diff options
-rw-r--r-- | include/llvm/Analysis/PostDominators.h | 81 | ||||
-rw-r--r-- | lib/Analysis/PostDominators.cpp | 333 |
2 files changed, 240 insertions, 174 deletions
diff --git a/include/llvm/Analysis/PostDominators.h b/include/llvm/Analysis/PostDominators.h index 754d436..39b26d7 100644 --- a/include/llvm/Analysis/PostDominators.h +++ b/include/llvm/Analysis/PostDominators.h @@ -18,6 +18,42 @@ namespace llvm { +//===------------------------------------- +/// ImmediatePostDominators Class - Concrete subclass of ImmediateDominatorsBase +/// that is used to compute a normal immediate dominator set. +/// +struct ImmediatePostDominators : public ImmediateDominatorsBase { + ImmediatePostDominators() : ImmediateDominatorsBase(false) {} + + virtual bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } + +private: + struct InfoRec { + unsigned Semi; + unsigned Size; + BasicBlock *Label, *Parent, *Child, *Ancestor; + + std::vector<BasicBlock*> Bucket; + + InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){} + }; + + // Vertex - Map the DFS number to the BasicBlock* + std::vector<BasicBlock*> Vertex; + + // Info - Collection of information used during the computation of idoms. + std::map<BasicBlock*, InfoRec> Info; + + unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N); + void Compress(BasicBlock *V, InfoRec &VInfo); + BasicBlock *Eval(BasicBlock *v); + void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo); +}; + /// PostDominatorSet Class - Concrete subclass of DominatorSetBase that is used /// to compute the post-dominator set. Because there can be multiple exit nodes /// in an LLVM function, we calculate post dominators with a special null block @@ -27,40 +63,20 @@ namespace llvm { /// struct PostDominatorSet : public DominatorSetBase { PostDominatorSet() : DominatorSetBase(true) {} - + virtual bool runOnFunction(Function &F); - - /// getAnalysisUsage - This pass does not modify the function at all. + + /// getAnalysisUsage - This simply provides a dominator set /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<ImmediatePostDominators>(); AU.setPreservesAll(); } + + // stub - dummy function, just ignore it + static void stub(); }; - -/// ImmediatePostDominators Class - Concrete subclass of ImmediateDominatorsBase -/// that is used to compute the immediate post-dominators. -/// -struct ImmediatePostDominators : public ImmediateDominatorsBase { - ImmediatePostDominators() : ImmediateDominatorsBase(true) {} - - virtual bool runOnFunction(Function &F) { - IDoms.clear(); // Reset from the last time we were run... - PostDominatorSet &DS = getAnalysis<PostDominatorSet>(); - Roots = DS.getRoots(); - calcIDoms(DS); - return false; - } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<PostDominatorSet>(); - } -private: - void calcIDoms(const DominatorSetBase &DS); -}; - - /// PostDominatorTree Class - Concrete subclass of DominatorTree that is used to /// compute the a post-dominator tree. /// @@ -69,18 +85,19 @@ struct PostDominatorTree : public DominatorTreeBase { virtual bool runOnFunction(Function &F) { reset(); // Reset from the last time we were run... - PostDominatorSet &DS = getAnalysis<PostDominatorSet>(); - Roots = DS.getRoots(); - calculate(DS); + ImmediatePostDominators &IPD = getAnalysis<ImmediatePostDominators>(); + Roots = IPD.getRoots(); + calculate(IPD); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); - AU.addRequired<PostDominatorSet>(); + AU.addRequired<ImmediatePostDominators>(); } private: - void calculate(const PostDominatorSet &DS); + void calculate(const ImmediatePostDominators &IPD); + Node *getNodeForBlock(BasicBlock *BB); }; diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp index f9f9a42..b8b173e 100644 --- a/lib/Analysis/PostDominators.cpp +++ b/lib/Analysis/PostDominators.cpp @@ -16,9 +16,132 @@ #include "llvm/Support/CFG.