; // start pos of color in pref-order
+ bool ColorFound= false; // have we found a color yet?
+
+ //if this Node is between calls
+ if( Node->getNumOfCallInterferences() == 0) {
+
+ // start with volatiles (we can allocate volatiles safely)
+ SearchStart = SparcIntRegOrder::StartOfAllRegs;
+ }
+ else {
+ // start with non volatiles (no non-volatiles)
+ SearchStart = SparcIntRegOrder::StartOfNonVolatileRegs;
+ }
+
+ unsigned c=0; // color
+
+ // find first unused color
+ for( c=SearchStart; c < SparcIntRegOrder::NumOfAvailRegs; c++) {
+ if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+ }
+
+ if( ColorFound)
+ Node->setColor(c); // first color found in preffered order
+
+ // if color is not found because of call interference
+ // try even finding a volatile color and insert save across calls
+ else if( Node->getNumOfCallInterferences() )
+ {
+ // start from 0 - try to find even a volatile this time
+ SearchStart = SparcIntRegOrder::StartOfAllRegs;
+
+ // find first unused volatile color
+ for(c=SearchStart; c < SparcIntRegOrder::StartOfNonVolatileRegs; c++) {
+ if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+ }
+
+ if( ColorFound) {
+ Node->setColor(c);
+ // since LR span across calls, must save across calls
+ Node->markForSaveAcrossCalls();
+ }
+
+ }
+
+ // If we couldn't find a color regardless of call interference - i.e., we
+ // don't have either a volatile or non-volatile color left
+ if( !ColorFound )
+ Node->markForSpill(); // no color found - must spill
+
+
+ if( DEBUG_RA)
+ UltraSparcRegInfo::printReg( Node->getParentLR() );
+
+}
+
+
+
+
+
+
+//-----------------------------------------------------------------------------
+// Float Register Class
+//-----------------------------------------------------------------------------
+
+// find the first available color in the range [Start,End] depending on the
+// type of the Node (i.e., float/double)
+
+int SparcFloatRegClass::findFloatColor(const IGNode *const Node, unsigned Start,
+ unsigned End,
+ bool IsColorUsedArr[] ) const
+{
+
+ bool ColorFound = false;
+ unsigned c;
+
+ if( Node->getTypeID() == Type::DoubleTyID ) {
+
+ // find first unused color for a double
+ for( c=Start; c < End ;c+= 2){
+ if( ! IsColorUsedArr[ c ] && ! IsColorUsedArr[ c+1 ])
+ { ColorFound=true; break; }
+ }
+
+ } else {
+
+ // find first unused color for a single
+ for( c=Start; c < End; c++) {
+ if( ! IsColorUsedArr[ c ] ) { ColorFound=true; break; }
+ }
+ }
+
+ if( ColorFound ) return c;
+ else return -1;
+}
+
+
+
+
+
+void SparcFloatRegClass::colorIGNode(IGNode * Node,bool IsColorUsedArr[]) const
+{
+
+ /* Algorithm:
+
+ If the LR is a double try to allocate f32 - f63
+ If the above fails or LR is single precision
+ If the LR does not interfere with a call
+ start allocating from f0
+ Else start allocating from f6
+ If a color is still not found because LR interferes with a call
+ Search in f0 - f6. If found mark for spill across calls.
+ If a color is still not fond, mark for spilling
+ */
+
+
+ unsigned NumNeighbors = Node->getNumOfNeighbors(); // total # of neighbors
+
+ for(unsigned n=0; n < NumNeighbors; n++) { // for each neigh
+ IGNode *NeighIGNode = Node->getAdjIGNode(n);
+ if( NeighIGNode->hasColor() ) { // if neigh has a color
+ IsColorUsedArr[ NeighIGNode->getColor() ] = true; // record that color
+ if( NeighIGNode->getTypeID() == Type::DoubleTyID )
+ IsColorUsedArr[ (NeighIGNode->getColor()) + 1 ] = true;
+ }
+ }
+
+ int ColorFound = -1; // have we found a color yet?
