aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Analysis/ValueTracking.h20
-rw-r--r--lib/Analysis/ConstantFolding.cpp6
-rw-r--r--lib/Analysis/ValueTracking.cpp187
-rw-r--r--lib/VMCore/Constants.cpp131
4 files changed, 157 insertions, 187 deletions
diff --git a/include/llvm/Analysis/ValueTracking.h b/include/llvm/Analysis/ValueTracking.h
index 300f51d..65c4e77 100644
--- a/include/llvm/Analysis/ValueTracking.h
+++ b/include/llvm/Analysis/ValueTracking.h
@@ -17,14 +17,13 @@
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/DataTypes.h"
-#include <string>
namespace llvm {
- template <typename T> class SmallVectorImpl;
class Value;
class Instruction;
class APInt;
class TargetData;
+ class StringRef;
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
@@ -125,16 +124,17 @@ namespace llvm {
return GetPointerBaseWithConstantOffset(const_cast<Value*>(Ptr), Offset,TD);
}
- /// GetConstantStringInfo - This function computes the length of a
+ /// getConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V. If successful, it returns true
- /// and returns the string in Str. If unsuccessful, it returns false. If
- /// StopAtNul is set to true (the default), the returned string is truncated
- /// by a nul character in the global. If StopAtNul is false, the nul
- /// character is included in the result string.
+ /// and returns the string in Str. If unsuccessful, it returns false. This
+ /// does not include the trailing nul character.
+ bool getConstantStringInfo(const Value *V, StringRef &Str,
+ uint64_t Offset = 0);
+
+ // FIXME: Remove this.
bool GetConstantStringInfo(const Value *V, std::string &Str,
- uint64_t Offset = 0,
- bool StopAtNul = true);
-
+ uint64_t Offset = 0);
+
/// GetStringLength - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t GetStringLength(Value *V);
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 121e334..48e75a1 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -476,9 +476,9 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
- std::string Str;
- if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
- unsigned StrLen = Str.length();
+ StringRef Str;
+ if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
+ unsigned StrLen = Str.size();
Type *Ty = cast<PointerType>(CE->getType())->getElementType();
unsigned NumBits = Ty->getPrimitiveSizeInBits();
// Replace load with immediate integer if the result is an integer or fp
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 6403f03..d51d7f2 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -1369,25 +1369,21 @@ Value *llvm::isBytewiseValue(Value *V) {
}
}
- // A ConstantArray is splatable if all its members are equal and also
- // splatable.
- if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
- if (CA->getNumOperands() == 0)
- return 0;
-
- Value *Val = isBytewiseValue(CA->getOperand(0));
+ // A ConstantDataArray/Vector is splatable if all its members are equal and
+ // also splatable.
+ if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
+ Value *Elt = CA->getElementAsConstant(0);
+ Value *Val = isBytewiseValue(Elt);
if (!Val)
return 0;
- for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
- if (CA->getOperand(I-1) != CA->getOperand(I))
+ for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
+ if (CA->getElementAsConstant(I) != Elt)
return 0;
return Val;
}
- // FIXME: Vector types (e.g., <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>).
-
// Conceptually, we could handle things like:
// %a = zext i8 %X to i16
// %b = shl i16 %a, 8
@@ -1607,33 +1603,29 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
}
-/// GetConstantStringInfo - This function computes the length of a
+// FIXME: Remove this.
+bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
+ uint64_t Offset) {
+ StringRef Tmp;
+ if (!getConstantStringInfo(V, Tmp, Offset))
+ return false;
+ Str = Tmp.str();
+ return true;
+}
+
+/// getConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V. If successful, it returns true
/// and returns the string in Str. If unsuccessful, it returns false.
-bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
- uint64_t Offset, bool StopAtNul) {
- // If V is NULL then return false;
- if (V == NULL) return false;
+bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
+ uint64_t Offset) {
+ assert(V);
- // Look through bitcast instructions.
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
-
- // If the value is not a GEP instruction nor a constant expression with a
- // GEP instruction, then return false because ConstantArray can't occur
- // any other way.
- const User *GEP = 0;
- if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
- GEP = GEPI;
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast)
- return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
- if (CE->getOpcode() != Instruction::GetElementPtr)
- return false;
- GEP = CE;
- }
+ // Look through bitcast instructions and geps.
