diff options
-rw-r--r-- | lib/CodeGen/RegAllocLinearScan.cpp | 8 | ||||
-rw-r--r-- | lib/CodeGen/RegAllocPBQP.cpp | 9 | ||||
-rw-r--r-- | lib/CodeGen/Spiller.cpp | 1896 | ||||
-rw-r--r-- | lib/CodeGen/Spiller.h | 340 | ||||
-rw-r--r-- | lib/CodeGen/VirtRegRewriter.cpp | 2141 | ||||
-rw-r--r-- | lib/CodeGen/VirtRegRewriter.h | 56 | ||||
-rw-r--r-- | test/CodeGen/X86/2009-03-16-SpillerBug.ll | 2 |
7 files changed, 2207 insertions, 2245 deletions
diff --git a/lib/CodeGen/RegAllocLinearScan.cpp b/lib/CodeGen/RegAllocLinearScan.cpp index b5f581c..2c30bd8 100644 --- a/lib/CodeGen/RegAllocLinearScan.cpp +++ b/lib/CodeGen/RegAllocLinearScan.cpp @@ -13,7 +13,7 @@ #define DEBUG_TYPE "regalloc" #include "VirtRegMap.h" -#include "Spiller.h" +#include "VirtRegRewriter.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" @@ -125,7 +125,7 @@ namespace { /// vrm_ - Tracks register assignments. VirtRegMap* vrm_; - std::auto_ptr<Spiller> spiller_; + std::auto_ptr<VirtRegRewriter> rewriter_; public: virtual const char* getPassName() const { @@ -404,14 +404,14 @@ bool RALinScan::runOnMachineFunction(MachineFunction &fn) { initRegUses(); vrm_ = &getAnalysis<VirtRegMap>(); - if (!spiller_.get()) spiller_.reset(createSpiller()); + if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); initIntervalSets(); linearScan(); // Rewrite spill code and update the PhysRegsUsed set. - spiller_->runOnMachineFunction(*mf_, *vrm_, li_); + rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); assert(unhandled_.empty() && "Unhandled live intervals remain!"); diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp index 8cdf4fa..9b2c92c 100644 --- a/lib/CodeGen/RegAllocPBQP.cpp +++ b/lib/CodeGen/RegAllocPBQP.cpp @@ -33,7 +33,7 @@ #include "PBQP.h" #include "VirtRegMap.h" -#include "Spiller.h" +#include "VirtRegRewriter.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" @@ -850,9 +850,10 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) { DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n"; - // Run spiller - std::auto_ptr<Spiller> spiller(createSpiller()); - spiller->runOnMachineFunction(*mf, *vrm, lis); + // Run rewriter + std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); + + rewriter->runOnMachineFunction(*mf, *vrm, lis); return true; } diff --git a/lib/CodeGen/Spiller.cpp b/lib/CodeGen/Spiller.cpp deleted file mode 100644 index 26366d6..0000000 --- a/lib/CodeGen/Spiller.cpp +++ /dev/null @@ -1,1896 +0,0 @@ -//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "spiller" -#include "Spiller.h" -#include "llvm/Support/Compiler.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" -#include <algorithm> -using namespace llvm; - -STATISTIC(NumDSE , "Number of dead stores elided"); -STATISTIC(NumDSS , "Number of dead spill slots removed"); -STATISTIC(NumCommutes, "Number of instructions commuted"); -STATISTIC(NumDRM , "Number of re-materializable defs elided"); -STATISTIC(NumStores , "Number of stores added"); -STATISTIC(NumPSpills , "Number of physical register spills"); -STATISTIC(NumOmitted , "Number of reloads omited"); -STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); -STATISTIC(NumCopified, "Number of available reloads turned into copies"); -STATISTIC(NumReMats , "Number of re-materialization"); -STATISTIC(NumLoads , "Number of loads added"); -STATISTIC(NumReused , "Number of values reused"); -STATISTIC(NumDCE , "Number of copies elided"); -STATISTIC(NumSUnfold , "Number of stores unfolded"); -STATISTIC(NumModRefUnfold, "Number of modref unfolded"); - -namespace { - enum SpillerName { simple, local }; -} - -static cl::opt<SpillerName> -SpillerOpt("spiller", - cl::desc("Spiller to use: (default: local)"), - cl::Prefix, - cl::values(clEnumVal(simple, "simple spiller"), - clEnumVal(local, "local spiller"), - clEnumValEnd), - cl::init(local)); - -// ****************************** // -// Simple Spiller Implementation // -// ****************************** // - -Spiller::~Spiller() {} - -bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LIs) { - DOUT << "********** REWRITE MACHINE CODE **********\n"; - DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; - const TargetMachine &TM = MF.getTarget(); - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); - - - // LoadedRegs - Keep track of which vregs are loaded, so that we only load - // each vreg once (in the case where a spilled vreg is used by multiple - // operands). This is always smaller than the number of operands to the - // current machine instr, so it should be small. - std::vector<unsigned> LoadedRegs; - - for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); - MBBI != E; ++MBBI) { - DOUT << MBBI->getBasicBlock()->getName() << ":\n"; - MachineBasicBlock &MBB = *MBBI; - for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); - MII != E; ++MII) { - MachineInstr &MI = *MII; - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (MO.isReg() && MO.getReg()) { - if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { - unsigned VirtReg = MO.getReg(); - unsigned SubIdx = MO.getSubReg(); - unsigned PhysReg = VRM.getPhys(VirtReg); - unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg; - if (!VRM.isAssignedReg(VirtReg)) { - int StackSlot = VRM.getStackSlot(VirtReg); - const TargetRegisterClass* RC = - MF.getRegInfo().getRegClass(VirtReg); - - if (MO.isUse() && - std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) - == LoadedRegs.end()) { - TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); - MachineInstr *LoadMI = prior(MII); - VRM.addSpillSlotUse(StackSlot, LoadMI); - LoadedRegs.push_back(VirtReg); - ++NumLoads; - DOUT << '\t' << *LoadMI; - } - - if (MO.isDef()) { - TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true, - StackSlot, RC); - MachineInstr *StoreMI = next(MII); - VRM.addSpillSlotUse(StackSlot, StoreMI); - ++NumStores; - } - } - MF.getRegInfo().setPhysRegUsed(RReg); - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - } else { - MF.getRegInfo().setPhysRegUsed(MO.getReg()); - } - } - } - - DOUT << '\t' << MI; - LoadedRegs.clear(); - } - } - return true; -} - -// ****************** // -// Utility Functions // -// ****************** // - -/// InvalidateKill - A MI that defines the specified register is being deleted, -/// invalidate the register kill information. -static void InvalidateKill(unsigned Reg, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps) { - if (RegKills[Reg]) { - KillOps[Reg]->setIsKill(false); - KillOps[Reg] = NULL; - RegKills.reset(Reg); - } -} - -/// findSinglePredSuccessor - Return via reference a vector of machine basic -/// blocks each of which is a successor of the specified BB and has no other -/// predecessor. -static void findSinglePredSuccessor(MachineBasicBlock *MBB, - SmallVectorImpl<MachineBasicBlock *> &Succs) { - for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), - SE = MBB->succ_end(); SI != SE; ++SI) { - MachineBasicBlock *SuccMBB = *SI; - if (SuccMBB->pred_size() == 1) - Succs.push_back(SuccMBB); - } -} - -/// InvalidateKills - MI is going to be deleted. If any of its operands are -/// marked kill, then invalidate the information. -static void InvalidateKills(MachineInstr &MI, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - SmallVector<unsigned, 2> *KillRegs = NULL) { - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.isUse() || !MO.isKill()) - continue; - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) - continue; - if (KillRegs) - KillRegs->push_back(Reg); - assert(Reg < KillOps.size()); - if (KillOps[Reg] == &MO) { - RegKills.reset(Reg); - KillOps[Reg] = NULL; - } - } -} - -/// InvalidateRegDef - If the def operand of the specified def MI is now dead -/// (since it's spill instruction is removed), mark it isDead. Also checks if -/// the def MI has other definition operands that are not dead. Returns it by -/// reference. -static bool InvalidateRegDef(MachineBasicBlock::iterator I, - MachineInstr &NewDef, unsigned Reg, - bool &HasLiveDef) { - // Due to remat, it's possible this reg isn't being reused. That is, - // the def of this reg (by prev MI) is now dead. - MachineInstr *DefMI = I; - MachineOperand *DefOp = NULL; - for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = DefMI->getOperand(i); - if (MO.isReg() && MO.isDef()) { - if (MO.getReg() == Reg) - DefOp = &MO; - else if (!MO.isDead()) - HasLiveDef = true; - } - } - if (!DefOp) - return false; - - bool FoundUse = false, Done = false; - MachineBasicBlock::iterator E = &NewDef; - ++I; ++E; - for (; !Done && I != E; ++I) { - MachineInstr *NMI = I; - for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { - MachineOperand &MO = NMI->getOperand(j); - if (!MO.isReg() || MO.getReg() != Reg) - continue; - if (MO.isUse()) - FoundUse = true; - Done = true; // Stop after scanning all the operands of this MI. - } - } - if (!FoundUse) { - // Def is dead! - DefOp->setIsDead(); - return true; - } - return false; -} - -/// UpdateKills - Track and update kill info. If a MI reads a register that is -/// marked kill, then it must be due to register reuse. Transfer the kill info -/// over. -static void UpdateKills(MachineInstr &MI, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - const TargetRegisterInfo* TRI) { - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.isUse()) - continue; - unsigned Reg = MO.getReg(); - if (Reg == 0) - continue; - - if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { - // That can't be right. Register is killed but not re-defined and it's - // being reused. Let's fix that. - KillOps[Reg]->setIsKill(false); - KillOps[Reg] = NULL; - RegKills.reset(Reg); - if (!MI.isRegTiedToDefOperand(i)) - // Unless it's a two-address operand, this is the new kill. - MO.setIsKill(); - } - if (MO.isKill()) { - RegKills.set(Reg); - KillOps[Reg] = &MO; - } - } - - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - const MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.isDef()) - continue; - unsigned Reg = MO.getReg(); - RegKills.reset(Reg); - KillOps[Reg] = NULL; - // It also defines (or partially define) aliases. - for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { - RegKills.reset(*AS); - KillOps[*AS] = NULL; - } - } -} - -/// ReMaterialize - Re-materialize definition for Reg targetting DestReg. -/// -static void ReMaterialize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - unsigned DestReg, unsigned Reg, - const TargetInstrInfo *TII, - const TargetRegisterInfo *TRI, - VirtRegMap &VRM) { - TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg)); - MachineInstr *NewMI = prior(MII); - for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = NewMI->getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; - unsigned VirtReg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) - continue; - assert(MO.isUse()); - unsigned SubIdx = MO.getSubReg(); - unsigned Phys = VRM.getPhys(VirtReg); - assert(Phys); - unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; - MO.setReg(RReg); - MO.setSubReg(0); - } - ++NumReMats; -} - -/// findSuperReg - Find the SubReg's super-register of given register class -/// where its SubIdx sub-register is SubReg. -static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, - unsigned SubIdx, const TargetRegisterInfo *TRI) { - for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); - I != E; ++I) { - unsigned Reg = *I; - if (TRI->getSubReg(Reg, SubIdx) == SubReg) - return Reg; - } - return 0; -} - -// ******************************** // -// Available Spills Implementation // -// ******************************** // - -/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified -/// stackslot register. The register is still available but is no longer -/// allowed to be modifed. -void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { - std::multimap<unsigned, int>::iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int SlotOrReMat = I->second; - I++; - assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && - "Bidirectional map mismatch!"); - SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; - DOUT << "PhysReg " << TRI->getName(PhysReg) - << " copied, it is available for use but can no longer be modified\n"; - } -} - -/// disallowClobberPhysReg - Unset the CanClobber bit of the specified -/// stackslot register and its aliases. The register and its aliases may -/// still available but is no longer allowed to be modifed. -void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { - for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) - disallowClobberPhysRegOnly(*AS); - disallowClobberPhysRegOnly(PhysReg); -} - -/// ClobberPhysRegOnly - This is called when the specified physreg changes -/// value. We use this to invalidate any info about stuff we thing lives in it. -void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { - std::multimap<unsigned, int>::iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int SlotOrReMat = I->second; - PhysRegsAvailable.erase(I++); - assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && - "Bidirectional map mismatch!"); - SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); - DOUT << "PhysReg " << TRI->getName(PhysReg) - << " clobbered, invalidating "; - if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) - DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n"; - else - DOUT << "SS#" << SlotOrReMat << "\n"; - } -} - -/// ClobberPhysReg - This is called when the specified physreg changes -/// value. We use this to invalidate any info about stuff we thing lives in -/// it and any of its aliases. -void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { - for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) - ClobberPhysRegOnly(*AS); - ClobberPhysRegOnly(PhysReg); -} - -/// AddAvailableRegsToLiveIn - Availability information is being kept coming -/// into the specified MBB. Add available physical registers as potential -/// live-in's. If they are reused in the MBB, they will be added to the -/// live-in set to make register scavenger and post-allocation scheduler. -void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps) { - std::set<unsigned> NotAvailable; - for (std::multimap<unsigned, int>::iterator - I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); - I != E; ++I) { - unsigned Reg = I->first; - const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg); - // FIXME: A temporary workaround. We can't reuse available value if it's - // not safe to move the def of the virtual register's class. e.g. - // X86::RFP* register classes. Do not add it as a live-in. - if (!TII->isSafeToMoveRegClassDefs(RC)) - // This is no longer available. - NotAvailable.insert(Reg); - else { - MBB.addLiveIn(Reg); - InvalidateKill(Reg, RegKills, KillOps); - } - - // Skip over the same register. - std::multimap<unsigned, int>::iterator NI = next(I); - while (NI != E && NI->first == Reg) { - ++I; - ++NI; - } - } - - for (std::set<unsigned>::iterator I = NotAvailable.begin(), - E = NotAvailable.end(); I != E; ++I) { - ClobberPhysReg(*I); - for (const unsigned *SubRegs = TRI->getSubRegisters(*I); - *SubRegs; ++SubRegs) - ClobberPhysReg(*SubRegs); - } -} - -/// ModifyStackSlotOrReMat - This method is called when the value in a stack -/// slot changes. This removes information about which register the previous -/// value for this slot lives in (as the previous value is dead now). -void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { - std::map<int, unsigned>::iterator It = - SpillSlotsOrReMatsAvailable.find(SlotOrReMat); - if (It == SpillSlotsOrReMatsAvailable.end()) return; - unsigned Reg = It->second >> 1; - SpillSlotsOrReMatsAvailable.erase(It); - - // This register may hold the value of multiple stack slots, only remove this - // stack slot from the set of values the register contains. - std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); - for (; ; ++I) { - assert(I != PhysRegsAvailable.end() && I->first == Reg && - "Map inverse broken!"); - if (I->second == SlotOrReMat) break; - } - PhysRegsAvailable.erase(I); -} - -// ************************** // -// Reuse Info Implementation // -// ************************** // - -/// GetRegForReload - We are about to emit a reload into PhysReg. If there -/// is some other operand that is using the specified register, either pick -/// a new register to use, or evict the previous reload and use this reg. -unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI, - AvailableSpills &Spills, - std::vector<MachineInstr*> &MaybeDeadStores, - SmallSet<unsigned, 8> &Rejected, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM) { - const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget() - .getInstrInfo(); - - if (Reuses.empty()) return PhysReg; // This is most often empty. - - for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { - ReusedOp &Op = Reuses[ro]; - // If we find some other reuse that was supposed to