diff options
-rw-r--r-- | lib/Analysis/InstructionSimplify.cpp | 170 | ||||
-rw-r--r-- | test/Transforms/InstSimplify/2010-12-20-Distribute.ll | 21 |
2 files changed, 180 insertions, 11 deletions
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp index 675a109..c85e229 100644 --- a/lib/Analysis/InstructionSimplify.cpp +++ b/lib/Analysis/InstructionSimplify.cpp @@ -53,8 +53,120 @@ static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { return false; } -// SimplifyAssociativeBinOp - Generic simplifications for associative binary -// operations. Returns the simpler value, or null if none was found. +/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning +/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is +/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. +/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". +/// Returns the simplified value, or null if no simplification was performed. +static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, + unsigned OpcodeToExpand, const TargetData *TD, + const DominatorTree *DT, unsigned MaxRecurse) { + // Recursion is always used, so bail out at once if we already hit the limit. + if (!MaxRecurse--) + return 0; + + // Check whether the expression has the form "(A op' B) op C". + if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) + if (Op0->getOpcode() == OpcodeToExpand) { + // It does! Try turning it into "(A op C) op' (B op C)". + Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; + // Do "A op C" and "B op C" both simplify? + if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) + if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { + // They do! Return "L op' R" if it simplifies or is already available. + // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. + if ((L == A && R == B) || + (Instruction::isCommutative(OpcodeToExpand) && L == B && R == A)) + return LHS; + // Otherwise return "L op' R" if it simplifies. + if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,MaxRecurse)) + return V; + } + } + + // Check whether the expression has the form "A op (B op' C)". + if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) + if (Op1->getOpcode() == OpcodeToExpand) { + // It does! Try turning it into "(A op B) op' (A op C)". + Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); + // Do "A op B" and "A op C" both simplify? + if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) + if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) { + // They do! Return "L op' R" if it simplifies or is already available. + // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. + if ((L == B && R == C) || + (Instruction::isCommutative(OpcodeToExpand) && L == C && R == B)) + return RHS; + // Otherwise return "L op' R" if it simplifies. + if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,MaxRecurse)) + return V; + } + } + + return 0; +} + +/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term +/// using the operation OpCodeToExtract. For example, when Opcode is Add and +/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". +/// Returns the simplified value, or null if no simplification was performed. +static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, + unsigned OpcodeToExtract, const TargetData *TD, + const DominatorTree *DT, unsigned MaxRecurse) { + // Recursion is always used, so bail out at once if we already hit the limit. + if (!MaxRecurse--) + return 0; + + BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); + BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); + + if (!Op0 || Op0->getOpcode() != OpcodeToExtract || + !Op1 || Op1->getOpcode() != OpcodeToExtract) + return 0; + + // The expression has the form "(A op' B) op (C op' D)". + Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); + Value *C = Op1->getOperand(0); Value *D = Op1->getOperand(1); + + // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". + // Does the instruction have the form "(A op' B) op (A op' D)" or, in the + // commutative case, "(A op' B) op (C op' A)"? + if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { + Value *DD = A == C ? D : C; + // Form "A op' (B op DD)" if it simplifies completely. + // Does "B op DD" simplify? + if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) { + // It does! Return "A op' V" if it simplifies or is already available. + // If V equals B then "A op' V" is just the LHS. + if (V == B) return LHS; + // Otherwise return "A op' V" if it simplifies. + if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) + return W; + } + } + + // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". + // Does the instruction have the form "(A op' B) op (C op' B)" or, in the + // commutative case, "(A op' B) op (B op' D)"? + if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { + Value *CC = B == D ? C : D; + // Form "(A op CC) op' B" if it simplifies completely.. + // Does "A op CC" simplify? + if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) { + // It does! Return "V op' B" if it simplifies or is already available. + // If V equals A then "V op' B" is just the LHS. + if (V == B) return LHS; + // Otherwise return "V op' B" if it simplifies. + if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) + return W; + } + } + + return 0; +} + +/// SimplifyAssociativeBinOp - Generic simplifications