diff options
-rw-r--r-- | lib/Analysis/ConstantRange.cpp | 227 | ||||
-rw-r--r-- | lib/Support/ConstantRange.cpp | 227 | ||||
-rw-r--r-- | lib/VMCore/ConstantRange.cpp | 227 | ||||
-rw-r--r-- | support/lib/Support/ConstantRange.cpp | 227 |
4 files changed, 908 insertions, 0 deletions
diff --git a/lib/Analysis/ConstantRange.cpp b/lib/Analysis/ConstantRange.cpp new file mode 100644 index 0000000..fe005ef --- /dev/null +++ b/lib/Analysis/ConstantRange.cpp @@ -0,0 +1,227 @@ +//===-- ConstantRange.cpp - ConstantRange implementation ------------------===// +// +// Represent a range of possible values that may occur when the program is run +// for an integral value. This keeps track of a lower and upper bound for the +// constant, which MAY wrap around the end of the numeric range. To do this, it +// keeps track of a [lower, upper) bound, which specifies an interval just like +// STL iterators. When used with boolean values, the following are important +// ranges (other integral ranges use min/max values for special range values): +// +// [F, F) = {} = Empty set +// [T, F) = {T} +// [F, T) = {F} +// [T, T) = {F, T} = Full set +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/ConstantRange.h" +#include "llvm/Type.h" +#include "llvm/Instruction.h" +#include "llvm/ConstantHandling.h" + +/// Initialize a full (the default) or empty set for the specified type. +/// +ConstantRange::ConstantRange(const Type *Ty, bool Full) { + assert(Ty->isIntegral() && + "Cannot make constant range of non-integral type!"); + if (Full) + Lower = Upper = ConstantIntegral::getMaxValue(Ty); + else + Lower = Upper = ConstantIntegral::getMinValue(Ty); +} + +/// Initialize a range of values explicitly... this will assert out if +/// Lower==Upper and Lower != Min or Max for its type (or if the two constants +/// have different types) +/// +ConstantRange::ConstantRange(ConstantIntegral *L, + ConstantIntegral *U) : Lower(L), Upper(U) { + assert(Lower->getType() == Upper->getType() && + "Incompatible types for ConstantRange!"); + + // Make sure that if L & U are equal that they are either Min or Max... + assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || + L == ConstantIntegral::getMinValue(L->getType()))) && + "Lower == Upper, but they aren't min or max for type!"); +} + +static ConstantIntegral *Next(ConstantIntegral *CI) { + if (CI->getType() == Type::BoolTy) + return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True; + + // Otherwise use operator+ in the ConstantHandling Library. + Constant *Result = *ConstantInt::get(CI->getType(), 1) + *CI; + assert(Result && "ConstantHandling not implemented for integral plus!?"); + return cast<ConstantIntegral>(Result); +} + +/// Initialize a set of values that all satisfy the condition with C. +/// +ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { + switch (SetCCOpcode) { + default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); + case Instruction::SetEQ: Lower = C; Upper = Next(C); return; + case Instruction::SetNE: Upper = C; Lower = Next(C); return; + case Instruction::SetLT: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = C; + return; + case Instruction::SetGT: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = Next(C); + return; + case Instruction::SetLE: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = Next(C); + return; + case Instruction::SetGE: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = C; + return; + } +} + +/// getType - Return the LLVM data type of this range. +/// +const Type *ConstantRange::getType() const { return Lower->getType(); } + +/// isFullSet - Return true if this set contains all of the elements possible +/// for this data-type +bool ConstantRange::isFullSet() const { + return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); +} + +/// isEmptySet - Return true if this set contains no members. +/// +bool ConstantRange::isEmptySet() const { + return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); +} + +/// isWrappedSet - Return true if this set wraps around the top of the range, +/// for example: [100, 8) +/// +bool ConstantRange::isWrappedSet() const { + return (*(Constant*)Lower > *(Constant*)Upper)->getValue(); +} + + +/// getSingleElement - If this set contains a single element, return it, +/// otherwise return null. +ConstantIntegral *ConstantRange::getSingleElement() const { + if (Upper == Next(Lower)) // Is it a single element range? + return Lower; + return 0; +} + +/// getSetSize - Return the number of elements in this set. +/// +uint64_t ConstantRange::getSetSize() const { + if (isEmptySet()) return 0; + if (getType() == Type::BoolTy) { + if (Lower != Upper) // One of T or F in the set... + return 1; + return 2; // Must be full set... + } + + // Simply subtract the bounds... + Constant *Result = *(Constant*)Upper - *(Constant*)Lower; + assert(Result && "Subtraction of constant integers not implemented?"); + if (getType()->isSigned()) + return (uint64_t)cast<ConstantSInt>(Result)->getValue(); + else + return cast<ConstantUInt>(Result)->getValue(); +} + + + + +// intersect1Wrapped - This helper function is used to intersect two ranges when +// it is known that LHS is wrapped and RHS isn't. +// +static ConstantRange intersect1Wrapped(const ConstantRange &LHS, + const ConstantRange &RHS) { + assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); + + // Handle common special cases + if (RHS.isEmptySet()) return RHS; + if (RHS.isFullSet()) return LHS; + + // Check to see if we overlap on the Left side of RHS... + // + if ((*(Constant*)RHS.getLower() < *(Constant*)LHS.getUpper())->getValue()) { + // We do overlap on the left side of RHS, see if we overlap on the right of + // RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Ok, the result overlaps on both the left and right sides. See if the + // resultant interval will be smaller if we wrap or not... + // + if (LHS.getSetSize() < RHS.getSetSize()) + return LHS; + else + return RHS; + + } else { + // No overlap on the right, just on the left. + return ConstantRange(RHS.getLower(), LHS.getUpper()); + } + + } else { + // We don't overlap on the left side of RHS, see if we overlap on the right + // of RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Simple overlap... + return ConstantRange(LHS.getLower(), RHS.getUpper()); + } else { + // No overlap... + return ConstantRange(LHS.getType(), false); + } + } +} + + +/// intersect - Return the range that results from the intersection of this +/// range with another range. +/// +ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + if (!isWrappedSet()) { + if (!CR.isWrappedSet()) { + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + if ((L < U)->getValue()) // If range isn't empty... + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + else + return ConstantRange(getType(), false); // Otherwise, return empty set + } else + return intersect1Wrapped(CR, *this); + } else { // We know "this" is wrapped... + if (!CR.isWrappedSet()) + return intersect1Wrapped(*this, CR); + else { + // Both ranges are wrapped... + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + } + } + return *this; +} + +/// union - Return the range that results from the union of this range with +/// another range. The resultant range is guaranteed to include the elements of +/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, +/// 15), which includes 9, 10, and 11, which were not included in either set +/// before. +/// +ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + assert(0 && "Range union not implemented yet!"); + + return *this; +} diff --git a/lib/Support/ConstantRange.cpp b/lib/Support/ConstantRange.cpp new file mode 100644 index 0000000..fe005ef --- /dev/null +++ b/lib/Support/ConstantRange.cpp @@ -0,0 +1,227 @@ +//===-- ConstantRange.cpp - ConstantRange implementation ------------------===// +// +// Represent a range of possible values that may occur when the program is run +// for an integral value. This keeps track of a lower and upper bound for the +// constant, which MAY wrap around the end of the numeric range. To do this, it +// keeps track of a [lower, upper) bound, which specifies an interval just like +// STL iterators. When used with boolean values, the following are important +// ranges (other integral ranges use min/max values for special range values): +// +// [F, F) = {} = Empty set +// [T, F) = {T} +// [F, T) = {F} +// [T, T) = {F, T} = Full set +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/ConstantRange.h" +#include "llvm/Type.h" +#include "llvm/Instruction.h" +#include "llvm/ConstantHandling.h" + +/// Initialize a full (the default) or empty set for the specified type. +/// +ConstantRange::ConstantRange(const Type *Ty, bool Full) { + assert(Ty->isIntegral() && + "Cannot make constant range of non-integral type!"); + if (Full) + Lower = Upper = ConstantIntegral::getMaxValue(Ty); + else + Lower = Upper = ConstantIntegral::getMinValue(Ty); +} + +/// Initialize a range of values explicitly... this will assert out if +/// Lower==Upper and Lower != Min or Max for its type (or if the two constants +/// have different types) +/// +ConstantRange::ConstantRange(ConstantIntegral *L, + ConstantIntegral *U) : Lower(L), Upper(U) { + assert(Lower->getType() == Upper->getType() && + "Incompatible types for ConstantRange!"); + + // Make sure that if L & U are equal that they are either Min or Max... + assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || + L == ConstantIntegral::getMinValue(L->getType()))) && + "Lower == Upper, but they aren't min or max for type!"); +} + +static ConstantIntegral *Next(ConstantIntegral *CI) { + if (CI->getType() == Type::BoolTy) + return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True; + + // Otherwise use operator+ in the ConstantHandling Library. + Constant *Result = *ConstantInt::get(CI->getType(), 1) + *CI; + assert(Result && "ConstantHandling not implemented for integral