use this register - // exactly for its reload, we can change this reload to use ITS reload - // register. That is, unless its reload register has already been - // considered and subsequently rejected because it has also been reused - // by another operand. - if (Op.PhysRegReused == PhysReg && - Rejected.count(Op.AssignedPhysReg) == 0) { - // Yup, use the reload register that we didn't use before. - unsigned NewReg = Op.AssignedPhysReg; - Rejected.insert(PhysReg); - return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected, - RegKills, KillOps, VRM); - } else { - // Otherwise, we might also have a problem if a previously reused - // value aliases the new register. If so, codegen the previous reload - // and use this one. - unsigned PRRU = Op.PhysRegReused; - const TargetRegisterInfo *TRI = Spills.getRegInfo(); - if (TRI->areAliases(PRRU, PhysReg)) { - // Okay, we found out that an alias of a reused register - // was used. This isn't good because it means we have - // to undo a previous reuse. - MachineBasicBlock *MBB = MI->getParent(); - const TargetRegisterClass *AliasRC = - MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); - - // Copy Op out of the vector and remove it, we're going to insert an - // explicit load for it. - ReusedOp NewOp = Op; - Reuses.erase(Reuses.begin()+ro); - - // Ok, we're going to try to reload the assigned physreg into the - // slot that we were supposed to in the first place. However, that - // register could hold a reuse. Check to see if it conflicts or - // would prefer us to use a different register. - unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, - MI, Spills, MaybeDeadStores, - Rejected, RegKills, KillOps, VRM); - - MachineBasicBlock::iterator MII = MI; - if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) { - ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM); - } else { - TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg, - NewOp.StackSlotOrReMat, AliasRC); - MachineInstr *LoadMI = prior(MII); - VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); - // Any stores to this stack slot are not dead anymore. - MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; - ++NumLoads; - } - Spills.ClobberPhysReg(NewPhysReg); - Spills.ClobberPhysReg(NewOp.PhysRegReused); - - unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg(); - unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg; - MI->getOperand(NewOp.Operand).setReg(RReg); - MI->getOperand(NewOp.Operand).setSubReg(0); - - Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); - --MII; - UpdateKills(*MII, RegKills, KillOps, TRI); - DOUT << '\t' << *MII; - - DOUT << "Reuse undone!\n"; - --NumReused; - - // Finally, PhysReg is now available, go ahead and use it. - return PhysReg; - } - } - } - return PhysReg; -} - -// ***************************** // -// Local Spiller Implementation // -// ***************************** // - -bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LIs) { - RegInfo = &MF.getRegInfo(); - TRI = MF.getTarget().getRegisterInfo(); - TII = MF.getTarget().getInstrInfo(); - AllocatableRegs = TRI->getAllocatableSet(MF); - DOUT << "\n**** Local spiller rewriting function '" - << MF.getFunction()->getName() << "':\n"; - DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)" - " ****\n"; - DEBUG(MF.dump()); - - // Spills - Keep track of which spilled values are available in physregs - // so that we can choose to reuse the physregs instead of emitting - // reloads. This is usually refreshed per basic block. - AvailableSpills Spills(TRI, TII); - - // Keep track of kill information. - BitVector RegKills(TRI->getNumRegs()); - std::vector<MachineOperand*> KillOps; - KillOps.resize(TRI->getNumRegs(), NULL); - - // SingleEntrySuccs - Successor blocks which have a single predecessor. - SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; - SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; - - // Traverse the basic blocks depth first. - MachineBasicBlock *Entry = MF.begin(); - SmallPtrSet<MachineBasicBlock*,16> Visited; - for (df_ext_iterator<MachineBasicBlock*, - SmallPtrSet<MachineBasicBlock*,16> > - DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); - DFI != E; ++DFI) { - MachineBasicBlock *MBB = *DFI; - if (!EarlyVisited.count(MBB)) - RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); - - // If this MBB is the only predecessor of a successor. Keep the - // availability information and visit it next. - do { - // Keep visiting single predecessor successor as long as possible. - SinglePredSuccs.clear(); - findSinglePredSuccessor(MBB, SinglePredSuccs); - if (SinglePredSuccs.empty()) - MBB = 0; - else { - // FIXME: More than one successors, each of which has MBB has - // the only predecessor. - MBB = SinglePredSuccs[0]; - if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { - Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); - RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); - } - } - } while (MBB); - - // Clear the availability info. - Spills.clear(); - } - - DOUT << "**** Post Machine Instrs ****\n"; - DEBUG(MF.dump()); - - // Mark unused spill slots. - MachineFrameInfo *MFI = MF.getFrameInfo(); - int SS = VRM.getLowSpillSlot(); - if (SS != VirtRegMap::NO_STACK_SLOT) - for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS) - if (!VRM.isSpillSlotUsed(SS)) { - MFI->RemoveStackObject(SS); - ++NumDSS; - } - - return true; -} - - -/// FoldsStackSlotModRef - Return true if the specified MI folds the specified -/// stack slot mod/ref. It also checks if it's possible to unfold the -/// instruction by having it define a specified physical register instead. -static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, - const TargetInstrInfo *TII, - const TargetRegisterInfo *TRI, - VirtRegMap &VRM) { - if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) - return false; - - bool Found = false; - VirtRegMap::MI2VirtMapTy::const_iterator I, End; - for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { - unsigned VirtReg = I->second.first; - VirtRegMap::ModRef MR = I->second.second; - if (MR & VirtRegMap::isModRef) - if (VRM.getStackSlot(VirtReg) == SS) { - Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; - break; - } - } - if (!Found) - return false; - - // Does the instruction uses a register that overlaps the scratch register? - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) { - if (!VRM.hasPhys(Reg)) - continue; - Reg = VRM.getPhys(Reg); - } - if (TRI->regsOverlap(PhysReg, Reg)) - return false; - } - return true; -} - -/// FindFreeRegister - Find a free register of a given register class by looking -/// at (at most) the last two machine instructions. -static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, - MachineBasicBlock &MBB, - const TargetRegisterClass *RC, - const TargetRegisterInfo *TRI, - BitVector &AllocatableRegs) { - BitVector Defs(TRI->getNumRegs()); - BitVector Uses(TRI->getNumRegs()); - SmallVector<unsigned, 4> LocalUses; - SmallVector<unsigned, 4> Kills; - - // Take a look at 2 instructions at most. - for (unsigned Count = 0; Count < 2; ++Count) { - if (MII == MBB.begin()) - break; - MachineInstr *PrevMI = prior(MII); - for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = PrevMI->getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; - unsigned Reg = MO.getReg(); - if (MO.isDef()) { - Defs.set(Reg); - for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) - Defs.set(*AS); - } else { - LocalUses.push_back(Reg); - if (MO.isKill() && AllocatableRegs[Reg]) - Kills.push_back(Reg); - } - } - - for (unsigned i = 0, e = Kills.size(); i != e; ++i) { - unsigned Kill = Kills[i]; - if (!Defs[Kill] && !Uses[Kill] && - TRI->getPhysicalRegisterRegClass(Kill) == RC) - return Kill; - } - for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { - unsigned Reg = LocalUses[i]; - Uses.set(Reg); - for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) - Uses.set(*AS); - } - - MII = PrevMI; - } - - return 0; -} - -static -void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) { - for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI->getOperand(i); - if (MO.isReg() && MO.getReg() == VirtReg) - MO.setReg(PhysReg); - } -} - -/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if -/// a scratch register is available. -/// xorq %r12<kill>, %r13 -/// addq %rax, -184(%rbp) -/// addq %r13, -184(%rbp) -/// ==> -/// xorq %r12<kill>, %r13 -/// movq -184(%rbp), %r12 -/// addq %rax, %r12 -/// addq %r13, %r12 -/// movq %r12, -184(%rbp) -bool LocalSpiller::OptimizeByUnfold2(unsigned VirtReg, int SS, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - std::vector<MachineInstr*> &MaybeDeadStores, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM) { - MachineBasicBlock::iterator NextMII = next(MII); - if (NextMII == MBB.end()) - return false; - - if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) - return false; - - // Now let's see if the last couple of instructions happens to have freed up - // a register. - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs); - if (!PhysReg) - return false; - - MachineFunction &MF = *MBB.getParent(); - TRI = MF.getTarget().getRegisterInfo(); - MachineInstr &MI = *MII; - if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM)) - return false; - - // If the next instruction also folds the same SS modref and can be unfoled, - // then it's worthwhile to issue a load from SS into the free register and - // then unfold these instructions. - if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)) - return false; - - // Load from SS to the spare physical register. - TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC); - // This invalidates Phys. - Spills.ClobberPhysReg(PhysReg); - // Remember it's available. - Spills.addAvailable(SS, PhysReg); - MaybeDeadStores[SS] = NULL; - - // Unfold current MI. - SmallVector<MachineInstr*, 4> NewMIs; - if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) - assert(0 && "Unable unfold the load / store folding instruction!"); - assert(NewMIs.size() == 1); - AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); - VRM.transferRestorePts(&MI, NewMIs[0]); - MII = MBB.insert(MII, NewMIs[0]); - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - ++NumModRefUnfold; - - // Unfold next instructions that fold the same SS. - do { - MachineInstr &NextMI = *NextMII; - NextMII = next(NextMII); - NewMIs.clear(); - if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) - assert(0 && "Unable unfold the load / store folding instruction!"); - assert(NewMIs.size() == 1); - AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); - VRM.transferRestorePts(&NextMI, NewMIs[0]); - MBB.insert(NextMII, NewMIs[0]); - InvalidateKills(NextMI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&NextMI); - MBB.erase(&NextMI); - ++NumModRefUnfold; - } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)); - - // Store the value back into SS. - TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC); - MachineInstr *StoreMI = prior(NextMII); - VRM.addSpillSlotUse(SS, StoreMI); - VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - - return true; -} - -/// OptimizeByUnfold - Turn a store folding instruction into a load folding -/// instruction. e.g. -/// xorl %edi, %eax -/// movl %eax, -32(%ebp) -/// movl -36(%ebp), %eax -/// orl %eax, -32(%ebp) -/// ==> -/// xorl %edi, %eax -/// orl -36(%ebp), %eax -/// mov %eax, -32(%ebp) -/// This enables unfolding optimization for a subsequent instruction which will -/// also eliminate the newly introduced store instruction. -bool LocalSpiller::OptimizeByUnfold(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - std::vector<MachineInstr*> &MaybeDeadStores, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM) { - MachineFunction &MF = *MBB.getParent(); - MachineInstr &MI = *MII; - unsigned UnfoldedOpc = 0; - unsigned UnfoldPR = 0; - unsigned UnfoldVR = 0; - int FoldedSS = VirtRegMap::NO_STACK_SLOT; - VirtRegMap::MI2VirtMapTy::const_iterator I, End; - for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { - // Only transform a MI that folds a single register. - if (UnfoldedOpc) - return false; - UnfoldVR = I->second.first; - VirtRegMap::ModRef MR = I->second.second; - // MI2VirtMap be can updated which invalidate the iterator. - // Increment the iterator first. - ++I; - if (VRM.isAssignedReg(UnfoldVR)) - continue; - // If this reference is not a use, any previous store is now dead. - // Otherwise, the store to this stack slot is not dead anymore. - FoldedSS = VRM.getStackSlot(UnfoldVR); - MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; - if (DeadStore && (MR & VirtRegMap::isModRef)) { - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); - if (!PhysReg || !DeadStore->readsRegister(PhysReg)) - continue; - UnfoldPR = PhysReg; - UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), - false, true); - } - } - - if (!UnfoldedOpc) { - if (!UnfoldVR) - return false; - - // Look for other unfolding opportunities. - return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII, - MaybeDeadStores, Spills, RegKills, KillOps, VRM); - } - - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) - continue; - unsigned VirtReg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) - continue; - if (VRM.isAssignedReg(VirtReg)) { - unsigned PhysReg = VRM.getPhys(VirtReg); - if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) - return false; - } else if (VRM.isReMaterialized(VirtReg)) - continue; - int SS = VRM.getStackSlot(VirtReg); - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); - if (PhysReg) { - if (TRI->regsOverlap(PhysReg, UnfoldPR)) - return false; - continue; - } - if (VRM.hasPhys(VirtReg)) { - PhysReg = VRM.getPhys(VirtReg); - if (!TRI->regsOverlap(PhysReg, UnfoldPR)) - continue; - } - - // Ok, we'll need to reload the value into a register which makes - // it impossible to perform the store unfolding optimization later. - // Let's see if it is possible to fold the load if the store is - // unfolded. This allows us to perform the store unfolding - // optimization. - SmallVector<MachineInstr*, 4> NewMIs; - if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { - assert(NewMIs.size() == 1); - MachineInstr *NewMI = NewMIs.back(); - NewMIs.clear(); - int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); - assert(Idx != -1); - SmallVector<unsigned, 1> Ops; - Ops.push_back(Idx); - MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); - if (FoldedMI) { - VRM.addSpillSlotUse(SS, FoldedMI); - if (!VRM.hasPhys(UnfoldVR)) - VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); - VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); - MII = MBB.insert(MII, FoldedMI); - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - MF.DeleteMachineInstr(NewMI); - return true; - } - MF.DeleteMachineInstr(NewMI); - } - } - - return false; -} - -/// CommuteToFoldReload - -/// Look for -/// r1 = load fi#1 -/// r1 = op r1, r2<kill> -/// store r1, fi#1 -/// -/// If op is commutable and r2 is killed, then we can xform these to -/// r2 = op r2, fi#1 -/// store r2, fi#1 -bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - unsigned VirtReg, unsigned SrcReg, int SS, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - const TargetRegisterInfo *TRI, - VirtRegMap &VRM) { - if (MII == MBB.begin() || !MII->killsRegister(SrcReg)) - return false; - - MachineFunction &MF = *MBB.getParent(); - MachineInstr &MI = *MII; - MachineBasicBlock::iterator DefMII = prior(MII); - MachineInstr *DefMI = DefMII; - const TargetInstrDesc &TID = DefMI->getDesc(); - unsigned NewDstIdx; - if (DefMII != MBB.begin() && - TID.isCommutable() && - TII->CommuteChangesDestination(DefMI, NewDstIdx)) { - MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); - unsigned NewReg = NewDstMO.getReg(); - if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) - return false; - MachineInstr *ReloadMI = prior(DefMII); - int FrameIdx; - unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); - if (DestReg != SrcReg || FrameIdx != SS) - return false; - int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); - if (UseIdx == -1) - return false; - unsigned DefIdx; - if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) - return false; - assert(DefMI->getOperand(DefIdx).isReg() && - DefMI->getOperand(DefIdx).getReg() == SrcReg); - - // Now commute def instruction. - MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); - if (!CommutedMI) - return false; - SmallVector<unsigned, 1> Ops; - Ops.push_back(NewDstIdx); - MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS); - // Not needed since foldMemoryOperand returns new MI. - MF.DeleteMachineInstr(CommutedMI); - if (!FoldedMI) - return false; - - VRM.addSpillSlotUse(SS, FoldedMI); - VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); - // Insert new def MI and spill