for associative binary +/// operations. Returns the simpler value, or null if none was found. static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, const TargetData *TD, const DominatorTree *DT, @@ -78,8 +190,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { // It does! Return "A op V" if it simplifies or is already available. // If V equals B then "A op V" is just the LHS. - if (V == B) - return LHS; + if (V == B) return LHS; // Otherwise return "A op V" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) return W; @@ -96,8 +207,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) { // It does! Return "V op C" if it simplifies or is already available. // If V equals B then "V op C" is just the RHS. - if (V == B) - return RHS; + if (V == B) return RHS; // Otherwise return "V op C" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) return W; @@ -118,8 +228,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { // It does! Return "V op B" if it simplifies or is already available. // If V equals A then "V op B" is just the LHS. - if (V == A) - return LHS; + if (V == A) return LHS; // Otherwise return "V op B" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) return W; @@ -136,8 +245,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { // It does! Return "B op V" if it simplifies or is already available. // If V equals C then "B op V" is just the RHS. - if (V == C) - return RHS; + if (V == C) return RHS; // Otherwise return "B op V" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) return W; @@ -381,6 +489,11 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, MaxRecurse)) return V; + // Mul distributes over Add. Try some generic simplifications based on this. + if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, + TD, DT, MaxRecurse)) + return V; + // Threading Add over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A + select(cond, B, C)" means evaluating // "A+B" and "A+C" and seeing if they are equal; but they are equal if and @@ -401,7 +514,7 @@ Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, /// SimplifySubInst - Given operands for a Sub, see if we can /// fold the result. If not, this returns null. static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const TargetData *TD, const DominatorTree *, + const TargetData *TD, const DominatorTree *DT, unsigned MaxRecurse) { if (Constant *CLHS = dyn_cast<Constant>(Op0)) if (Constant *CRHS = dyn_cast<Constant>(Op1)) { @@ -430,6 +543,11 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, match(Op0, m_Add(m_Specific(Op1), m_Value(X)))) return X; + // Mul distributes over Sub. Try some generic simplifications based on this. + if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, + TD, DT, MaxRecurse)) + return V; + // Threading Sub over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A - select(cond, B, C)" means evaluating // "A-B" and "A-C" and seeing if they are equal; but they are equal if and @@ -499,6 +617,21 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, MaxRecurse)) return V; + // And distributes over Or. Try some generic simplifications based on this. + if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, + TD, DT, MaxRecurse)) + return V; + + // And distributes over Xor. Try some generic simplifications based on this. + if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, + TD, DT, MaxRecurse)) + return V; + + // Or distributes over And. Try some generic simplifications based on this. + if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, + TD, DT, MaxRecurse)) + return V; + // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) @@ -573,6 +706,16 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, MaxRecurse)) return V; + // Or distributes over And. Try some generic simplifications based on this. + if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, + TD, DT, MaxRecurse)) + return V; + + // And distributes over Or. Try some generic simplifications based on this. + if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, + TD, DT, MaxRecurse)) + return V; + // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) @@ -633,6 +776,11 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, MaxRecurse)) return V; + // And distributes over Xor. Try some generic simplifications based on this. + if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, + TD, DT, MaxRecurse)) + return V; + // Threading Xor over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A ^ select(cond, B, C)" means evaluating // "A^B" and "A^C" and seeing if they are equal; but they are equal if and diff --git a/test/Transforms/InstSimplify/2010-12-20-Distribute.ll b/test/Transforms/InstSimplify/2010-12-20-Distribute.ll new file mode 100644 index 0000000..4625698 --- /dev/null +++ b/test/Transforms/InstSimplify/2010-12-20-Distribute.ll @@ -0,0 +1,21 @@ +; RUN: opt < %s -instsimplify -S | FileCheck %s + +define i32 @factorize(i32 %x, i32 %y) { +; CHECK: @factorize +; (X | 2) & (X | 2) -> X | (1 & 2) -> X + %l = or i32 %x, 1 + %r = or i32 %x, 2 + %z = and i32 %l, %r + ret i32 %z +; CHECK: ret i32 %x +} + +define i32 @expand(i32 %x) { +; CHECK: @expand +; ((X & 1) | 2) & 1 -> ((X & 1) & 1) | (2 & 1) -> (X & 1) | 0 -> X & 1 + %a = and i32 %x, 1 + %b = or i32 %a, 2 + %c = and i32 %b, 1 + ret i32 %c +; CHECK: ret i32 %a +} |