aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/llvm/ADT/IntervalMap.h1695
-rw-r--r--lib/Support/CMakeLists.txt1
-rw-r--r--lib/Support/IntervalMap.cpp60
-rw-r--r--unittests/ADT/IntervalMapTest.cpp357
-rw-r--r--unittests/CMakeLists.txt1
5 files changed, 0 insertions, 2114 deletions
diff --git a/include/llvm/ADT/IntervalMap.h b/include/llvm/ADT/IntervalMap.h
deleted file mode 100644
index e38789b..0000000
--- a/include/llvm/ADT/IntervalMap.h
+++ /dev/null
@@ -1,1695 +0,0 @@
-//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a coalescing interval map for small objects.
-//
-// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
-// same value are represented in a compressed form.
-//
-// Iterators provide ordered access to the compressed intervals rather than the
-// individual keys, and insert and erase operations use key intervals as well.
-//
-// Like SmallVector, IntervalMap will store the first N intervals in the map
-// object itself without any allocations. When space is exhausted it switches to
-// a B+-tree representation with very small overhead for small key and value
-// objects.
-//
-// A Traits class specifies how keys are compared. It also allows IntervalMap to
-// work with both closed and half-open intervals.
-//
-// Keys and values are not stored next to each other in a std::pair, so we don't
-// provide such a value_type. Dereferencing iterators only returns the mapped
-// value. The interval bounds are accessible through the start() and stop()
-// iterator methods.
-//
-// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
-// is the optimal size. For large objects use std::map instead.
-//
-//===----------------------------------------------------------------------===//
-//
-// Synopsis:
-//
-// template <typename KeyT, typename ValT, unsigned N, typename Traits>
-// class IntervalMap {
-// public:
-// typedef KeyT key_type;
-// typedef ValT mapped_type;
-// typedef RecyclingAllocator<...> Allocator;
-// class iterator;
-// class const_iterator;
-//
-// explicit IntervalMap(Allocator&);
-// ~IntervalMap():
-//
-// bool empty() const;
-// KeyT start() const;
-// KeyT stop() const;
-// ValT lookup(KeyT x, Value NotFound = Value()) const;
-//
-// const_iterator begin() const;
-// const_iterator end() const;
-// iterator begin();
-// iterator end();
-// const_iterator find(KeyT x) const;
-// iterator find(KeyT x);
-//
-// void insert(KeyT a, KeyT b, ValT y);
-// void clear();
-// };
-//
-// template <typename KeyT, typename ValT, unsigned N, typename Traits>
-// class IntervalMap::const_iterator :
-// public std::iterator<std::bidirectional_iterator_tag, ValT> {
-// public:
-// bool operator==(const const_iterator &) const;
-// bool operator!=(const const_iterator &) const;
-// bool valid() const;
-//
-// const KeyT &start() const;
-// const KeyT &stop() const;
-// const ValT &value() const;
-// const ValT &operator*() const;
-// const ValT *operator->() const;
-//
-// const_iterator &operator++();
-// const_iterator &operator++(int);
-// const_iterator &operator--();
-// const_iterator &operator--(int);
-// void goToBegin();
-// void goToEnd();
-// void find(KeyT x);
-// void advanceTo(KeyT x);
-// };
-//
-// template <typename KeyT, typename ValT, unsigned N, typename Traits>
-// class IntervalMap::iterator : public const_iterator {
-// public:
-// void insert(KeyT a, KeyT b, Value y);
-// void erase();
-// };
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ADT_INTERVALMAP_H
-#define LLVM_ADT_INTERVALMAP_H
-
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/PointerIntPair.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/RecyclingAllocator.h"
-#include <limits>
-#include <iterator>
-
-// FIXME: Remove debugging code
-#ifndef NDEBUG
-#include "llvm/Support/raw_ostream.h"
-#endif
-
-namespace llvm {
-
-
-//===----------------------------------------------------------------------===//
-//--- Key traits ---//
-//===----------------------------------------------------------------------===//
-//
-// The IntervalMap works with closed or half-open intervals.
-// Adjacent intervals that map to the same value are coalesced.
-//
-// The IntervalMapInfo traits class is used to determine if a key is contained
-// in an interval, and if two intervals are adjacent so they can be coalesced.
-// The provided implementation works for closed integer intervals, other keys
-// probably need a specialized version.
-//
-// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
-//
-// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
-// allowed. This is so that stopLess(a, b) can be used to determine if two
-// intervals overlap.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename T>
-struct IntervalMapInfo {
-
- /// startLess - Return true if x is not in [a;b].
- /// This is x < a both for closed intervals and for [a;b) half-open intervals.
- static inline bool startLess(const T &x, const T &a) {
- return x < a;
- }
-
- /// stopLess - Return true if x is not in [a;b].
- /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
- static inline bool stopLess(const T &b, const T &x) {
- return b < x;
- }
-
- /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
- /// This is a+1 == b for closed intervals, a == b for half-open intervals.
- static inline bool adjacent(const T &a, const T &b) {
- return a+1 == b;
- }
-
-};
-
-/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
-/// It should be considered private to the implementation.
-namespace IntervalMapImpl {
-
-// Forward declarations.
-template <typename, typename, unsigned, typename> class Leaf;
-template <typename, typename, unsigned, typename> class Branch;
-
-typedef std::pair<unsigned,unsigned> IdxPair;
-
-
-//===----------------------------------------------------------------------===//
-//--- Node Storage ---//
-//===----------------------------------------------------------------------===//
-//
-// Both leaf and branch nodes store vectors of (key,value) pairs.
-// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (KeyT, NodeRef).
-//
-// Keys and values are stored in separate arrays to avoid padding caused by
-// different object alignments. This also helps improve locality of reference
-// when searching the keys.
-//
-// The nodes don't know how many elements they contain - that information is
-// stored elsewhere. Omitting the size field prevents padding and allows a node
-// to fill the allocated cache lines completely.
-//
-// These are typical key and value sizes, the node branching factor (N), and
-// wasted space when nodes are sized to fit in three cache lines (192 bytes):
-//
-// KT VT N Waste Used by
-// 4 4 24 0 Branch<4> (32-bit pointers)
-// 4 8 16 0 Branch<4>
-// 8 4 16 0 Leaf<4,4>
-// 8 8 12 0 Leaf<4,8>, Branch<8>
-// 16 4 9 12 Leaf<8,4>
-// 16 8 8 0 Leaf<8,8>
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KT, typename VT, unsigned N>
-class NodeBase {
-public:
- enum { Capacity = N };
-
- KT key[N];
- VT val[N];
-
- /// copy - Copy elements from another node.
- /// @param other Node elements are copied from.
- /// @param i Beginning of the source range in other.
- /// @param j Beginning of the destination range in this.
- /// @param count Number of elements to copy.
- template <unsigned M>
- void copy(const NodeBase<KT, VT, M> &Other, unsigned i,
- unsigned j, unsigned Count) {
- assert(i + Count <= M && "Invalid source range");
- assert(j + Count <= N && "Invalid dest range");
- std::copy(Other.key + i, Other.key + i + Count, key + j);
- std::copy(Other.val + i, Other.val + i + Count, val + j);
- }
-
- /// lmove - Move elements to the left.
- /// @param i Beginning of the source range.
- /// @param j Beginning of the destination range.
- /// @param count Number of elements to copy.
- void lmove(unsigned i, unsigned j, unsigned Count) {
- assert(j <= i && "Use rmove shift elements right");
- copy(*this, i, j, Count);
- }
-
- /// rmove - Move elements to the right.
- /// @param i Beginning of the source range.
- /// @param j Beginning of the destination range.
- /// @param count Number of elements to copy.
- void rmove(unsigned i, unsigned j, unsigned Count) {
- assert(i <= j && "Use lmove shift elements left");
- assert(j + Count <= N && "Invalid range");
- std::copy_backward(key + i, key + i + Count, key + j + Count);
- std::copy_backward(val + i, val + i + Count, val + j + Count);
- }
-
- /// erase - Erase elements [i;j).
- /// @param i Beginning of the range to erase.
- /// @param j End of the range. (Exclusive).
- /// @param size Number of elements in node.
- void erase(unsigned i, unsigned j, unsigned Size) {
- lmove(j, i, Size - j);
- }
-
- /// shift - Shift elements [i;size) 1 position to the right.
- /// @param i Beginning of the range to move.
- /// @param size Number of elements in node.
- void shift(unsigned i, unsigned Size) {
- rmove(i, i + 1, Size - i);
- }
-
- /// xferLeft - Transfer elements to a left sibling node.