plus!?"); + return cast<ConstantIntegral>(Result); +} + +/// Initialize a set of values that all satisfy the condition with C. +/// +ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { + switch (SetCCOpcode) { + default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); + case Instruction::SetEQ: Lower = C; Upper = Next(C); return; + case Instruction::SetNE: Upper = C; Lower = Next(C); return; + case Instruction::SetLT: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = C; + return; + case Instruction::SetGT: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = Next(C); + return; + case Instruction::SetLE: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = Next(C); + return; + case Instruction::SetGE: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = C; + return; + } +} + +/// getType - Return the LLVM data type of this range. +/// +const Type *ConstantRange::getType() const { return Lower->getType(); } + +/// isFullSet - Return true if this set contains all of the elements possible +/// for this data-type +bool ConstantRange::isFullSet() const { + return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); +} + +/// isEmptySet - Return true if this set contains no members. +/// +bool ConstantRange::isEmptySet() const { + return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); +} + +/// isWrappedSet - Return true if this set wraps around the top of the range, +/// for example: [100, 8) +/// +bool ConstantRange::isWrappedSet() const { + return (*(Constant*)Lower > *(Constant*)Upper)->getValue(); +} + + +/// getSingleElement - If this set contains a single element, return it, +/// otherwise return null. +ConstantIntegral *ConstantRange::getSingleElement() const { + if (Upper == Next(Lower)) // Is it a single element range? + return Lower; + return 0; +} + +/// getSetSize - Return the number of elements in this set. +/// +uint64_t ConstantRange::getSetSize() const { + if (isEmptySet()) return 0; + if (getType() == Type::BoolTy) { + if (Lower != Upper) // One of T or F in the set... + return 1; + return 2; // Must be full set... + } + + // Simply subtract the bounds... + Constant *Result = *(Constant*)Upper - *(Constant*)Lower; + assert(Result && "Subtraction of constant integers not implemented?"); + if (getType()->isSigned()) + return (uint64_t)cast<ConstantSInt>(Result)->getValue(); + else + return cast<ConstantUInt>(Result)->getValue(); +} + + + + +// intersect1Wrapped - This helper function is used to intersect two ranges when +// it is known that LHS is wrapped and RHS isn't. +// +static ConstantRange intersect1Wrapped(const ConstantRange &LHS, + const ConstantRange &RHS) { + assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); + + // Handle common special cases + if (RHS.isEmptySet()) return RHS; + if (RHS.isFullSet()) return LHS; + + // Check to see if we overlap on the Left side of RHS... + // + if ((*(Constant*)RHS.getLower() < *(Constant*)LHS.getUpper())->getValue()) { + // We do overlap on the left side of RHS, see if we overlap on the right of + // RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Ok, the result overlaps on both the left and right sides. See if the + // resultant interval will be smaller if we wrap or not... + // + if (LHS.getSetSize() < RHS.getSetSize()) + return LHS; + else + return RHS; + + } else { + // No overlap on the right, just on the left. + return ConstantRange(RHS.getLower(), LHS.getUpper()); + } + + } else { + // We don't overlap on the left side of RHS, see if we overlap on the right + // of RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Simple overlap... + return ConstantRange(LHS.getLower(), RHS.getUpper()); + } else { + // No overlap... + return ConstantRange(LHS.getType(), false); + } + } +} + + +/// intersect - Return the range that results from the intersection of this +/// range with another range. +/// +ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + if (!isWrappedSet()) { + if (!CR.isWrappedSet()) { + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + if ((L < U)->getValue()) // If range isn't empty... + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + else + return ConstantRange(getType(), false); // Otherwise, return empty set + } else + return intersect1Wrapped(CR, *this); + } else { // We know "this" is wrapped... + if (!CR.isWrappedSet()) + return intersect1Wrapped(*this, CR); + else { + // Both ranges are wrapped... + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + } + } + return *this; +} + +/// union - Return the range that results from the union of this range with +/// another range. The resultant range is guaranteed to include the elements of +/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, +/// 15), which includes 9, 10, and 11, which were not included in either set +/// before. +/// +ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + assert(0 && "Range union not implemented yet!"); + + return *this; +} diff --git