aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--lib/Target/X86/X86.h8
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp511
-rw-r--r--lib/Target/X86/X86ISelPattern.cpp3648
-rw-r--r--lib/Target/X86/X86TargetMachine.cpp17
4 files changed, 211 insertions, 3973 deletions
diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h
index 6d645f1..f6d1be0 100644
--- a/lib/Target/X86/X86.h
+++ b/lib/Target/X86/X86.h
@@ -25,14 +25,6 @@ class FunctionPass;
class IntrinsicLowering;
class MachineCodeEmitter;
-extern bool X86PatIsel;
-
-/// createX86ISelPattern - This pass converts an LLVM function into a
-/// machine code representation using pattern matching and a machine
-/// description file.
-///
-FunctionPass *createX86ISelPattern(TargetMachine &TM);
-
/// createX86ISelDag - This pass converts a legalized DAG into a
/// X86-specific DAG, ready for instruction scheduling.
///
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 3e0a210..32c2a1f 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -70,13 +70,9 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM)
// this operation.
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
+ // SSE has no i16 to fp conversion, only i32
if (X86ScalarSSE)
- // SSE has no i16 to fp conversion, only i32
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
- else if (!X86PatIsel) {
- setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
- setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
- }
// We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64
// isn't legal.
@@ -112,9 +108,7 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM)
setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
- if (!X86PatIsel) {
- setOperationAction(ISD::BRCOND , MVT::Other, Custom);
- }
+ setOperationAction(ISD::BRCOND , MVT::Other, Custom);
setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand);
setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand);
setOperationAction(ISD::BR_CC , MVT::Other, Expand);
@@ -136,16 +130,6 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM)
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
-
- if (X86PatIsel) {
- setOperationAction(ISD::BSWAP , MVT::i32 , Expand);
- setOperationAction(ISD::ROTL , MVT::i8 , Expand);
- setOperationAction(ISD::ROTR , MVT::i8 , Expand);
- setOperationAction(ISD::ROTL , MVT::i16 , Expand);
- setOperationAction(ISD::ROTR , MVT::i16 , Expand);
- setOperationAction(ISD::ROTL , MVT::i32 , Expand);
- setOperationAction(ISD::ROTR , MVT::i32 , Expand);
- }
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
setOperationAction(ISD::READIO , MVT::i1 , Expand);
@@ -160,31 +144,30 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM)
// These should be promoted to a larger select which is supported.
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
setOperationAction(ISD::SELECT , MVT::i8 , Promote);
- if (!X86PatIsel) {
- // X86 wants to expand cmov itself.
- setOperationAction(ISD::SELECT , MVT::i16 , Custom);
- setOperationAction(ISD::SELECT , MVT::i32 , Custom);
- setOperationAction(ISD::SELECT , MVT::f32 , Custom);
- setOperationAction(ISD::SELECT , MVT::f64 , Custom);
- setOperationAction(ISD::SETCC , MVT::i8 , Custom);
- setOperationAction(ISD::SETCC , MVT::i16 , Custom);
- setOperationAction(ISD::SETCC , MVT::i32 , Custom);
- setOperationAction(ISD::SETCC , MVT::f32 , Custom);
- setOperationAction(ISD::SETCC , MVT::f64 , Custom);
- // X86 ret instruction may pop stack.
- setOperationAction(ISD::RET , MVT::Other, Custom);
- // Darwin ABI issue.
- setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
- // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
- setOperationAction(ISD::ADD_PARTS , MVT::i32 , Custom);
- setOperationAction(ISD::SUB_PARTS , MVT::i32 , Custom);
- setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
- setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
- setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
- // X86 wants to expand memset / memcpy itself.
- setOperationAction(ISD::MEMSET , MVT::Other, Custom);
- setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
- }
+
+ // X86 wants to expand cmov itself.
+ setOperationAction(ISD::SELECT , MVT::i16 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i8 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i16 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f64 , Custom);
+ // X86 ret instruction may pop stack.
+ setOperationAction(ISD::RET , MVT::Other, Custom);
+ // Darwin ABI issue.
+ setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
+ // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
+ setOperationAction(ISD::ADD_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SUB_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
+ // X86 wants to expand memset / memcpy itself.
+ setOperationAction(ISD::MEMSET , MVT::Other, Custom);
+ setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
// We don't have line number support yet.
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
@@ -473,134 +456,98 @@ X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy,
break;
}
- if (!X86PatIsel) {
- std::vector<MVT::ValueType> NodeTys;
- NodeTys.push_back(MVT::Other); // Returns a chain
- NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
- std::vector<SDOperand> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
-
- // FIXME: Do not generate X86ISD::TAILCALL for now.
- Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
- SDOperand InFlag = Chain.getValue(1);
-
- NodeTys.clear();
- NodeTys.push_back(MVT::Other); // Returns a chain
- NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
- Ops.clear();
- Ops.push_back(Chain);
- Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
- Ops.push_back(DAG.getConstant(0, getPointerTy()));
- Ops.push_back(InFlag);
- Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
- InFlag = Chain.getValue(1);
-
- SDOperand RetVal;
- if (RetTyVT != MVT::isVoid) {
- switch (RetTyVT) {
- default: assert(0 && "Unknown value type to return!");
- case MVT::i1:
- case MVT::i8:
- RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
- Chain = RetVal.getValue(1);
- if (RetTyVT == MVT::i1)
- RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
- break;
- case MVT::i16:
- RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
- Chain = RetVal.getValue(1);
- break;
- case MVT::i32:
- RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
- Chain = RetVal.getValue(1);
- break;
- case MVT::i64: {
- SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
- SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
- Lo.getValue(2));
- RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
- Chain = Hi.getValue(1);
- break;
- }
- case MVT::f32:
- case MVT::f64: {
- std::vector<MVT::ValueType> Tys;
- Tys.push_back(MVT::f64);
- Tys.push_back(MVT::Other);
- Tys.push_back(MVT::Flag);
- std::vector<SDOperand> Ops;
- Ops.push_back(Chain);
- Ops.push_back(InFlag);
- RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
- Chain = RetVal.getValue(1);
- InFlag = RetVal.getValue(2);
- if (X86ScalarSSE) {
- // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
- // shouldn't be necessary except that RFP cannot be live across
- // multiple blocks. When stackifier is fixed, they can be uncoupled.
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
- SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
- Tys.clear();
- Tys.push_back(MVT::Other);
- Ops.clear();
- Ops.push_back(Chain);
- Ops.push_back(RetVal);
- Ops.push_back(StackSlot);
- Ops.push_back(DAG.getValueType(RetTyVT));
- Ops.push_back(InFlag);
- Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
- RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
- DAG.getSrcValue(NULL));
- Chain = RetVal.getValue(1);
- }
-
- if (RetTyVT == MVT::f32 && !X86ScalarSSE)
- // FIXME: we would really like to remember that this FP_ROUND
- // operation is okay to eliminate if we allow excess FP precision.
- RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
- break;
- }
- }
- }
-
- return std::make_pair(RetVal, Chain);
- } else {
- std::vector<SDOperand> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
- Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
- Ops.push_back(DAG.getConstant(0, getPointerTy()));
-
- SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL :X86ISD::CALL,
- RetVals, Ops);
-
- SDOperand ResultVal;
+ std::vector<MVT::ValueType> NodeTys;
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+ std::vector<SDOperand> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // FIXME: Do not generate X86ISD::TAILCALL for now.
+ Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
+ SDOperand InFlag = Chain.getValue(1);
+
+ NodeTys.clear();
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+ Ops.clear();
+ Ops.push_back(Chain);
+ Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
+ Ops.push_back(DAG.getConstant(0, getPointerTy()));
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ SDOperand RetVal;
+ if (RetTyVT != MVT::isVoid) {
switch (RetTyVT) {
- case MVT::isVoid: break;
- default:
- ResultVal = TheCall.getValue(1);
- break;
+ default: assert(0 && "Unknown value type to return!");
case MVT::i1:
case MVT::i8:
+ RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
+ Chain = RetVal.getValue(1);
+ if (RetTyVT == MVT::i1)
+ RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
+ break;
case MVT::i16:
- ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1));
+ RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
+ Chain = RetVal.getValue(1);
break;
- case MVT::f32:
- // FIXME: we would really like to remember that this FP_ROUND operation is
- // okay to eliminate if we allow excess FP precision.
- ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1));
+ case MVT::i32:
+ RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
+ Chain = RetVal.getValue(1);
break;
- case MVT::i64:
- ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1),
- TheCall.getValue(2));
+ case MVT::i64: {
+ SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
+ SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
+ Lo.getValue(2));
+ RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
+ Chain = Hi.getValue(1);
break;
}
+ case MVT::f32:
+ case MVT::f64: {
+ std::vector<MVT::ValueType> Tys;
+ Tys.push_back(MVT::f64);
+ Tys.push_back(MVT::Other);
+ Tys.push_back(MVT::Flag);
+ std::vector<SDOperand> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(InFlag);
+ RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
+ Chain = RetVal.getValue(1);
+ InFlag = RetVal.getValue(2);
+ if (X86ScalarSSE) {
+ // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
+ // shouldn't be necessary except that RFP cannot be live across
+ // multiple blocks. When stackifier is fixed, they can be uncoupled.
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
+ SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ Tys.clear();
+ Tys.push_back(MVT::Other);
+ Ops.clear();
+ Ops.push_back(Chain);
+ Ops.push_back(RetVal);
+ Ops.push_back(StackSlot);
+ Ops.push_back(DAG.getValueType(RetTyVT));
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
+ RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
+ DAG.getSrcValue(NULL));
+ Chain = RetVal.getValue(1);
+ }
- Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall);
- return std::make_pair(ResultVal, Chain);
+ if (RetTyVT == MVT::f32 && !X86ScalarSSE)
+ // FIXME: we would really like to remember that this FP_ROUND
+ // operation is okay to eliminate if we allow excess FP precision.
+ RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
+ break;
+ }
+ }
}
+
+ return std::make_pair(RetVal, Chain);
}
//===----------------------------------------------------------------------===//
@@ -947,163 +894,123 @@ X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy,
break;
}
- if (!X86PatIsel) {
- // Build a sequence of copy-to-reg nodes chained together with token chain
- // and flag operands which copy the outgoing args into registers.
- SDOperand InFlag;
- for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) {
- unsigned CCReg;
- SDOperand RegToPass = RegValuesToPass[i];
- switch (RegToPass.getValueType()) {
- default: assert(0 && "Bad thing to pass in regs");
- case MVT::i8:
- CCReg = (i == 0) ? X86::AL : X86::DL;
- break;
- case MVT::i16:
- CCReg = (i == 0) ? X86::AX : X86::DX;
- break;
- case MVT::i32:
- CCReg = (i == 0) ? X86::EAX : X86::EDX;
- break;
- }
-
- Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag);
- InFlag = Chain.getValue(1);
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into registers.
+ SDOperand InFlag;
+ for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) {
+ unsigned CCReg;
+ SDOperand RegToPass = RegValuesToPass[i];
+ switch (RegToPass.getValueType()) {
+ default: assert(0 && "Bad thing to pass in regs");
+ case MVT::i8:
+ CCReg = (i == 0) ? X86::AL : X86::DL;
+ break;
+ case MVT::i16:
+ CCReg = (i == 0) ? X86::AX : X86::DX;
+ break;
+ case MVT::i32:
+ CCReg = (i == 0) ? X86::EAX : X86::EDX;
+ break;
}
- std::vector<MVT::ValueType> NodeTys;
- NodeTys.push_back(MVT::Other); // Returns a chain
- NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
- std::vector<SDOperand> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
- if (InFlag.Val)
- Ops.push_back(InFlag);
-
- // FIXME: Do not generate X86ISD::TAILCALL for now.
- Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
+ Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag);
InFlag = Chain.getValue(1);
+ }
- NodeTys.clear();
- NodeTys.push_back(MVT::Other); // Returns a chain
- NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
- Ops.clear();
- Ops.push_back(Chain);
- Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
- Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
+ std::vector<MVT::ValueType> NodeTys;
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+ std::vector<SDOperand> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+ if (InFlag.Val)
Ops.push_back(InFlag);
- Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
- InFlag = Chain.getValue(1);
-
- SDOperand RetVal;
- if (RetTyVT != MVT::isVoid) {
- switch (RetTyVT) {
- default: assert(0 && "Unknown value type to return!");
- case MVT::i1:
- case MVT::i8:
- RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
- Chain = RetVal.getValue(1);
- if (RetTyVT == MVT::i1)
- RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
- break;
- case MVT::i16:
- RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
- Chain = RetVal.getValue(1);
- break;
- case MVT::i32:
- RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
- Chain = RetVal.getValue(1);
- break;
- case MVT::i64: {
- SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
- SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
- Lo.getValue(2));
- RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
- Chain = Hi.getValue(1);
- break;
- }
- case MVT::f32:
- case MVT::f64: {
- std::vector<MVT::ValueType> Tys;
- Tys.push_back(MVT::f64);
- Tys.push_back(MVT::Other);
- Tys.push_back(MVT::Flag);
- std::vector<SDOperand> Ops;
- Ops.push_back(Chain);
- Ops.push_back(InFlag);
- RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
- Chain = RetVal.getValue(1);
- InFlag = RetVal.getValue(2);
- if (X86ScalarSSE) {
- // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
- // shouldn't be necessary except that RFP cannot be live across
- // multiple blocks. When stackifier is fixed, they can be uncoupled.
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
- SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
- Tys.clear();
- Tys.push_back(MVT::Other);
- Ops.clear();
- Ops.push_back(Chain);
- Ops.push_back(RetVal);
- Ops.push_back(StackSlot);
- Ops.push_back(DAG.getValueType(RetTyVT));
- Ops.push_back(InFlag);
- Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
- RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
- DAG.getSrcValue(NULL));
- Chain = RetVal.getValue(1);
- }
-
- if (RetTyVT == MVT::f32 && !X86ScalarSSE)
- // FIXME: we would really like to remember that this FP_ROUND
- // operation is okay to eliminate if we allow excess FP precision.
- RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
- break;
- }
- }
- }
-
- return std::make_pair(RetVal, Chain);
- } else {
- std::vector<SDOperand> Ops;
- Ops.push_back(Chain);
- Ops.push_back(Callee);
- Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
- // Callee pops all arg values on the stack.
- Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
-
- // Pass register arguments as needed.
- Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end());
-
- SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL :X86ISD::CALL,
- RetVals, Ops);
- Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall);
- SDOperand ResultVal;
+ // FIXME: Do not generate X86ISD::TAILCALL for now.
+ Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ NodeTys.clear();
+ NodeTys.push_back(MVT::Other); // Returns a chain
+ NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
+ Ops.clear();
+ Ops.push_back(Chain);
+ Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
+ Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ SDOperand RetVal;
+ if (RetTyVT != MVT::isVoid) {
switch (RetTyVT) {
- case MVT::isVoid: break;
- default:
- ResultVal = TheCall.getValue(1);
- break;
+ default: assert(0 && "Unknown value type to return!");
case MVT::i1:
case MVT::i8:
+ RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag);
+ Chain = RetVal.getValue(1);
+ if (RetTyVT == MVT::i1)
+ RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
+ break;
case MVT::i16:
- ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1));
+ RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
+ Chain = RetVal.getValue(1);
break;
- case MVT::f32:
- // FIXME: we would really like to remember that this FP_ROUND operation is
- // okay to eliminate if we allow excess FP precision.
- ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1));
+ case MVT::i32:
+ RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
+ Chain = RetVal.getValue(1);
break;
- case MVT::i64:
- ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1),
- TheCall.getValue(2));
+ case MVT::i64: {
+ SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
+ SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
+ Lo.getValue(2));
+ RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
+ Chain = Hi.getValue(1);
break;
}
+ case MVT::f32:
+ case MVT::f64: {
+ std::vector<MVT::ValueType> Tys;
+ Tys.push_back(MVT::f64);
+ Tys.push_back(MVT::Other);
+ Tys.push_back(MVT::Flag);
+ std::vector<SDOperand> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(InFlag);
+ RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
+ Chain = RetVal.getValue(1);
+ InFlag = RetVal.getValue(2);
+ if (X86ScalarSSE) {
+ // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
+ // shouldn't be necessary except that RFP cannot be live across
+ // multiple blocks. When stackifier is fixed, they can be uncoupled.
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
+ SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ Tys.clear();
+ Tys.push_back(MVT::Other);
+ Ops.clear();
+ Ops.push_back(Chain);
+ Ops.push_back(RetVal);
+ Ops.push_back(StackSlot);
+ Ops.push_back(DAG.getValueType(RetTyVT));
+ Ops.push_back(InFlag);
+ Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
+ RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
+ DAG.getSrcValue(NULL));
+ Chain = RetVal.getValue(1);
+ }
- return std::make_pair(ResultVal, Chain);
+ if (RetTyVT == MVT::f32 && !X86ScalarSSE)
+ // FIXME: we would really like to remember that this FP_ROUND
+ // operation is okay to eliminate if we allow excess FP precision.
+ RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
+ break;
+ }
+ }
}
+
+ return std::make_pair(RetVal, Chain);
}
SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
diff --git a/lib/Target/X86/X86ISelPattern.cpp b/lib/Target/X86/X86ISelPattern.cpp
deleted file mode 100644
index dc3ef6a..0000000
--- a/lib/Target/X86/X86ISelPattern.cpp
+++ /dev/null
@@ -1,3648 +0,0 @@
-//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a pattern matching instruction selector for X86.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrBuilder.h"
-#include "X86RegisterInfo.h"
-#include "X86Subtarget.h"
-#include "X86ISelLowering.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetOptions.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/ADT/Statistic.h"
-#include <set>
-#include <iostream>
-#include <algorithm>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Pattern Matcher Implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
- /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
- /// SDOperand's instead of register numbers for the leaves of the matched
- /// tree.
- struct X86ISelAddressMode {
- enum {
- RegBase,
- FrameIndexBase,
- } BaseType;
-
- struct { // This is really a union, discriminated by BaseType!
- SDOperand Reg;
- int FrameIndex;
- } Base;
-
- unsigned Scale;
- SDOperand IndexReg;
- unsigned Disp;
- GlobalValue *GV;
-
- X86ISelAddressMode()
- : BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) {
- }
- };
-}
-
-
-namespace {
- Statistic<>
- NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
-
- //===--------------------------------------------------------------------===//
- /// ISel - X86 specific code to select X86 machine instructions for
- /// SelectionDAG operations.
- ///
- class ISel : public SelectionDAGISel {
- /// ContainsFPCode - Every instruction we select that uses or defines a FP
- /// register should set this to true.
- bool ContainsFPCode;
-
- /// X86Lowering - This object fully describes how to lower LLVM code to an
- /// X86-specific SelectionDAG.
- X86TargetLowering X86Lowering;
-
- /// RegPressureMap - This keeps an approximate count of the number of
- /// registers required to evaluate each node in the graph.
- std::map<SDNode*, unsigned> RegPressureMap;
-
- /// ExprMap - As shared expressions are codegen'd, we keep track of which
- /// vreg the value is produced in, so we only emit one copy of each compiled
- /// tree.
- std::map<SDOperand, unsigned> ExprMap;
-
- /// TheDAG - The DAG being selected during Select* operations.
- SelectionDAG *TheDAG;
-
- /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
- /// make the right decision when generating code for different targets.
- const X86Subtarget *Subtarget;
-
- const TargetData &TD;
-
- /// X86ScalarSSE - Select between SSE2 or x87 floating point ops.
- bool X86ScalarSSE;
- public:
- ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering),
- X86Lowering(TM), TD(TM.getTargetData()) {
- Subtarget = &TM.getSubtarget<X86Subtarget>();
- X86ScalarSSE = Subtarget->hasSSE2();
- }
-
- virtual const char *getPassName() const {
- return "X86 Pattern Instruction Selection";
- }
-
- unsigned getRegPressure(SDOperand O) {
- return RegPressureMap[O.Val];
- }
- unsigned ComputeRegPressure(SDOperand O);
-
- /// InstructionSelectBasicBlock - This callback is invoked by
- /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
- virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
-
- virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
-
- bool isFoldableLoad(SDOperand Op, SDOperand OtherOp,
- bool FloatPromoteOk = false);
- void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM);
- bool TryToFoldLoadOpStore(SDNode *Node);
- bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg);
- void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse);
- bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond);
- void EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False,
- MVT::ValueType SVT, unsigned RDest);
- unsigned SelectExpr(SDOperand N);
-
- X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM);
- bool MatchAddress(SDOperand N, X86ISelAddressMode &AM);
- void SelectAddress(SDOperand N, X86AddressMode &AM);
- bool EmitPotentialTailCall(SDNode *Node);
- void EmitFastCCToFastCCTailCall(SDNode *TailCallNode);
- void Select(SDOperand N);
- };
-}
-
-/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
-/// the main function.
-static void EmitSpecialCodeForMain(MachineBasicBlock *BB,
- MachineFrameInfo *MFI) {
- // Switch the FPU to 64-bit precision mode for better compatibility and speed.
- int CWFrameIdx = MFI->CreateStackObject(2, 2);
- addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
-
- // Set the high part to be 64-bit precision.
- addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
- CWFrameIdx, 1).addImm(2);
-
- // Reload the modified control word now.
- addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
-}
-
-void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
- // If this is main, emit special code for main.
- MachineBasicBlock *BB = MF.begin();
- if (Fn.hasExternalLinkage() && Fn.getName() == "main")
- EmitSpecialCodeForMain(BB, MF.getFrameInfo());
-}
-
-
-/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
-/// when it has created a SelectionDAG for us to codegen.
-void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
- // While we're doing this, keep track of whether we see any FP code for
- // FP_REG_KILL insertion.
- ContainsFPCode = false;
- MachineFunction *MF = BB->getParent();
-
- // Scan the PHI nodes that already are inserted into this basic block. If any
- // of them is a PHI of a floating point value, we need to insert an
- // FP_REG_KILL.
- SSARegMap *RegMap = MF->getSSARegMap();
- if (BB != MF->begin())
- for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
- I != E; ++I) {
- assert(I->getOpcode() == X86::PHI &&
- "Isn't just PHI nodes?");
- if (RegMap->getRegClass(I->getOperand(0).getReg()) ==
- X86::RFPRegisterClass) {
- ContainsFPCode = true;
- break;
- }
- }
-
- // Compute the RegPressureMap, which is an approximation for the number of
- // registers required to compute each node.
- ComputeRegPressure(DAG.getRoot());
-
- TheDAG = &DAG;
-
- // Codegen the basic block.
- Select(DAG.getRoot());
-
- TheDAG = 0;
-
- // Finally, look at all of the successors of this block. If any contain a PHI
- // node of FP type, we need to insert an FP_REG_KILL in this block.
- for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
- E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI)
- for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end();
- I != E && I->getOpcode() == X86::PHI; ++I) {
- if (RegMap->getRegClass(I->getOperand(0).getReg()) ==
- X86::RFPRegisterClass) {
- ContainsFPCode = true;
- break;
- }
- }
-
- // Final check, check LLVM BB's that are successors to the LLVM BB
- // corresponding to BB for FP PHI nodes.
- const BasicBlock *LLVMBB = BB->getBasicBlock();
- const PHINode *PN;
- if (!ContainsFPCode)
- for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
- SI != E && !ContainsFPCode; ++SI)
- for (BasicBlock::const_iterator II = SI->begin();
- (PN = dyn_cast<PHINode>(II)); ++II)
- if (PN->getType()->isFloatingPoint()) {
- ContainsFPCode = true;
- break;
- }
-
- // Insert FP_REG_KILL instructions into basic blocks that need them. This
- // only occurs due to the floating point stackifier not being aggressive
- // enough to handle arbitrary global stackification.
- //
- // Currently we insert an FP_REG_KILL instruction into each block that uses or
- // defines a floating point virtual register.
- //
- // When the global register allocators (like linear scan) finally update live
- // variable analysis, we can keep floating point values in registers across
- // basic blocks. This will be a huge win, but we are waiting on the global
- // allocators before we can do this.
- //
- if (ContainsFPCode) {
- BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
- ++NumFPKill;
- }
-
- // Clear state used for selection.
- ExprMap.clear();
- RegPressureMap.clear();
-}
-
-
-// ComputeRegPressure - Compute the RegPressureMap, which is an approximation
-// for the number of registers required to compute each node. This is basically
-// computing a generalized form of the Sethi-Ullman number for each node.
-unsigned ISel::ComputeRegPressure(SDOperand O) {
- SDNode *N = O.Val;
- unsigned &Result = RegPressureMap[N];
- if (Result) return Result;
-
- // FIXME: Should operations like CALL (which clobber lots o regs) have a
- // higher fixed cost??
-
- if (N->getNumOperands() == 0) {
- Result = 1;
- } else {
- unsigned MaxRegUse = 0;
- unsigned NumExtraMaxRegUsers = 0;
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
- unsigned Regs;
- if (N->getOperand(i).getOpcode() == ISD::Constant)
- Regs = 0;
- else
- Regs = ComputeRegPressure(N->getOperand(i));
- if (Regs > MaxRegUse) {
- MaxRegUse = Regs;
- NumExtraMaxRegUsers = 0;
- } else if (Regs == MaxRegUse &&
- N->getOperand(i).getValueType() != MVT::Other) {
- ++NumExtraMaxRegUsers;
- }
- }
-
- if (O.getOpcode() != ISD::TokenFactor)
- Result = MaxRegUse+NumExtraMaxRegUsers;
- else
- Result = MaxRegUse == 1 ? 0 : MaxRegUse-1;
- }
-
- //std::cerr << " WEIGHT: " << Result << " "; N->dump(); std::cerr << "\n";
- return Result;
-}
-
-/// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op.
-/// The DAG cannot have cycles in it, by definition, so the visited set is not
-/// needed to prevent infinite loops. The DAG CAN, however, have unbounded
-/// reuse, so it prevents exponential cases.
-///
-static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op,
- std::set<SDNode*> &Visited) {
- if (N == Op) return true; // Found it.
- SDNode *Node = N.Val;
- if (Node->getNumOperands() == 0 || // Leaf?
- Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it?
- if (!Visited.insert(Node).second) return false; // Already visited?
-
- // Recurse for the first N-1 operands.
- for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
- if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited))
- return true;
-
- // Tail recurse for the last operand.
- return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited);
-}
-
-X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) {
- X86AddressMode Result;
-
- // If we need to emit two register operands, emit the one with the highest
- // register pressure first.
- if (IAM.BaseType == X86ISelAddressMode::RegBase &&
- IAM.Base.Reg.Val && IAM.IndexReg.Val) {
- bool EmitBaseThenIndex;
- if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) {
- std::set<SDNode*> Visited;
- EmitBaseThenIndex = true;
- // If Base ends up pointing to Index, we must emit index first. This is
- // because of the way we fold loads, we may end up doing bad things with
- // the folded add.
- if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited))
- EmitBaseThenIndex = false;
- } else {
- std::set<SDNode*> Visited;
- EmitBaseThenIndex = false;
- // If Base ends up pointing to Index, we must emit index first. This is
- // because of the way we fold loads, we may end up doing bad things with
- // the folded add.
- if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited))
- EmitBaseThenIndex = true;
- }
-
- if (EmitBaseThenIndex) {
- Result.Base.Reg = SelectExpr(IAM.Base.Reg);
- Result.IndexReg = SelectExpr(IAM.IndexReg);
- } else {
- Result.IndexReg = SelectExpr(IAM.IndexReg);
- Result.Base.Reg = SelectExpr(IAM.Base.Reg);
- }
-
- } else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) {
- Result.Base.Reg = SelectExpr(IAM.Base.Reg);
- } else if (IAM.IndexReg.Val) {
- Result.IndexReg = SelectExpr(IAM.IndexReg);
- }
-
- switch (IAM.BaseType) {
- case X86ISelAddressMode::RegBase:
- Result.BaseType = X86AddressMode::RegBase;
- break;
- case X86ISelAddressMode::FrameIndexBase:
- Result.BaseType = X86AddressMode::FrameIndexBase;
- Result.Base.FrameIndex = IAM.Base.FrameIndex;
- break;
- default:
- assert(0 && "Unknown base type!");
- break;
- }
- Result.Scale = IAM.Scale;
- Result.Disp = IAM.Disp;
- Result.GV = IAM.GV;
- return Result;
-}
-
-/// SelectAddress - Pattern match the maximal addressing mode for this node and
-/// emit all of the leaf registers.
-void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) {
- X86ISelAddressMode IAM;
- MatchAddress(N, IAM);
- AM = SelectAddrExprs(IAM);
-}
-
-/// MatchAddress - Add the specified node to the specified addressing mode,
-/// returning true if it cannot be done. This just pattern matches for the
-/// addressing mode, it does not cause any code to be emitted. For that, use
-/// SelectAddress.
-bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) {
- switch (N.getOpcode()) {
- default: break;
- case ISD::FrameIndex:
- if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
- AM.BaseType = X86ISelAddressMode::FrameIndexBase;
- AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
- return false;
- }
- break;
- case ISD::GlobalAddress:
- if (AM.GV == 0) {
- GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
- // For Darwin, external and weak symbols are indirect, so we want to load
- // the value at address GV, not the value of GV itself. This means that
- // the GlobalAddress must be in the base or index register of the address,
- // not the GV offset field.
- if (Subtarget->getIndirectExternAndWeakGlobals() &&
- (GV->hasWeakLinkage() || GV->isExternal())) {
- break;
- } else {
- AM.GV = GV;
- return false;
- }
- }
- break;
- case ISD::Constant:
- AM.Disp += cast<ConstantSDNode>(N)->getValue();
- return false;
- case ISD::SHL:
- // We might have folded the load into this shift, so don't regen the value
- // if so.
- if (ExprMap.count(N)) break;
-
- if (AM.IndexReg.Val == 0 && AM.Scale == 1)
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
- unsigned Val = CN->getValue();
- if (Val == 1 || Val == 2 || Val == 3) {
- AM.Scale = 1 << Val;
- SDOperand ShVal = N.Val->getOperand(0);
-
- // Okay, we know that we have a scale by now. However, if the scaled
- // value is an add of something and a constant, we can fold the
- // constant into the disp field here.
- if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
- isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
- AM.IndexReg = ShVal.Val->getOperand(0);
- ConstantSDNode *AddVal =
- cast<ConstantSDNode>(ShVal.Val->getOperand(1));
- AM.Disp += AddVal->getValue() << Val;
- } else {
- AM.IndexReg = ShVal;
- }
- return false;
- }
- }
- break;
- case ISD::MUL:
- // We might have folded the load into this mul, so don't regen the value if
- // so.
- if (ExprMap.count(N)) break;
-
- // X*[3,5,9] -> X+X*[2,4,8]
- if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase &&
- AM.Base.Reg.Val == 0)
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
- if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
- AM.Scale = unsigned(CN->getValue())-1;
-
- SDOperand MulVal = N.Val->getOperand(0);
- SDOperand Reg;
-
- // Okay, we know that we have a scale by now. However, if the scaled
- // value is an add of something and a constant, we can fold the
- // constant into the disp field here.
- if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
- isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
- Reg = MulVal.Val->getOperand(0);
- ConstantSDNode *AddVal =
- cast<ConstantSDNode>(MulVal.Val->getOperand(1));
- AM.Disp += AddVal->getValue() * CN->getValue();
- } else {
- Reg = N.Val->getOperand(0);
- }
-
- AM.IndexReg = AM.Base.Reg = Reg;
- return false;
- }
- break;
-
- case ISD::ADD: {
- // We might have folded the load into this mul, so don't regen the value if
- // so.
- if (ExprMap.count(N)) break;
-
- X86ISelAddressMode Backup = AM;
- if (!MatchAddress(N.Val->getOperand(0), AM) &&
- !MatchAddress(N.Val->getOperand(1), AM))
- return false;
- AM = Backup;
- if (!MatchAddress(N.Val->getOperand(1), AM) &&
- !MatchAddress(N.Val->getOperand(0), AM))
- return false;
- AM = Backup;
- break;
- }
- }
-
- // Is the base register already occupied?
- if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
- // If so, check to see if the scale index register is set.
- if (AM.IndexReg.Val == 0) {
- AM.IndexReg = N;
- AM.Scale = 1;
- return false;
- }
-
- // Otherwise, we cannot select it.
- return true;
- }
-
- // Default, generate it as a register.
- AM.BaseType = X86ISelAddressMode::RegBase;
- AM.Base.Reg = N;
- return false;
-}
-
-/// Emit2SetCCsAndLogical - Emit the following sequence of instructions,
-/// assuming that the temporary registers are in the 8-bit register class.
-///
-/// Tmp1 = setcc1
-/// Tmp2 = setcc2
-/// DestReg = logicalop Tmp1, Tmp2
-///
-static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1,
- unsigned SetCC2, unsigned LogicalOp,
- unsigned DestReg) {
- SSARegMap *RegMap = BB->getParent()->getSSARegMap();
- unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass);
- unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass);
- BuildMI(BB, SetCC1, 0, Tmp1);
- BuildMI(BB, SetCC2, 0, Tmp2);
- BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2);
-}
-
-/// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the
-/// condition codes match the specified SetCCOpcode. Note that some conditions
-/// require multiple instructions to generate the correct value.