- /// @param size Number of elements in this.
- /// @param sib Left sibling node.
- /// @param ssize Number of elements in sib.
- /// @param count Number of elements to transfer.
- void xferLeft(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
- Sib.copy(*this, 0, SSize, Count);
- erase(0, Count, Size);
- }
-
- /// xferRight - Transfer elements to a right sibling node.
- /// @param size Number of elements in this.
- /// @param sib Right sibling node.
- /// @param ssize Number of elements in sib.
- /// @param count Number of elements to transfer.
- void xferRight(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
- Sib.rmove(0, Count, SSize);
- Sib.copy(*this, Size-Count, 0, Count);
- }
-
- /// adjLeftSib - Adjust the number if elements in this node by moving
- /// elements to or from a left sibling node.
- /// @param size Number of elements in this.
- /// @param sib Right sibling node.
- /// @param ssize Number of elements in sib.
- /// @param add The number of elements to add to this node, possibly < 0.
- /// @return Number of elements added to this node, possibly negative.
- int adjLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
- if (Add > 0) {
- // We want to grow, copy from sib.
- unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
- Sib.xferRight(SSize, *this, Size, Count);
- return Count;
- } else {
- // We want to shrink, copy to sib.
- unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
- xferLeft(Size, Sib, SSize, Count);
- return -Count;
- }
- }
-};
-
-
-//===----------------------------------------------------------------------===//
-//--- NodeSizer ---//
-//===----------------------------------------------------------------------===//
-//
-// Compute node sizes from key and value types.
-//
-// The branching factors are chosen to make nodes fit in three cache lines.
-// This may not be possible if keys or values are very large. Such large objects
-// are handled correctly, but a std::map would probably give better performance.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT>
-struct NodeSizer {
- enum {
- // Cache line size. Most architectures have 32 or 64 byte cache lines.
- // We use 64 bytes here because it provides good branching factors.
- Log2CacheLine = 6,
- CacheLineBytes = 1 << Log2CacheLine,
-
- // Compute the leaf node branching factor that makes a node fit in three
- // cache lines. The branching factor must be at least 3, or some B+-tree
- // balancing algorithms won't work.
- // LeafSize can't be larger than CacheLineBytes. This is required by the
- // PointerIntPair used by NodeRef.
- DesiredNodeBytes = 3 * CacheLineBytes,
- DesiredLeafSize = DesiredNodeBytes / (2*sizeof(KeyT)+sizeof(ValT)),
- LeafSize = DesiredLeafSize > 3 ? DesiredLeafSize : 3,
-
- // Now that we have the leaf branching factor, compute the actual allocation
- // unit size by rounding up to a whole number of cache lines.
- LeafBytes = sizeof(NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>),
- AllocBytes = (LeafBytes + CacheLineBytes-1) & ~(CacheLineBytes-1),
-
- // Determine the branching factor for branch nodes, constrained to
- // CacheLineBytes to please NodeRef.
- DesiredBranchSize = AllocBytes / (sizeof(KeyT) + sizeof(void*)),
- BranchSize = DesiredBranchSize < CacheLineBytes ?
- DesiredBranchSize : CacheLineBytes
- };
-
- /// Allocator - The recycling allocator used for both branch and leaf nodes.
- /// This typedef is very likely to be identical for all IntervalMaps with
- /// reasonably sized entries, so the same allocator can be shared among
- /// different kinds of maps.
- typedef RecyclingAllocator<BumpPtrAllocator, char,
- AllocBytes, CacheLineBytes> Allocator;
-
-};
-
-
-//===----------------------------------------------------------------------===//
-//--- NodeRef ---//
-//===----------------------------------------------------------------------===//
-//
-// B+-tree nodes can be leaves or branches, so we need a polymorphic node
-// pointer that can point to both kinds.
-//
-// All nodes are cache line aligned and the low 6 bits of a node pointer are
-// always 0. These bits are used to store the number of elements in the
-// referenced node. Besides saving space, placing node sizes in the parents
-// allow tree balancing algorithms to run without faulting cache lines for nodes
-// that may not need to be modified.
-//
-// A NodeRef doesn't know whether it references a leaf node or a branch node.
-// It is the responsibility of the caller to use the correct types.
-//
-// Nodes are never supposed to be empty, and it is invalid to store a node size
-// of 0 in a NodeRef. The valid range of sizes is 1-64.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, typename Traits>
-class NodeRef {
-
-public:
- typedef NodeSizer<KeyT, ValT> NodeSizer;
- typedef Leaf<KeyT, ValT, NodeSizer::LeafSize, Traits> Leaf;
- typedef Branch<KeyT, ValT, NodeSizer::BranchSize, Traits> Branch;
-
-private:
- struct CacheAlignedPointerTraits {
- static inline void *getAsVoidPointer(void *P) { return P; }
- static inline void *getFromVoidPointer(void *P) { return P; }
- enum { NumLowBitsAvailable = NodeSizer::Log2CacheLine };
- };
-
- PointerIntPair<void*, NodeSizer::Log2CacheLine, unsigned,
- CacheAlignedPointerTraits> pip;
-
-public:
- /// NodeRef - Create a null ref.
- NodeRef() {}
-
- /// operator bool - Detect a null ref.
- operator bool() const { return pip.getOpaqueValue(); }
-
- /// NodeRef - Create a reference to the leaf node p with n elements.
- NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {}
-
- /// NodeRef - Create a reference to the branch node p with n elements.
- NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {}
-
- /// size - Return the number of elements in the referenced node.
- unsigned size() const { return pip.getInt() + 1; }
-
- /// setSize - Update the node size.
- void setSize(unsigned n) { pip.setInt(n - 1); }
-
- /// leaf - Return the referenced leaf node.
- /// Note there are no dynamic type checks.
- Leaf &leaf() const {
- return *reinterpret_cast<Leaf*>(pip.getPointer());
- }
-
- /// branch - Return the referenced branch node.
- /// Note there are no dynamic type checks.
- Branch &branch() const {
- return *reinterpret_cast<Branch*>(pip.getPointer());
- }
-
- bool operator==(const NodeRef &RHS) const {
- if (pip == RHS.pip)
- return true;
- assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
- return false;
- }
-
- bool operator!=(const NodeRef &RHS) const {
- return !operator==(RHS);
- }
-};
-
-//===----------------------------------------------------------------------===//
-//--- Leaf nodes ---//
-//===----------------------------------------------------------------------===//
-//
-// Leaf nodes store up to N disjoint intervals with corresponding values.
-//
-// The intervals are kept sorted and fully coalesced so there are no adjacent
-// intervals mapping to the same value.
-//
-// These constraints are always satisfied:
-//
-// - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals.
-//
-// - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted.
-//
-// - val[i] != val[i + 1] ||
-// !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class Leaf : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
-public:
- const KeyT &start(unsigned i) const { return this->key[i].first; }
- const KeyT &stop(unsigned i) const { return this->key[i].second; }
- const ValT &value(unsigned i) const { return this->val[i]; }
-
- KeyT &start(unsigned i) { return this->key[i].first; }
- KeyT &stop(unsigned i) { return this->key[i].second; }
- ValT &value(unsigned i) { return this->val[i]; }
-
- /// findFrom - Find the first interval after i that may contain x.
- /// @param i Starting index for the search.
- /// @param size Number of elements in node.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i].stop, x), or size.
- /// This is the first interval that can possibly contain x.
- unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
- assert(i <= Size && Size <= N && "Bad indices");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index is past the needed point");
- while (i != Size && Traits::stopLess(stop(i), x)) ++i;
- return i;
- }
-
- /// safeFind - Find an interval that is known to exist. This is the same as
- /// findFrom except is it assumed that x is at least within range of the last
- /// interval.
- /// @param i Starting index for the search.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i].stop, x), never size.
- /// This is the first interval that can possibly contain x.
- unsigned safeFind(unsigned i, KeyT x) const {
- assert(i < N && "Bad index");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index is past the needed point");
- while (Traits::stopLess(stop(i), x)) ++i;
- assert(i < N && "Unsafe intervals");
- return i;
- }
-
- /// safeLookup - Lookup mapped value for a safe key.
- /// It is assumed that x is within range of the last entry.
- /// @param x Key to search for.
- /// @param NotFound Value to return if x is not in any interval.
- /// @return The mapped value at x or NotFound.