+ unsigned NumOfCallInterf = Node->getNumOfCallInterferences();
+
+ // if value is a double - search the double only reigon (f32 - f63)
+ if( Node->getTypeID() == Type::DoubleTyID )
+ ColorFound = findFloatColor( Node, 32, 64, IsColorUsedArr );
+
+
+ if( ColorFound >= 0 ) {
+ Node->setColor(ColorFound);
+ if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+ return;
+ }
+
+ else { // the above fails or LR is single precision
+
+ unsigned SearchStart; // start pos of color in pref-order
+
+ //if this Node is between calls (i.e., no call interferences )
+ if( ! NumOfCallInterf ) {
+ // start with volatiles (we can allocate volatiles safely)
+ SearchStart = SparcFloatRegOrder::StartOfAllRegs;
+ }
+ else {
+ // start with non volatiles (no non-volatiles)
+ SearchStart = SparcFloatRegOrder::StartOfNonVolatileRegs;
+ }
+
+ ColorFound = findFloatColor( Node, SearchStart, 32, IsColorUsedArr );
+
+ }
+
+ if( ColorFound >= 0 ) {
+ Node->setColor(ColorFound);
+ if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+ return;
+ }
+
+ else if( NumOfCallInterf ) {
+
+ // We are here because there is a call interference and no non-volatile
+ // color could be found.
+ // Now try to allocate even a volatile color
+
+ ColorFound = findFloatColor( Node, SparcFloatRegOrder::StartOfAllRegs,
+ SparcFloatRegOrder::StartOfNonVolatileRegs,
+ IsColorUsedArr);
+ }
+
+ if( ColorFound >= 0 ) {
+ Node->setColor(ColorFound); // first color found in preffered order
+ Node->markForSaveAcrossCalls();
+ if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+ return;
+ }
+
+ else {
+ Node->markForSpill(); // no color found - must spill
+ if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+ }
+
+
+}
+
+
+
+
+
+
+#if 0
+
+//-----------------------------------------------------------------------------
+// Float Register Class
+//-----------------------------------------------------------------------------
+
+void SparcFloatRegClass::colorIGNode(IGNode * Node,bool IsColorUsedArr[]) const
+{
+
+ /* Algorithm:
+ Record the color of all neighbors.
+
+ Single precision can use f0 - f31
+ Double precision can use f0 - f63
+
+ if LR is a double, try to allocate f32 - f63.
+ if the above attempt fails, or Value is single presion, try to allcoate
+ f0 - f31.
+
+ */
+
+ unsigned NumNeighbors = Node->getNumOfNeighbors(); // total # of neighbors
+
+ for(unsigned n=0; n < NumNeighbors; n++) { // for each neigh
+ IGNode *NeighIGNode = Node->getAdjIGNode(n);
+ if( NeighIGNode->hasColor() ) { // if neigh has a color
+ IsColorUsedArr[ NeighIGNode->getColor() ] = true; // record that color
+ if( NeighIGNode->getTypeID() == Type::DoubleTyID )
+ IsColorUsedArr[ (NeighIGNode->getColor()) + 1 ] = true;
+ }
+ }
+
+
+ unsigned SearchStart; // start pos of color in pref-order
+ bool ColorFound= false; // have we found a color yet?
+ unsigned c;
+
+
+ if( Node->getTypeID() == Type::DoubleTyID ) { // if value is a double
+
+ // search the double only reigon (f32 - f63)
+ for( c=32; c < 64; c+= 2) {
+ if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+ }
+
+ // search f0 - f31 region
+ if( ! ColorFound ) { // if color not found
+ for( c=0; c < 32; c+= 2) {
+ if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+ }
+ }
+
+ }
+
+ else { // value is Single
+
+ for( c=0; c < 32; c++) {
+ if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+ }
+ }
+
+
+ if( ColorFound)
+ Node->setColor(c); // first color found in preferred order
+ else
+ Node->markForSpill(); // no color found - must spill
+
+
+ if( DEBUG_RA)
+ UltraSparcRegInfo::printReg( Node->getParentLR() );
+
+}
+
+#endif
diff --git a/lib/Target/SparcV9/SparcV9TargetMachine.cpp b/lib/Target/SparcV9/SparcV9TargetMachine.cpp
new file mode 100644
index 0000000..80de2e7
--- /dev/null
+++ b/lib/Target/SparcV9/SparcV9TargetMachine.cpp
@@ -0,0 +1,123 @@
+//***************************************************************************
+// File:
+// Sparc.cpp
+//
+// Purpose:
+//
+// History:
+// 7/15/01 - Vikram Adve - Created
+//**************************************************************************/
+
+#include "SparcInternals.h"
+#include "llvm/Method.h"
+#include "llvm/CodeGen/InstrScheduling.h"
+#include "llvm/CodeGen/InstrSelection.h"
+
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcInstrInfo
+//
+// Purpose:
+// Information about individual instructions.