-static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg,
- ISD::CondCode SetCCOpcode, bool isFP) {
- unsigned Opc;
- if (!isFP) {
- switch (SetCCOpcode) {
- default: assert(0 && "Illegal integer SetCC!");
- case ISD::SETEQ: Opc = X86::SETEr; break;
- case ISD::SETGT: Opc = X86::SETGr; break;
- case ISD::SETGE: Opc = X86::SETGEr; break;
- case ISD::SETLT: Opc = X86::SETLr; break;
- case ISD::SETLE: Opc = X86::SETLEr; break;
- case ISD::SETNE: Opc = X86::SETNEr; break;
- case ISD::SETULT: Opc = X86::SETBr; break;
- case ISD::SETUGT: Opc = X86::SETAr; break;
- case ISD::SETULE: Opc = X86::SETBEr; break;
- case ISD::SETUGE: Opc = X86::SETAEr; break;
- }
- } else {
- // On a floating point condition, the flags are set as follows:
- // ZF PF CF op
- // 0 | 0 | 0 | X > Y
- // 0 | 0 | 1 | X < Y
- // 1 | 0 | 0 | X == Y
- // 1 | 1 | 1 | unordered
- //
- switch (SetCCOpcode) {
- default: assert(0 && "Invalid FP setcc!");
- case ISD::SETUEQ:
- case ISD::SETEQ:
- Opc = X86::SETEr; // True if ZF = 1
- break;
- case ISD::SETOGT:
- case ISD::SETGT:
- Opc = X86::SETAr; // True if CF = 0 and ZF = 0
- break;
- case ISD::SETOGE:
- case ISD::SETGE:
- Opc = X86::SETAEr; // True if CF = 0
- break;
- case ISD::SETULT:
- case ISD::SETLT:
- Opc = X86::SETBr; // True if CF = 1
- break;
- case ISD::SETULE:
- case ISD::SETLE:
- Opc = X86::SETBEr; // True if CF = 1 or ZF = 1
- break;
- case ISD::SETONE:
- case ISD::SETNE:
- Opc = X86::SETNEr; // True if ZF = 0
- break;
- case ISD::SETUO:
- Opc = X86::SETPr; // True if PF = 1
- break;
- case ISD::SETO:
- Opc = X86::SETNPr; // True if PF = 0
- break;
- case ISD::SETOEQ: // !PF & ZF
- Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg);
- return;
- case ISD::SETOLT: // !PF & CF
- Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg);
- return;
- case ISD::SETOLE: // !PF & (CF || ZF)
- Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg);
- return;
- case ISD::SETUGT: // PF | (!ZF & !CF)
- Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg);
- return;
- case ISD::SETUGE: // PF | !CF
- Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg);
- return;
- case ISD::SETUNE: // PF | !ZF
- Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg);
- return;
- }
- }
- BuildMI(BB, Opc, 0, DestReg);
-}
-
-
-/// EmitBranchCC - Emit code into BB that arranges for control to transfer to
-/// the Dest block if the Cond condition is true. If we cannot fold this
-/// condition into the branch, return true.
-///
-bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain,
- SDOperand Cond) {
- // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A >
- // B) using two conditional branches instead of one condbr, two setcc's, and
- // an or.
- if ((Cond.getOpcode() == ISD::OR ||
- Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) {
- // And and or set the flags for us, so there is no need to emit a TST of the
- // result. It is only safe to do this if there is only a single use of the
- // AND/OR though, otherwise we don't know it will be emitted here.
- Select(Chain);
- SelectExpr(Cond);
- BuildMI(BB, X86::JNE, 1).addMBB(Dest);
- return false;
- }
-
- // Codegen br not C -> JE.
- if (Cond.getOpcode() == ISD::XOR)
- if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1)))
- if (NC->isAllOnesValue()) {
- unsigned CondR;
- if (getRegPressure(Chain) > getRegPressure(Cond)) {
- Select(Chain);
- CondR = SelectExpr(Cond.Val->getOperand(0));
- } else {
- CondR = SelectExpr(Cond.Val->getOperand(0));
- Select(Chain);
- }
- BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR);
- BuildMI(BB, X86::JE, 1).addMBB(Dest);
- return false;
- }
-
- if (Cond.getOpcode() != ISD::SETCC)
- return true; // Can only handle simple setcc's so far.
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
-
- unsigned Opc;
-
- // Handle integer conditions first.
- if (MVT::isInteger(Cond.getOperand(0).getValueType())) {
- switch (CC) {
- default: assert(0 && "Illegal integer SetCC!");
- case ISD::SETEQ: Opc = X86::JE; break;
- case ISD::SETGT: Opc = X86::JG; break;
- case ISD::SETGE: Opc = X86::JGE; break;
- case ISD::SETLT: Opc = X86::JL; break;
- case ISD::SETLE: Opc = X86::JLE; break;
- case ISD::SETNE: Opc = X86::JNE; break;
- case ISD::SETULT: Opc = X86::JB; break;
- case ISD::SETUGT: Opc = X86::JA; break;
- case ISD::SETULE: Opc = X86::JBE; break;
- case ISD::SETUGE: Opc = X86::JAE; break;
- }
- Select(Chain);
- EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse());
- BuildMI(BB, Opc, 1).addMBB(Dest);
- return false;
- }
-
- unsigned Opc2 = 0; // Second branch if needed.
-
- // On a floating point condition, the flags are set as follows:
- // ZF PF CF op
- // 0 | 0 | 0 | X > Y
- // 0 | 0 | 1 | X < Y
- // 1 | 0 | 0 | X == Y
- // 1 | 1 | 1 | unordered
- //
- switch (CC) {
- default: assert(0 && "Invalid FP setcc!");
- case ISD::SETUEQ:
- case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1
- case ISD::SETOGT:
- case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0
- case ISD::SETOGE:
- case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0
- case ISD::SETULT:
- case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1
- case ISD::SETULE:
- case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1
- case ISD::SETONE:
- case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0
- case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1
- case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0
- case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0)
- Opc = X86::JA; // ZF = 0 & CF = 0
- Opc2 = X86::JP; // PF = 1
- break;
- case ISD::SETUGE: // PF = 1 | CF = 0
- Opc = X86::JAE; // CF = 0
- Opc2 = X86::JP; // PF = 1
- break;
- case ISD::SETUNE: // PF = 1 | ZF = 0
- Opc = X86::JNE; // ZF = 0
- Opc2 = X86::JP; // PF = 1
- break;
- case ISD::SETOEQ: // PF = 0 & ZF = 1
- //X86::JNP, X86::JE
- //X86::AND8rr
- return true; // FIXME: Emit more efficient code for this branch.
- case ISD::SETOLT: // PF = 0 & CF = 1
- //X86::JNP, X86::JB
- //X86::AND8rr
- return true; // FIXME: Emit more efficient code for this branch.
- case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1)
- //X86::JNP, X86::JBE
- //X86::AND8rr
- return true; // FIXME: Emit more efficient code for this branch.
- }
-
- Select(Chain);
- EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse());
- BuildMI(BB, Opc, 1).addMBB(Dest);
- if (Opc2)
- BuildMI(BB, Opc2, 1).addMBB(Dest);
- return false;
-}
-
-/// EmitSelectCC - Emit code into BB that performs a select operation between
-/// the two registers RTrue and RFalse, generating a result into RDest.
-///
-void ISel::EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False,
- MVT::ValueType SVT, unsigned RDest) {
- unsigned RTrue, RFalse;
- enum Condition {
- EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP,
- NOT_SET
- } CondCode = NOT_SET;
-
- static const unsigned CMOVTAB16[] = {
- X86::CMOVE16rr, X86::CMOVNE16rr, X86::CMOVL16rr, X86::CMOVLE16rr,
- X86::CMOVG16rr, X86::CMOVGE16rr, X86::CMOVB16rr, X86::CMOVBE16rr,
- X86::CMOVA16rr, X86::CMOVAE16rr, X86::CMOVP16rr, X86::CMOVNP16rr,
- };
- static const unsigned CMOVTAB32[] = {
- X86::CMOVE32rr, X86::CMOVNE32rr, X86::CMOVL32rr, X86::CMOVLE32rr,
- X86::CMOVG32rr, X86::CMOVGE32rr, X86::CMOVB32rr, X86::CMOVBE32rr,
- X86::CMOVA32rr, X86::CMOVAE32rr, X86::CMOVP32rr, X86::CMOVNP32rr,
- };
- static const unsigned CMOVTABFP[] = {
- X86::FpCMOVE, X86::FpCMOVNE, /*missing*/0, /*missing*/0,
- /*missing*/0, /*missing*/ 0, X86::FpCMOVB, X86::FpCMOVBE,
- X86::FpCMOVNBE,X86::FpCMOVNB, X86::FpCMOVP, X86::FpCMOVNP
- };
- static const int SSE_CMOVTAB[] = {
- /*CMPEQ*/ 0, /*CMPNEQ*/ 4, /*missing*/ 0, /*missing*/ 0,
- /*missing*/ 0, /*missing*/ 0, /*CMPLT*/ 1, /*CMPLE*/ 2,
- /*CMPNLE*/ 6, /*CMPNLT*/ 5, /*CMPUNORD*/ 3, /*CMPORD*/ 7
- };
-
- if (Cond.getOpcode() == ISD::SETCC) {
- ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
- if (MVT::isInteger(Cond.getOperand(0).getValueType())) {
- switch (CC) {
- default: assert(0 && "Unknown integer comparison!");
- case ISD::SETEQ: CondCode = EQ; break;
- case ISD::SETGT: CondCode = GT; break;
- case ISD::SETGE: CondCode = GE; break;
- case ISD::SETLT: CondCode = LT; break;
- case ISD::SETLE: CondCode = LE; break;
- case ISD::SETNE: CondCode = NE; break;
- case ISD::SETULT: CondCode = B; break;
- case ISD::SETUGT: CondCode = A; break;
- case ISD::SETULE: CondCode = BE; break;
- case ISD::SETUGE: CondCode = AE; break;
- }
- } else {
- // On a floating point condition, the flags are set as follows:
- // ZF PF CF op
- // 0 | 0 | 0 | X > Y
- // 0 | 0 | 1 | X < Y
- // 1 | 0 | 0 | X == Y
- // 1 | 1 | 1 | unordered
- //
- switch (CC) {
- default: assert(0 && "Unknown FP comparison!");
- case ISD::SETUEQ:
- case ISD::SETEQ: CondCode = EQ; break; // True if ZF = 1
- case ISD::SETOGT:
- case ISD::SETGT: CondCode = A; break; // True if CF = 0 and ZF = 0
- case ISD::SETOGE:
- case ISD::SETGE: CondCode = AE; break; // True if CF = 0
- case ISD::SETULT:
- case ISD::SETLT: CondCode = B; break; // True if CF = 1
- case ISD::SETULE:
- case ISD::SETLE: CondCode = BE; break; // True if CF = 1 or ZF = 1
- case ISD::SETONE:
- case ISD::SETNE: CondCode = NE; break; // True if ZF = 0
- case ISD::SETUO: CondCode = P; break; // True if PF = 1
- case ISD::SETO: CondCode = NP; break; // True if PF = 0
- case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0)
- case ISD::SETUGE: // PF = 1 | CF = 0
- case ISD::SETUNE: // PF = 1 | ZF = 0
- case ISD::SETOEQ: // PF = 0 & ZF = 1
- case ISD::SETOLT: // PF = 0 & CF = 1
- case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1)
- // We cannot emit this comparison as a single cmov.
- break;
- }
- }
-
-
- // There's no SSE equivalent of FCMOVE. For cases where we set a condition
- // code above and one of the results of the select is +0.0, then we can fake
- // it up through a clever AND with mask. Otherwise, we will fall through to
- // the code below that will use a PHI node to select the right value.
- if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) {
- if (Cond.getOperand(0).getValueType() == SVT &&
- NOT_SET != CondCode) {
- ConstantFPSDNode *CT = dyn_cast<ConstantFPSDNode>(True);
- ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(False);
- bool TrueZero = CT && CT->isExactlyValue(0.0);
- bool FalseZero = CF && CF->isExactlyValue(0.0);
- if (TrueZero || FalseZero) {
- SDOperand LHS = Cond.getOperand(0);
- SDOperand RHS = Cond.getOperand(1);
-
- // Select the two halves of the condition
- unsigned RLHS, RRHS;
- if (getRegPressure(LHS) > getRegPressure(RHS)) {
- RLHS = SelectExpr(LHS);
- RRHS = SelectExpr(RHS);
- } else {
- RRHS = SelectExpr(RHS);
- RLHS = SelectExpr(LHS);
- }
-
- // Emit the comparison and generate a mask from it
- unsigned MaskReg = MakeReg(SVT);
- unsigned Opc = (SVT == MVT::f32) ? X86::CMPSSrr : X86::CMPSDrr;
- BuildMI(BB, Opc, 3, MaskReg).addReg(RLHS).addReg(RRHS)
- .addImm(SSE_CMOVTAB[CondCode]);
-
- if (TrueZero) {
- RFalse = SelectExpr(False);
- Opc = (SVT == MVT::f32) ? X86::ANDNPSrr : X86::ANDNPDrr;
- BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RFalse);
- } else {
- RTrue = SelectExpr(True);
- Opc = (SVT == MVT::f32) ? X86::ANDPSrr : X86::ANDPDrr;
- BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RTrue);
- }
- return;
- }
- }
- }
- }
-
- // Select the true and false values for use in both the SSE PHI case, and the
- // integer or x87 cmov cases below.
- if (getRegPressure(True) > getRegPressure(False)) {
- RTrue = SelectExpr(True);
- RFalse = SelectExpr(False);
- } else {
- RFalse = SelectExpr(False);
- RTrue = SelectExpr(True);
- }
-
- // Since there's no SSE equivalent of FCMOVE, and we couldn't generate an
- // AND with mask, we'll have to do the normal RISC thing and generate a PHI
- // node to select between the true and false values.
- if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) {
- // FIXME: emit a direct compare and branch rather than setting a cond reg
- // and testing it.
- unsigned CondReg = SelectExpr(Cond);
- BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
-
- // Create an iterator with which to insert the MBB for copying the false
- // value and the MBB to hold the PHI instruction for this SetCC.
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // thisMBB:
- // ...
- // TrueVal = ...
- // cmpTY ccX, r1, r2
- // bCC sinkMBB
- // fallthrough --> copy0MBB
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- BuildMI(BB, X86::JNE, 1).addMBB(sinkMBB);
- MachineFunction *F = BB->getParent();
- F->getBasicBlockList().insert(It, copy0MBB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy0MBB);
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = ...
- // # fallthrough to sinkMBB
- BB = copy0MBB;
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, X86::PHI, 4, RDest).addReg(RFalse)
- .addMBB(copy0MBB).addReg(RTrue).addMBB(thisMBB);
- return;
- }
-
- unsigned Opc = 0;
- if (CondCode != NOT_SET) {
- switch (SVT) {
- default: assert(0 && "Cannot select this type!");
- case MVT::i16: Opc = CMOVTAB16[CondCode]; break;
- case MVT::i32: Opc = CMOVTAB32[CondCode]; break;
- case MVT::f64: Opc = CMOVTABFP[CondCode]; break;
- }
- }
-
- // Finally, if we weren't able to fold this, just emit the condition and test
- // it.
- if (CondCode == NOT_SET || Opc == 0) {
- // Get the condition into the zero flag.
- unsigned CondReg = SelectExpr(Cond);
- BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
-
- switch (SVT) {
- default: assert(0 && "Cannot select this type!");
- case MVT::i16: Opc = X86::CMOVE16rr; break;
- case MVT::i32: Opc = X86::CMOVE32rr; break;
- case MVT::f64: Opc = X86::FpCMOVE; break;
- }
- } else {
- // FIXME: CMP R, 0 -> TEST R, R
- EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse());
- std::swap(RTrue, RFalse);
- }
- BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse);
-}
-
-void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) {
- unsigned Opc;
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
- Opc = 0;
- if (HasOneUse && isFoldableLoad(LHS, RHS)) {
- switch (RHS.getValueType()) {
- default: break;
- case MVT::i1:
- case MVT::i8: Opc = X86::CMP8mi; break;
- case MVT::i16: Opc = X86::CMP16mi; break;
- case MVT::i32: Opc = X86::CMP32mi; break;
- }
- if (Opc) {
- X86AddressMode AM;
- EmitFoldedLoad(LHS, AM);
- addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue());
- return;
- }
- }
-
- switch (RHS.getValueType()) {
- default: break;
- case MVT::i1:
- case MVT::i8: Opc = X86::CMP8ri; break;
- case MVT::i16: Opc = X86::CMP16ri; break;
- case MVT::i32: Opc = X86::CMP32ri; break;
- }
- if (Opc) {
- unsigned Tmp1 = SelectExpr(LHS);
- BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue());
- return;
- }
- } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(RHS)) {
- if (!X86ScalarSSE && (CN->isExactlyValue(+0.0) ||
- CN->isExactlyValue(-0.0))) {
- unsigned Reg = SelectExpr(LHS);
- BuildMI(BB, X86::FpTST, 1).addReg(Reg);
- BuildMI(BB, X86::FNSTSW8r, 0);
- BuildMI(BB, X86::SAHF, 1);
- return;
- }
- }
-
- Opc = 0;
- if (HasOneUse && isFoldableLoad(LHS, RHS)) {
- switch (RHS.getValueType()) {
- default: break;
- case MVT::i1:
- case MVT::i8: Opc = X86::CMP8mr; break;
- case MVT::i16: Opc = X86::CMP16mr; break;
- case MVT::i32: Opc = X86::CMP32mr; break;
- }
- if (Opc) {
- X86AddressMode AM;
- EmitFoldedLoad(LHS, AM);
- unsigned Reg = SelectExpr(RHS);
- addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg);
- return;
- }
- }
-
- switch (LHS.getValueType()) {
- default: assert(0 && "Cannot compare this value!");
- case MVT::i1:
- case MVT::i8: Opc = X86::CMP8rr; break;
- case MVT::i16: Opc = X86::CMP16rr; break;
- case MVT::i32: Opc = X86::CMP32rr; break;
- case MVT::f32: Opc = X86::UCOMISSrr; break;
- case MVT::f64: Opc = X86ScalarSSE ? X86::UCOMISDrr : X86::FpUCOMIr; break;
- }
- unsigned Tmp1, Tmp2;
- if (getRegPressure(LHS) > getRegPressure(RHS)) {
- Tmp1 = SelectExpr(LHS);
- Tmp2 = SelectExpr(RHS);
- } else {
- Tmp2 = SelectExpr(RHS);
- Tmp1 = SelectExpr(LHS);
- }
- BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2);
-}
-
-/// isFoldableLoad - Return true if this is a load instruction that can safely
-/// be folded into an operation that uses it.
-bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){
- if (Op.getOpcode() == ISD::LOAD) {
- // FIXME: currently can't fold constant pool indexes.
- if (isa<ConstantPoolSDNode>(Op.getOperand(1)))
- return false;
- } else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD &&
- cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::f32) {
- // FIXME: currently can't fold constant pool indexes.
- if (isa<ConstantPoolSDNode>(Op.getOperand(1)))
- return false;
- } else {
- return false;
- }
-
- // If this load has already been emitted, we clearly can't fold it.
- assert(Op.ResNo == 0 && "Not a use of the value of the load?");
- if (ExprMap.count(Op.getValue(1))) return false;
- assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?");
- assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?");
-
- // If there is not just one use of its value, we cannot fold.
- if (!Op.Val->hasNUsesOfValue(1, 0)) return false;
-
- // Finally, we cannot fold the load into the operation if this would induce a
- // cycle into the resultant dag. To check for this, see if OtherOp (the other
- // operand of the operation we are folding the load into) can possible use the
- // chain node defined by the load.
- if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain?
- std::set<SDNode*> Visited;
- if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited))
- return false;
- }
- return true;
-}
-
-
-/// EmitFoldedLoad - Ensure that the arguments of the load are code generated,
-/// and compute the address being loaded into AM.
-void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) {
- SDOperand Chain = Op.getOperand(0);
- SDOperand Address = Op.getOperand(1);
-
- if (getRegPressure(Chain) > getRegPressure(Address)) {
- Select(Chain);
- SelectAddress(Address, AM);
- } else {
- SelectAddress(Address, AM);
- Select(Chain);
- }
-
- // The chain for this load is now lowered.
- assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 &&
- "Load emitted more than once?");
- if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second)
- assert(0 && "Load emitted more than once!");
-}
-
-// EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1
-// and op2 are i8/i16/i32 values with one use each (the or). If we can form a
-// SHLD or SHRD, emit the instruction (generating the value into DestReg) and
-// return true.
-bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) {
- if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) {
- // good!
- } else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) {
- std::swap(Op1, Op2); // Op1 is the SHL now.
- } else {
- return false; // No match
- }
-
- SDOperand ShlVal = Op1.getOperand(0);
- SDOperand ShlAmt = Op1.getOperand(1);
- SDOperand ShrVal = Op2.getOperand(0);
- SDOperand ShrAmt = Op2.getOperand(1);
-
- unsigned RegSize = MVT::getSizeInBits(Op1.getValueType());
-
- // Find out if ShrAmt = 32-ShlAmt or ShlAmt = 32-ShrAmt.
- if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt)
- if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShlAmt.getOperand(0)))
- if (SubCST->getValue() == RegSize) {
- // (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt
- // (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt
- if (ShrVal == ShlVal) {
- unsigned Reg, ShAmt;
- if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) {
- Reg = SelectExpr(ShrVal);
- ShAmt = SelectExpr(ShrAmt);
- } else {
- ShAmt = SelectExpr(ShrAmt);
- Reg = SelectExpr(ShrVal);
- }
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
- unsigned Opc = RegSize == 8 ? X86::ROR8rCL :
- (RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL);
- BuildMI(BB, Opc, 1, DestReg).addReg(Reg);
- return true;
- } else if (RegSize != 8) {
- unsigned AReg, BReg;
- if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
- BReg = SelectExpr(ShlVal);
- AReg = SelectExpr(ShrVal);
- } else {
- AReg = SelectExpr(ShrVal);
- BReg = SelectExpr(ShlVal);
- }
- unsigned ShAmt = SelectExpr(ShrAmt);
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
- unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL;
- BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg);
- return true;
- }
- }
-
- if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt)
- if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShrAmt.getOperand(0)))
- if (SubCST->getValue() == RegSize) {
- // (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt
- // (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt
- if (ShrVal == ShlVal) {
- unsigned Reg, ShAmt;
- if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) {
- Reg = SelectExpr(ShrVal);
- ShAmt = SelectExpr(ShlAmt);
- } else {
- ShAmt = SelectExpr(ShlAmt);
- Reg = SelectExpr(ShrVal);
- }
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
- unsigned Opc = RegSize == 8 ? X86::ROL8rCL :
- (RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL);
- BuildMI(BB, Opc, 1, DestReg).addReg(Reg);
- return true;
- } else if (RegSize != 8) {
- unsigned AReg, BReg;
- if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
- AReg = SelectExpr(ShlVal);
- BReg = SelectExpr(ShrVal);
- } else {
- BReg = SelectExpr(ShrVal);
- AReg = SelectExpr(ShlVal);
- }
- unsigned ShAmt = SelectExpr(ShlAmt);
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
- unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL;
- BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg);
- return true;
- }
- }
-
- if (ConstantSDNode *ShrCst = dyn_cast<ConstantSDNode>(ShrAmt))
- if (ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(ShlAmt))
- if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize)
- if (ShrCst->getValue() == RegSize-ShlCst->getValue()) {
- // (A >> 5) | (A << 27) --> ROR A, 5
- // (A >> 5) | (B << 27) --> SHRD A, B, 5
- if (ShrVal == ShlVal) {
- unsigned Reg = SelectExpr(ShrVal);
- unsigned Opc = RegSize == 8 ? X86::ROR8ri :
- (RegSize == 16 ? X86::ROR16ri : X86::ROR32ri);
- BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue());
- return true;
- } else if (RegSize != 8) {
- unsigned AReg, BReg;
- if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
- BReg = SelectExpr(ShlVal);
- AReg = SelectExpr(ShrVal);
- } else {
- AReg = SelectExpr(ShrVal);
- BReg = SelectExpr(ShlVal);
- }
- unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8;
- BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg)
- .addImm(ShrCst->getValue());
- return true;
- }
- }
-
- return false;
-}
-
-unsigned ISel::SelectExpr(SDOperand N) {
- unsigned Result;
- unsigned Tmp1 = 0, Tmp2 = 0, Tmp3 = 0, Opc = 0;
- SDNode *Node = N.Val;
- SDOperand Op0, Op1;
-
- if (Node->getOpcode() == ISD::CopyFromReg ||
- Node->getOpcode() == ISD::Register) {
- unsigned Reg = (Node->getOpcode() == ISD::CopyFromReg) ?
- cast<RegisterSDNode>(Node->getOperand(1))->getReg() :
- cast<RegisterSDNode>(Node)->getReg();
- // Just use the specified register as our input if we can.
- if (Node->getOpcode() == ISD::Register ||
- MRegisterInfo::isVirtualRegister(Reg))
- return Reg;
- }
-
- unsigned &Reg = ExprMap[N];
- if (Reg) return Reg;
-
- switch (N.getOpcode()) {
- default:
- Reg = Result = (N.getValueType() != MVT::Other) ?
- MakeReg(N.getValueType()) : 1;
- break;
- case X86ISD::TAILCALL:
- case X86ISD::CALL:
- // If this is a call instruction, make sure to prepare ALL of the result
- // values as well as the chain.
- ExprMap[N.getValue(0)] = 1;
- if (Node->getNumValues() > 1) {
- Result = MakeReg(Node->getValueType(1));
- ExprMap[N.getValue(1)] = Result;
- for (unsigned i = 2, e = Node->getNumValues(); i != e; ++i)
- ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
- } else {
- Result = 1;
- }
- break;
- case ISD::ADD_PARTS:
- case ISD::SUB_PARTS:
- case ISD::SHL_PARTS:
- case ISD::SRL_PARTS:
- case ISD::SRA_PARTS:
- Result = MakeReg(Node->getValueType(0));
- ExprMap[N.getValue(0)] = Result;
- for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
- ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
- break;
- }
-
- switch (N.getOpcode()) {
- default:
- Node->dump();
- assert(0 && "Node not handled!\n");
- case ISD::FP_EXTEND:
- assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32");
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, X86::CVTSS2SDrr, 1, Result).addReg(Tmp1);
- return Result;
- case ISD::FP_ROUND:
- assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32");
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, X86::CVTSD2SSrr, 1, Result).addReg(Tmp1);
- return Result;
- case ISD::CopyFromReg:
- Select(N.getOperand(0));
- if (Result == 1) {
- Reg = Result = ExprMap[N.getValue(0)] =
- MakeReg(N.getValue(0).getValueType());
- }
- Tmp1 = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
- switch (Node->getValueType(0)) {
- default: assert(0 && "Cannot CopyFromReg this!");
- case MVT::i1:
- case MVT::i8:
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1);
- return Result;
- case MVT::i16:
- BuildMI(BB, X86::MOV16rr, 1, Result).addReg(Tmp1);
- return Result;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- case ISD::FrameIndex:
- Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
- addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1);
- return Result;
- case ISD::ConstantPool: {
- Constant *C = cast<ConstantPoolSDNode>(N)->get();
- unsigned Align = cast<ConstantPoolSDNode>(N)->getAlignment();
- if (Align == 0) {
- Align = C->getType() == Type::DoubleTy ? 3 :
- TD.getTypeAlignmentShift(C->getType());
- }
- Tmp1 = BB->getParent()->getConstantPool()->getConstantPoolIndex(C, Align);
- addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1);
- return Result;
- }
- case ISD::ConstantFP:
- if (X86ScalarSSE) {
- assert(cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) &&
- "SSE only supports +0.0");
- Opc = (N.getValueType() == MVT::f32) ? X86::FLD0SS : X86::FLD0SD;
- BuildMI(BB, Opc, 0, Result);
- return Result;
- }
- ContainsFPCode = true;
- Tmp1 = Result; // Intermediate Register
- if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
- cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
- Tmp1 = MakeReg(MVT::f64);
-
- if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
- cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
- BuildMI(BB, X86::FpLD0, 0, Tmp1);
- else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
- cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
- BuildMI(BB, X86::FpLD1, 0, Tmp1);
- else
- assert(0 && "Unexpected constant!");
- if (Tmp1 != Result)
- BuildMI(BB, X86::FpCHS, 1, Result).addReg(Tmp1);
- return Result;
- case ISD::Constant:
- switch (N.getValueType()) {
- default: assert(0 && "Cannot use constants of this type!");
- case MVT::i1:
- case MVT::i8: Opc = X86::MOV8ri; break;
- case MVT::i16: Opc = X86::MOV16ri; break;
- case MVT::i32: Opc = X86::MOV32ri; break;
- }
- BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue());
- return Result;
- case ISD::UNDEF:
- BuildMI(BB, X86::IMPLICIT_DEF, 0, Result);
- return Result;
- case ISD::GlobalAddress: {
- GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
- // For Darwin, external and weak symbols are indirect, so we want to load
- // the value at address GV, not the value of GV itself.
- if (Subtarget->getIndirectExternAndWeakGlobals() &&
- (GV->hasWeakLinkage() || GV->isExternal())) {
- BuildMI(BB, X86::MOV32rm, 4, Result).addReg(0).addZImm(1).addReg(0)
- .addGlobalAddress(GV, false, 0);
- } else {
- BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV);
- }
- return Result;
- }
- case ISD::ExternalSymbol: {
- const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
- BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym);
- return Result;
- }
- case ISD::ANY_EXTEND: // treat any extend like zext
- case ISD::ZERO_EXTEND: {
- int DestIs16 = N.getValueType() == MVT::i16;
- int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16;
-
- // FIXME: This hack is here for zero extension casts from bool to i8. This
- // would not be needed if bools were promoted by Legalize.
- if (N.getValueType() == MVT::i8) {
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- if (isFoldableLoad(N.getOperand(0), SDOperand())) {
- static const unsigned Opc[3] = {
- X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8
- };
-
- X86AddressMode AM;
- EmitFoldedLoad(N.getOperand(0), AM);
- addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM);
-
- return Result;
- }
-
- static const unsigned Opc[3] = {
- X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8
- };
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
- return Result;
- }
- case ISD::SIGN_EXTEND: {
- int DestIs16 = N.getValueType() == MVT::i16;
- int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16;
-
- // FIXME: Legalize should promote bools to i8!
- assert(N.getOperand(0).getValueType() != MVT::i1 &&
- "Sign extend from bool not implemented!");
-
- if (isFoldableLoad(N.getOperand(0), SDOperand())) {
- static const unsigned Opc[3] = {
- X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8
- };
-
- X86AddressMode AM;
- EmitFoldedLoad(N.getOperand(0), AM);
- addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM);
- return Result;
- }
-
- static const unsigned Opc[3] = {
- X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8
- };
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
- return Result;
- }
- case ISD::TRUNCATE:
- // Handle cast of LARGER int to SMALLER int using a move to EAX followed by
- // a move out of AX or AL.
- switch (N.getOperand(0).getValueType()) {
- default: assert(0 && "Unknown truncate!");
- case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break;
- case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break;
- case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break;
- }
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
-
- switch (N.getValueType()) {
- default: assert(0 && "Unknown truncate!");
- case MVT::i1:
- case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break;
- case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break;
- }
- BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
- return Result;
-
- case ISD::SINT_TO_FP: {
- Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
- unsigned PromoteOpcode = 0;
-
- // We can handle any sint to fp with the direct sse conversion instructions.
- if (X86ScalarSSE) {
- Opc = (N.getValueType() == MVT::f64) ? X86::CVTSI2SDrr : X86::CVTSI2SSrr;
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- ContainsFPCode = true;
-
- // Spill the integer to memory and reload it from there.
- MVT::ValueType SrcTy = N.getOperand(0).getValueType();
- unsigned Size = MVT::getSizeInBits(SrcTy)/8;
- MachineFunction *F = BB->getParent();
- int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
-
- switch (SrcTy) {
- case MVT::i32:
- addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1);
- addFrameReference(BuildMI(BB, X86::FpILD32m, 5, Result), FrameIdx);
- break;
- case MVT::i16:
- addFrameReference(BuildMI(BB, X86::MOV16mr, 5), FrameIdx).addReg(Tmp1);
- addFrameReference(BuildMI(BB, X86::FpILD16m, 5, Result), FrameIdx);
- break;
- default: break; // No promotion required.
- }
- return Result;
- }
- case ISD::FP_TO_SINT:
- Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
-
- // If the target supports SSE2 and is performing FP operations in SSE regs
- // instead of the FP stack, then we can use the efficient CVTSS2SI and
- // CVTSD2SI instructions.
- assert(X86ScalarSSE);
- if (MVT::f32 == N.getOperand(0).getValueType()) {
- BuildMI(BB, X86::CVTTSS2SIrr, 1, Result).addReg(Tmp1);
- } else if (MVT::f64 == N.getOperand(0).getValueType()) {
- BuildMI(BB, X86::CVTTSD2SIrr, 1, Result).addReg(Tmp1);
- } else {
- assert(0 && "Not an f32 or f64?");
- abort();
- }
- return Result;
-
- case ISD::FADD:
- case ISD::ADD:
- Op0 = N.getOperand(0);
- Op1 = N.getOperand(1);
-
- if (isFoldableLoad(Op0, Op1, true)) {
- std::swap(Op0, Op1);
- goto FoldAdd;
- }
-
- if (isFoldableLoad(Op1, Op0, true)) {
- FoldAdd:
- switch (N.getValueType()) {
- default: assert(0 && "Cannot add this type!");
- case MVT::i1:
- case MVT::i8: Opc = X86::ADD8rm; break;
- case MVT::i16: Opc = X86::ADD16rm; break;
- case MVT::i32: Opc = X86::ADD32rm; break;
- case MVT::f32: Opc = X86::ADDSSrm; break;
- case MVT::f64:
- // For F64, handle promoted load operations (from F32) as well!
- if (X86ScalarSSE) {
- assert(Op1.getOpcode() == ISD::LOAD && "SSE load not promoted");
- Opc = X86::ADDSDrm;
- } else {
- Opc = Op1.getOpcode() == ISD::LOAD ? X86::FpADD64m : X86::FpADD32m;
- }
- break;
- }
- X86AddressMode AM;
- EmitFoldedLoad(Op1, AM);
- Tmp1 = SelectExpr(Op0);
- addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
- return Result;
- }
-
- // See if we can codegen this as an LEA to fold operations together.
- if (N.getValueType() == MVT::i32) {
- ExprMap.erase(N);
- X86ISelAddressMode AM;
- MatchAddress(N, AM);
- ExprMap[N] = Result;
-
- // If this is not just an add, emit the LEA. For a simple add (like
- // reg+reg or reg+imm), we just emit an add. It might be a good idea to
- // leave this as LEA, then peephole it to 'ADD' after two address elim
- // happens.