- ValT safeLookup(KeyT x, ValT NotFound) const {
- unsigned i = safeFind(0, x);
- return Traits::startLess(x, start(i)) ? NotFound : value(i);
- }
-
- IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
- unsigned extendStop(unsigned i, unsigned Size, KeyT b);
-
-#ifndef NDEBUG
- void dump(unsigned Size) {
- errs() << " N" << this << " [shape=record label=\"{ " << Size << '/' << N;
- for (unsigned i = 0; i != Size; ++i)
- errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
- errs() << "}\"];\n";
- }
-#endif
-
-};
-
-/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
-/// possible. This may cause the node to grow by 1, or it may cause the node
-/// to shrink because of coalescing.
-/// @param i Starting index = insertFrom(0, size, a)
-/// @param size Number of elements in node.
-/// @param a Interval start.
-/// @param b Interval stop.
-/// @param y Value be mapped.
-/// @return (insert position, new size), or (i, Capacity+1) on overflow.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-IdxPair Leaf<KeyT, ValT, N, Traits>::
-insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
- assert(i <= Size && Size <= N && "Invalid index");
- assert(!Traits::stopLess(b, a) && "Invalid interval");
-
- // Verify the findFrom invariant.
- assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
- assert((i == Size || !Traits::stopLess(stop(i), a)));
-
- // Coalesce with previous interval.
- if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
- return IdxPair(i - 1, extendStop(i - 1, Size, b));
-
- // Detect overflow.
- if (i == N)
- return IdxPair(i, N + 1);
-
- // Add new interval at end.
- if (i == Size) {
- start(i) = a;
- stop(i) = b;
- value(i) = y;
- return IdxPair(i, Size + 1);
- }
-
- // Overlapping intervals?
- if (!Traits::stopLess(b, start(i))) {
- assert(value(i) == y && "Inconsistent values in overlapping intervals");
- if (Traits::startLess(a, start(i)))
- start(i) = a;
- return IdxPair(i, extendStop(i, Size, b));
- }
-
- // Try to coalesce with following interval.
- if (value(i) == y && Traits::adjacent(b, start(i))) {
- start(i) = a;
- return IdxPair(i, Size);
- }
-
- // We must insert before i. Detect overflow.
- if (Size == N)
- return IdxPair(i, N + 1);
-
- // Insert before i.
- this->shift(i, Size);
- start(i) = a;
- stop(i) = b;
- value(i) = y;
- return IdxPair(i, Size + 1);
-}
-
-/// extendStop - Extend stop(i) to b, coalescing with following intervals.
-/// @param i Interval to extend.
-/// @param size Number of elements in node.
-/// @param b New interval end point.
-/// @return New node size after coalescing.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-unsigned Leaf<KeyT, ValT, N, Traits>::
-extendStop(unsigned i, unsigned Size, KeyT b) {
- assert(i < Size && Size <= N && "Bad indices");
-
- // Are we even extending the interval?
- if (Traits::startLess(b, stop(i)))
- return Size;
-
- // Find the first interval that may be preserved.
- unsigned j = findFrom(i + 1, Size, b);
- if (j < Size) {
- // Would key[i] overlap key[j] after the extension?
- if (Traits::stopLess(b, start(j))) {
- // Not overlapping. Perhaps adjacent and coalescable?
- if (value(i) == value(j) && Traits::adjacent(b, start(j)))
- b = stop(j++);
- } else {
- // Overlap. Include key[j] in the new interval.
- assert(value(i) == value(j) && "Overlapping values");
- b = stop(j++);
- }
- }
- stop(i) = b;
-
- // Entries [i+1;j) were coalesced.
- if (i + 1 < j && j < Size)
- this->erase(i + 1, j, Size);
- return Size - (j - (i + 1));
-}
-
-
-//===----------------------------------------------------------------------===//
-//--- Branch nodes ---//
-//===----------------------------------------------------------------------===//
-//
-// A branch node stores references to 1--N subtrees all of the same height.
-//
-// The key array in a branch node holds the rightmost stop key of each subtree.
-// It is redundant to store the last stop key since it can be found in the
-// parent node, but doing so makes tree balancing a lot simpler.
-//
-// It is unusual for a branch node to only have one subtree, but it can happen
-// in the root node if it is smaller than the normal nodes.
-//
-// When all of the leaf nodes from all the subtrees are concatenated, they must
-// satisfy the same constraints as a single leaf node. They must be sorted,
-// sane, and fully coalesced.
-//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class Branch : public NodeBase<KeyT, NodeRef<KeyT, ValT, Traits>, N> {
- typedef NodeRef<KeyT, ValT, Traits> NodeRef;
-public:
- const KeyT &stop(unsigned i) const { return this->key[i]; }
- const NodeRef &subtree(unsigned i) const { return this->val[i]; }
-
- KeyT &stop(unsigned i) { return this->key[i]; }
- NodeRef &subtree(unsigned i) { return this->val[i]; }
-
-
- /// findFrom - Find the first subtree after i that may contain x.
- /// @param i Starting index for the search.
- /// @param size Number of elements in node.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i], x), or size.
- /// This is the first subtree that can possibly contain x.
- unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
- assert(i <= Size && Size <= N && "Bad indices");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index to findFrom is past the needed point");
- while (i != Size && Traits::stopLess(stop(i), x)) ++i;
- return i;
- }
-
- /// safeFind - Find a subtree that is known to exist. This is the same as
- /// findFrom except is it assumed that x is in range.
- /// @param i Starting index for the search.
- /// @param x Key to search for.
- /// @return First index with !stopLess(key[i], x), never size.
- /// This is the first subtree that can possibly contain x.
- unsigned safeFind(unsigned i, KeyT x) const {
- assert(i < N && "Bad index");
- assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
- "Index is past the needed point");
- while (Traits::stopLess(stop(i), x)) ++i;
- assert(i < N && "Unsafe intervals");
- return i;
- }
-
- /// safeLookup - Get the subtree containing x, Assuming that x is in range.
- /// @param x Key to search for.
- /// @return Subtree containing x
- NodeRef safeLookup(KeyT x) const {
- return subtree(safeFind(0, x));
- }
-
- /// insert - Insert a new (subtree, stop) pair.
- /// @param i Insert position, following entries will be shifted.
- /// @param size Number of elements in node.
- /// @param node Subtree to insert.
- /// @param stp Last key in subtree.
- void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
- assert(Size < N && "branch node overflow");
- assert(i <= Size && "Bad insert position");
- this->shift(i, Size);
- subtree(i) = Node;
- stop(i) = Stop;
- }
-
-#ifndef NDEBUG
- void dump(unsigned Size) {
- errs() << " N" << this << " [shape=record label=\"" << Size << '/' << N;
- for (unsigned i = 0; i != Size; ++i)
- errs() << " | <s" << i << "> " << stop(i);
- errs() << "\"];\n";
- for (unsigned i = 0; i != Size; ++i)
- errs() << " N" << this << ":s" << i << " -> N"
- << &subtree(i).branch() << ";\n";
- }
-#endif
-
-};
-
-} // namespace IntervalMapImpl
-
-
-//===----------------------------------------------------------------------===//
-//--- IntervalMap ----//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT,
- unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
- typename Traits = IntervalMapInfo<KeyT> >
-class IntervalMap {
- typedef IntervalMapImpl::NodeRef<KeyT, ValT, Traits> NodeRef;
- typedef typename NodeRef::NodeSizer NodeSizer;
- typedef typename NodeRef::Leaf Leaf;
- typedef typename NodeRef::Branch Branch;
- typedef IntervalMapImpl::Leaf<KeyT, ValT, N, Traits> RootLeaf;
- typedef IntervalMapImpl::IdxPair IdxPair;
-
- // The RootLeaf capacity is given as a template parameter. We must compute the
- // corresponding RootBranch capacity.
- enum {
- DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
- (sizeof(KeyT) + sizeof(NodeRef)),
- RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
- };
-
- typedef IntervalMapImpl::Branch<KeyT, ValT, RootBranchCap, Traits> RootBranch;
-
- // When branched, we store a global start key as well as the branch node.
- struct RootBranchData {
- KeyT start;
- RootBranch node;
- };
-
- enum {
- RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
- sizeof(RootBranchData) : sizeof(RootLeaf)
- };
-
-public:
- typedef typename NodeSizer::Allocator Allocator;
-
-private:
- // The root data is either a RootLeaf or a RootBranchData instance.
- // We can't put them in a union since C++03 doesn't allow non-trivial
- // constructors in unions.
