aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--lib/Analysis/LoadValueNumbering.cpp233
1 files changed, 233 insertions, 0 deletions
diff --git a/lib/Analysis/LoadValueNumbering.cpp b/lib/Analysis/LoadValueNumbering.cpp
new file mode 100644
index 0000000..154621e
--- /dev/null
+++ b/lib/Analysis/LoadValueNumbering.cpp
@@ -0,0 +1,233 @@
+//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
+//
+// This file implements a value numbering pass that value #'s load instructions.
+// To do this, it finds lexically identical load instructions, and uses alias
+// analysis to determine which loads are guaranteed to produce the same value.
+//
+// This pass builds off of another value numbering pass to implement value
+// numbering for non-load instructions. It uses Alias Analysis so that it can
+// disambiguate the load instructions. The more powerful these base analyses
+// are, the more powerful the resultant analysis will be.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoadValueNumbering.h"
+#include "llvm/Analysis/ValueNumbering.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Pass.h"
+#include "llvm/iMemory.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Support/CFG.h"
+#include <algorithm>
+#include <set>
+
+namespace {
+ // FIXME: This should not be a functionpass.
+ struct LoadVN : public FunctionPass, public ValueNumbering {
+
+ /// Pass Implementation stuff. This doesn't do any analysis.
+ ///
+ bool runOnFunction(Function &) { return false; }
+
+ /// getAnalysisUsage - Does not modify anything. It uses Value Numbering
+ /// and Alias Analysis.
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ /// getEqualNumberNodes - Return nodes with the same value number as the
+ /// specified Value. This fills in the argument vector with any equal
+ /// values.
+ ///
+ virtual void getEqualNumberNodes(Value *V1,
+ std::vector<Value*> &RetVals) const;
+ private:
+ /// haveEqualValueNumber - Given two load instructions, determine if they
+ /// both produce the same value on every execution of the program, assuming
+ /// that their source operands always give the same value. This uses the
+ /// AliasAnalysis implementation to invalidate loads when stores or function
+ /// calls occur that could modify the value produced by the load.
+ ///
+ bool haveEqualValueNumber(LoadInst *LI, LoadInst *LI2, AliasAnalysis &AA,
+ DominatorSet &DomSetInfo) const;
+ };
+
+ // Register this pass...
+ RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering");
+
+ // Declare that we implement the ValueNumbering interface
+ RegisterAnalysisGroup<ValueNumbering, LoadVN> Y;
+}
+
+
+
+Pass *createLoadValueNumberingPass() { return new LoadVN(); }
+
+
+/// getAnalysisUsage - Does not modify anything. It uses Value Numbering and
+/// Alias Analysis.
+///
+void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<ValueNumbering>();
+ AU.addRequired<DominatorSet>();
+}
+
+// getEqualNumberNodes - Return nodes with the same value number as the
+// specified Value. This fills in the argument vector with any equal values.
+//
+void LoadVN::getEqualNumberNodes(Value *V,
+ std::vector<Value*> &RetVals) const {
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
+ // If we have a load instruction find all of the load instructions that use
+ // the same source operand. We implement this recursively, because there
+ // could be a load of a load of a load that are all identical. We are
+ // guaranteed that this cannot be an infinite recursion because load
+ // instructions would have to pass through a PHI node in order for there to
+ // be a cycle. The PHI node would be handled by the else case here,
+ // breaking the infinite recursion.
+ //
+ std::vector<Value*> PointerSources;
+ getEqualNumberNodes(LI->getOperand(0), PointerSources);
+ PointerSources.push_back(LI->getOperand(0));
+
+ Function *F = LI->getParent()->getParent();
+
+ // Now that we know the set of equivalent source pointers for the load
+ // instruction, look to see if there are any load candiates that are
+ // identical.
+ //
+ std::vector<LoadInst*> CandidateLoads;
+ while (!PointerSources.empty()) {
+ Value *Source = PointerSources.back();
+ PointerSources.pop_back(); // Get a source pointer...
+
+ for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end();
+ UI != UE; ++UI)
+ if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) // Is a load of source?
+ if (Cand->getParent()->getParent() == F && // In the same function?
+ Cand != LI) // Not LI itself?
+ CandidateLoads.push_back(Cand); // Got one...
+ }
+
+ // Remove duplicates from the CandidateLoads list because alias analysis
+ // processing may be somewhat expensive and we don't want to do more work
+ // than neccesary.
+ //
+ std::sort(CandidateLoads.begin(), CandidateLoads.end());
+ CandidateLoads.erase(std::unique(CandidateLoads.begin(),
+ CandidateLoads.end()),
+ CandidateLoads.end());
+
+ // Get Alias Analysis...
+ AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
+ DominatorSet &DomSetInfo = getAnalysis<DominatorSet>();
+
+ // Loop over all of the candindate loads. If they are not invalidated by
+ // stores or calls between execution of them and LI, then add them to
+ // RetVals.
+ for (unsigned i = 0, e = CandidateLoads.size(); i != e; ++i)
+ if (haveEqualValueNumber(LI, CandidateLoads[i], AA, DomSetInfo))
+ RetVals.push_back(CandidateLoads[i]);
+
+ } else {
+ // Make sure passmanager doesn't try to fulfill our request with ourself!
+ assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
+ "getAnalysis() returned this!");
+
+ // Not a load instruction? Just chain to the base value numbering
+ // implementation to satisfy the request...
+ return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
+ }
+}
+
+// CheckForInvalidatingInst - Return true if BB or any of the predecessors of BB
+// (until DestBB) contain an instruction that might invalidate Ptr.
+//
+static bool CheckForInvalidatingInst(BasicBlock *BB, BasicBlock *DestBB,
+ Value *Ptr, AliasAnalysis &AA,
+ std::set<BasicBlock*> &VisitedSet) {
+ // Found the termination point!
+ if (BB == DestBB || VisitedSet.count(BB)) return false;
+
+ // Avoid infinite recursion!
+ VisitedSet.insert(BB);
+
+ // Can this basic block modify Ptr?
+ if (AA.canBasicBlockModify(*BB, Ptr))
+ return true;
+
+ // Check all of our predecessor blocks...
+ for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
+ if (CheckForInvalidatingInst(*PI, DestBB, Ptr, AA, VisitedSet))
+ return true;
+
+ // None of our predecessor blocks contain an invalidating instruction, and we
+ // don't either!
+ return false;
+}
+
+
+/// haveEqualValueNumber - Given two load instructions, determine if they both
+/// produce the same value on every execution of the program, assuming that
+/// their source operands always give the same value. This uses the
+/// AliasAnalysis implementation to invalidate loads when stores or function
+/// calls occur that could modify the value produced by the load.
+///
+bool LoadVN::haveEqualValueNumber(LoadInst *L1, LoadInst *L2,
+ AliasAnalysis &AA,
+ DominatorSet &DomSetInfo) const {
+ // Figure out which load dominates the other one. If neither dominates the
+ // other we cannot eliminate them.
+ //
+ // FIXME: This could be enhanced to some cases with a shared dominator!
+ //
+ if (DomSetInfo.dominates(L2, L1))
+ std::swap(L1, L2); // Make L1 dominate L2
+ else if (!DomSetInfo.dominates(L1, L2))
+ return false; // Neither instruction dominates the other one...
+
+ BasicBlock *BB1 = L1->getParent(), *BB2 = L2->getParent();
+ Value *LoadAddress = L1->getOperand(0);
+
+ // L1 now dominates L2. Check to see if the intervening instructions between
+ // the two loads include a store or call...
+ //
+ if (BB1 == BB2) { // In same basic block?
+ // In this degenerate case, no checking of global basic blocks has to occur
+ // just check the instructions BETWEEN L1 & L2...
+ //
+ if (AA.canInstructionRangeModify(*L1, *L2, LoadAddress))
+ return false; // Cannot eliminate load
+
+ // No instructions invalidate the loads, they produce the same value!
+ return true;
+ } else {
+ // Make sure that there are no store instructions between L1 and the end of
+ // it's basic block...
+ //
+ if (AA.canInstructionRangeModify(*L1, *BB1->getTerminator(), LoadAddress))
+ return false; // Cannot eliminate load
+
+ // Make sure that there are no store instructions between the start of BB2
+ // and the second load instruction...
+ //
+ if (AA.canInstructionRangeModify(BB2->front(), *L2, LoadAddress))
+ return false; // Cannot eliminate load
+
+ // Do a depth first traversal of the inverse CFG starting at L2's block,
+ // looking for L1's block. The inverse CFG is made up of the predecessor
+ // nodes of a block... so all of the edges in the graph are "backward".
+ //
+ std::set<BasicBlock*> VisitedSet;
+ for (pred_iterator PI = pred_begin(BB2), PE = pred_end(BB2); PI != PE; ++PI)
+ if (CheckForInvalidatingInst(*PI, BB1, LoadAddress, AA, VisitedSet))
+ return false;
+
+ // If we passed all of these checks then we are sure that the two loads
+ // produce the same value.
+ return true;
+ }
+}