- if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase||
- AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) {
- X86AddressMode XAM = SelectAddrExprs(AM);
- addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM);
- return Result;
- }
- }
-
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
- Opc = 0;
- if (CN->getValue() == 1) { // add X, 1 -> inc X
- switch (N.getValueType()) {
- default: assert(0 && "Cannot integer add this type!");
- case MVT::i8: Opc = X86::INC8r; break;
- case MVT::i16: Opc = X86::INC16r; break;
- case MVT::i32: Opc = X86::INC32r; break;
- }
- } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X
- switch (N.getValueType()) {
- default: assert(0 && "Cannot integer add this type!");
- case MVT::i8: Opc = X86::DEC8r; break;
- case MVT::i16: Opc = X86::DEC16r; break;
- case MVT::i32: Opc = X86::DEC32r; break;
- }
- }
-
- if (Opc) {
- Tmp1 = SelectExpr(Op0);
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot add this type!");
- case MVT::i8: Opc = X86::ADD8ri; break;
- case MVT::i16: Opc = X86::ADD16ri; break;
- case MVT::i32: Opc = X86::ADD32ri; break;
- }
- if (Opc) {
- Tmp1 = SelectExpr(Op0);
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
- return Result;
- }
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot add this type!");
- case MVT::i8: Opc = X86::ADD8rr; break;
- case MVT::i16: Opc = X86::ADD16rr; break;
- case MVT::i32: Opc = X86::ADD32rr; break;
- case MVT::f32: Opc = X86::ADDSSrr; break;
- case MVT::f64: Opc = X86ScalarSSE ? X86::ADDSDrr : X86::FpADD; break;
- }
-
- if (getRegPressure(Op0) > getRegPressure(Op1)) {
- Tmp1 = SelectExpr(Op0);
- Tmp2 = SelectExpr(Op1);
- } else {
- Tmp2 = SelectExpr(Op1);
- Tmp1 = SelectExpr(Op0);
- }
-
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
-
- case ISD::FSQRT:
- Tmp1 = SelectExpr(Node->getOperand(0));
- if (X86ScalarSSE) {
- Opc = (N.getValueType() == MVT::f32) ? X86::SQRTSSrr : X86::SQRTSDrr;
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- } else {
- BuildMI(BB, X86::FpSQRT, 1, Result).addReg(Tmp1);
- }
- return Result;
-
- // FIXME:
- // Once we can spill 16 byte constants into the constant pool, we can
- // implement SSE equivalents of FABS and FCHS.
- case ISD::FABS:
- case ISD::FNEG:
- case ISD::FSIN:
- case ISD::FCOS:
- assert(N.getValueType()==MVT::f64 && "Illegal type for this operation");
- Tmp1 = SelectExpr(Node->getOperand(0));
- switch (N.getOpcode()) {
- default: assert(0 && "Unreachable!");
- case ISD::FABS: BuildMI(BB, X86::FpABS, 1, Result).addReg(Tmp1); break;
- case ISD::FNEG: BuildMI(BB, X86::FpCHS, 1, Result).addReg(Tmp1); break;
- case ISD::FSIN: BuildMI(BB, X86::FpSIN, 1, Result).addReg(Tmp1); break;
- case ISD::FCOS: BuildMI(BB, X86::FpCOS, 1, Result).addReg(Tmp1); break;
- }
- return Result;
-
- case ISD::MULHU:
- switch (N.getValueType()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8: Tmp2 = X86::MUL8r; break;
- case MVT::i16: Tmp2 = X86::MUL16r; break;
- case MVT::i32: Tmp2 = X86::MUL32r; break;
- }
- // FALL THROUGH
- case ISD::MULHS: {
- unsigned MovOpc, LowReg, HiReg;
- switch (N.getValueType()) {
- default: assert(0 && "Unsupported VT!");
- case MVT::i8:
- MovOpc = X86::MOV8rr;
- LowReg = X86::AL;
- HiReg = X86::AH;
- Opc = X86::IMUL8r;
- break;
- case MVT::i16:
- MovOpc = X86::MOV16rr;
- LowReg = X86::AX;
- HiReg = X86::DX;
- Opc = X86::IMUL16r;
- break;
- case MVT::i32:
- MovOpc = X86::MOV32rr;
- LowReg = X86::EAX;
- HiReg = X86::EDX;
- Opc = X86::IMUL32r;
- break;
- }
- if (Node->getOpcode() != ISD::MULHS)
- Opc = Tmp2; // Get the MULHU opcode.
-
- Op0 = Node->getOperand(0);
- Op1 = Node->getOperand(1);
- if (getRegPressure(Op0) > getRegPressure(Op1)) {
- Tmp1 = SelectExpr(Op0);
- Tmp2 = SelectExpr(Op1);
- } else {
- Tmp2 = SelectExpr(Op1);
- Tmp1 = SelectExpr(Op0);
- }
-
- // FIXME: Implement folding of loads into the memory operands here!
- BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1);
- BuildMI(BB, Opc, 1).addReg(Tmp2);
- BuildMI(BB, MovOpc, 1, Result).addReg(HiReg);
- return Result;
- }
-
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::SUB:
- case ISD::MUL:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: {
- static const unsigned SUBTab[] = {
- X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0,
- X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FpSUB32m, X86::FpSUB64m,
- X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB , X86::FpSUB,
- };
- static const unsigned SSE_SUBTab[] = {
- X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0,
- X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::SUBSSrm, X86::SUBSDrm,
- X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::SUBSSrr, X86::SUBSDrr,
- };
- static const unsigned MULTab[] = {
- 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0,
- 0, X86::IMUL16rm , X86::IMUL32rm, X86::FpMUL32m, X86::FpMUL64m,
- 0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL , X86::FpMUL,
- };
- static const unsigned SSE_MULTab[] = {
- 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0,
- 0, X86::IMUL16rm , X86::IMUL32rm, X86::MULSSrm, X86::MULSDrm,
- 0, X86::IMUL16rr , X86::IMUL32rr, X86::MULSSrr, X86::MULSDrr,
- };
- static const unsigned ANDTab[] = {
- X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0,
- X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0,
- X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0,
- };
- static const unsigned ORTab[] = {
- X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0,
- X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0,
- X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0,
- };
- static const unsigned XORTab[] = {
- X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0,
- X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0,
- X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0,
- };
-
- Op0 = Node->getOperand(0);
- Op1 = Node->getOperand(1);
-
- if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse())
- if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates.
- return Result;
-
- if (Node->getOpcode() == ISD::SUB)
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0)))
- if (CN->isNullValue()) { // 0 - N -> neg N
- switch (N.getValueType()) {
- default: assert(0 && "Cannot sub this type!");
- case MVT::i1:
- case MVT::i8: Opc = X86::NEG8r; break;
- case MVT::i16: Opc = X86::NEG16r; break;
- case MVT::i32: Opc = X86::NEG32r; break;
- }
- Tmp1 = SelectExpr(N.getOperand(1));
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
- if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) {
- Opc = 0;
- switch (N.getValueType()) {
- default: assert(0 && "Cannot add this type!");
- case MVT::i1: break; // Not supported, don't invert upper bits!
- case MVT::i8: Opc = X86::NOT8r; break;
- case MVT::i16: Opc = X86::NOT16r; break;
- case MVT::i32: Opc = X86::NOT32r; break;
- }
- if (Opc) {
- Tmp1 = SelectExpr(Op0);
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- }
- }
-
- // Fold common multiplies into LEA instructions.
- if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) {
- switch ((int)CN->getValue()) {
- default: break;
- case 3:
- case 5:
- case 9:
- // Remove N from exprmap so SelectAddress doesn't get confused.
- ExprMap.erase(N);
- X86AddressMode AM;
- SelectAddress(N, AM);
- // Restore it to the map.
- ExprMap[N] = Result;
- addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM);
- return Result;
- }
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot xor this type!");
- case MVT::i1:
- case MVT::i8: Opc = 0; break;
- case MVT::i16: Opc = 1; break;
- case MVT::i32: Opc = 2; break;
- }
- switch (Node->getOpcode()) {
- default: assert(0 && "Unreachable!");
- case ISD::FSUB:
- case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break;
- case ISD::FMUL:
- case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break;
- case ISD::AND: Opc = ANDTab[Opc]; break;
- case ISD::OR: Opc = ORTab[Opc]; break;
- case ISD::XOR: Opc = XORTab[Opc]; break;
- }
- if (Opc) { // Can't fold MUL:i8 R, imm
- Tmp1 = SelectExpr(Op0);
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
- return Result;
- }
- }
-
- if (isFoldableLoad(Op0, Op1, true))
- if (Node->getOpcode() != ISD::SUB && Node->getOpcode() != ISD::FSUB) {
- std::swap(Op0, Op1);
- goto FoldOps;
- } else {
- // For FP, emit 'reverse' subract, with a memory operand.
- if (N.getValueType() == MVT::f64 && !X86ScalarSSE) {
- if (Op0.getOpcode() == ISD::EXTLOAD)
- Opc = X86::FpSUBR32m;
- else
- Opc = X86::FpSUBR64m;
-
- X86AddressMode AM;
- EmitFoldedLoad(Op0, AM);
- Tmp1 = SelectExpr(Op1);
- addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
- return Result;
- }
- }
-
- if (isFoldableLoad(Op1, Op0, true)) {
- FoldOps:
- switch (N.getValueType()) {
- default: assert(0 && "Cannot operate on this type!");
- case MVT::i1:
- case MVT::i8: Opc = 5; break;
- case MVT::i16: Opc = 6; break;
- case MVT::i32: Opc = 7; break;
- case MVT::f32: Opc = 8; break;
- // For F64, handle promoted load operations (from F32) as well!
- case MVT::f64:
- assert((!X86ScalarSSE || Op1.getOpcode() == ISD::LOAD) &&
- "SSE load should have been promoted");
- Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break;
- }
- switch (Node->getOpcode()) {
- default: assert(0 && "Unreachable!");
- case ISD::FSUB:
- case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break;
- case ISD::FMUL:
- case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break;
- case ISD::AND: Opc = ANDTab[Opc]; break;
- case ISD::OR: Opc = ORTab[Opc]; break;
- case ISD::XOR: Opc = XORTab[Opc]; break;
- }
-
- X86AddressMode AM;
- EmitFoldedLoad(Op1, AM);
- Tmp1 = SelectExpr(Op0);
- if (Opc) {
- addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
- } else {
- assert(Node->getOpcode() == ISD::MUL &&
- N.getValueType() == MVT::i8 && "Unexpected situation!");
- // Must use the MUL instruction, which forces use of AL.
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
- addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM);
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
- }
- return Result;
- }
-
- if (getRegPressure(Op0) > getRegPressure(Op1)) {
- Tmp1 = SelectExpr(Op0);
- Tmp2 = SelectExpr(Op1);
- } else {
- Tmp2 = SelectExpr(Op1);
- Tmp1 = SelectExpr(Op0);
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot add this type!");
- case MVT::i1:
- case MVT::i8: Opc = 10; break;
- case MVT::i16: Opc = 11; break;
- case MVT::i32: Opc = 12; break;
- case MVT::f32: Opc = 13; break;
- case MVT::f64: Opc = 14; break;
- }
- switch (Node->getOpcode()) {
- default: assert(0 && "Unreachable!");
- case ISD::FSUB:
- case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break;
- case ISD::FMUL:
- case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break;
- case ISD::AND: Opc = ANDTab[Opc]; break;
- case ISD::OR: Opc = ORTab[Opc]; break;
- case ISD::XOR: Opc = XORTab[Opc]; break;
- }
- if (Opc) {
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
- } else {
- assert(Node->getOpcode() == ISD::MUL &&
- N.getValueType() == MVT::i8 && "Unexpected situation!");
- // Must use the MUL instruction, which forces use of AL.
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
- BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2);
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
- }
- return Result;
- }
- case ISD::ADD_PARTS:
- case ISD::SUB_PARTS: {
- assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 &&
- "Not an i64 add/sub!");
- // Emit all of the operands.
- std::vector<unsigned> InVals;
- for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)
- InVals.push_back(SelectExpr(N.getOperand(i)));
- if (N.getOpcode() == ISD::ADD_PARTS) {
- BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
- BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]);
- } else {
- BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
- BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]);
- }
- return Result+N.ResNo;
- }
-
- case ISD::SHL_PARTS:
- case ISD::SRA_PARTS:
- case ISD::SRL_PARTS: {
- assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 &&
- "Not an i64 shift!");
- unsigned ShiftOpLo = SelectExpr(N.getOperand(0));
- unsigned ShiftOpHi = SelectExpr(N.getOperand(1));
- unsigned TmpReg = MakeReg(MVT::i32);
- if (N.getOpcode() == ISD::SRA_PARTS) {
- // If this is a SHR of a Long, then we need to do funny sign extension
- // stuff. TmpReg gets the value to use as the high-part if we are
- // shifting more than 32 bits.
- BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31);
- } else {
- // Other shifts use a fixed zero value if the shift is more than 32 bits.
- BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0);
- }
-
- // Initialize CL with the shift amount.
- unsigned ShiftAmountReg = SelectExpr(N.getOperand(2));
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
-
- unsigned TmpReg2 = MakeReg(MVT::i32);
- unsigned TmpReg3 = MakeReg(MVT::i32);
- if (N.getOpcode() == ISD::SHL_PARTS) {
- // TmpReg2 = shld inHi, inLo
- BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi)
- .addReg(ShiftOpLo);
- // TmpReg3 = shl inLo, CL
- BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo);
-
- // Set the flags to indicate whether the shift was by more than 32 bits.
- BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
-
- // DestHi = (>32) ? TmpReg3 : TmpReg2;
- BuildMI(BB, X86::CMOVNE32rr, 2,
- Result+1).addReg(TmpReg2).addReg(TmpReg3);
- // DestLo = (>32) ? TmpReg : TmpReg3;
- BuildMI(BB, X86::CMOVNE32rr, 2,
- Result).addReg(TmpReg3).addReg(TmpReg);
- } else {
- // TmpReg2 = shrd inLo, inHi
- BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo)
- .addReg(ShiftOpHi);
- // TmpReg3 = s[ah]r inHi, CL
- BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL
- : X86::SHR32rCL, 1, TmpReg3)
- .addReg(ShiftOpHi);
-
- // Set the flags to indicate whether the shift was by more than 32 bits.
- BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
-
- // DestLo = (>32) ? TmpReg3 : TmpReg2;
- BuildMI(BB, X86::CMOVNE32rr, 2,
- Result).addReg(TmpReg2).addReg(TmpReg3);
-
- // DestHi = (>32) ? TmpReg : TmpReg3;
- BuildMI(BB, X86::CMOVNE32rr, 2,
- Result+1).addReg(TmpReg3).addReg(TmpReg);
- }
- return Result+N.ResNo;
- }
-
- case ISD::SELECT:
- EmitSelectCC(N.getOperand(0), N.getOperand(1), N.getOperand(2),
- N.getValueType(), Result);
- return Result;
-
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM: {
- assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) &&
- "We don't support this operator!");
-
- if (N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::FDIV) {
- // We can fold loads into FpDIVs, but not really into any others.
- if (N.getValueType() == MVT::f64 && !X86ScalarSSE) {
- // Check for reversed and unreversed DIV.
- if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) {
- if (N.getOperand(0).getOpcode() == ISD::EXTLOAD)
- Opc = X86::FpDIVR32m;
- else
- Opc = X86::FpDIVR64m;
- X86AddressMode AM;
- EmitFoldedLoad(N.getOperand(0), AM);
- Tmp1 = SelectExpr(N.getOperand(1));
- addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
- return Result;
- } else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) &&
- N.getOperand(1).getOpcode() == ISD::LOAD) {
- if (N.getOperand(1).getOpcode() == ISD::EXTLOAD)
- Opc = X86::FpDIV32m;
- else
- Opc = X86::FpDIV64m;
- X86AddressMode AM;
- EmitFoldedLoad(N.getOperand(1), AM);
- Tmp1 = SelectExpr(N.getOperand(0));
- addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
- return Result;
- }
- }
- }
-
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- Tmp1 = SelectExpr(N.getOperand(0));
- }
-
- bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM;
- bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV;
- unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode;
- switch (N.getValueType()) {
- default: assert(0 && "Cannot sdiv this type!");
- case MVT::i8:
- DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r;
- LoReg = X86::AL;
- HiReg = X86::AH;
- MovOpcode = X86::MOV8rr;
- ClrOpcode = X86::MOV8ri;
- SExtOpcode = X86::CBW;
- break;
- case MVT::i16:
- DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r;
- LoReg = X86::AX;
- HiReg = X86::DX;
- MovOpcode = X86::MOV16rr;
- ClrOpcode = X86::MOV16ri;
- SExtOpcode = X86::CWD;
- break;
- case MVT::i32:
- DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r;
- LoReg = X86::EAX;
- HiReg = X86::EDX;
- MovOpcode = X86::MOV32rr;
- ClrOpcode = X86::MOV32ri;
- SExtOpcode = X86::CDQ;
- break;
- case MVT::f32:
- BuildMI(BB, X86::DIVSSrr, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
- case MVT::f64:
- Opc = X86ScalarSSE ? X86::DIVSDrr : X86::FpDIV;
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
- }
-
- // Set up the low part.
- BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1);
-
- if (isSigned) {
- // Sign extend the low part into the high part.
- BuildMI(BB, SExtOpcode, 0);
- } else {
- // Zero out the high part, effectively zero extending the input.
- BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0);
- }
-
- // Emit the DIV/IDIV instruction.
- BuildMI(BB, DivOpcode, 1).addReg(Tmp2);
-
- // Get the result of the divide or rem.
- BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg);
- return Result;
- }
-
- case ISD::SHL:
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8: Opc = X86::ADD8rr; break;
- case MVT::i16: Opc = X86::ADD16rr; break;
- case MVT::i32: Opc = X86::ADD32rr; break;
- }
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1);
- return Result;
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8: Opc = X86::SHL8ri; break;
- case MVT::i16: Opc = X86::SHL16ri; break;
- case MVT::i32: Opc = X86::SHL32ri; break;
- }
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
- return Result;
- }
-
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- Tmp1 = SelectExpr(N.getOperand(0));
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8 : Opc = X86::SHL8rCL; break;
- case MVT::i16: Opc = X86::SHL16rCL; break;
- case MVT::i32: Opc = X86::SHL32rCL; break;
- }
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- case ISD::SRL:
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8: Opc = X86::SHR8ri; break;
- case MVT::i16: Opc = X86::SHR16ri; break;
- case MVT::i32: Opc = X86::SHR32ri; break;
- }
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
- return Result;
- }
-
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- Tmp1 = SelectExpr(N.getOperand(0));
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8 : Opc = X86::SHR8rCL; break;
- case MVT::i16: Opc = X86::SHR16rCL; break;
- case MVT::i32: Opc = X86::SHR32rCL; break;
- }
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- case ISD::SRA:
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8: Opc = X86::SAR8ri; break;
- case MVT::i16: Opc = X86::SAR16ri; break;
- case MVT::i32: Opc = X86::SAR32ri; break;
- }
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
- return Result;
- }
-
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- Tmp1 = SelectExpr(N.getOperand(0));
- }
-
- switch (N.getValueType()) {
- default: assert(0 && "Cannot shift this type!");
- case MVT::i8 : Opc = X86::SAR8rCL; break;
- case MVT::i16: Opc = X86::SAR16rCL; break;
- case MVT::i32: Opc = X86::SAR32rCL; break;
- }
- BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
-
- case ISD::SETCC:
- EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse());
- EmitSetCC(BB, Result, cast<CondCodeSDNode>(N.getOperand(2))->get(),
- MVT::isFloatingPoint(N.getOperand(1).getValueType()));
- return Result;
- case ISD::LOAD:
- // Make sure we generate both values.
- if (Result != 1) { // Generate the token
- if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
- assert(0 && "Load already emitted!?");
- } else
- Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
-
- switch (Node->getValueType(0)) {
- default: assert(0 && "Cannot load this type!");
- case MVT::i1:
- case MVT::i8: Opc = X86::MOV8rm; break;
- case MVT::i16: Opc = X86::MOV16rm; break;
- case MVT::i32: Opc = X86::MOV32rm; break;
- case MVT::f32: Opc = X86::MOVSSrm; break;
- case MVT::f64:
- if (X86ScalarSSE) {
- Opc = X86::MOVSDrm;
- } else {
- Opc = X86::FpLD64m;
- ContainsFPCode = true;
- }
- break;
- }
-
- if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){
- Constant *C = CP->get();
- unsigned Align = CP->getAlignment();
- if (Align == 0) {
- Align = C->getType() == Type::DoubleTy ? 3 :
- TD.getTypeAlignmentShift(C->getType());
- }
-
- unsigned CPIdx = BB->getParent()->getConstantPool()->
- getConstantPoolIndex(C, Align);
- Select(N.getOperand(0));
- addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CPIdx);
- } else {
- X86AddressMode AM;
-
- SDOperand Chain = N.getOperand(0);
- SDOperand Address = N.getOperand(1);
- if (getRegPressure(Chain) > getRegPressure(Address)) {
- Select(Chain);
- SelectAddress(Address, AM);
- } else {
- SelectAddress(Address, AM);
- Select(Chain);
- }
-
- addFullAddress(BuildMI(BB, Opc, 4, Result), AM);
- }
- return Result;
- case X86ISD::FILD:
- // Make sure we generate both values.
- assert(Result != 1 && N.getValueType() == MVT::f64);
- if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
- assert(0 && "Load already emitted!?");
-
- {
- X86AddressMode AM;
-
- SDOperand Chain = N.getOperand(0);
- SDOperand Address = N.getOperand(1);
- if (getRegPressure(Chain) > getRegPressure(Address)) {
- Select(Chain);
- SelectAddress(Address, AM);
- } else {
- SelectAddress(Address, AM);
- Select(Chain);
- }
-
- addFullAddress(BuildMI(BB, X86::FpILD64m, 4, Result), AM);
- }
- return Result;
-
- case ISD::EXTLOAD: // Arbitrarily codegen extloads as MOVZX*
- case ISD::ZEXTLOAD: {
- // Make sure we generate both values.
- if (Result != 1)
- ExprMap[N.getValue(1)] = 1; // Generate the token
- else
- Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
-
- if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1)))
- if (Node->getValueType(0) == MVT::f64) {
- assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 &&
- "Bad EXTLOAD!");
- unsigned CPIdx = BB->getParent()->getConstantPool()->
- getConstantPoolIndex(CP->get(), 2);
-
- addConstantPoolReference(BuildMI(BB, X86::FpLD32m, 4, Result), CPIdx);
- return Result;
- }
-
- X86AddressMode AM;
- if (getRegPressure(Node->getOperand(0)) >
- getRegPressure(Node->getOperand(1))) {
- Select(Node->getOperand(0)); // chain
- SelectAddress(Node->getOperand(1), AM);
- } else {
- SelectAddress(Node->getOperand(1), AM);
- Select(Node->getOperand(0)); // chain
- }
-
- switch (Node->getValueType(0)) {
- default: assert(0 && "Unknown type to sign extend to.");
- case MVT::f64:
- assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::f32 &&
- "Bad EXTLOAD!");
- addFullAddress(BuildMI(BB, X86::FpLD32m, 5, Result), AM);
- break;
- case MVT::i32:
- switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) {
- default:
- assert(0 && "Bad zero extend!");
- case MVT::i1:
- case MVT::i8:
- addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM);
- break;
- case MVT::i16:
- addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM);
- break;
- }
- break;
- case MVT::i16:
- assert(cast<VTSDNode>(Node->getOperand(3))->getVT() <= MVT::i8 &&
- "Bad zero extend!");
- addFullAddress(BuildMI(BB, X86::MOVZX16rm8, 5, Result), AM);
- break;
- case MVT::i8:
- assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i1 &&
- "Bad zero extend!");
- addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM);
- break;
- }
- return Result;
- }
- case ISD::SEXTLOAD: {
- // Make sure we generate both values.
- if (Result != 1)
- ExprMap[N.getValue(1)] = 1; // Generate the token
- else
- Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
-
- X86AddressMode AM;
- if (getRegPressure(Node->getOperand(0)) >
- getRegPressure(Node->getOperand(1))) {
- Select(Node->getOperand(0)); // chain
- SelectAddress(Node->getOperand(1), AM);
- } else {
- SelectAddress(Node->getOperand(1), AM);
- Select(Node->getOperand(0)); // chain
- }
-
- switch (Node->getValueType(0)) {
- case MVT::i8: assert(0 && "Cannot sign extend from bool!");
- default: assert(0 && "Unknown type to sign extend to.");
- case MVT::i32:
- switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) {
- default:
- case MVT::i1: assert(0 && "Cannot sign extend from bool!");
- case MVT::i8:
- addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM);
- break;
- case MVT::i16:
- addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM);
- break;
- }
- break;
- case MVT::i16:
- assert(cast<VTSDNode>(Node->getOperand(3))->getVT() == MVT::i8 &&
- "Cannot sign extend from bool!");
- addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM);
- break;
- }
- return Result;
- }
-
- case X86ISD::TAILCALL:
- case X86ISD::CALL: {
- // The chain for this call is now lowered.
- ExprMap.insert(std::make_pair(N.getValue(0), 1));
-
- bool isDirect = isa<GlobalAddressSDNode>(N.getOperand(1)) ||
- isa<ExternalSymbolSDNode>(N.getOperand(1));
- unsigned Callee = 0;
- if (isDirect) {
- Select(N.getOperand(0));
- } else {
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Select(N.getOperand(0));
- Callee = SelectExpr(N.getOperand(1));
- } else {
- Callee = SelectExpr(N.getOperand(1));
- Select(N.getOperand(0));
- }
- }
-
- // If this call has values to pass in registers, do so now.
- if (Node->getNumOperands() > 4) {
- // The first value is passed in (a part of) EAX, the second in EDX.
- unsigned RegOp1 = SelectExpr(N.getOperand(4));
- unsigned RegOp2 =
- Node->getNumOperands() > 5 ? SelectExpr(N.getOperand(5)) : 0;
-
- switch (N.getOperand(4).getValueType()) {
- default: assert(0 && "Bad thing to pass in regs");
- case MVT::i1:
- case MVT::i8: BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break;
- case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break;
- case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break;
- }
- if (RegOp2)
- switch (N.getOperand(5).getValueType()) {
- default: assert(0 && "Bad thing to pass in regs");
- case MVT::i1:
- case MVT::i8:
- BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2);
- break;
- case MVT::i16:
- BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2);
- break;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2);
- break;
- }
- }
-
- if (GlobalAddressSDNode *GASD =
- dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
- BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true);
- } else if (ExternalSymbolSDNode *ESSDN =
- dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
- BuildMI(BB, X86::CALLpcrel32,
- 1).addExternalSymbol(ESSDN->getSymbol(), true);
- } else {
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- } else {
- Tmp1 = SelectExpr(N.getOperand(1));
- Select(N.getOperand(0));
- }
-
- BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1);
- }
-
- // Get caller stack amount and amount the callee added to the stack pointer.
- Tmp1 = cast<ConstantSDNode>(N.getOperand(2))->getValue();
- Tmp2 = cast<ConstantSDNode>(N.getOperand(3))->getValue();
- BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(Tmp1).addImm(Tmp2);
-
- if (Node->getNumValues() != 1)
- switch (Node->getValueType(1)) {
- default: assert(0 && "Unknown value type for call result!");
- case MVT::Other: return 1;
- case MVT::i1:
- case MVT::i8:
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
- break;
- case MVT::i16:
- BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
- break;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
- if (Node->getNumValues() == 3 && Node->getValueType(2) == MVT::i32)
- BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX);
- break;
- case MVT::f64: // Floating-point return values live in %ST(0)
- if (X86ScalarSSE) {
- ContainsFPCode = true;
- BuildMI(BB, X86::FpGETRESULT, 1, X86::FP0);
-
- unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
- MachineFunction *F = BB->getParent();
- int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
- addFrameReference(BuildMI(BB, X86::FpST64m, 5), FrameIdx).addReg(X86::FP0);
- addFrameReference(BuildMI(BB, X86::MOVSDrm, 4, Result), FrameIdx);
- break;
- } else {
- ContainsFPCode = true;
- BuildMI(BB, X86::FpGETRESULT, 1, Result);
- break;
- }
- }
- return Result+N.ResNo-1;
- }
- case ISD::READPORT:
- // First, determine that the size of the operand falls within the acceptable
- // range for this architecture.
- //
- if (Node->getOperand(1).getValueType() != MVT::i16) {
- std::cerr << "llvm.readport: Address size is not 16 bits\n";
- exit(1);
- }
-
- // Make sure we generate both values.
- if (Result != 1) { // Generate the token
- if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
- assert(0 && "readport already emitted!?");
- } else
- Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
-
- Select(Node->getOperand(0)); // Select the chain.
-
- // If the port is a single-byte constant, use the immediate form.
- if (ConstantSDNode *Port = dyn_cast<ConstantSDNode>(Node->getOperand(1)))
- if ((Port->getValue() & 255) == Port->getValue()) {
- switch (Node->getValueType(0)) {
- case MVT::i8:
- BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue());
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
- return Result;
- case MVT::i16:
- BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue());
- BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
- return Result;
- case MVT::i32:
- BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue());
- BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
- return Result;
- default: break;
- }
- }
-
- // Now, move the I/O port address into the DX register and use the IN
- // instruction to get the input data.
- //
- Tmp1 = SelectExpr(Node->getOperand(1));
- BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1);
- switch (Node->getValueType(0)) {
- case MVT::i8:
- BuildMI(BB, X86::IN8rr, 0);
- BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
- return Result;
- case MVT::i16:
- BuildMI(BB, X86::IN16rr, 0);
- BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
- return Result;
- case MVT::i32:
- BuildMI(BB, X86::IN32rr, 0);
- BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
- return Result;
- default:
- std::cerr << "Cannot do input on this data type";
- exit(1);
- }
-
- }
-
- return 0;
-}
-
-/// TryToFoldLoadOpStore - Given a store node, try to fold together a
-/// load/op/store instruction. If successful return true.
-bool ISel::TryToFoldLoadOpStore(SDNode *Node) {
- assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!");
- SDOperand Chain = Node->getOperand(0);
- SDOperand StVal = Node->getOperand(1);
- SDOperand StPtr = Node->getOperand(2);
-
- // The chain has to be a load, the stored value must be an integer binary
- // operation with one use.
- if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 ||
- MVT::isFloatingPoint(StVal.getValueType()))
- return false;
-
- // Token chain must either be a factor node or the load to fold.
- if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor)
- return false;
-
- SDOperand TheLoad;
-
- // Check to see if there is a load from the same pointer that we're storing
- // to in either operand of the binop.
- if (StVal.getOperand(0).getOpcode() == ISD::LOAD &&
- StVal.getOperand(0).getOperand(1) == StPtr)
- TheLoad = StVal.getOperand(0);
- else if (StVal.getOperand(1).getOpcode() == ISD::LOAD &&
- StVal.getOperand(1).getOperand(1) == StPtr)
- TheLoad = StVal.getOperand(1);
- else
- return false; // No matching load operand.
-
- // We can only fold the load if there are no intervening side-effecting
- // operations. This means that the store uses the load as its token chain, or
- // there are only token factor nodes in between the store and load.
- if (Chain != TheLoad.getValue(1)) {
- // Okay, the other option is that we have a store referring to (possibly
- // nested) token factor nodes. For now, just try peeking through one level
- // of token factors to see if this is the case.
- bool ChainOk = false;
- if (Chain.getOpcode() == ISD::TokenFactor) {
- for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
- if (Chain.getOperand(i) == TheLoad.getValue(1)) {
- ChainOk = true;
- break;
- }
- }
-
- if (!ChainOk) return false;
- }
-
- if (TheLoad.getOperand(1) != StPtr)
- return false;
-
- // Make sure that one of the operands of the binop is the load, and that the
- // load folds into the binop.
- if (((StVal.getOperand(0) != TheLoad ||
- !isFoldableLoad(TheLoad, StVal.getOperand(1))) &&
- (StVal.getOperand(1) != TheLoad ||
- !isFoldableLoad(TheLoad, StVal.getOperand(0)))))
- return false;
-
- // Finally, check to see if this is one of the ops we can handle!
- static const unsigned ADDTAB[] = {
- X86::ADD8mi, X86::ADD16mi, X86::ADD32mi,
- X86::ADD8mr, X86::ADD16mr, X86::ADD32mr,
- };
- static const unsigned SUBTAB[] = {
- X86::SUB8mi, X86::SUB16mi, X86::SUB32mi,
- X86::SUB8mr, X86::SUB16mr, X86::SUB32mr,
- };
- static const unsigned ANDTAB[] = {
- X86::AND8mi, X86::AND16mi, X86::AND32mi,
- X86::AND8mr, X86::AND16mr, X86::AND32mr,
- };
- static const unsigned ORTAB[] = {
- X86::OR8mi, X86::OR16mi, X86::OR32mi,
- X86::OR8mr, X86::OR16mr, X86::OR32mr,
- };
- static const unsigned XORTAB[] = {
- X86::XOR8mi, X86::XOR16mi, X86::XOR32mi,
- X86::XOR8mr, X86::XOR16mr, X86::XOR32mr,
- };
- static const unsigned SHLTAB[] = {
- X86::SHL8mi, X86::SHL16mi, X86::SHL32mi,
- /*Have to put the reg in CL*/0, 0, 0,
- };
- static const unsigned SARTAB[] = {
- X86::SAR8mi, X86::SAR16mi, X86::SAR32mi,
- /*Have to put the reg in CL*/0, 0, 0,
- };
- static const unsigned SHRTAB[] = {
- X86::SHR8mi, X86::SHR16mi, X86::SHR32mi,
- /*Have to put the reg in CL*/0, 0, 0,
- };
-
- const unsigned *TabPtr = 0;
- switch (StVal.getOpcode()) {
- default:
- std::cerr << "CANNOT [mem] op= val: ";
- StVal.Val->dump(); std::cerr << "\n";
- case ISD::FMUL:
- case ISD::MUL:
- case ISD::FDIV:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::FREM:
- case ISD::SREM:
- case ISD::UREM: return false;
-
- case ISD::ADD: TabPtr = ADDTAB; break;
- case ISD::SUB: TabPtr = SUBTAB; break;
- case ISD::AND: TabPtr = ANDTAB; break;
- case ISD:: OR: TabPtr = ORTAB; break;
- case ISD::XOR: TabPtr = XORTAB; break;
- case ISD::SHL: TabPtr = SHLTAB; break;
- case ISD::SRA: TabPtr = SARTAB; break;
- case ISD::SRL: TabPtr = SHRTAB; break;
- }
-
- // Handle: [mem] op= CST
- SDOperand Op0 = StVal.getOperand(0);
- SDOperand Op1 = StVal.getOperand(1);
- unsigned Opc = 0;
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
- switch (Op0.getValueType()) { // Use Op0's type because of shifts.