- // Instead, we use a char array with pointer alignment. The alignment is
- // ensured by the allocator member in the class, but still verified in the
- // constructor. We don't support keys or values that are more aligned than a
- // pointer.
- char data[RootDataSize];
-
- // Tree height.
- // 0: Leaves in root.
- // 1: Root points to leaf.
- // 2: root->branch->leaf ...
- unsigned height;
-
- // Number of entries in the root node.
- unsigned rootSize;
-
- // Allocator used for creating external nodes.
- Allocator &allocator;
-
- const RootLeaf &rootLeaf() const {
- assert(!branched() && "Cannot acces leaf data in branched root");
- return *reinterpret_cast<const RootLeaf*>(data);
- }
- RootLeaf &rootLeaf() {
- assert(!branched() && "Cannot acces leaf data in branched root");
- return *reinterpret_cast<RootLeaf*>(data);
- }
- const RootBranchData &rootBranchData() const {
- assert(branched() && "Cannot access branch data in non-branched root");
- return *reinterpret_cast<const RootBranchData*>(data);
- }
- RootBranchData &rootBranchData() {
- assert(branched() && "Cannot access branch data in non-branched root");
- return *reinterpret_cast<RootBranchData*>(data);
- }
- const RootBranch &rootBranch() const { return rootBranchData().node; }
- RootBranch &rootBranch() { return rootBranchData().node; }
- KeyT rootBranchStart() const { return rootBranchData().start; }
- KeyT &rootBranchStart() { return rootBranchData().start; }
-
- Leaf *allocLeaf() {
- return new(allocator.template Allocate<Leaf>()) Leaf();
- }
- void freeLeaf(Leaf *P) {
- P->~Leaf();
- allocator.Deallocate(P);
- }
-
- Branch *allocBranch() {
- return new(allocator.template Allocate<Branch>()) Branch();
- }
- void freeBranch(Branch *P) {
- P->~Branch();
- allocator.Deallocate(P);
- }
-
-
- IdxPair branchRoot(unsigned Position);
- IdxPair splitRoot(unsigned Position);
-
- void switchRootToBranch() {
- rootLeaf().~RootLeaf();
- height = 1;
- new (&rootBranchData()) RootBranchData();
- }
-
- void switchRootToLeaf() {
- rootBranchData().~RootBranchData();
- height = 0;
- new(&rootLeaf()) RootLeaf();
- }
-
- bool branched() const { return height > 0; }
-
- ValT treeSafeLookup(KeyT x, ValT NotFound) const;
-
- void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level));
-
-public:
- explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
- assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
- "Insufficient alignment");
- new(&rootLeaf()) RootLeaf();
- }
-
- /// empty - Return true when no intervals are mapped.
- bool empty() const {
- return rootSize == 0;
- }
-
- /// start - Return the smallest mapped key in a non-empty map.
- KeyT start() const {
- assert(!empty() && "Empty IntervalMap has no start");
- return !branched() ? rootLeaf().start(0) : rootBranchStart();
- }
-
- /// stop - Return the largest mapped key in a non-empty map.
- KeyT stop() const {
- assert(!empty() && "Empty IntervalMap has no stop");
- return !branched() ? rootLeaf().stop(rootSize - 1) :
- rootBranch().stop(rootSize - 1);
- }
-
- /// lookup - Return the mapped value at x or NotFound.
- ValT lookup(KeyT x, ValT NotFound = ValT()) const {
- if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
- return NotFound;
- return branched() ? treeSafeLookup(x, NotFound) :
- rootLeaf().safeLookup(x, NotFound);
- }
-
- /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
- /// It is assumed that no key in the interval is mapped to another value, but
- /// overlapping intervals already mapped to y will be coalesced.
- void insert(KeyT a, KeyT b, ValT y) {
- find(a).insert(a, b, y);
- }
-
- class const_iterator;
- class iterator;
- friend class const_iterator;
- friend class iterator;
-
- const_iterator begin() const {
- iterator I(*this);
- I.goToBegin();
- return I;
- }
-
- iterator begin() {
- iterator I(*this);
- I.goToBegin();
- return I;
- }
-
- const_iterator end() const {
- iterator I(*this);
- I.goToEnd();
- return I;
- }
-
- iterator end() {
- iterator I(*this);
- I.goToEnd();
- return I;
- }
-
- /// find - Return an iterator pointing to the first interval ending at or
- /// after x, or end().
- const_iterator find(KeyT x) const {
- iterator I(*this);
- I.find(x);
- return I;
- }
-
- iterator find(KeyT x) {
- iterator I(*this);
- I.find(x);
- return I;
- }
-
-#ifndef NDEBUG
- void dump();
- void dumpNode(NodeRef Node, unsigned Height);
-#endif
-};
-
-/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
-/// branched root.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-ValT IntervalMap<KeyT, ValT, N, Traits>::
-treeSafeLookup(KeyT x, ValT NotFound) const {
- assert(branched() && "treeLookup assumes a branched root");
-
- NodeRef NR = rootBranch().safeLookup(x);
- for (unsigned h = height-1; h; --h)
- NR = NR.branch().safeLookup(x);
- return NR.leaf().safeLookup(x, NotFound);
-}
-
-
-// branchRoot - Switch from a leaf root to a branched root.
-// Return the new (root offset, node offset) corresponding to Position.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
-branchRoot(unsigned Position) {
- // How many external leaf nodes to hold RootLeaf+1?
- const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
-
- // Compute element distribution among new nodes.
- unsigned size[Nodes];
- IdxPair NewOffset(0, Position);
-
- // Is is very common for the root node to be smaller than external nodes.
- if (Nodes == 1)
- size[0] = rootSize;
- else
- NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
- Position, true);
-
- // Allocate new nodes.
- unsigned pos = 0;
- NodeRef node[Nodes];
- for (unsigned n = 0; n != Nodes; ++n) {
- node[n] = NodeRef(allocLeaf(), size[n]);
- node[n].leaf().copy(rootLeaf(), pos, 0, size[n]);
- pos += size[n];
- }
-
- // Destroy the old leaf node, construct branch node instead.
- switchRootToBranch();
- for (unsigned n = 0; n != Nodes; ++n) {
- rootBranch().stop(n) = node[n].leaf().stop(size[n]-1);
- rootBranch().subtree(n) = node[n];
- }
- rootBranchStart() = node[0].leaf().start(0);
- rootSize = Nodes;
- return NewOffset;
-}
-
-// splitRoot - Split the current BranchRoot into multiple Branch nodes.
-// Return the new (root offset, node offset) corresponding to Position.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
-splitRoot(unsigned Position) {
- // How many external leaf nodes to hold RootBranch+1?
- const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
-
- // Compute element distribution among new nodes.
- unsigned Size[Nodes];
- IdxPair NewOffset(0, Position);
-
- // Is is very common for the root node to be smaller than external nodes.
- if (Nodes == 1)
- Size[0] = rootSize;
- else
- NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
- Position, true);
-
- // Allocate new nodes.
- unsigned Pos = 0;
- NodeRef Node[Nodes];
- for (unsigned n = 0; n != Nodes; ++n) {
- Node[n] = NodeRef(allocBranch(), Size[n]);
- Node[n].branch().copy(rootBranch(), Pos, 0, Size[n]);
- Pos += Size[n];
- }
-
- for (unsigned n = 0; n != Nodes; ++n) {
- rootBranch().stop(n) = Node[n].branch().stop(Size[n]-1);
- rootBranch().subtree(n) = Node[n];
- }
- rootSize = Nodes;
- return NewOffset;
-}
-
-/// visitNodes - Visit each external node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
- if (!branched())
- return;
- SmallVector<NodeRef, 4> Refs, NextRefs;
-
- // Collect level 0 nodes from the root.
- for (unsigned i = 0; i != rootSize; ++i)
- Refs.push_back(rootBranch().subtree(i));
-
- // Visit all branch nodes.
- for (unsigned h = height - 1; h; --h) {
- for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
- Branch &B = Refs[i].branch();
- for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
- NextRefs.push_back(B.subtree(j));
- (this->*f)(Refs[i], h);
- }
- Refs.clear();
- Refs.swap(NextRefs);
- }
-
- // Visit all leaf nodes.