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" +#include <iostream> using namespace llvm; //===----------------------------------------------------------------------===// +// ImmediatePostDominators Implementation +//===----------------------------------------------------------------------===// + +static RegisterAnalysis<ImmediatePostDominators> +D("postidom", "Immediate Post-Dominators Construction", true); + +unsigned ImmediatePostDominators::DFSPass(BasicBlock *V, InfoRec &VInfo, + unsigned N) { + VInfo.Semi = ++N; + VInfo.Label = V; + + Vertex.push_back(V); // Vertex[n] = V; + //Info[V].Ancestor = 0; // Ancestor[n] = 0 + //Child[V] = 0; // Child[v] = 0 + VInfo.Size = 1; // Size[v] = 1 + + // For PostDominators, we want to walk predecessors rather than successors + // as we do in forward Dominators. + for (pred_iterator PI = pred_begin(V), PE = pred_end(V); PI != PE; ++PI) { + InfoRec &SuccVInfo = Info[*PI]; + if (SuccVInfo.Semi == 0) { + SuccVInfo.Parent = V; + N = DFSPass(*PI, SuccVInfo, N); + } + } + return N; +} + +void ImmediatePostDominators::Compress(BasicBlock *V, InfoRec &VInfo) { + BasicBlock *VAncestor = VInfo.Ancestor; + InfoRec &VAInfo = Info[VAncestor]; + if (VAInfo.Ancestor == 0) + return; + + Compress(VAncestor, VAInfo); + + BasicBlock *VAncestorLabel = VAInfo.Label; + BasicBlock *VLabel = VInfo.Label; + if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) + VInfo.Label = VAncestorLabel; + + VInfo.Ancestor = VAInfo.Ancestor; +} + +BasicBlock *ImmediatePostDominators::Eval(BasicBlock *V) { + InfoRec &VInfo = Info[V]; + + // Higher-complexity but faster implementation + if (VInfo.Ancestor == 0) + return V; + Compress(V, VInfo); + return VInfo.Label; +} + +void ImmediatePostDominators::Link(BasicBlock *V, BasicBlock *W, + InfoRec &WInfo) { + // Higher-complexity but faster implementation + WInfo.Ancestor = V; +} + +bool ImmediatePostDominators::runOnFunction(Function &F) { + IDoms.clear(); // Reset from the last time we were run... + Roots.clear(); + + // Step #0: Scan the function looking for the root nodes of the post-dominance + // relationships. These blocks, which have no successors, end with return and + // unwind instructions. + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + if (succ_begin(I) == succ_end(I)) + Roots.push_back(I); + + Vertex.push_back(0); + + // Step #1: Number blocks in depth-first order and initialize variables used + // in later stages of the algorithm. + unsigned N = 0; + for (unsigned i = 0, e = Roots.size(); i != e; ++i) + N = DFSPass(Roots[i], Info[Roots[i]], N); + + for (unsigned i = N; i >= 2; --i) { + BasicBlock *W = Vertex[i]; + InfoRec &WInfo = Info[W]; + + // Step #2: Calculate the semidominators of all vertices + for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI) + if (Info.count(*SI)) { // Only if this predecessor is reachable! + unsigned SemiU = Info[Eval(*SI)].Semi; + if (SemiU < WInfo.Semi) + WInfo.Semi = SemiU; + } + + Info[Vertex[WInfo.Semi]].Bucket.push_back(W); + + BasicBlock *WParent = WInfo.Parent; + Link(WParent, W, WInfo); + + // Step #3: Implicitly define the immediate dominator of vertices + std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket; + while (!WParentBucket.empty()) { + BasicBlock *V = WParentBucket.back(); + WParentBucket.pop_back(); + BasicBlock *U = Eval(V); + IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; + } + } + + // Step #4: Explicitly define the immediate dominator of each vertex + for (unsigned i = 2; i <= N; ++i) { + BasicBlock *W = Vertex[i]; + BasicBlock *&WIDom = IDoms[W]; + if (WIDom != Vertex[Info[W].Semi]) + WIDom = IDoms[WIDom]; + } + + // Free temporary memory used to construct idom's + Info.clear(); + std::vector<BasicBlock*>().swap(Vertex); + + return false; +} + +//===----------------------------------------------------------------------===// // PostDominatorSet Implementation //===----------------------------------------------------------------------===// @@ -30,119 +153,59 @@ B("postdomset", "Post-Dominator Set Construction", true); // sets for the function. // bool PostDominatorSet::runOnFunction(Function &F) { - Doms.clear(); // Reset from the last time we were run... - // Scan the function looking for the root nodes of the post-dominance // relationships. These blocks end with return and unwind instructions. // While we are iterating over the function, we also initialize all of the // domsets to empty. Roots.clear(); - for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { - Doms[I]; // Initialize to empty - + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (succ_begin(I) == succ_end(I)) Roots.push_back(I); - } // If there are no exit nodes for the function, postdomsets are all empty. // This can happen if the function just contains an infinite loop, for // example. + ImmediatePostDominators &IPD = getAnalysis<ImmediatePostDominators>(); + Doms.clear(); // Reset from the last time we were run... if (Roots.empty()) return false; // If we have more than one root, we insert an artificial "null" exit, which // has "virtual edges" to each of the real exit nodes. - if (Roots.size() > 1) - Doms[0].insert(0); - - bool Changed; - do { - Changed = false; - - std::set<BasicBlock*> Visited; - DomSetType WorkingSet; - - for (unsigned i = 0, e = Roots.size(); i != e; ++i) - for (idf_ext_iterator<BasicBlock*> It = idf_ext_begin(Roots[i], Visited), - E = idf_ext_end(Roots[i], Visited); It != E; ++It) { - BasicBlock *BB = *It; - succ_iterator SI = succ_begin(BB), SE = succ_end(BB); - if (SI != SE) { // Is there SOME successor? - // Loop until we get to a successor that has had it's dom set filled - // in at least once. We are guaranteed to have this because we are - // traversing the graph in DFO and have handled start nodes specially. - // - while (Doms[*SI].size() == 0) ++SI; - WorkingSet = Doms[*SI]; - - for (++SI; SI != SE; ++SI) { // Intersect all of the successor sets - DomSetType &SuccSet = Doms[*SI]; - if (SuccSet.size()) - set_intersect(WorkingSet, SuccSet); - } - } else { - // If this node has no successors, it must be one of the root nodes. - // We will already take care of the notion that the node - // post-dominates itself. The only thing we have to add is that if - // there are multiple root nodes, we want to insert a special "null" - // exit node which dominates the roots as well. - if (Roots.size() > 1) - WorkingSet.insert(0); - } + //if (Roots.size() > 1) + // Doms[0].insert(0); - WorkingSet.insert(BB); // A block always dominates itself - DomSetType &BBSet = Doms[BB]; - if (BBSet != WorkingSet) { - BBSet.swap(WorkingSet); // Constant time operation! - Changed = true; // The sets changed. + // Root nodes only dominate themselves. + for (unsigned i = 0, e = Roots.size(); i != e; ++i) + Doms[Roots[i]].insert(Roots[i]); + + // Loop over all of the blocks in the function, calculating dominator sets for + // each function. + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + if (BasicBlock *IPDom = IPD[I]) { // Get idom if block is reachable + DomSetType &DS = Doms[I]; + assert(DS.empty() && "PostDomset already filled in for this block?"); + DS.insert(I); // Blocks always dominate themselves + + // Insert all dominators into the set... + while (IPDom) { + // If we have already computed the dominator sets for our immediate post + // dominator, just use it instead of walking all the way up to the root. + DomSetType &IPDS = Doms[IPDom]; + if (!IPDS.empty()) { + DS.insert(IPDS.begin(), IPDS.end()); + break; + } else { + DS.insert(IPDom); + IPDom = IPD[IPDom]; } - WorkingSet.clear(); // Clear out the set for next iteration - } - } while (Changed); - return false; -} - -//===----------------------------------------------------------------------===// -// ImmediatePostDominators Implementation -//===----------------------------------------------------------------------===// - -static RegisterAnalysis<ImmediatePostDominators> -D("postidom", "Immediate Post-Dominators Construction", true); - - -// calcIDoms - Calculate the immediate dominator mapping, given a set of -// dominators for every basic block. -void ImmediatePostDominators::calcIDoms(const DominatorSetBase &DS) { - // Loop over all of the nodes that have dominators... figuring out the IDOM - // for each node... - // - for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); - DI != DEnd; ++DI) { - BasicBlock *BB = DI->first; - const DominatorSet::DomSetType &Dominators = DI->second; - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping over - // nodes in the dominator chain, looking for a node whose dominator set is - // equal to the current nodes, except that the current node does not exist - // in it. This means that it is one level higher in the dom chain than the - // current node, and