+// Most information is stored in the SparcMachineInstrDesc array above.
+// Other information is computed on demand, and most such functions
+// default to member functions in base class MachineInstrInfo.
+//---------------------------------------------------------------------------
+
+/*ctor*/
+UltraSparcInstrInfo::UltraSparcInstrInfo()
+ : MachineInstrInfo(SparcMachineInstrDesc,
+ /*descSize = */ NUM_TOTAL_OPCODES,
+ /*numRealOpCodes = */ NUM_REAL_OPCODES)
+{
+}
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcSchedInfo
+//
+// Purpose:
+// Scheduling information for the UltraSPARC.
+// Primarily just initializes machine-dependent parameters in
+// class MachineSchedInfo.
+//---------------------------------------------------------------------------
+
+/*ctor*/
+UltraSparcSchedInfo::UltraSparcSchedInfo(const MachineInstrInfo* mii)
+ : MachineSchedInfo((unsigned int) SPARC_NUM_SCHED_CLASSES,
+ mii,
+ SparcRUsageDesc,
+ SparcInstrUsageDeltas,
+ SparcInstrIssueDeltas,
+ sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta),
+ sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta))
+{
+ maxNumIssueTotal = 4;
+ longestIssueConflict = 0; // computed from issuesGaps[]
+
+ branchMispredictPenalty = 4; // 4 for SPARC IIi
+ branchTargetUnknownPenalty = 2; // 2 for SPARC IIi
+ l1DCacheMissPenalty = 8; // 7 or 9 for SPARC IIi
+ l1ICacheMissPenalty = 8; // ? for SPARC IIi
+
+ inOrderLoads = true; // true for SPARC IIi
+ inOrderIssue = true; // true for SPARC IIi
+ inOrderExec = false; // false for most architectures
+ inOrderRetire= true; // true for most architectures
+
+ // must be called after above parameters are initialized.
+ this->initializeResources();
+}
+
+void
+UltraSparcSchedInfo::initializeResources()
+{
+ // Compute MachineSchedInfo::instrRUsages and MachineSchedInfo::issueGaps
+ MachineSchedInfo::initializeResources();
+
+ // Machine-dependent fixups go here. None for now.
+}
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcMachine
+//
+// Purpose:
+// Primary interface to machine description for the UltraSPARC.
+// Primarily just initializes machine-dependent parameters in
+// class TargetMachine, and creates machine-dependent subclasses
+// for classes such as MachineInstrInfo.
+//
+//---------------------------------------------------------------------------
+
+UltraSparc::UltraSparc() : TargetMachine("UltraSparc-Native") {
+ machineInstrInfo = new UltraSparcInstrInfo();
+ machineSchedInfo = new UltraSparcSchedInfo(machineInstrInfo);
+
+ optSizeForSubWordData = 4;
+ minMemOpWordSize = 8;
+ maxAtomicMemOpWordSize = 8;
+ zeroRegNum = 0; // %g0 always gives 0 on Sparc
+}
+
+UltraSparc::~UltraSparc() {
+ delete (UltraSparcInstrInfo*) machineInstrInfo;
+ delete (UltraSparcSchedInfo*) machineSchedInfo;
+}
+
+
+bool UltraSparc::compileMethod(Method *M) {
+ if (SelectInstructionsForMethod(M, *this)) {
+ cerr << "Instruction selection failed for method " << M->getName()
+ << "\n\n";
+ return true;
+ }
+
+ if (ScheduleInstructionsWithSSA(M, *this)) {
+ cerr << "Instruction scheduling before allocation failed for method "
+ << M->getName() << "\n\n";
+ return true;
+ }
+ return false;
+}