- for (unsigned i = 0, e = Refs.size(); i != e; ++i)
- (this->*f)(Refs[i], 0);
-}
-
-#ifndef NDEBUG
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-dumpNode(NodeRef Node, unsigned Height) {
- if (Height)
- Node.branch().dump(Node.size());
- else
- Node.leaf().dump(Node.size());
-}
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-dump() {
- errs() << "digraph {\n";
- if (branched())
- rootBranch().dump(rootSize);
- else
- rootLeaf().dump(rootSize);
- visitNodes(&IntervalMap::dumpNode);
- errs() << "}\n";
-}
-#endif
-
-//===----------------------------------------------------------------------===//
-//--- const_iterator ----//
-//===----------------------------------------------------------------------===//
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
- public std::iterator<std::bidirectional_iterator_tag, ValT> {
-protected:
- friend class IntervalMap;
- typedef std::pair<NodeRef, unsigned> PathEntry;
- typedef SmallVector<PathEntry, 4> Path;
-
- // The map referred to.
- IntervalMap *map;
-
- // The offset into map's root node.
- unsigned rootOffset;
-
- // We store a full path from the root to the current position.
- //
- // When rootOffset == map->rootSize, we are at end() and path() is empty.
- // Otherwise, when branched these conditions hold:
- //
- // 1. path.front().first == rootBranch().subtree(rootOffset)
- // 2. path[i].first == path[i-1].first.branch().subtree(path[i-1].second)
- // 3. path.size() == map->height.
- //
- // Thus, path.back() always refers to the current leaf node unless the root is
- // unbranched.
- //
- // The path may be partially filled, but never between iterator calls.
- Path path;
-
- explicit const_iterator(IntervalMap &map)
- : map(&map), rootOffset(map.rootSize) {}
-
- bool branched() const {
- assert(map && "Invalid iterator");
- return map->branched();
- }
-
- NodeRef pathNode(unsigned h) const { return path[h].first; }
- NodeRef &pathNode(unsigned h) { return path[h].first; }
- unsigned pathOffset(unsigned h) const { return path[h].second; }
- unsigned &pathOffset(unsigned h) { return path[h].second; }
-
- Leaf &treeLeaf() const {
- assert(branched() && path.size() == map->height);
- return path.back().first.leaf();
- }
- unsigned treeLeafSize() const {
- assert(branched() && path.size() == map->height);
- return path.back().first.size();
- }
- unsigned &treeLeafOffset() {
- assert(branched() && path.size() == map->height);
- return path.back().second;
- }
- unsigned treeLeafOffset() const {
- assert(branched() && path.size() == map->height);
- return path.back().second;
- }
-
- // Get the next node ptr for an incomplete path.
- NodeRef pathNextDown() {
- assert(path.size() < map->height && "Path is already complete");
-
- if (path.empty())
- return map->rootBranch().subtree(rootOffset);
- else
- return path.back().first.branch().subtree(path.back().second);
- }
-
- void pathFillLeft();
- void pathFillFind(KeyT x);
- void pathFillRight();
-
- NodeRef leftSibling(unsigned level) const;
- NodeRef rightSibling(unsigned level) const;
-
- void treeIncrement();
- void treeDecrement();
- void treeFind(KeyT x);
-
-public:
- /// valid - Return true if the current position is valid, false for end().
- bool valid() const {
- assert(map && "Invalid iterator");
- return rootOffset < map->rootSize;
- }
-
- /// start - Return the beginning of the current interval.
- const KeyT &start() const {
- assert(valid() && "Cannot access invalid iterator");
- return branched() ? treeLeaf().start(treeLeafOffset()) :
- map->rootLeaf().start(rootOffset);
- }
-
- /// stop - Return the end of the current interval.
- const KeyT &stop() const {
- assert(valid() && "Cannot access invalid iterator");
- return branched() ? treeLeaf().stop(treeLeafOffset()) :
- map->rootLeaf().stop(rootOffset);
- }
-
- /// value - Return the mapped value at the current interval.
- const ValT &value() const {
- assert(valid() && "Cannot access invalid iterator");
- return branched() ? treeLeaf().value(treeLeafOffset()) :
- map->rootLeaf().value(rootOffset);
- }
-
- const ValT &operator*() const {
- return value();
- }
-
- bool operator==(const const_iterator &RHS) const {
- assert(map == RHS.map && "Cannot compare iterators from different maps");
- return rootOffset == RHS.rootOffset &&
- (!valid() || !branched() || path.back() == RHS.path.back());
- }
-
- bool operator!=(const const_iterator &RHS) const {
- return !operator==(RHS);
- }
-
- /// goToBegin - Move to the first interval in map.
- void goToBegin() {
- rootOffset = 0;
- path.clear();
- if (branched())
- pathFillLeft();
- }
-
- /// goToEnd - Move beyond the last interval in map.
- void goToEnd() {
- rootOffset = map->rootSize;
- path.clear();
- }
-
- /// preincrement - move to the next interval.
- const_iterator &operator++() {
- assert(valid() && "Cannot increment end()");
- if (!branched())
- ++rootOffset;
- else if (treeLeafOffset() != treeLeafSize() - 1)
- ++treeLeafOffset();
- else
- treeIncrement();
- return *this;
- }
-
- /// postincrement - Dont do that!
- const_iterator operator++(int) {
- const_iterator tmp = *this;
- operator++();
- return tmp;
- }
-
- /// predecrement - move to the previous interval.
- const_iterator &operator--() {
- if (!branched()) {
- assert(rootOffset && "Cannot decrement begin()");
- --rootOffset;
- } else if (treeLeafOffset())
- --treeLeafOffset();
- else
- treeDecrement();
- return *this;
- }
-
- /// postdecrement - Dont do that!
- const_iterator operator--(int) {
- const_iterator tmp = *this;
- operator--();
- return tmp;
- }
-
- /// find - Move to the first interval with stop >= x, or end().
- /// This is a full search from the root, the current position is ignored.
- void find(KeyT x) {
- if (branched())
- treeFind(x);
- else
- rootOffset = map->rootLeaf().findFrom(0, map->rootSize, x);
- }
-
- /// advanceTo - Move to the first interval with stop >= x, or end().
- /// The search is started from the current position, and no earlier positions
- /// can be found. This is much faster than find() for small moves.
- void advanceTo(KeyT x) {
- if (branched())
- treeAdvanceTo(x);
- else
- rootOffset = map->rootLeaf().findFrom(rootOffset, map->rootSize, x);
- }
-
-};
-
-// pathFillLeft - Complete path by following left-most branches.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::pathFillLeft() {
- NodeRef NR = pathNextDown();
- for (unsigned i = map->height - path.size() - 1; i; --i) {
- path.push_back(PathEntry(NR, 0));
- NR = NR.branch().subtree(0);
- }
- path.push_back(PathEntry(NR, 0));
-}
-
-// pathFillFind - Complete path by searching for x.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::pathFillFind(KeyT x) {
- NodeRef NR = pathNextDown();
- for (unsigned i = map->height - path.size() - 1; i; --i) {
- unsigned p = NR.branch().safeFind(0, x);
- path.push_back(PathEntry(NR, p));
- NR = NR.branch().subtree(p);
- }
- path.push_back(PathEntry(NR, NR.leaf().safeFind(0, x)));
-}
-
-// pathFillRight - Complete path by adding rightmost entries.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::pathFillRight() {
- NodeRef NR = pathNextDown();
- for (unsigned i = map->height - path.size() - 1; i; --i) {
- unsigned p = NR.size() - 1;
- path.push_back(PathEntry(NR, p));
- NR = NR.branch().subtree(p);
- }
- path.push_back(PathEntry(NR, NR.size() - 1));
-}
-
-/// leftSibling - find the left sibling node to path[level].
-/// @param level 0 is just below the root, map->height - 1 for the leaves.
-/// @return The left sibling NodeRef, or NULL.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
-IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::leftSibling(unsigned level) const {
- assert(branched() && "Not at a branched node");
- assert(level <= path.size() && "Bad level");
-
- // Go up the tree until we can go left.
- unsigned h = level;
- while (h && pathOffset(h - 1) == 0)
- --h;
-
- // We are at the first leaf node, no left sibling.
- if (!h && rootOffset == 0)
- return NodeRef();
-
- // NR is the subtree containing our left sibling.
- NodeRef NR = h ?
- pathNode(h - 1).branch().subtree(pathOffset(h - 1) - 1) :
- map->rootBranch().subtree(rootOffset - 1);
-
- // Keep right all the way down.
- for (; h != level; ++h)
- NR = NR.branch().subtree(NR.size() - 1);
- return NR;
-}
-
-/// rightSibling - find the right sibling node to path[level].
-/// @param level 0 is just below the root, map->height - 1 for the leaves.