- default: break;
- case MVT::i1:
- case MVT::i8: Opc = TabPtr[0]; break;
- case MVT::i16: Opc = TabPtr[1]; break;
- case MVT::i32: Opc = TabPtr[2]; break;
- }
-
- if (Opc) {
- if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second)
- assert(0 && "Already emitted?");
- Select(Chain);
-
- X86AddressMode AM;
- if (getRegPressure(TheLoad.getOperand(0)) >
- getRegPressure(TheLoad.getOperand(1))) {
- Select(TheLoad.getOperand(0));
- SelectAddress(TheLoad.getOperand(1), AM);
- } else {
- SelectAddress(TheLoad.getOperand(1), AM);
- Select(TheLoad.getOperand(0));
- }
-
- if (StVal.getOpcode() == ISD::ADD) {
- if (CN->getValue() == 1) {
- switch (Op0.getValueType()) {
- default: break;
- case MVT::i8:
- addFullAddress(BuildMI(BB, X86::INC8m, 4), AM);
- return true;
- case MVT::i16: Opc = TabPtr[1];
- addFullAddress(BuildMI(BB, X86::INC16m, 4), AM);
- return true;
- case MVT::i32: Opc = TabPtr[2];
- addFullAddress(BuildMI(BB, X86::INC32m, 4), AM);
- return true;
- }
- } else if (CN->getValue()+1 == 0) { // [X] += -1 -> DEC [X]
- switch (Op0.getValueType()) {
- default: break;
- case MVT::i8:
- addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM);
- return true;
- case MVT::i16: Opc = TabPtr[1];
- addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM);
- return true;
- case MVT::i32: Opc = TabPtr[2];
- addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM);
- return true;
- }
- }
- }
-
- addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue());
- return true;
- }
- }
-
- // If we have [mem] = V op [mem], try to turn it into:
- // [mem] = [mem] op V.
- if (Op1 == TheLoad &&
- StVal.getOpcode() != ISD::SUB && StVal.getOpcode() != ISD::FSUB &&
- StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA &&
- StVal.getOpcode() != ISD::SRL)
- std::swap(Op0, Op1);
-
- if (Op0 != TheLoad) return false;
-
- switch (Op0.getValueType()) {
- default: return false;
- case MVT::i1:
- case MVT::i8: Opc = TabPtr[3]; break;
- case MVT::i16: Opc = TabPtr[4]; break;
- case MVT::i32: Opc = TabPtr[5]; break;
- }
-
- // Table entry doesn't exist?
- if (Opc == 0) return false;
-
- if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second)
- assert(0 && "Already emitted?");
- Select(Chain);
- Select(TheLoad.getOperand(0));
-
- X86AddressMode AM;
- SelectAddress(TheLoad.getOperand(1), AM);
- unsigned Reg = SelectExpr(Op1);
- addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg);
- return true;
-}
-
-/// If node is a ret(tailcall) node, emit the specified tail call and return
-/// true, otherwise return false.
-///
-/// FIXME: This whole thing should be a post-legalize optimization pass which
-/// recognizes and transforms the dag. We don't want the selection phase doing
-/// this stuff!!
-///
-bool ISel::EmitPotentialTailCall(SDNode *RetNode) {
- assert(RetNode->getOpcode() == ISD::RET && "Not a return");
-
- SDOperand Chain = RetNode->getOperand(0);
-
- // If this is a token factor node where one operand is a call, dig into it.
- SDOperand TokFactor;
- unsigned TokFactorOperand = 0;
- if (Chain.getOpcode() == ISD::TokenFactor) {
- for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
- if (Chain.getOperand(i).getOpcode() == ISD::CALLSEQ_END ||
- Chain.getOperand(i).getOpcode() == X86ISD::TAILCALL) {
- TokFactorOperand = i;
- TokFactor = Chain;
- Chain = Chain.getOperand(i);
- break;
- }
- if (TokFactor.Val == 0) return false; // No call operand.
- }
-
- // Skip the CALLSEQ_END node if present.
- if (Chain.getOpcode() == ISD::CALLSEQ_END)
- Chain = Chain.getOperand(0);
-
- // Is a tailcall the last control operation that occurs before the return?
- if (Chain.getOpcode() != X86ISD::TAILCALL)
- return false;
-
- // If we return a value, is it the value produced by the call?
- if (RetNode->getNumOperands() > 1) {
- // Not returning the ret val of the call?
- if (Chain.Val->getNumValues() == 1 ||
- RetNode->getOperand(1) != Chain.getValue(1))
- return false;
-
- if (RetNode->getNumOperands() > 2) {
- if (Chain.Val->getNumValues() == 2 ||
- RetNode->getOperand(2) != Chain.getValue(2))
- return false;
- }
- assert(RetNode->getNumOperands() <= 3);
- }
-
- // CalleeCallArgAmt - The total number of bytes used for the callee arg area.
- // For FastCC, this will always be > 0.
- unsigned CalleeCallArgAmt =
- cast<ConstantSDNode>(Chain.getOperand(2))->getValue();
-
- // CalleeCallArgPopAmt - The number of bytes in the call area popped by the
- // callee. For FastCC this will always be > 0, for CCC this is always 0.
- unsigned CalleeCallArgPopAmt =
- cast<ConstantSDNode>(Chain.getOperand(3))->getValue();
-
- // There are several cases we can handle here. First, if the caller and
- // callee are both CCC functions, we can tailcall if the callee takes <= the
- // number of argument bytes that the caller does.
- if (CalleeCallArgPopAmt == 0 && // Callee is C CallingConv?
- X86Lowering.getBytesToPopOnReturn() == 0) { // Caller is C CallingConv?
- // Check to see if caller arg area size >= callee arg area size.
- if (X86Lowering.getBytesCallerReserves() >= CalleeCallArgAmt) {
- //std::cerr << "CCC TAILCALL UNIMP!\n";
- // If TokFactor is non-null, emit all operands.
-
- //EmitCCCToCCCTailCall(Chain.Val);
- //return true;
- }
- return false;
- }
-
- // Second, if both are FastCC functions, we can always perform the tail call.
- if (CalleeCallArgPopAmt && X86Lowering.getBytesToPopOnReturn()) {
- // If TokFactor is non-null, emit all operands before the call.
- if (TokFactor.Val) {
- for (unsigned i = 0, e = TokFactor.getNumOperands(); i != e; ++i)
- if (i != TokFactorOperand)
- Select(TokFactor.getOperand(i));
- }
-
- EmitFastCCToFastCCTailCall(Chain.Val);
- return true;
- }
-
- // We don't support mixed calls, due to issues with alignment. We could in
- // theory handle some mixed calls from CCC -> FastCC if the stack is properly
- // aligned (which depends on the number of arguments to the callee). TODO.
- return false;
-}
-
-static SDOperand GetAdjustedArgumentStores(SDOperand Chain, int Offset,
- SelectionDAG &DAG) {
- MVT::ValueType StoreVT;
- switch (Chain.getOpcode()) {
- default: assert(0 && "Unexpected node!");
- case ISD::CALLSEQ_START:
- // If we found the start of the call sequence, we're done. We actually
- // strip off the CALLSEQ_START node, to avoid generating the
- // ADJCALLSTACKDOWN marker for the tail call.
- return Chain.getOperand(0);
- case ISD::TokenFactor: {
- std::vector<SDOperand> Ops;
- Ops.reserve(Chain.getNumOperands());
- for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
- Ops.push_back(GetAdjustedArgumentStores(Chain.getOperand(i), Offset,DAG));
- return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
- }
- case ISD::STORE: // Normal store
- StoreVT = Chain.getOperand(1).getValueType();
- break;
- case ISD::TRUNCSTORE: // FLOAT store
- StoreVT = cast<VTSDNode>(Chain.getOperand(4))->getVT();
- break;
- }
-
- SDOperand OrigDest = Chain.getOperand(2);
- unsigned OrigOffset;
-
- if (OrigDest.getOpcode() == ISD::CopyFromReg) {
- OrigOffset = 0;
- assert(cast<RegisterSDNode>(OrigDest.getOperand(1))->getReg() == X86::ESP);
- } else if (OrigDest.getOpcode() == ISD::ADD &&
- isa<ConstantSDNode>(OrigDest.getOperand(1)) &&
- OrigDest.getOperand(0).getOpcode() == ISD::CopyFromReg &&
- cast<RegisterSDNode>(OrigDest.getOperand(0).getOperand(1))->getReg()
- == X86::ESP) {
- // We expect only (ESP+C)
- OrigOffset = cast<ConstantSDNode>(OrigDest.getOperand(1))->getValue();
- } else if (OrigDest.getOpcode() == ISD::Register) {
- // We expect only (ESP+C)
- OrigOffset = 0;
- } else {
- assert(OrigDest.getOpcode() == ISD::ADD &&
- isa<ConstantSDNode>(OrigDest.getOperand(1)) &&
- OrigDest.getOperand(0).getOpcode() == ISD::Register &&
- cast<RegisterSDNode>(OrigDest.getOperand(0))->getReg() == X86::ESP);
- OrigOffset = cast<ConstantSDNode>(OrigDest.getOperand(1))->getValue();
- }
-
- // Compute the new offset from the incoming ESP value we wish to use.
- unsigned NewOffset = OrigOffset + Offset;
-
- unsigned OpSize = (MVT::getSizeInBits(StoreVT)+7)/8; // Bits -> Bytes
- MachineFunction &MF = DAG.getMachineFunction();
- int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, NewOffset);
- SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
-
- SDOperand InChain = GetAdjustedArgumentStores(Chain.getOperand(0), Offset,
- DAG);
- if (Chain.getOpcode() == ISD::STORE)
- return DAG.getNode(ISD::STORE, MVT::Other, InChain, Chain.getOperand(1),
- FIN);
- assert(Chain.getOpcode() == ISD::TRUNCSTORE);
- return DAG.getNode(ISD::TRUNCSTORE, MVT::Other, InChain, Chain.getOperand(1),
- FIN, DAG.getSrcValue(NULL), DAG.getValueType(StoreVT));
-}
-
-
-/// EmitFastCCToFastCCTailCall - Given a tailcall in the tail position to a
-/// fastcc function from a fastcc function, emit the code to emit a 'proper'
-/// tail call.
-void ISel::EmitFastCCToFastCCTailCall(SDNode *TailCallNode) {
- unsigned CalleeCallArgSize =
- cast<ConstantSDNode>(TailCallNode->getOperand(2))->getValue();
- unsigned CallerArgSize = X86Lowering.getBytesToPopOnReturn();
-
- //std::cerr << "****\n*** EMITTING TAIL CALL!\n****\n";
-
- // Adjust argument stores. Instead of storing to [ESP], f.e., store to frame
- // indexes that are relative to the incoming ESP. If the incoming and
- // outgoing arg sizes are the same we will store to [InESP] instead of
- // [CurESP] and the ESP referenced will be relative to the incoming function
- // ESP.
- int ESPOffset = CallerArgSize-CalleeCallArgSize;
- SDOperand AdjustedArgStores =
- GetAdjustedArgumentStores(TailCallNode->getOperand(0), ESPOffset, *TheDAG);
-
- // Copy the return address of the caller into a virtual register so we don't
- // clobber it.
- SDOperand RetVal(0, 0);
- if (ESPOffset) {
- SDOperand RetValAddr = X86Lowering.getReturnAddressFrameIndex(*TheDAG);
- RetVal = TheDAG->getLoad(MVT::i32, TheDAG->getEntryNode(),
- RetValAddr, TheDAG->getSrcValue(NULL));
- SelectExpr(RetVal);
- }
-
- // Codegen all of the argument stores.
- Select(AdjustedArgStores);
-
- if (RetVal.Val) {
- // Emit a store of the saved ret value to the new location.
- MachineFunction &MF = TheDAG->getMachineFunction();
- int ReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(4, ESPOffset-4);
- SDOperand RetValAddr = TheDAG->getFrameIndex(ReturnAddrFI, MVT::i32);
- Select(TheDAG->getNode(ISD::STORE, MVT::Other, TheDAG->getEntryNode(),
- RetVal, RetValAddr));
- }
-
- // Get the destination value.
- SDOperand Callee = TailCallNode->getOperand(1);
- bool isDirect = isa<GlobalAddressSDNode>(Callee) ||
- isa<ExternalSymbolSDNode>(Callee);
- unsigned CalleeReg = 0;
- if (!isDirect) {
- // If this is not a direct tail call, evaluate the callee's address.
- CalleeReg = SelectExpr(Callee);
- }
-
- unsigned RegOp1 = 0;
- unsigned RegOp2 = 0;
-
- if (TailCallNode->getNumOperands() > 4) {
- // The first value is passed in (a part of) EAX, the second in EDX.
- RegOp1 = SelectExpr(TailCallNode->getOperand(4));
- if (TailCallNode->getNumOperands() > 5)
- RegOp2 = SelectExpr(TailCallNode->getOperand(5));
-
- switch (TailCallNode->getOperand(4).getValueType()) {
- default: assert(0 && "Bad thing to pass in regs");
- case MVT::i1:
- case MVT::i8:
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(RegOp1);
- RegOp1 = X86::AL;
- break;
- case MVT::i16:
- BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1);
- RegOp1 = X86::AX;
- break;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);
- RegOp1 = X86::EAX;
- break;
- }
- if (RegOp2)
- switch (TailCallNode->getOperand(5).getValueType()) {
- default: assert(0 && "Bad thing to pass in regs");
- case MVT::i1:
- case MVT::i8:
- BuildMI(BB, X86::MOV8rr, 1, X86::DL).addReg(RegOp2);
- RegOp2 = X86::DL;
- break;
- case MVT::i16:
- BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2);
- RegOp2 = X86::DX;
- break;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2);
- RegOp2 = X86::EDX;
- break;
- }
- }
-
- // If this is not a direct tail call, put the callee's address into ECX.
- // The address has to be evaluated into a non-callee save register that is
- // not used for arguments. This means either ECX, as EAX and EDX may be
- // used for argument passing. We do this here to make sure that the
- // expressions for arguments and callee are all evaluated before the copies
- // into physical registers.
- if (!isDirect)
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CalleeReg);
-
- // Adjust ESP.
- if (ESPOffset)
- BuildMI(BB, X86::ADJSTACKPTRri, 2,
- X86::ESP).addReg(X86::ESP).addImm(ESPOffset);
-
- // TODO: handle jmp [mem]
- if (!isDirect) {
- BuildMI(BB, X86::TAILJMPr, 1).addReg(X86::ECX);
- } else if (GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Callee)){
- BuildMI(BB, X86::TAILJMPd, 1).addGlobalAddress(GASD->getGlobal(), true);
- } else {
- ExternalSymbolSDNode *ESSDN = cast<ExternalSymbolSDNode>(Callee);
- BuildMI(BB, X86::TAILJMPd, 1).addExternalSymbol(ESSDN->getSymbol(), true);
- }
- // ADD IMPLICIT USE RegOp1/RegOp2's
-}
-
-
-void ISel::Select(SDOperand N) {
- unsigned Tmp1 = 0, Tmp2 = 0, Opc = 0;
-
- if (!ExprMap.insert(std::make_pair(N, 1)).second)
- return; // Already selected.
-
- SDNode *Node = N.Val;
-
- switch (Node->getOpcode()) {
- default:
- Node->dump(); std::cerr << "\n";
- assert(0 && "Node not handled yet!");
- case X86ISD::RDTSC_DAG:
- Select(Node->getOperand(0)); //Chain
- BuildMI(BB, X86::RDTSC, 0);
- return;
-
- case ISD::EntryToken: return; // Noop
- case ISD::TokenFactor:
- if (Node->getNumOperands() == 2) {
- bool OneFirst =
- getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0));
- Select(Node->getOperand(OneFirst));
- Select(Node->getOperand(!OneFirst));
- } else {
- std::vector<std::pair<unsigned, unsigned> > OpsP;
- for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
- OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i));
- std::sort(OpsP.begin(), OpsP.end());
- std::reverse(OpsP.begin(), OpsP.end());
- for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
- Select(Node->getOperand(OpsP[i].second));
- }
- return;
- case ISD::CopyToReg:
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(2));
- } else {
- Tmp1 = SelectExpr(N.getOperand(2));
- Select(N.getOperand(0));
- }
- Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
-
- if (Tmp1 != Tmp2) {
- switch (N.getOperand(2).getValueType()) {
- default: assert(0 && "Invalid type for operation!");
- case MVT::i1:
- case MVT::i8: Opc = X86::MOV8rr; break;
- case MVT::i16: Opc = X86::MOV16rr; break;
- case MVT::i32: Opc = X86::MOV32rr; break;
- case MVT::f32: Opc = X86::MOVSSrr; break;
- case MVT::f64:
- if (X86ScalarSSE) {
- Opc = X86::MOVSDrr;
- } else {
- Opc = X86::FpMOV;
- ContainsFPCode = true;
- }
- break;
- }
- BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
- }
- return;
- case ISD::RET:
- if (N.getOperand(0).getOpcode() == ISD::CALLSEQ_END ||
- N.getOperand(0).getOpcode() == X86ISD::TAILCALL ||
- N.getOperand(0).getOpcode() == ISD::TokenFactor)
- if (EmitPotentialTailCall(Node))
- return;
-
- switch (N.getNumOperands()) {
- default:
- assert(0 && "Unknown return instruction!");
- case 3:
- assert(N.getOperand(1).getValueType() == MVT::i32 &&
- N.getOperand(2).getValueType() == MVT::i32 &&
- "Unknown two-register value!");
- if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) {
- Tmp1 = SelectExpr(N.getOperand(1));
- Tmp2 = SelectExpr(N.getOperand(2));
- } else {
- Tmp2 = SelectExpr(N.getOperand(2));
- Tmp1 = SelectExpr(N.getOperand(1));
- }
- Select(N.getOperand(0));
-
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2);
- break;
- case 2:
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- } else {
- Tmp1 = SelectExpr(N.getOperand(1));
- Select(N.getOperand(0));
- }
- switch (N.getOperand(1).getValueType()) {
- default: assert(0 && "All other types should have been promoted!!");
- case MVT::f32:
- if (X86ScalarSSE) {
- // Spill the value to memory and reload it into top of stack.