+ V = V->stripPointerCasts();
- if (GEP) {
+ // If the value is a GEP instructionor constant expression, treat it as an
+ // offset.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
@@ -1658,51 +1650,45 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
StartIdx = CI->getZExtValue();
else
return false;
- return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
- StopAtNul);
+ return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
}
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
- const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
- const Constant *GlobalInit = GV->getInitializer();
-
+
// Handle the all-zeros case
- if (GlobalInit->isNullValue()) {
+ if (GV->getInitializer()->isNullValue()) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
- Str.clear();
+ Str = "";
return true;
}
// Must be a Constant Array
- const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
+ const ConstantDataArray *Array =
+ dyn_cast<ConstantDataArray>(GV->getInitializer());
+ if (Array == 0 || !Array->isString())
return false;
// Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getNumElements();
-
+ uint64_t NumElts = Array->getType()->getArrayNumElements();
+
+ // Start out with the entire array in the StringRef.
+ Str = Array->getAsString();
+
if (Offset > NumElts)
return false;
- // Traverse the constant array from 'Offset' which is the place the GEP refers
- // to in the array.
- Str.reserve(NumElts-Offset);
- for (unsigned i = Offset; i != NumElts; ++i) {
- const Constant *Elt = Array->getOperand(i);
- const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
- if (!CI) // This array isn't suitable, non-int initializer.
- return false;
- if (StopAtNul && CI->isZero())
- return true; // we found end of string, success!
- Str += (char)CI->getZExtValue();
- }
-
- // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
+ // Skip over 'offset' bytes.
+ Str = Str.substr(Offset);
+ // Trim off the \0 and anything after it. If the array is not nul terminated,
+ // we just return the whole end of string. The client may know some other way
+ // that the string is length-bound.
+ Str = Str.substr(0, Str.find('\0'));
return true;
}
@@ -1714,8 +1700,7 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
// Look through noop bitcast instructions.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- return GetStringLengthH(BCI->getOperand(0), PHIs);
+ V = V->stripPointerCasts();
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
@@ -1751,83 +1736,13 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
if (Len1 != Len2) return 0;
return Len1;
}
-
- // As a special-case, "@string = constant i8 0" is also a string with zero
- // length, not wrapped in a bitcast or GEP.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- if (GV->getInitializer()->isNullValue()) return 1;
- return 0;
- }
-
- // If the value is not a GEP instruction nor a constant expression with a
- // GEP instruction, then return unknown.
- User *GEP = 0;
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
- GEP = GEPI;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() != Instruction::GetElementPtr)
- return 0;
- GEP = CE;
- } else {
- return 0;
- }
-
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return 0;
-
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
- if (!Idx->isZero())
- return 0;
- } else
- return 0;
-
- // If the second index isn't a ConstantInt, then this is a variable index
- // into the array. If this occurs, we can't say anything meaningful about
- // the string.
- uint64_t StartIdx = 0;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
- StartIdx = CI->getZExtValue();
- else
- return 0;
-
- // The GEP instruction, constant or instruction, must reference a global
- // variable that is a constant and is initialized. The referenced constant
- // initializer is the array that we'll use for optimization.
- GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
- GV->mayBeOverridden())
+
+ // Otherwise, see if we can read the string.
+ StringRef StrData;
+ if (!getConstantStringInfo(V, StrData))
return 0;
- Constant *GlobalInit = GV->getInitializer();
-
- // Handle the ConstantAggregateZero case, which is a degenerate case. The
- // initializer is constant zero so the length of the string must be zero.
- if (isa<ConstantAggregateZero>(GlobalInit))
- return 1; // Len = 0 offset by 1.
-
- // Must be a Constant Array
- ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
- return false;
-
- // Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getNumElements();
-
- // Traverse the constant array from StartIdx (derived above) which is
- // the place the GEP refers to in the array.
- for (unsigned i = StartIdx; i != NumElts; ++i) {
- Constant *Elt = Array->getOperand(i);
- ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
- if (!CI) // This array isn't suitable, non-int initializer.
- return 0;
- if (CI->isZero())
- return i-StartIdx+1; // We found end of string, success!
- }
- return 0; // The array isn't null terminated, conservatively return 'unknown'.