MI. - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC); - MII = prior(MII); - MachineInstr *StoreMI = MII; - VRM.addSpillSlotUse(SS, StoreMI); - VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack. - - // Delete all 3 old instructions. - InvalidateKills(*ReloadMI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(ReloadMI); - MBB.erase(ReloadMI); - InvalidateKills(*DefMI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(DefMI); - MBB.erase(DefMI); - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - - // If NewReg was previously holding value of some SS, it's now clobbered. - // This has to be done now because it's a physical register. When this - // instruction is re-visited, it's ignored. - Spills.ClobberPhysReg(NewReg); - - ++NumCommutes; - return true; - } - - return false; -} - -/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if -/// the last store to the same slot is now dead. If so, remove the last store. -void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - int Idx, unsigned PhysReg, int StackSlot, - const TargetRegisterClass *RC, - bool isAvailable, MachineInstr *&LastStore, - AvailableSpills &Spills, - SmallSet<MachineInstr*, 4> &ReMatDefs, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM) { - TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC); - MachineInstr *StoreMI = next(MII); - VRM.addSpillSlotUse(StackSlot, StoreMI); - DOUT << "Store:\t" << *StoreMI; - - // If there is a dead store to this stack slot, nuke it now. - if (LastStore) { - DOUT << "Removed dead store:\t" << *LastStore; - ++NumDSE; - SmallVector<unsigned, 2> KillRegs; - InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs); - MachineBasicBlock::iterator PrevMII = LastStore; - bool CheckDef = PrevMII != MBB.begin(); - if (CheckDef) - --PrevMII; - VRM.RemoveMachineInstrFromMaps(LastStore); - MBB.erase(LastStore); - if (CheckDef) { - // Look at defs of killed registers on the store. Mark the defs - // as dead since the store has been deleted and they aren't - // being reused. - for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { - bool HasOtherDef = false; - if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { - MachineInstr *DeadDef = PrevMII; - if (ReMatDefs.count(DeadDef) && !HasOtherDef) { - // FIXME: This assumes a remat def does not have side - // effects. - VRM.RemoveMachineInstrFromMaps(DeadDef); - MBB.erase(DeadDef); - ++NumDRM; - } - } - } - } - } - - LastStore = next(MII); - - // If the stack slot value was previously available in some other - // register, change it now. Otherwise, make the register available, - // in PhysReg. - Spills.ModifyStackSlotOrReMat(StackSlot); - Spills.ClobberPhysReg(PhysReg); - Spills.addAvailable(StackSlot, PhysReg, isAvailable); - ++NumStores; -} - -/// TransferDeadness - A identity copy definition is dead and it's being -/// removed. Find the last def or use and mark it as dead / kill. -void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, - unsigned Reg, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps) { - int LastUDDist = -1; - MachineInstr *LastUDMI = NULL; - for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg), - RE = RegInfo->reg_end(); RI != RE; ++RI) { - MachineInstr *UDMI = &*RI; - if (UDMI->getParent() != MBB) - continue; - DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); - if (DI == DistanceMap.end() || DI->second > CurDist) - continue; - if ((int)DI->second < LastUDDist) - continue; - LastUDDist = DI->second; - LastUDMI = UDMI; - } - - if (LastUDMI) { - MachineOperand *LastUD = NULL; - for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = LastUDMI->getOperand(i); - if (!MO.isReg() || MO.getReg() != Reg) - continue; - if (!LastUD || (LastUD->isUse() && MO.isDef())) - LastUD = &MO; - if (LastUDMI->isRegTiedToDefOperand(i)) - return; - } - if (LastUD->isDef()) - LastUD->setIsDead(); - else { - LastUD->setIsKill(); - RegKills.set(Reg); - KillOps[Reg] = LastUD; - } - } -} - -/// rewriteMBB - Keep track of which spills are available even after the -/// register allocator is done with them. If possible, avid reloading vregs. -void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, - LiveIntervals *LIs, - AvailableSpills &Spills, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps) { - DOUT << "\n**** Local spiller rewriting MBB '" - << MBB.getBasicBlock()->getName() << "':\n"; - - MachineFunction &MF = *MBB.getParent(); - - // MaybeDeadStores - When we need to write a value back into a stack slot, - // keep track of the inserted store. If the stack slot value is never read - // (because the value was used from some available register, for example), and - // subsequently stored to, the original store is dead. This map keeps track - // of inserted stores that are not used. If we see a subsequent store to the - // same stack slot, the original store is deleted. - std::vector<MachineInstr*> MaybeDeadStores; - MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); - - // ReMatDefs - These are rematerializable def MIs which are not deleted. - SmallSet<MachineInstr*, 4> ReMatDefs; - - // Clear kill info. - SmallSet<unsigned, 2> KilledMIRegs; - RegKills.reset(); - KillOps.clear(); - KillOps.resize(TRI->getNumRegs(), NULL); - - unsigned Dist = 0; - DistanceMap.clear(); - for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); - MII != E; ) { - MachineBasicBlock::iterator NextMII = next(MII); - - VirtRegMap::MI2VirtMapTy::const_iterator I, End; - bool Erased = false; - bool BackTracked = false; - if (OptimizeByUnfold(MBB, MII, - MaybeDeadStores, Spills, RegKills, KillOps, VRM)) - NextMII = next(MII); - - MachineInstr &MI = *MII; - - if (VRM.hasEmergencySpills(&MI)) { - // Spill physical register(s) in the rare case the allocator has run out - // of registers to allocate. - SmallSet<int, 4> UsedSS; - std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI); - for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { - unsigned PhysReg = EmSpills[i]; - const TargetRegisterClass *RC = - TRI->getPhysicalRegisterRegClass(PhysReg); - assert(RC && "Unable to determine register class!"); - int SS = VRM.getEmergencySpillSlot(RC); - if (UsedSS.count(SS)) - assert(0 && "Need to spill more than one physical registers!"); - UsedSS.insert(SS); - TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC); - MachineInstr *StoreMI = prior(MII); - VRM.addSpillSlotUse(SS, StoreMI); - TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC); - MachineInstr *LoadMI = next(MII); - VRM.addSpillSlotUse(SS, LoadMI); - ++NumPSpills; - } - NextMII = next(MII); - } - - // Insert restores here if asked to. - if (VRM.isRestorePt(&MI)) { - std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI); - for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { - unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. - if (!VRM.getPreSplitReg(VirtReg)) - continue; // Split interval spilled again. - unsigned Phys = VRM.getPhys(VirtReg); - RegInfo->setPhysRegUsed(Phys); - - // Check if the value being restored if available. If so, it must be - // from a predecessor BB that fallthrough into this BB. We do not - // expect: - // BB1: - // r1 = load fi#1 - // ... - // = r1<kill> - // ... # r1 not clobbered - // ... - // = load fi#1 - bool DoReMat = VRM.isReMaterialized(VirtReg); - int SSorRMId = DoReMat - ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); - if (InReg == Phys) { - // If the value is already available in the expected register, save - // a reload / remat. - if (SSorRMId) - DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; - else - DOUT << "Reusing SS#" << SSorRMId; - DOUT << " from physreg " - << TRI->getName(InReg) << " for vreg" - << VirtReg <<" instead of reloading into physreg " - << TRI->getName(Phys) << "\n"; - ++NumOmitted; - continue; - } else if (InReg && InReg != Phys) { - if (SSorRMId) - DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; - else - DOUT << "Reusing SS#" << SSorRMId; - DOUT << " from physreg " - << TRI->getName(InReg) << " for vreg" - << VirtReg <<" by copying it into physreg " - << TRI->getName(Phys) << "\n"; - - // If the reloaded / remat value is available in another register, - // copy it to the desired register. - TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC); - - // This invalidates Phys. - Spills.ClobberPhysReg(Phys); - // Remember it's available. - Spills.addAvailable(SSorRMId, Phys); - - // Mark is killed. - MachineInstr *CopyMI = prior(MII); - MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg); - KillOpnd->setIsKill(); - UpdateKills(*CopyMI, RegKills, KillOps, TRI); - - DOUT << '\t' << *CopyMI; - ++NumCopified; - continue; - } - - if (VRM.isReMaterialized(VirtReg)) { - ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM); - } else { - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC); - MachineInstr *LoadMI = prior(MII); - VRM.addSpillSlotUse(SSorRMId, LoadMI); - ++NumLoads; - } - - // This invalidates Phys. - Spills.ClobberPhysReg(Phys); - // Remember it's available. - Spills.addAvailable(SSorRMId, Phys); - - UpdateKills(*prior(MII), RegKills, KillOps, TRI); - DOUT << '\t' << *prior(MII); - } - } - - // Insert spills here if asked to. - if (VRM.isSpillPt(&MI)) { - std::vector<std::pair<unsigned,bool> > &SpillRegs = - VRM.getSpillPtSpills(&MI); - for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { - unsigned VirtReg = SpillRegs[i].first; - bool isKill = SpillRegs[i].second; - if (!VRM.getPreSplitReg(VirtReg)) - continue; // Split interval spilled again. - const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); - unsigned Phys = VRM.getPhys(VirtReg); - int StackSlot = VRM.getStackSlot(VirtReg); - TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC); - MachineInstr *StoreMI = next(MII); - VRM.addSpillSlotUse(StackSlot, StoreMI); - DOUT << "Store:\t" << *StoreMI; - VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - } - NextMII = next(MII); - } - - /// ReusedOperands - Keep track of operand reuse in case we need to undo - /// reuse. - ReuseInfo ReusedOperands(MI, TRI); - SmallVector<unsigned, 4> VirtUseOps; - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; // Ignore non-register operands. - - unsigned VirtReg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { - // Ignore physregs for spilling, but remember that it is used by this - // function. - RegInfo->setPhysRegUsed(VirtReg); - continue; - } - - // We want to process implicit virtual register uses first. - if (MO.isImplicit()) - // If the virtual register is implicitly defined, emit a implicit_def - // before so scavenger knows it's "defined". - VirtUseOps.insert(VirtUseOps.begin(), i); - else - VirtUseOps.push_back(i); - } - - // Process all of the spilled uses and all non spilled reg references. - SmallVector<int, 2> PotentialDeadStoreSlots; - KilledMIRegs.clear(); - for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { - unsigned i = VirtUseOps[j]; - MachineOperand &MO = MI.getOperand(i); - unsigned VirtReg = MO.getReg(); - assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && - "Not a virtual register?"); - - unsigned SubIdx = MO.getSubReg(); - if (VRM.isAssignedReg(VirtReg)) { - // This virtual register was assigned a physreg! - unsigned Phys = VRM.getPhys(VirtReg); - RegInfo->setPhysRegUsed(Phys); - if (MO.isDef()) - ReusedOperands.markClobbered(Phys); - unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - if (VRM.isImplicitlyDefined(VirtReg)) - BuildMI(MBB, &MI, MI.getDebugLoc(), - TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg); - continue; - } - - // This virtual register is now known to be a spilled value. - if (!MO.isUse()) - continue; // Handle defs in the loop below (handle use&def here though) - - bool AvoidReload = false; - if (LIs->hasInterval(VirtReg)) { - LiveInterval &LI = LIs->getInterval(VirtReg); - if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber()))) - // Must be defined by an implicit def. It should not be spilled. Note, - // this is for correctness reason. e.g. - // 8 %reg1024<def> = IMPLICIT_DEF - // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 - // The live range [12, 14) are not part of the r1024 live interval since - // it's defined by an implicit def. It will not conflicts with live - // interval of r1025. Now suppose both registers are spilled, you can - // easily see a situation where both registers are reloaded before - // the INSERT_SUBREG and both target registers that would overlap. - AvoidReload = true; - } - - bool DoReMat = VRM.isReMaterialized(VirtReg); - int SSorRMId = DoReMat - ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); - int ReuseSlot = SSorRMId; - - // Check to see if this stack slot is available. - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); - - // If this is a sub-register use, make sure the reuse register is in the - // right register class. For example, for x86 not all of the 32-bit - // registers have accessible sub-registers. - // Similarly so for EXTRACT_SUBREG. Consider this: - // EDI = op - // MOV32_mr fi#1, EDI - // ... - // = EXTRACT_SUBREG fi#1 - // fi#1 is available in EDI, but it cannot be reused because it's not in - // the right register file. - if (PhysReg && !AvoidReload && - (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - if (!RC->contains(PhysReg)) - PhysReg = 0; - } - - if (PhysReg && !AvoidReload) { - // This spilled operand might be part of a two-address operand. If this - // is the case, then changing it will necessarily require changing the - // def part of the instruction as well. However, in some cases, we - // aren't allowed to modify the reused register. If none of these cases - // apply, reuse it. - bool CanReuse = true; - bool isTied = MI.isRegTiedToDefOperand(i); - if (isTied) { - // Okay, we have a two address operand. We can reuse this physreg as - // long as we are allowed to clobber the value and there isn't an - // earlier def that has already clobbered the physreg. - CanReuse = !ReusedOperands.isClobbered(PhysReg) && - Spills.canClobberPhysReg(PhysReg); - } - - if (CanReuse) { - // If this stack slot value is already available, reuse it! - if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) - DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; - else - DOUT << "Reusing SS#" << ReuseSlot; - DOUT << " from physreg " - << TRI->getName(PhysReg) << " for vreg" - << VirtReg <<" instead of reloading into physreg " - << TRI->getName(VRM.getPhys(VirtReg)) << "\n"; - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - - // The only technical detail we have is that we don't know that - // PhysReg won't be clobbered by a reloaded stack slot that occurs - // later in the instruction. In particular, consider 'op V1, V2'. - // If V1 is available in physreg R0, we would choose to reuse it - // here, instead of reloading it into the register the allocator - // indicated (say R1). However, V2 might have to be reloaded - // later, and it might indicate that it needs to live in R0. When - // this occurs, we need to have information available that - // indicates it is safe to use R1 for the reload instead of R0. - // - // To further complicate matters, we might conflict with an alias, - // or R0 and R1 might not be compatible with each other. In this - // case, we actually insert a reload for V1 in R1, ensuring that - // we can get at R0 or its alias. - ReusedOperands.addReuse(i, ReuseSlot, PhysReg, - VRM.getPhys(VirtReg), VirtReg); - if (isTied) - // Only mark it clobbered if this is a use&def operand. - ReusedOperands.markClobbered(PhysReg); - ++NumReused; - - if (MI.getOperand(i).isKill() && - ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { - - // The store of this spilled value is potentially dead, but we - // won't know for certain until we've confirmed that the re-use - // above is valid, which means waiting until the other operands - // are processed. For now we just track the spill slot, we'll - // remove it after the other operands are processed if valid. - - PotentialDeadStoreSlots.push_back(ReuseSlot); - } - - // Mark is isKill if it's there no other uses of the same virtual - // register and it's not a two-address operand. IsKill will be - // unset if reg is reused. - if (!isTied && KilledMIRegs.count(VirtReg) == 0) { - MI.getOperand(i).setIsKill(); - KilledMIRegs.insert(VirtReg); - } - - continue; - } // CanReuse - - // Otherwise we have a situation where we have a two-address instruction - // whose mod/ref operand needs to be reloaded. This reload is already - // available in some register "PhysReg", but if we used PhysReg as the - // operand to our 2-addr instruction, the instruction would modify - // PhysReg. This isn't cool if something later uses PhysReg and expects - // to get its initial value. - // - // To avoid this problem, and to avoid doing a load right after a store, - // we emit a copy from PhysReg into the designated register for this - // operand. - unsigned DesignatedReg = VRM.getPhys(VirtReg); - assert(DesignatedReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, - Spills, MaybeDeadStores, RegKills, KillOps, VRM); - - // If the mapped designated register is actually the physreg we have - // incoming, we don't need to inserted a dead copy. - if (DesignatedReg == PhysReg) { - // If this stack slot value is already available, reuse it! - if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) - DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; - else - DOUT << "Reusing SS#" << ReuseSlot; - DOUT << " from physreg " << TRI->getName(PhysReg) - << " for vreg" << VirtReg - << " instead of reloading into same physreg.