it is our idom! - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number of elements - // in the dominator set indicates what level the node is at in the chain. - // We want the node immediately above us, so it will have an identical - // dominator set, except that BB will not dominate it... therefore it's - // dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - IDoms[BB] = *I; - break; } + } else { + // Ensure that every basic block has at least an empty set of nodes. This + // is important for the case when there is unreachable blocks. + Doms[I]; } - } + + return false; } //===----------------------------------------------------------------------===// @@ -152,59 +215,45 @@ void ImmediatePostDominators::calcIDoms(const DominatorSetBase &DS) { static RegisterAnalysis<PostDominatorTree> F("postdomtree", "Post-Dominator Tree Construction", true); -void PostDominatorTree::calculate(const PostDominatorSet &DS) { - if (Roots.empty()) return; - BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0; +DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) { + Node *&BBNode = Nodes[BB]; + if (BBNode) return BBNode; + + // Haven't calculated this node yet? Get or calculate the node for the + // immediate postdominator. + BasicBlock *IPDom = getAnalysis<ImmediatePostDominators>()[BB]; + Node *IPDomNode = getNodeForBlock(IPDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode)); +} - Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root... +void PostDominatorTree::calculate(const ImmediatePostDominators &IPD) { + if (Roots.empty()) return; - // Iterate over all nodes in depth first order... - for (unsigned i = 0, e = Roots.size(); i != e; ++i) - for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]), - E = idf_end(Roots[i]); I != E; ++I) { - BasicBlock *BB = *I; - const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // If we have already computed the immediate dominator for this node, - // don't revisit. This can happen due to nodes reachable from multiple - // roots, but which the idf_iterator doesn't know about. - if (Nodes.find(BB) != Nodes.end()) continue; - - // Loop over all dominators of this node. This corresponds to looping - // over nodes in the dominator chain, looking for a node whose dominator - // set is equal to the current nodes, except that the current node does - // not exist in it. This means that it is one level higher in the dom - // chain than the current node, and it is our idom! We know that we have - // already added a DominatorTree node for our idom, because the idom must - // be a predecessor in the depth first order that we are iterating through - // the function. - // - for (DominatorSet::DomSetType::const_iterator I = Dominators.begin(), - E = Dominators.end(); I != E; ++I) { // Iterate over dominators. - // All of our dominators should form a chain, where the number - // of elements in the dominator set indicates what level the - // node is at in the chain. We want the node immediately - // above us, so it will have an identical dominator set, - // except that BB will not dominate it... therefore it's - // dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } + // Add a node for the root. This node might be the actual root, if there is + // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) + // which postdominates all real exits if there are multiple exit blocks. + BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0; + Nodes[Root] = RootNode = new Node(Root, 0); + + Function *F = Roots[0]->getParent(); + // Loop over all of the reachable blocks in the function... + for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) + if (BasicBlock *ImmPostDom = IPD.get(I)) { // Reachable block. + Node *&BBNode = Nodes[I]; + if (!BBNode) { // Haven't calculated this node yet? + // Get or calculate the node for the immediate dominator + Node *IPDomNode = getNodeForBlock(ImmPostDom); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + BBNode = IPDomNode->addChild(new Node(I, IPDomNode)); } } } + //===----------------------------------------------------------------------===// // PostETForest Implementation //===----------------------------------------------------------------------===// |