a/lib/VMCore/ConstantRange.cpp b/lib/VMCore/ConstantRange.cpp new file mode 100644 index 0000000..fe005ef --- /dev/null +++ b/lib/VMCore/ConstantRange.cpp @@ -0,0 +1,227 @@ +//===-- ConstantRange.cpp - ConstantRange implementation ------------------===// +// +// Represent a range of possible values that may occur when the program is run +// for an integral value. This keeps track of a lower and upper bound for the +// constant, which MAY wrap around the end of the numeric range. To do this, it +// keeps track of a [lower, upper) bound, which specifies an interval just like +// STL iterators. When used with boolean values, the following are important +// ranges (other integral ranges use min/max values for special range values): +// +// [F, F) = {} = Empty set +// [T, F) = {T} +// [F, T) = {F} +// [T, T) = {F, T} = Full set +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/ConstantRange.h" +#include "llvm/Type.h" +#include "llvm/Instruction.h" +#include "llvm/ConstantHandling.h" + +/// Initialize a full (the default) or empty set for the specified type. +/// +ConstantRange::ConstantRange(const Type *Ty, bool Full) { + assert(Ty->isIntegral() && + "Cannot make constant range of non-integral type!"); + if (Full) + Lower = Upper = ConstantIntegral::getMaxValue(Ty); + else + Lower = Upper = ConstantIntegral::getMinValue(Ty); +} + +/// Initialize a range of values explicitly... this will assert out if +/// Lower==Upper and Lower != Min or Max for its type (or if the two constants +/// have different types) +/// +ConstantRange::ConstantRange(ConstantIntegral *L, + ConstantIntegral *U) : Lower(L), Upper(U) { + assert(Lower->getType() == Upper->getType() && + "Incompatible types for ConstantRange!"); + + // Make sure that if L & U are equal that they are either Min or Max... + assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || + L == ConstantIntegral::getMinValue(L->getType()))) && + "Lower == Upper, but they aren't min or max for type!"); +} + +static ConstantIntegral *Next(ConstantIntegral *CI) { + if (CI->getType() == Type::BoolTy) + return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True; + + // Otherwise use operator+ in the ConstantHandling Library. + Constant *Result = *ConstantInt::get(CI->getType(), 1) + *CI; + assert(Result && "ConstantHandling not implemented for integral plus!?"); + return cast<ConstantIntegral>(Result); +} + +/// Initialize a set of values that all satisfy the condition with C. +/// +ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { + switch (SetCCOpcode) { + default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); + case Instruction::SetEQ: Lower = C; Upper = Next(C); return; + case Instruction::SetNE: Upper = C; Lower = Next(C); return; + case Instruction::SetLT: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = C; + return; + case Instruction::SetGT: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = Next(C); + return; + case Instruction::SetLE: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = Next(C); + return; + case Instruction::SetGE: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = C; + return; + } +} + +/// getType - Return the LLVM data type of this range. +/// +const Type *ConstantRange::getType() const { return Lower->getType(); } + +/// isFullSet - Return true if this set contains all of the elements possible +/// for this data-type +bool ConstantRange::isFullSet() const { + return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); +} + +/// isEmptySet - Return true if this set contains no members. +/// +bool ConstantRange::isEmptySet() const { + return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); +} + +/// isWrappedSet - Return true if this set wraps around the top of the range, +/// for example: [100, 8) +/// +bool ConstantRange::isWrappedSet() const { + return (*(Constant*)Lower > *(Constant*)Upper)->getValue(); +} + + +/// getSingleElement - If this set contains a single element, return it, +/// otherwise return null. +ConstantIntegral *ConstantRange::getSingleElement() const { + if (Upper == Next(Lower)) // Is it a single element range? + return Lower; + return 0; +} + +/// getSetSize - Return the number of elements in this set. +/// +uint64_t ConstantRange::getSetSize() const { + if (isEmptySet()) return 0; + if (getType() == Type::BoolTy) { + if (Lower != Upper) // One of T or F in the set... + return 1; + return 2; // Must be full set... + } + + // Simply subtract the bounds... + Constant *Result = *(Constant*)Upper - *(Constant*)Lower; + assert(Result && "Subtraction of constant integers not implemented?"); + if (getType()->isSigned()) + return (uint64_t)cast<ConstantSInt>(Result)->getValue(); + else + return cast<ConstantUInt>(Result)->getValue(); +} + + + + +// intersect1Wrapped - This helper function is used to intersect two ranges when +// it is known that LHS is wrapped and RHS isn't. +// +static ConstantRange intersect1Wrapped(const ConstantRange &LHS, + const ConstantRange &RHS) { + assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); + + // Handle common special cases + if (RHS.isEmptySet()) return RHS; + if (RHS.isFullSet()) return LHS; + + // Check to see if we overlap on the Left side of RHS... + // + if ((*(Constant*)RHS.getLower() < *(Constant*)LHS.getUpper())->getValue()) { + // We do overlap on the left side of RHS, see if we overlap on the right of + // RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Ok, the result overlaps on both the left and right sides. See if the + // resultant interval will be smaller if we wrap or not... + // + if (LHS.getSetSize() < RHS.getSetSize()) + return LHS; + else + return RHS; + + } else { + // No overlap on the right, just on the left. + return ConstantRange(RHS.getLower(), LHS.getUpper()); + } + + } else { + // We don't overlap on the left side of RHS, see if we overlap on the right + // of RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Simple overlap... + return ConstantRange(LHS.getLower(), RHS.getUpper()); + } else { + // No overlap... + return ConstantRange(LHS.getType(), false); + } + } +} + + +/// intersect - Return the range that results from the intersection of this +/// range with another range. +/// +ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + if (!isWrappedSet()) { + if (!CR.isWrappedSet()) { + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + if ((L < U)->getValue()) // If range isn't empty... + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + else + return ConstantRange(getType(), false); // Otherwise, return empty set + } else + return intersect1Wrapped(CR, *this); + } else { // We know "this" is wrapped... + if (!CR.isWrappedSet()) + return intersect1Wrapped(*this, CR); + else { + // Both ranges are wrapped... + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + } + } + return *this; +} + +/// union - Return the range that results from the union of this range with +/// another range. The resultant range is guaranteed to include the elements of +/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, +/// 15), which includes 9, 10, and 11, which were not included in either set +/// before. +/// +ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + assert(0 && "Range union not implemented yet!"); + + return *this; +} diff --git a/support/lib/Support/ConstantRange.cpp b/support/lib/Support/ConstantRange.cpp new file mode 100644 index 0000000..fe005ef --- /dev/null +++ b/support/lib/Support/ConstantRange.cpp @@ -0,0 +1,227 @@ +//===-- ConstantRange.cpp - ConstantRange implementation ------------------===// +// +// Represent a range of possible values that may occur when the program is run +// for an integral value. This keeps track of a lower and upper bound for the +// constant, which MAY wrap around the end of the numeric range. To do this, it +// keeps track of a [lower, upper) bound, which specifies an interval just like +// STL iterators. When used with boolean values, the following are important +// ranges (other integral ranges use min/max values for special range values): +// +// [F, F) = {} = Empty set +// [T, F) = {T} +// [F, T) = {F} +// [T, T) = {F, T} = Full set +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/ConstantRange.h" +#include "llvm/Type.h" +#include "llvm/Instruction.h" +#include "llvm/ConstantHandling.h" + +/// Initialize a full (the default) or empty set for the specified type. +/// +ConstantRange::ConstantRange(const Type *Ty, bool Full) { + assert(Ty->isIntegral() && + "Cannot make constant range of non-integral type!"); + if (Full) + Lower = Upper = ConstantIntegral::getMaxValue(Ty); + else + Lower = Upper = ConstantIntegral::getMinValue(Ty); +} + +/// Initialize a range of values explicitly... this will assert out if +/// Lower==Upper and Lower != Min or Max for its type (or if the two constants +/// have different types) +/// +ConstantRange::ConstantRange(ConstantIntegral *L, + ConstantIntegral *U) : Lower(L), Upper(U) { + assert(Lower->getType() == Upper->getType() && + "Incompatible types for ConstantRange!"); + + // Make sure that if L & U are equal that they are either Min or Max... + assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || + L == ConstantIntegral::getMinValue(L->getType()))) && + "Lower == Upper, but they aren't min or max for type!"); +} + +static ConstantIntegral *Next(ConstantIntegral *CI) { + if (CI->getType() == Type::BoolTy) + return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True; + + // Otherwise use operator+ in the ConstantHandling Library. + Constant *Result = *ConstantInt::get(CI->getType(), 1) + *CI; + assert(Result && "ConstantHandling not implemented for integral plus!?"); + return cast<ConstantIntegral>(Result); +} + +/// Initialize a set of values that all satisfy the condition with C. +/// +ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { + switch (SetCCOpcode) { + default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); + case