- unsigned Size = MVT::getSizeInBits(MVT::f32)/8;
- MachineFunction *F = BB->getParent();
- int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
- addFrameReference(BuildMI(BB, X86::MOVSSmr, 5), FrameIdx).addReg(Tmp1);
- addFrameReference(BuildMI(BB, X86::FpLD32m, 4, X86::FP0), FrameIdx);
- BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0);
- ContainsFPCode = true;
- } else {
- assert(0 && "MVT::f32 only legal with scalar sse fp");
- abort();
- }
- break;
- case MVT::f64:
- if (X86ScalarSSE) {
- // Spill the value to memory and reload it into top of stack.
- unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
- MachineFunction *F = BB->getParent();
- int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
- addFrameReference(BuildMI(BB, X86::MOVSDmr, 5), FrameIdx).addReg(Tmp1);
- addFrameReference(BuildMI(BB, X86::FpLD64m, 4, X86::FP0), FrameIdx);
- BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0);
- ContainsFPCode = true;
- } else {
- BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1);
- }
- break;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
- break;
- }
- break;
- case 1:
- Select(N.getOperand(0));
- break;
- }
- if (X86Lowering.getBytesToPopOnReturn() == 0)
- BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
- else
- BuildMI(BB, X86::RETI, 1).addImm(X86Lowering.getBytesToPopOnReturn());
- return;
- case ISD::BR: {
- Select(N.getOperand(0));
- MachineBasicBlock *Dest =
- cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
- BuildMI(BB, X86::JMP, 1).addMBB(Dest);
- return;
- }
-
- case ISD::BRCOND: {
- MachineBasicBlock *Dest =
- cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
-
- // Try to fold a setcc into the branch. If this fails, emit a test/jne
- // pair.
- if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) {
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- } else {
- Tmp1 = SelectExpr(N.getOperand(1));
- Select(N.getOperand(0));
- }
- BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1);
- BuildMI(BB, X86::JNE, 1).addMBB(Dest);
- }
-
- return;
- }
-
- case ISD::LOAD:
- // If this load could be folded into the only using instruction, and if it
- // is safe to emit the instruction here, try to do so now.
- if (Node->hasNUsesOfValue(1, 0)) {
- SDOperand TheVal = N.getValue(0);
- SDNode *User = 0;
- for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) {
- assert(UI != Node->use_end() && "Didn't find use!");
- SDNode *UN = *UI;
- for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i)
- if (UN->getOperand(i) == TheVal) {
- User = UN;
- goto FoundIt;
- }
- }
- FoundIt:
- // Only handle unary operators right now.
- if (User->getNumOperands() == 1) {
- ExprMap.erase(N);
- SelectExpr(SDOperand(User, 0));
- return;
- }
- }
- ExprMap.erase(N);
- SelectExpr(N);
- return;
- case ISD::READPORT:
- case ISD::EXTLOAD:
- case ISD::SEXTLOAD:
- case ISD::ZEXTLOAD:
- case X86ISD::TAILCALL:
- case X86ISD::CALL:
- ExprMap.erase(N);
- SelectExpr(N);
- return;
- case ISD::CopyFromReg:
- case X86ISD::FILD:
- ExprMap.erase(N);
- SelectExpr(N.getValue(0));
- return;
-
- case X86ISD::FP_TO_INT16_IN_MEM:
- case X86ISD::FP_TO_INT32_IN_MEM:
- case X86ISD::FP_TO_INT64_IN_MEM: {
- assert(N.getOperand(1).getValueType() == MVT::f64);
- X86AddressMode AM;
- Select(N.getOperand(0)); // Select the token chain
-
- unsigned ValReg;
- if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) {
- ValReg = SelectExpr(N.getOperand(1));
- SelectAddress(N.getOperand(2), AM);
- } else {
- SelectAddress(N.getOperand(2), AM);
- ValReg = SelectExpr(N.getOperand(1));
- }
-
- // Change the floating point control register to use "round towards zero"
- // mode when truncating to an integer value.
- //
- MachineFunction *F = BB->getParent();
- int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
- addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
-
- // Load the old value of the high byte of the control word...
- unsigned OldCW = MakeReg(MVT::i16);
- addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
-
- // Set the high part to be round to zero...
- addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
-
- // Reload the modified control word now...
- addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
-
- // Restore the memory image of control word to original value
- addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
-
- // Get the X86 opcode to use.
- switch (N.getOpcode()) {
- case X86ISD::FP_TO_INT16_IN_MEM: Tmp1 = X86::FpIST16m; break;
- case X86ISD::FP_TO_INT32_IN_MEM: Tmp1 = X86::FpIST32m; break;
- case X86ISD::FP_TO_INT64_IN_MEM: Tmp1 = X86::FpIST64m; break;
- }
-
- addFullAddress(BuildMI(BB, Tmp1, 5), AM).addReg(ValReg);
-
- // Reload the original control word now.
- addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
- return;
- }
-
- case ISD::TRUNCSTORE: { // truncstore chain, val, ptr, SRCVALUE, storety
- X86AddressMode AM;
- MVT::ValueType StoredTy = cast<VTSDNode>(N.getOperand(4))->getVT();
- assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 ||
- StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/)
- && "Unsupported TRUNCSTORE for this target!");
-
- if (StoredTy == MVT::i16) {
- // FIXME: This is here just to allow testing. X86 doesn't really have a
- // TRUNCSTORE i16 operation, but this is required for targets that do not
- // have 16-bit integer registers. We occasionally disable 16-bit integer
- // registers to test the promotion code.
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- SelectAddress(N.getOperand(2), AM);
-
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
- addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX);
- return;
- }
-
- // Store of constant bool?
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
- Select(N.getOperand(0));
- SelectAddress(N.getOperand(2), AM);
- } else {
- SelectAddress(N.getOperand(2), AM);
- Select(N.getOperand(0));
- }
- addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue());
- return;
- }
-
- switch (StoredTy) {
- default: assert(0 && "Cannot truncstore this type!");
- case MVT::i1: Opc = X86::MOV8mr; break;
- case MVT::f32:
- assert(!X86ScalarSSE && "Cannot truncstore scalar SSE regs");
- Opc = X86::FpST32m; break;
- }
-
- std::vector<std::pair<unsigned, unsigned> > RP;
- RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0));
- RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1));
- RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2));
- std::sort(RP.begin(), RP.end());
-
- Tmp1 = 0; // Silence a warning.
- for (unsigned i = 0; i != 3; ++i)
- switch (RP[2-i].second) {
- default: assert(0 && "Unknown operand number!");
- case 0: Select(N.getOperand(0)); break;
- case 1: Tmp1 = SelectExpr(N.getOperand(1)); break;
- case 2: SelectAddress(N.getOperand(2), AM); break;
- }
-
- addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
- return;
- }
- case ISD::STORE: {
- X86AddressMode AM;
-
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- Opc = 0;
- switch (CN->getValueType(0)) {
- default: assert(0 && "Invalid type for operation!");
- case MVT::i1:
- case MVT::i8: Opc = X86::MOV8mi; break;
- case MVT::i16: Opc = X86::MOV16mi; break;
- case MVT::i32: Opc = X86::MOV32mi; break;
- }
- if (Opc) {
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
- Select(N.getOperand(0));
- SelectAddress(N.getOperand(2), AM);
- } else {
- SelectAddress(N.getOperand(2), AM);
- Select(N.getOperand(0));
- }
- addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue());
- return;
- }
- } else if (GlobalAddressSDNode *GA =
- dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
- assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand");
-
- if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
- Select(N.getOperand(0));
- SelectAddress(N.getOperand(2), AM);
- } else {
- SelectAddress(N.getOperand(2), AM);
- Select(N.getOperand(0));
- }
- GlobalValue *GV = GA->getGlobal();
- // For Darwin, external and weak symbols are indirect, so we want to load
- // the value at address GV, not the value of GV itself.
- if (Subtarget->getIndirectExternAndWeakGlobals() &&
- (GV->hasWeakLinkage() || GV->isExternal())) {
- Tmp1 = MakeReg(MVT::i32);
- BuildMI(BB, X86::MOV32rm, 4, Tmp1).addReg(0).addZImm(1).addReg(0)
- .addGlobalAddress(GV, false, 0);
- addFullAddress(BuildMI(BB, X86::MOV32mr, 4+1),AM).addReg(Tmp1);
- } else {
- addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1),AM).addGlobalAddress(GV);
- }
- return;
- }
-
- // Check to see if this is a load/op/store combination.
- if (TryToFoldLoadOpStore(Node))
- return;
-
- switch (N.getOperand(1).getValueType()) {
- default: assert(0 && "Cannot store this type!");
- case MVT::i1:
- case MVT::i8: Opc = X86::MOV8mr; break;
- case MVT::i16: Opc = X86::MOV16mr; break;
- case MVT::i32: Opc = X86::MOV32mr; break;
- case MVT::f32: Opc = X86::MOVSSmr; break;
- case MVT::f64: Opc = X86ScalarSSE ? X86::MOVSDmr : X86::FpST64m; break;
- }
-
- std::vector<std::pair<unsigned, unsigned> > RP;
- RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0));
- RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1));
- RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2));
- std::sort(RP.begin(), RP.end());
-
- Tmp1 = 0; // Silence a warning.
- for (unsigned i = 0; i != 3; ++i)
- switch (RP[2-i].second) {
- default: assert(0 && "Unknown operand number!");
- case 0: Select(N.getOperand(0)); break;
- case 1: Tmp1 = SelectExpr(N.getOperand(1)); break;
- case 2: SelectAddress(N.getOperand(2), AM); break;
- }
-
- addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
- return;
- }
- case ISD::CALLSEQ_START:
- Select(N.getOperand(0));
- // Stack amount
- Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
- BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(Tmp1);
- return;
- case ISD::CALLSEQ_END:
- Select(N.getOperand(0));
- return;
- case ISD::MEMSET: {
- Select(N.getOperand(0)); // Select the chain.
- unsigned Align =
- (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue();
- if (Align == 0) Align = 1;
-
- // Turn the byte code into # iterations
- unsigned CountReg;
- unsigned Opcode;
- if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
- unsigned Val = ValC->getValue() & 255;
-
- // If the value is a constant, then we can potentially use larger sets.
- switch (Align & 3) {
- case 2: // WORD aligned
- CountReg = MakeReg(MVT::i32);
- if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
- BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2);
- } else {
- unsigned ByteReg = SelectExpr(Node->getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
- }
- BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
- Opcode = X86::REP_STOSW;
- break;
- case 0: // DWORD aligned
- CountReg = MakeReg(MVT::i32);
- if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
- BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4);
- } else {
- unsigned ByteReg = SelectExpr(Node->getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
- }
- Val = (Val << 8) | Val;
- BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
- Opcode = X86::REP_STOSD;
- break;
- default: // BYTE aligned
- CountReg = SelectExpr(Node->getOperand(3));
- BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
- Opcode = X86::REP_STOSB;
- break;
- }
- } else {
- // If it's not a constant value we are storing, just fall back. We could
- // try to be clever to form 16 bit and 32 bit values, but we don't yet.
- unsigned ValReg = SelectExpr(Node->getOperand(2));
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
- CountReg = SelectExpr(Node->getOperand(3));
- Opcode = X86::REP_STOSB;
- }
-
- // No matter what the alignment is, we put the destination in EDI, and the
- // count in ECX.
- unsigned TmpReg1 = SelectExpr(Node->getOperand(1));
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
- BuildMI(BB, Opcode, 0);
- return;
- }
- case ISD::MEMCPY: {
- Select(N.getOperand(0)); // Select the chain.
- unsigned Align =
- (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue();
- if (Align == 0) Align = 1;
-
- // Turn the byte code into # iterations
- unsigned CountReg;
- unsigned Opcode;
- switch (Align & 3) {
- case 2: // WORD aligned
- CountReg = MakeReg(MVT::i32);
- if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
- BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2);
- } else {
- unsigned ByteReg = SelectExpr(Node->getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
- }
- Opcode = X86::REP_MOVSW;
- break;
- case 0: // DWORD aligned
- CountReg = MakeReg(MVT::i32);
- if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
- BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4);
- } else {
- unsigned ByteReg = SelectExpr(Node->getOperand(3));
- BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
- }
- Opcode = X86::REP_MOVSD;
- break;
- default: // BYTE aligned
- CountReg = SelectExpr(Node->getOperand(3));
- Opcode = X86::REP_MOVSB;
- break;
- }
-
- // No matter what the alignment is, we put the source in ESI, the
- // destination in EDI, and the count in ECX.
- unsigned TmpReg1 = SelectExpr(Node->getOperand(1));
- unsigned TmpReg2 = SelectExpr(Node->getOperand(2));
- BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
- BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
- BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
- BuildMI(BB, Opcode, 0);
- return;
- }
- case ISD::WRITEPORT:
- if (Node->getOperand(2).getValueType() != MVT::i16) {
- std::cerr << "llvm.writeport: Address size is not 16 bits\n";
- exit(1);
- }
- Select(Node->getOperand(0)); // Emit the chain.
-
- Tmp1 = SelectExpr(Node->getOperand(1));
- switch (Node->getOperand(1).getValueType()) {
- case MVT::i8:
- BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
- Tmp2 = X86::OUT8ir; Opc = X86::OUT8rr;
- break;
- case MVT::i16:
- BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1);
- Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr;
- break;
- case MVT::i32:
- BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
- Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr;
- break;
- default:
- std::cerr << "llvm.writeport: invalid data type for X86 target";
- exit(1);
- }
-
- // If the port is a single-byte constant, use the immediate form.
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node->getOperand(2)))
- if ((CN->getValue() & 255) == CN->getValue()) {
- BuildMI(BB, Tmp2, 1).addImm(CN->getValue());
- return;
- }
-
- // Otherwise, move the I/O port address into the DX register.
- unsigned Reg = SelectExpr(Node->getOperand(2));
- BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
- BuildMI(BB, Opc, 0);
- return;
- }
- assert(0 && "Should not be reached!");
-}
-
-
-/// createX86ISelPattern - This pass converts an LLVM function
-/// into a machine code representation using pattern matching and a machine
-/// description file.
-///
-FunctionPass *llvm::createX86ISelPattern(TargetMachine &TM) {
- return new ISel(TM);
-}
diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp
index b4de879..49f1878 100644
--- a/lib/Target/X86/X86TargetMachine.cpp
+++ b/lib/Target/X86/X86TargetMachine.cpp
@@ -26,8 +26,6 @@
#include <iostream>
using namespace llvm;
-bool llvm::X86PatIsel = true;
-
/// X86TargetMachineModule - Note that this is used on hosts that cannot link
/// in a library unless there are references into the library. In particular,
/// it seems that it is not possible to get things to work on Win32 without
@@ -39,11 +37,6 @@ namespace {
cl::opt<bool> DisableOutput("disable-x86-llc-output", cl::Hidden,
cl::desc("Disable the X86 asm printer, for use "
"when profiling the code generator."));
- cl::opt<bool, true> EnableX86PatISel("enable-x86-pattern-isel", cl::Hidden,
- cl::desc("Enable the pattern based isel for X86"),
- cl::location(X86PatIsel),
- cl::init(false));
-
// Register the target.
RegisterTarget<X86TargetMachine> X("x86", " IA-32 (Pentium and above)");
}
@@ -107,10 +100,7 @@ bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out,
PM.add(createUnreachableBlockEliminationPass());
// Install an instruction selector.
- if (X86PatIsel)
- PM.add(createX86ISelPattern(*this));
- else
- PM.add(createX86ISelDag(*this));
+ PM.add(createX86ISelDag(*this));
// Print the instruction selected machine code...
if (PrintMachineCode)
@@ -172,10 +162,7 @@ void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
PM.add(createUnreachableBlockEliminationPass());
// Install an instruction selector.
- if (X86PatIsel)
- PM.add(createX86ISelPattern(TM));
- else
- PM.add(createX86ISelDag(TM));
+ PM.add(createX86ISelDag(TM));
// Print the instruction selected machine code...
if (PrintMachineCode)