-/// @return The right sibling NodeRef, or NULL.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
-IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::rightSibling(unsigned level) const {
- assert(branched() && "Not at a branched node");
- assert(level <= this->path.size() && "Bad level");
-
- // Go up the tree until we can go right.
- unsigned h = level;
- while (h && pathOffset(h - 1) == pathNode(h - 1).size() - 1)
- --h;
-
- // We are at the last leaf node, no right sibling.
- if (!h && rootOffset == map->rootSize - 1)
- return NodeRef();
-
- // NR is the subtree containing our right sibling.
- NodeRef NR = h ?
- pathNode(h - 1).branch().subtree(pathOffset(h - 1) + 1) :
- map->rootBranch().subtree(rootOffset + 1);
-
- // Keep left all the way down.
- for (; h != level; ++h)
- NR = NR.branch().subtree(0);
- return NR;
-}
-
-// treeIncrement - Move to the beginning of the next leaf node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::treeIncrement() {
- assert(branched() && "treeIncrement is not for small maps");
- assert(path.size() == map->height && "inconsistent iterator");
- do path.pop_back();
- while (!path.empty() && path.back().second == path.back().first.size() - 1);
- if (path.empty()) {
- ++rootOffset;
- if (!valid())
- return;
- } else
- ++path.back().second;
- pathFillLeft();
-}
-
-// treeDecrement - Move to the end of the previous leaf node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::treeDecrement() {
- assert(branched() && "treeDecrement is not for small maps");
- if (valid()) {
- assert(path.size() == map->height && "inconsistent iterator");
- do path.pop_back();
- while (!path.empty() && path.back().second == 0);
- }
- if (path.empty()) {
- assert(rootOffset && "cannot treeDecrement() on begin()");
- --rootOffset;
- } else
- --path.back().second;
- pathFillRight();
-}
-
-// treeFind - Find in a branched tree.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-const_iterator::treeFind(KeyT x) {
- path.clear();
- rootOffset = map->rootBranch().findFrom(0, map->rootSize, x);
- if (valid())
- pathFillFind(x);
-}
-
-
-//===----------------------------------------------------------------------===//
-//--- iterator ----//
-//===----------------------------------------------------------------------===//
-
-namespace IntervalMapImpl {
-
- /// distribute - Compute a new distribution of node elements after an overflow
- /// or underflow. Reserve space for a new element at Position, and compute the
- /// node that will hold Position after redistributing node elements.
- ///
- /// It is required that
- ///
- /// Elements == sum(CurSize), and
- /// Elements + Grow <= Nodes * Capacity.
- ///
- /// NewSize[] will be filled in such that:
- ///
- /// sum(NewSize) == Elements, and
- /// NewSize[i] <= Capacity.
- ///
- /// The returned index is the node where Position will go, so:
- ///
- /// sum(NewSize[0..idx-1]) <= Position
- /// sum(NewSize[0..idx]) >= Position
- ///
- /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
- /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
- /// before the one holding the Position'th element where there is room for an
- /// insertion.
- ///
- /// @param Nodes The number of nodes.
- /// @param Elements Total elements in all nodes.
- /// @param Capacity The capacity of each node.
- /// @param CurSize Array[Nodes] of current node sizes, or NULL.
- /// @param NewSize Array[Nodes] to receive the new node sizes.
- /// @param Position Insert position.
- /// @param Grow Reserve space for a new element at Position.
- /// @return (node, offset) for Position.
- IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
- const unsigned *CurSize, unsigned NewSize[],
- unsigned Position, bool Grow);
-
-}
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
- friend class IntervalMap;
- typedef IntervalMapImpl::IdxPair IdxPair;
-
- explicit iterator(IntervalMap &map) : const_iterator(map) {}
-
- void setNodeSize(unsigned Level, unsigned Size);
- void setNodeStop(unsigned Level, KeyT Stop);
- void insertNode(unsigned Level, NodeRef Node, KeyT Stop);
- void overflowLeaf();
- void treeInsert(KeyT a, KeyT b, ValT y);
-
-public:
- /// insert - Insert mapping [a;b] -> y before the current position.
- void insert(KeyT a, KeyT b, ValT y);
-
-};
-
-/// setNodeSize - Set the size of the node at path[level], updating both path
-/// and the real tree.
-/// @param level 0 is just below the root, map->height - 1 for the leaves.
-/// @param size New node size.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::setNodeSize(unsigned Level, unsigned Size) {
- this->pathNode(Level).setSize(Size);
- if (Level)
- this->pathNode(Level-1).branch()
- .subtree(this->pathOffset(Level-1)).setSize(Size);
- else
- this->map->rootBranch().subtree(this->rootOffset).setSize(Size);
-}
-
-/// setNodeStop - Update the stop key of the current node at level and above.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::setNodeStop(unsigned Level, KeyT Stop) {
- while (Level--) {
- this->pathNode(Level).branch().stop(this->pathOffset(Level)) = Stop;
- if (this->pathOffset(Level) != this->pathNode(Level).size() - 1)
- return;
- }
- this->map->rootBranch().stop(this->rootOffset) = Stop;
-}
-
-/// insertNode - insert a node before the current path at level.
-/// Leave the current path pointing at the new node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) {
- if (!Level) {
- // Insert into the root branch node.
- IntervalMap &IM = *this->map;
- if (IM.rootSize < RootBranch::Capacity) {
- IM.rootBranch().insert(this->rootOffset, IM.rootSize, Node, Stop);
- ++IM.rootSize;
- return;
- }
-
- // We need to split the root while keeping our position.
- IdxPair Offset = IM.splitRoot(this->rootOffset);
- this->rootOffset = Offset.first;
- this->path.insert(this->path.begin(),std::make_pair(
- this->map->rootBranch().subtree(Offset.first), Offset.second));
- Level = 1;
- }
-
- // When inserting before end(), make sure we have a valid path.
- if (!this->valid()) {
- this->treeDecrement();
- ++this->pathOffset(Level-1);
- }
-
- // Insert into the branch node at level-1.
- NodeRef NR = this->pathNode(Level-1);
- unsigned Offset = this->pathOffset(Level-1);
- assert(NR.size() < Branch::Capacity && "Branch overflow");
- NR.branch().insert(Offset, NR.size(), Node, Stop);
- setNodeSize(Level - 1, NR.size() + 1);
-}
-
-// insert
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::insert(KeyT a, KeyT b, ValT y) {
- if (this->branched())
- return treeInsert(a, b, y);
- IdxPair IP = this->map->rootLeaf().insertFrom(this->rootOffset,
- this->map->rootSize,
- a, b, y);
- if (IP.second <= RootLeaf::Capacity) {
- this->rootOffset = IP.first;
- this->map->rootSize = IP.second;
- return;
- }
- IdxPair Offset = this->map->branchRoot(this->rootOffset);
- this->rootOffset = Offset.first;
- this->path.push_back(std::make_pair(
- this->map->rootBranch().subtree(Offset.first), Offset.second));
- treeInsert(a, b, y);
-}
-
-
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::treeInsert(KeyT a, KeyT b, ValT y) {
- if (!this->valid()) {
- // end() has an empty path. Go back to the last leaf node and use an
- // invalid offset instead.
- this->treeDecrement();
- ++this->treeLeafOffset();
- }
- IdxPair IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
- this->treeLeafSize(), a, b, y);
- this->treeLeafOffset() = IP.first;
- if (IP.second <= Leaf::Capacity) {
- setNodeSize(this->map->height - 1, IP.second);
- if (IP.first == IP.second - 1)
- setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
- return;
- }
- // Leaf node has no space.
- overflowLeaf();
- IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
- this->treeLeafSize(), a, b, y);
- this->treeLeafOffset() = IP.first;
- setNodeSize(this->map->height-1, IP.second);
- if (IP.first == IP.second - 1)
- setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
-
- // FIXME: Handle cross-node coalescing.
-}
-
-// overflowLeaf - Distribute entries of the current leaf node evenly among
-// its siblings and ensure that the current node is not full.
-// This may require allocating a new node.
-template <typename KeyT, typename ValT, unsigned N, typename Traits>
-void IntervalMap<KeyT, ValT, N, Traits>::
-iterator::overflowLeaf() {
- unsigned CurSize[4];
- Leaf *Node[4];
- unsigned Nodes = 0;
- unsigned Elements = 0;
- unsigned Offset = this->treeLeafOffset();
-
- // Do we have a left sibling?