\n"; - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - ReusedOperands.markClobbered(RReg); - ++NumReused; - continue; - } - - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - RegInfo->setPhysRegUsed(DesignatedReg); - ReusedOperands.markClobbered(DesignatedReg); - TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC); - - MachineInstr *CopyMI = prior(MII); - UpdateKills(*CopyMI, RegKills, KillOps, TRI); - - // This invalidates DesignatedReg. - Spills.ClobberPhysReg(DesignatedReg); - - Spills.addAvailable(ReuseSlot, DesignatedReg); - unsigned RReg = - SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - DOUT << '\t' << *prior(MII); - ++NumReused; - continue; - } // if (PhysReg) - - // Otherwise, reload it and remember that we have it. - PhysReg = VRM.getPhys(VirtReg); - assert(PhysReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, - Spills, MaybeDeadStores, RegKills, KillOps, VRM); - - RegInfo->setPhysRegUsed(PhysReg); - ReusedOperands.markClobbered(PhysReg); - if (AvoidReload) - ++NumAvoided; - else { - if (DoReMat) { - ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM); - } else { - const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); - TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC); - MachineInstr *LoadMI = prior(MII); - VRM.addSpillSlotUse(SSorRMId, LoadMI); - ++NumLoads; - } - // This invalidates PhysReg. - Spills.ClobberPhysReg(PhysReg); - - // Any stores to this stack slot are not dead anymore. - if (!DoReMat) - MaybeDeadStores[SSorRMId] = NULL; - Spills.addAvailable(SSorRMId, PhysReg); - // Assumes this is the last use. IsKill will be unset if reg is reused - // unless it's a two-address operand. - if (!MI.isRegTiedToDefOperand(i) && - KilledMIRegs.count(VirtReg) == 0) { - MI.getOperand(i).setIsKill(); - KilledMIRegs.insert(VirtReg); - } - - UpdateKills(*prior(MII), RegKills, KillOps, TRI); - DOUT << '\t' << *prior(MII); - } - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - } - - // Ok - now we can remove stores that have been confirmed dead. - for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { - // This was the last use and the spilled value is still available - // for reuse. That means the spill was unnecessary! - int PDSSlot = PotentialDeadStoreSlots[j]; - MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; - if (DeadStore) { - DOUT << "Removed dead store:\t" << *DeadStore; - InvalidateKills(*DeadStore, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(DeadStore); - MBB.erase(DeadStore); - MaybeDeadStores[PDSSlot] = NULL; - ++NumDSE; - } - } - - - DOUT << '\t' << MI; - - - // If we have folded references to memory operands, make sure we clear all - // physical registers that may contain the value of the spilled virtual - // register - SmallSet<int, 2> FoldedSS; - for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { - unsigned VirtReg = I->second.first; - VirtRegMap::ModRef MR = I->second.second; - DOUT << "Folded vreg: " << VirtReg << " MR: " << MR; - - // MI2VirtMap be can updated which invalidate the iterator. - // Increment the iterator first. - ++I; - int SS = VRM.getStackSlot(VirtReg); - if (SS == VirtRegMap::NO_STACK_SLOT) - continue; - FoldedSS.insert(SS); - DOUT << " - StackSlot: " << SS << "\n"; - - // If this folded instruction is just a use, check to see if it's a - // straight load from the virt reg slot. - if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { - int FrameIdx; - unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); - if (DestReg && FrameIdx == SS) { - // If this spill slot is available, turn it into a copy (or nothing) - // instead of leaving it as a load! - if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { - DOUT << "Promoted Load To Copy: " << MI; - if (DestReg != InReg) { - const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); - TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); - MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); - unsigned SubIdx = DefMO->getSubReg(); - // Revisit the copy so we make sure to notice the effects of the - // operation on the destreg (either needing to RA it if it's - // virtual or needing to clobber any values if it's physical). - NextMII = &MI; - --NextMII; // backtrack to the copy. - // Propagate the sub-register index over. - if (SubIdx) { - DefMO = NextMII->findRegisterDefOperand(DestReg); - DefMO->setSubReg(SubIdx); - } - - // Mark is killed. - MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg); - KillOpnd->setIsKill(); - - BackTracked = true; - } else { - DOUT << "Removing now-noop copy: " << MI; - // Unset last kill since it's being reused. - InvalidateKill(InReg, RegKills, KillOps); - Spills.disallowClobberPhysReg(InReg); - } - - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - Erased = true; - goto ProcessNextInst; - } - } else { - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); - SmallVector<MachineInstr*, 4> NewMIs; - if (PhysReg && - TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { - MBB.insert(MII, NewMIs[0]); - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - Erased = true; - --NextMII; // backtrack to the unfolded instruction. - BackTracked = true; - goto ProcessNextInst; - } - } - } - - // If this reference is not a use, any previous store is now dead. - // Otherwise, the store to this stack slot is not dead anymore. - MachineInstr* DeadStore = MaybeDeadStores[SS]; - if (DeadStore) { - bool isDead = !(MR & VirtRegMap::isRef); - MachineInstr *NewStore = NULL; - if (MR & VirtRegMap::isModRef) { - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); - SmallVector<MachineInstr*, 4> NewMIs; - // We can reuse this physreg as long as we are allowed to clobber - // the value and there isn't an earlier def that has already clobbered - // the physreg. - if (PhysReg && - !ReusedOperands.isClobbered(PhysReg) && - Spills.canClobberPhysReg(PhysReg) && - !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! - MachineOperand *KillOpnd = - DeadStore->findRegisterUseOperand(PhysReg, true); - // Note, if the store is storing a sub-register, it's possible the - // super-register is needed below. - if (KillOpnd && !KillOpnd->getSubReg() && - TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ - MBB.insert(MII, NewMIs[0]); - NewStore = NewMIs[1]; - MBB.insert(MII, NewStore); - VRM.addSpillSlotUse(SS, NewStore); - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - Erased = true; - --NextMII; - --NextMII; // backtrack to the unfolded instruction. - BackTracked = true; - isDead = true; - ++NumSUnfold; - } - } - } - - if (isDead) { // Previous store is dead. - // If we get here, the store is dead, nuke it now. - DOUT << "Removed dead store:\t" << *DeadStore; - InvalidateKills(*DeadStore, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(DeadStore); - MBB.erase(DeadStore); - if (!NewStore) - ++NumDSE; - } - - MaybeDeadStores[SS] = NULL; - if (NewStore) { - // Treat this store as a spill merged into a copy. That makes the - // stack slot value available. - VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); - goto ProcessNextInst; - } - } - - // If the spill slot value is available, and this is a new definition of - // the value, the value is not available anymore. - if (MR & VirtRegMap::isMod) { - // Notice that the value in this stack slot has been modified. - Spills.ModifyStackSlotOrReMat(SS); - - // If this is *just* a mod of the value, check to see if this is just a - // store to the spill slot (i.e. the spill got merged into the copy). If - // so, realize that the vreg is available now, and add the store to the - // MaybeDeadStore info. - int StackSlot; - if (!