Instruction::SetEQ: Lower = C; Upper = Next(C); return; + case Instruction::SetNE: Upper = C; Lower = Next(C); return; + case Instruction::SetLT: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = C; + return; + case Instruction::SetGT: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = Next(C); + return; + case Instruction::SetLE: + Lower = ConstantIntegral::getMinValue(C->getType()); + Upper = Next(C); + return; + case Instruction::SetGE: + Upper = ConstantIntegral::getMaxValue(C->getType()); + Lower = C; + return; + } +} + +/// getType - Return the LLVM data type of this range. +/// +const Type *ConstantRange::getType() const { return Lower->getType(); } + +/// isFullSet - Return true if this set contains all of the elements possible +/// for this data-type +bool ConstantRange::isFullSet() const { + return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); +} + +/// isEmptySet - Return true if this set contains no members. +/// +bool ConstantRange::isEmptySet() const { + return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); +} + +/// isWrappedSet - Return true if this set wraps around the top of the range, +/// for example: [100, 8) +/// +bool ConstantRange::isWrappedSet() const { + return (*(Constant*)Lower > *(Constant*)Upper)->getValue(); +} + + +/// getSingleElement - If this set contains a single element, return it, +/// otherwise return null. +ConstantIntegral *ConstantRange::getSingleElement() const { + if (Upper == Next(Lower)) // Is it a single element range? + return Lower; + return 0; +} + +/// getSetSize - Return the number of elements in this set. +/// +uint64_t ConstantRange::getSetSize() const { + if (isEmptySet()) return 0; + if (getType() == Type::BoolTy) { + if (Lower != Upper) // One of T or F in the set... + return 1; + return 2; // Must be full set... + } + + // Simply subtract the bounds... + Constant *Result = *(Constant*)Upper - *(Constant*)Lower; + assert(Result && "Subtraction of constant integers not implemented?"); + if (getType()->isSigned()) + return (uint64_t)cast<ConstantSInt>(Result)->getValue(); + else + return cast<ConstantUInt>(Result)->getValue(); +} + + + + +// intersect1Wrapped - This helper function is used to intersect two ranges when +// it is known that LHS is wrapped and RHS isn't. +// +static ConstantRange intersect1Wrapped(const ConstantRange &LHS, + const ConstantRange &RHS) { + assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); + + // Handle common special cases + if (RHS.isEmptySet()) return RHS; + if (RHS.isFullSet()) return LHS; + + // Check to see if we overlap on the Left side of RHS... + // + if ((*(Constant*)RHS.getLower() < *(Constant*)LHS.getUpper())->getValue()) { + // We do overlap on the left side of RHS, see if we overlap on the right of + // RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Ok, the result overlaps on both the left and right sides. See if the + // resultant interval will be smaller if we wrap or not... + // + if (LHS.getSetSize() < RHS.getSetSize()) + return LHS; + else + return RHS; + + } else { + // No overlap on the right, just on the left. + return ConstantRange(RHS.getLower(), LHS.getUpper()); + } + + } else { + // We don't overlap on the left side of RHS, see if we overlap on the right + // of RHS... + if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) { + // Simple overlap... + return ConstantRange(LHS.getLower(), RHS.getUpper()); + } else { + // No overlap... + return ConstantRange(LHS.getType(), false); + } + } +} + + +/// intersect - Return the range that results from the intersection of this +/// range with another range. +/// +ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + if (!isWrappedSet()) { + if (!CR.isWrappedSet()) { + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + if ((L < U)->getValue()) // If range isn't empty... + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + else + return ConstantRange(getType(), false); // Otherwise, return empty set + } else + return intersect1Wrapped(CR, *this); + } else { // We know "this" is wrapped... + if (!CR.isWrappedSet()) + return intersect1Wrapped(*this, CR); + else { + // Both ranges are wrapped... + const Constant &L = std::max(*(Constant*)Lower, *(Constant*)CR.Lower); + const Constant &U = std::min(*(Constant*)Upper, *(Constant*)CR.Upper); + + return ConstantRange(cast<ConstantIntegral>((Constant*)&L), + cast<ConstantIntegral>((Constant*)&U)); + } + } + return *this; +} + +/// union - Return the range that results from the union of this range with +/// another range. The resultant range is guaranteed to include the elements of +/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, +/// 15), which includes 9, 10, and 11, which were not included in either set +/// before. +/// +ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { + assert(getType() == CR.getType() && "ConstantRange types don't agree!"); + + assert(0 && "Range union not implemented yet!"); + + return *this; +} |