- NodeRef LeftSib = this->leftSibling(this->map->height-1);
- if (LeftSib) {
- Offset += Elements = CurSize[Nodes] = LeftSib.size();
- Node[Nodes++] = &LeftSib.leaf();
- }
-
- // Current leaf node.
- Elements += CurSize[Nodes] = this->treeLeafSize();
- Node[Nodes++] = &this->treeLeaf();
-
- // Do we have a right sibling?
- NodeRef RightSib = this->rightSibling(this->map->height-1);
- if (RightSib) {
- Offset += Elements = CurSize[Nodes] = RightSib.size();
- Node[Nodes++] = &RightSib.leaf();
- }
-
- // Do we need to allocate a new node?
- unsigned NewNode = 0;
- if (Elements + 1 > Nodes * Leaf::Capacity) {
- // Insert NewNode at the penultimate position, or after a single node.
- NewNode = Nodes == 1 ? 1 : Nodes - 1;
- CurSize[Nodes] = CurSize[NewNode];
- Node[Nodes] = Node[NewNode];
- CurSize[NewNode] = 0;
- Node[NewNode] = this->map->allocLeaf();
- ++Nodes;
- }
-
- // Compute the new element distribution.
- unsigned NewSize[4];
- IdxPair NewOffset =
- IntervalMapImpl::distribute(Nodes, Elements, Leaf::Capacity,
- CurSize, NewSize, Offset, true);
-
- // Move current location to the leftmost node.
- if (LeftSib)
- this->treeDecrement();
-
- // Move elements right.
- for (int n = Nodes - 1; n; --n) {
- if (CurSize[n] == NewSize[n])
- continue;
- for (int m = n - 1; m != -1; --m) {
- int d = Node[n]->adjLeftSib(CurSize[n], *Node[m], CurSize[m],
- NewSize[n] - CurSize[n]);
- CurSize[m] -= d;
- CurSize[n] += d;
- // Keep going if the current node was exhausted.
- if (CurSize[n] >= NewSize[n])
- break;
- }
- }
-
- // Move elements left.
- for (unsigned n = 0; n != Nodes - 1; ++n) {
- if (CurSize[n] == NewSize[n])
- continue;
- for (unsigned m = n + 1; m != Nodes; ++m) {
- int d = Node[m]->adjLeftSib(CurSize[m], *Node[n], CurSize[n],
- CurSize[n] - NewSize[n]);
- CurSize[m] += d;
- CurSize[n] -= d;
- // Keep going if the current node was exhausted.
- if (CurSize[n] >= NewSize[n])
- break;
- }
- }
-
-#ifndef NDEBUG
- for (unsigned n = 0; n != Nodes; n++)
- assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
-#endif
-
- // Elements have been rearranged, now update node sizes and stops.
- unsigned Pos = 0;
- for (;;) {
- KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
- if (NewNode && Pos == NewNode)
- insertNode(this->map->height - 1, NodeRef(Node[Pos], NewSize[Pos]), Stop);
- else {
- setNodeSize(this->map->height - 1, NewSize[Pos]);
- setNodeStop(this->map->height - 1, Stop);
- }
- if (Pos + 1 == Nodes)
- break;
- this->treeIncrement();
- ++Pos;
- }
-
- // Where was I? Find NewOffset.
- while(Pos != NewOffset.first) {
- this->treeDecrement();
- --Pos;
- }
- this->treeLeafOffset() = NewOffset.second;
-}
-
-} // namespace llvm
-
-#endif
diff --git a/lib/Support/CMakeLists.txt b/lib/Support/CMakeLists.txt
index 8a6ed6f..c9c862c 100644
--- a/lib/Support/CMakeLists.txt
+++ b/lib/Support/CMakeLists.txt
@@ -19,7 +19,6 @@ add_llvm_library(LLVMSupport
FoldingSet.cpp
FormattedStream.cpp
GraphWriter.cpp
- IntervalMap.cpp
IsInf.cpp
IsNAN.cpp
ManagedStatic.cpp
diff --git a/lib/Support/IntervalMap.cpp b/lib/Support/IntervalMap.cpp
deleted file mode 100644
index 9f5c72f..0000000
--- a/lib/Support/IntervalMap.cpp
+++ /dev/null
@@ -1,60 +0,0 @@
-//===- lib/Support/IntervalMap.cpp - A sorted interval map ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the few non-templated functions in IntervalMap.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/IntervalMap.h"
-
-namespace llvm {
-namespace IntervalMapImpl {
-
-IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
- const unsigned *CurSize, unsigned NewSize[],
- unsigned Position, bool Grow) {
- assert(Elements + Grow <= Nodes * Capacity && "Not enough room for elements");
- assert(Position <= Elements && "Invalid position");
- if (!Nodes)
- return IdxPair();
-
- // Trivial algorithm: left-leaning even distribution.
- const unsigned PerNode = (Elements + Grow) / Nodes;
- const unsigned Extra = (Elements + Grow) % Nodes;
- IdxPair PosPair = IdxPair(Nodes, 0);
- unsigned Sum = 0;
- for (unsigned n = 0; n != Nodes; ++n) {
- Sum += NewSize[n] = PerNode + (n < Extra);
- if (PosPair.first == Nodes && Sum > Position)
- PosPair = IdxPair(n, Position - (Sum - NewSize[n]));
- }
- assert(Sum == Elements + Grow && "Bad distribution sum");
-
- // Subtract the Grow element that was added.
- if (Grow) {
- assert(PosPair.first < Nodes && "Bad algebra");
- assert(NewSize[PosPair.first] && "Too few elements to need Grow");
- --NewSize[PosPair.first];
- }
-
-#ifndef NDEBUG
- Sum = 0;
- for (unsigned n = 0; n != Nodes; ++n) {
- assert(NewSize[n] <= Capacity && "Overallocated node");
- Sum += NewSize[n];
- }
- assert(Sum == Elements && "Bad distribution sum");
-#endif
-
- return PosPair;
-}
-
-} // namespace IntervalMapImpl
-} // namespace llvm
-
diff --git a/unittests/ADT/IntervalMapTest.cpp b/unittests/ADT/IntervalMapTest.cpp
deleted file mode 100644
index 5c8b61f..0000000
--- a/unittests/ADT/IntervalMapTest.cpp
+++ /dev/null
@@ -1,357 +0,0 @@
-//===---- ADT/IntervalMapTest.cpp - IntervalMap unit tests ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/IntervalMap.h"
-#include "gtest/gtest.h"
-
-using namespace llvm;
-
-namespace {
-
-typedef IntervalMap<unsigned, unsigned> UUMap;
-
-// Empty map tests
-TEST(IntervalMapTest, EmptyMap) {
- UUMap::Allocator allocator;
- UUMap map(allocator);
- EXPECT_TRUE(map.empty());
-
- // Lookup on empty map.
- EXPECT_EQ(0u, map.lookup(0));
- EXPECT_EQ(7u, map.lookup(0, 7));
- EXPECT_EQ(0u, map.lookup(~0u-1));
- EXPECT_EQ(7u, map.lookup(~0u-1, 7));
-
- // Iterators.
- EXPECT_TRUE(map.begin() == map.begin());
- EXPECT_TRUE(map.begin() == map.end());
- EXPECT_TRUE(map.end() == map.end());
- EXPECT_FALSE(map.begin() != map.begin());
- EXPECT_FALSE(map.begin() != map.end());
- EXPECT_FALSE(map.end() != map.end());
- EXPECT_FALSE(map.begin().valid());
- EXPECT_FALSE(map.end().valid());
- UUMap::iterator I = map.begin();
- EXPECT_FALSE(I.valid());
- EXPECT_TRUE(I == map.end());
-}
-
-// Single entry map tests
-TEST(IntervalMapTest, SingleEntryMap) {
- UUMap::Allocator allocator;
- UUMap map(allocator);
- map.insert(100, 150, 1);
- EXPECT_FALSE(map.empty());
-
- // Lookup around interval.
- EXPECT_EQ(0u, map.lookup(0));
- EXPECT_EQ(0u, map.lookup(99));
- EXPECT_EQ(1u, map.lookup(100));
- EXPECT_EQ(1u, map.lookup(101));
- EXPECT_EQ(1u, map.lookup(125));
- EXPECT_EQ(1u, map.lookup(149));
- EXPECT_EQ(1u, map.lookup(150));
- EXPECT_EQ(0u, map.lookup(151));
- EXPECT_EQ(0u, map.lookup(200));
- EXPECT_EQ(0u, map.lookup(~0u-1));
-
- // Iterators.