+ return StrData.size()+1;
}
/// GetStringLength - If we can compute the length of the string pointed to by
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
index f7884c6..624dc2e 100644
--- a/lib/VMCore/Constants.cpp
+++ b/lib/VMCore/Constants.cpp
@@ -666,6 +666,13 @@ UndefValue *UndefValue::getElementValue(unsigned Idx) const {
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
+template <typename ItTy, typename EltTy>
+static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
+ for (; Start != End; ++Start)
+ if (*Start != Elt)
+ return false;
+ return true;
+}
ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
: Constant(T, ConstantArrayVal,
@@ -680,54 +687,103 @@ ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
}
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
+ // Empty arrays are canonicalized to ConstantAggregateZero.
+ if (V.empty())
+ return ConstantAggregateZero::get(Ty);
+
for (unsigned i = 0, e = V.size(); i != e; ++i) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
- // If this is an all-zero array, return a ConstantAggregateZero object
- bool isAllZero = true;
- bool isUndef = false;
- if (!V.empty()) {
- Constant *C = V[0];
- isAllZero = C->isNullValue();
- isUndef = isa<UndefValue>(C);
-
- if (isAllZero || isUndef)
- for (unsigned i = 1, e = V.size(); i != e; ++i)
- if (V[i] != C) {
- isAllZero = false;
- isUndef = false;
- break;
- }
- }
+
+ // If this is an all-zero array, return a ConstantAggregateZero object. If
+ // all undef, return an UndefValue, if "all simple", then return a
+ // ConstantDataArray.
+ Constant *C = V[0];
+ if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
+ return UndefValue::get(Ty);
- if (isAllZero)
+ if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
return ConstantAggregateZero::get(Ty);
- if (isUndef)
- return UndefValue::get(Ty);
+
+ // Check to see if all of the elements are ConstantFP or ConstantInt and if
+ // the element type is compatible with ConstantDataVector. If so, use it.
+ if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
+ // We speculatively build the elements here even if it turns out that there
+ // is a constantexpr or something else weird in the array, since it is so
+ // uncommon for that to happen.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getType()->isIntegerTy(8)) {
+ SmallVector<uint8_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(16)) {
+ SmallVector<uint16_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(32)) {
+ SmallVector<uint32_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CI->getType()->isIntegerTy(64)) {
+ SmallVector<uint64_t, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
+ Elts.push_back(CI->getZExtValue());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ }
+ }
+
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ if (CFP->getType()->isFloatTy()) {
+ SmallVector<float, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
+ Elts.push_back(CFP->getValueAPF().convertToFloat());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ } else if (CFP->getType()->isDoubleTy()) {
+ SmallVector<double, 16> Elts;
+ for (unsigned i = 0, e = V.size(); i != e; ++i)
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
+ Elts.push_back(CFP->getValueAPF().convertToDouble());
+ else
+ break;
+ if (Elts.size() == V.size())
+ return ConstantDataArray::get(C->getContext(), Elts);
+ }
+ }
+ }
+
+ // Otherwise, we really do want to create a ConstantArray.
return pImpl->ArrayConstants.getOrCreate(Ty, V);
}
-/// ConstantArray::get(const string&) - Return an array that is initialized to
-/// contain the specified string. If length is zero then a null terminator is
-/// added to the specified string so that it may be used in a natural way.
-/// Otherwise, the length parameter specifies how much of the string to use
-/// and it won't be null terminated.
-///
+// FIXME: Remove this method.
Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
bool AddNull) {
- SmallVector<Constant*, 8> ElementVals;
- ElementVals.reserve(Str.size() + size_t(AddNull));
- for (unsigned i = 0; i < Str.size(); ++i)
- ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
-
- // Add a null terminator to the string...
- if (AddNull)
- ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
-
- ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
- return get(ATy, ElementVals);
+ return ConstantDataArray::getString(Context, Str, AddNull);
}
/// getTypeForElements - Return an anonymous struct type to use for a constant
@@ -839,8 +895,7 @@ Constant *ConstantVector::get(ArrayRef<Constant*> V) {
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
- if (ConstantDataSequential::isElementTypeCompatible(C->getType()) &&
- (isa<ConstantFP>(C) || isa<ConstantInt>(C))) {
+ if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
// We speculatively build the elements here even if it turns out that there
// is a constantexpr or something else weird in the array, since it is so
// uncommon for that to happen.