- EXPECT_TRUE(map.begin() == map.begin());
- EXPECT_FALSE(map.begin() == map.end());
- EXPECT_TRUE(map.end() == map.end());
- EXPECT_TRUE(map.begin().valid());
- EXPECT_FALSE(map.end().valid());
-
- // Iter deref.
- UUMap::iterator I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(150u, I.stop());
- EXPECT_EQ(1u, I.value());
-
- // Preincrement.
- ++I;
- EXPECT_FALSE(I.valid());
- EXPECT_FALSE(I == map.begin());
- EXPECT_TRUE(I == map.end());
-
- // PreDecrement.
- --I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(150u, I.stop());
- EXPECT_EQ(1u, I.value());
- EXPECT_TRUE(I == map.begin());
- EXPECT_FALSE(I == map.end());
-}
-
-// Flat coalescing tests.
-TEST(IntervalMapTest, RootCoalescing) {
- UUMap::Allocator allocator;
- UUMap map(allocator);
- map.insert(100, 150, 1);
-
- // Coalesce from the left.
- map.insert(90, 99, 1);
- EXPECT_EQ(1, std::distance(map.begin(), map.end()));
- EXPECT_EQ(90u, map.start());
- EXPECT_EQ(150u, map.stop());
-
- // Overlap left.
- map.insert(80, 100, 1);
- EXPECT_EQ(1, std::distance(map.begin(), map.end()));
- EXPECT_EQ(80u, map.start());
- EXPECT_EQ(150u, map.stop());
-
- // Inside.
- map.insert(100, 130, 1);
- EXPECT_EQ(1, std::distance(map.begin(), map.end()));
- EXPECT_EQ(80u, map.start());
- EXPECT_EQ(150u, map.stop());
-
- // Overlap both.
- map.insert(70, 160, 1);
- EXPECT_EQ(1, std::distance(map.begin(), map.end()));
- EXPECT_EQ(70u, map.start());
- EXPECT_EQ(160u, map.stop());
-
- // Overlap right.
- map.insert(80, 170, 1);
- EXPECT_EQ(1, std::distance(map.begin(), map.end()));
- EXPECT_EQ(70u, map.start());
- EXPECT_EQ(170u, map.stop());
-
- // Coalesce from the right.
- map.insert(170, 200, 1);
- EXPECT_EQ(1, std::distance(map.begin(), map.end()));
- EXPECT_EQ(70u, map.start());
- EXPECT_EQ(200u, map.stop());
-
- // Non-coalesce from the left.
- map.insert(60, 69, 2);
- EXPECT_EQ(2, std::distance(map.begin(), map.end()));
- EXPECT_EQ(60u, map.start());
- EXPECT_EQ(200u, map.stop());
- EXPECT_EQ(2u, map.lookup(69));
- EXPECT_EQ(1u, map.lookup(70));
-
- UUMap::iterator I = map.begin();
- EXPECT_EQ(60u, I.start());
- EXPECT_EQ(69u, I.stop());
- EXPECT_EQ(2u, I.value());
- ++I;
- EXPECT_EQ(70u, I.start());
- EXPECT_EQ(200u, I.stop());
- EXPECT_EQ(1u, I.value());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Non-coalesce from the right.
- map.insert(201, 210, 2);
- EXPECT_EQ(3, std::distance(map.begin(), map.end()));
- EXPECT_EQ(60u, map.start());
- EXPECT_EQ(210u, map.stop());
- EXPECT_EQ(2u, map.lookup(201));
- EXPECT_EQ(1u, map.lookup(200));
-}
-
-// Flat multi-coalescing tests.
-TEST(IntervalMapTest, RootMultiCoalescing) {
- UUMap::Allocator allocator;
- UUMap map(allocator);
- map.insert(140, 150, 1);
- map.insert(160, 170, 1);
- map.insert(100, 110, 1);
- map.insert(120, 130, 1);
- EXPECT_EQ(4, std::distance(map.begin(), map.end()));
- EXPECT_EQ(100u, map.start());
- EXPECT_EQ(170u, map.stop());
-
- // Verify inserts.
- UUMap::iterator I = map.begin();
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(110u, I.stop());
- ++I;
- EXPECT_EQ(120u, I.start());
- EXPECT_EQ(130u, I.stop());
- ++I;
- EXPECT_EQ(140u, I.start());
- EXPECT_EQ(150u, I.stop());
- ++I;
- EXPECT_EQ(160u, I.start());
- EXPECT_EQ(170u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
-
- // Coalesce left with followers.
- // [100;110] [120;130] [140;150] [160;170]
- map.insert(111, 115, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(115u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(120u, I.start());
- EXPECT_EQ(130u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(140u, I.start());
- EXPECT_EQ(150u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(160u, I.start());
- EXPECT_EQ(170u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Coalesce right with followers.
- // [100;115] [120;130] [140;150] [160;170]
- map.insert(135, 139, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(115u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(120u, I.start());
- EXPECT_EQ(130u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(135u, I.start());
- EXPECT_EQ(150u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(160u, I.start());
- EXPECT_EQ(170u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Coalesce left and right with followers.
- // [100;115] [120;130] [135;150] [160;170]
- map.insert(131, 134, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(115u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(120u, I.start());
- EXPECT_EQ(150u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(160u, I.start());
- EXPECT_EQ(170u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Coalesce multiple with overlap right.
- // [100;115] [120;150] [160;170]
- map.insert(116, 165, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(170u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Coalesce multiple with overlap left
- // [100;170]
- map.insert(180, 190, 1);
- map.insert(200, 210, 1);
- map.insert(220, 230, 1);
- // [100;170] [180;190] [200;210] [220;230]
- map.insert(160, 199, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(100u, I.start());
- EXPECT_EQ(210u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(220u, I.start());
- EXPECT_EQ(230u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Overwrite 2 from gap to gap.
- // [100;210] [220;230]
- map.insert(50, 250, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(50u, I.start());
- EXPECT_EQ(250u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-
- // Coalesce at end of full root.
- // [50;250]
- map.insert(260, 270, 1);
- map.insert(280, 290, 1);
- map.insert(300, 310, 1);
- // [50;250] [260;270] [280;290] [300;310]
- map.insert(311, 320, 1);
- I = map.begin();
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(50u, I.start());
- EXPECT_EQ(250u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(260u, I.start());
- EXPECT_EQ(270u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(280u, I.start());
- EXPECT_EQ(290u, I.stop());
- ++I;
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(300u, I.start());
- EXPECT_EQ(320u, I.stop());
- ++I;
- EXPECT_FALSE(I.valid());
-}
-
-// Branched, non-coalescing tests.
-TEST(IntervalMapTest, Branched) {
- UUMap::Allocator allocator;
- UUMap map(allocator);
-
- // Insert enough intervals to force a branched tree.
- // This creates 9 leaf nodes with 11 elements each, tree height = 1.
- for (unsigned i = 1; i < 100; ++i)
- map.insert(10*i, 10*i+5, i);
-
- // Tree limits.
- EXPECT_FALSE(map.empty());
- EXPECT_EQ(10u, map.start());
- EXPECT_EQ(995u, map.stop());
-
- // Tree lookup.
- for (unsigned i = 1; i < 100; ++i) {
- EXPECT_EQ(0u, map.lookup(10*i-1));
- EXPECT_EQ(i, map.lookup(10*i));
- EXPECT_EQ(i, map.lookup(10*i+5));
- EXPECT_EQ(0u, map.lookup(10*i+6));
- }
-
- // Forward iteration.
- UUMap::iterator I = map.begin();
- for (unsigned i = 1; i < 100; ++i) {
- ASSERT_TRUE(I.valid());
- EXPECT_EQ(10*i, I.start());
- EXPECT_EQ(10*i+5, I.stop());
- EXPECT_EQ(i, *I);
- ++I;
- }
- EXPECT_FALSE(I.valid());
- EXPECT_TRUE(I == map.end());
-
-}
-
-} // namespace
diff --git a/unittests/CMakeLists.txt b/unittests/CMakeLists.txt
index e251bdb..36aace5 100644
--- a/unittests/CMakeLists.txt
+++ b/unittests/CMakeLists.txt
@@ -45,7 +45,6 @@ add_llvm_unittest(ADT
ADT/DenseSetTest.cpp
ADT/ilistTest.cpp
ADT/ImmutableSetTest.cpp
- ADT/IntervalMapTest.cpp
ADT/SmallBitVectorTest.cpp
ADT/SmallStringTest.cpp
ADT/SmallVectorTest.cpp