(MR & VirtRegMap::isRef)) { - if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { - assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && - "Src hasn't been allocated yet?"); - - if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot, - Spills, RegKills, KillOps, TRI, VRM)) { - NextMII = next(MII); - BackTracked = true; - goto ProcessNextInst; - } - - // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark - // this as a potentially dead store in case there is a subsequent - // store into the stack slot without a read from it. - MaybeDeadStores[StackSlot] = &MI; - - // If the stack slot value was previously available in some other - // register, change it now. Otherwise, make the register - // available in PhysReg. - Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); - } - } - } - } - - // Process all of the spilled defs. - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!(MO.isReg() && MO.getReg() && MO.isDef())) - continue; - - unsigned VirtReg = MO.getReg(); - if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - unsigned Src, Dst, SrcSR, DstSR; - if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { - ++NumDCE; - DOUT << "Removing now-noop copy: " << MI; - SmallVector<unsigned, 2> KillRegs; - InvalidateKills(MI, RegKills, KillOps, &KillRegs); - if (MO.isDead() && !KillRegs.empty()) { - // Source register or an implicit super/sub-register use is killed. - assert(KillRegs[0] == Dst || - TRI->isSubRegister(KillRegs[0], Dst) || - TRI->isSuperRegister(KillRegs[0], Dst)); - // Last def is now dead. - TransferDeadness(&MBB, Dist, Src, RegKills, KillOps); - } - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - Erased = true; - Spills.disallowClobberPhysReg(VirtReg); - goto ProcessNextInst; - } - - // If it's not a no-op copy, it clobbers the value in the destreg. - Spills.ClobberPhysReg(VirtReg); - ReusedOperands.markClobbered(VirtReg); - - // Check to see if this instruction is a load from a stack slot into - // a register. If so, this provides the stack slot value in the reg. - int FrameIdx; - if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { - assert(DestReg == VirtReg && "Unknown load situation!"); - - // If it is a folded reference, then it's not safe to clobber. - bool Folded = FoldedSS.count(FrameIdx); - // Otherwise, if it wasn't available, remember that it is now! - Spills.addAvailable(FrameIdx, DestReg, !Folded); - goto ProcessNextInst; - } - - continue; - } - - unsigned SubIdx = MO.getSubReg(); - bool DoReMat = VRM.isReMaterialized(VirtReg); - if (DoReMat) - ReMatDefs.insert(&MI); - - // The only vregs left are stack slot definitions. - int StackSlot = VRM.getStackSlot(VirtReg); - const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); - - // If this def is part of a two-address operand, make sure to execute - // the store from the correct physical register. - unsigned PhysReg; - unsigned TiedOp; - if (MI.isRegTiedToUseOperand(i, &TiedOp)) { - PhysReg = MI.getOperand(TiedOp).getReg(); - if (SubIdx) { - unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); - assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && - "Can't find corresponding super-register!"); - PhysReg = SuperReg; - } - } else { - PhysReg = VRM.getPhys(VirtReg); - if (ReusedOperands.isClobbered(PhysReg)) { - // Another def has taken the assigned physreg. It must have been a - // use&def which got it due to reuse. Undo the reuse! - PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, - Spills, MaybeDeadStores, RegKills, KillOps, VRM); - } - } - - assert(PhysReg && "VR not assigned a physical register?"); - RegInfo->setPhysRegUsed(PhysReg); - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - ReusedOperands.markClobbered(RReg); - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - - if (!MO.isDead()) { - MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; - SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true, - LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); - NextMII = next(MII); - - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - { - unsigned Src, Dst, SrcSR, DstSR; - if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { - ++NumDCE; - DOUT << "Removing now-noop copy: " << MI; - InvalidateKills(MI, RegKills, KillOps); - VRM.RemoveMachineInstrFromMaps(&MI); - MBB.erase(&MI); - Erased = true; - UpdateKills(*LastStore, RegKills, KillOps, TRI); - goto ProcessNextInst; - } - } - } - } - ProcessNextInst: - DistanceMap.insert(std::make_pair(&MI, Dist++)); - if (!Erased && !BackTracked) { - for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) - UpdateKills(*II, RegKills, KillOps, TRI); - } - MII = NextMII; - } - -} - -llvm::Spiller* llvm::createSpiller() { - switch (SpillerOpt) { - default: assert(0 && "Unreachable!"); - case local: - return new LocalSpiller(); - case simple: - return new SimpleSpiller(); - } -} diff --git a/lib/CodeGen/Spiller.h b/lib/CodeGen/Spiller.h deleted file mode 100644 index f00831f..0000000 --- a/lib/CodeGen/Spiller.h +++ /dev/null @@ -1,340 +0,0 @@ -//===-- llvm/CodeGen/Spiller.h - Spiller -*- C++ -*------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_CODEGEN_SPILLER_H -#define LLVM_CODEGEN_SPILLER_H - -#include "llvm/Target/TargetRegisterInfo.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/IndexedMap.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Support/Streams.h" -#include "llvm/Function.h" -#include "llvm/CodeGen/LiveIntervalAnalysis.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallSet.h" -#include "VirtRegMap.h" -#include <map> - -namespace llvm { - - /// Spiller interface: Implementations of this interface assign spilled - /// virtual registers to stack slots, rewriting the code. - struct Spiller { - virtual ~Spiller(); - virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LIs) = 0; - }; - - /// createSpiller - Create an return a spiller object, as specified on the - /// command line. - Spiller* createSpiller(); - - // ************************************************************************ // - - // Simple Spiller Implementation - struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller { - bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM, - LiveIntervals* LIs); - }; - - // ************************************************************************ // - - /// AvailableSpills - As the local spiller is scanning and rewriting an MBB - /// from top down, keep track of which spills slots or remat are available in - /// each register. - /// - /// Note that not all physregs are created equal here. In particular, some - /// physregs are reloads that we are allowed to clobber or ignore at any time. - /// Other physregs are values that the register allocated program is using - /// that we cannot CHANGE, but we can read if we like. We keep track of this - /// on a per-stack-slot / remat id basis as the low bit in the value of the - /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks - /// this bit and addAvailable sets it if. - class VISIBILITY_HIDDEN AvailableSpills { - const TargetRegisterInfo *TRI; - const TargetInstrInfo *TII; - - // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled - // or remat'ed virtual register values that are still available, due to - // being loaded or stored to, but not invalidated yet. - std::map<int, unsigned> SpillSlotsOrReMatsAvailable; - - // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, - // indicating which stack slot values are currently held by a physreg. This - // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a - // physreg is modified. - std::multimap<unsigned, int> PhysRegsAvailable; - - void disallowClobberPhysRegOnly(unsigned PhysReg); - - void ClobberPhysRegOnly(unsigned PhysReg); - public: - AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) - : TRI(tri), TII(tii) { - } - - /// clear - Reset the state. - void clear() { - SpillSlotsOrReMatsAvailable.clear(); - PhysRegsAvailable.clear(); - } - - const TargetRegisterInfo *getRegInfo() const { return TRI; } - - /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is - /// available in a physical register, return that PhysReg, otherwise - /// return 0. - unsigned getSpillSlotOrReMatPhysReg(int Slot) const { - std::map<int, unsigned>::const_iterator I = - SpillSlotsOrReMatsAvailable.find(Slot); - if (I != SpillSlotsOrReMatsAvailable.end()) { - return I->second >> 1; // Remove the CanClobber bit. - } - return 0; - } - - /// addAvailable - Mark that the specified stack slot / remat is available - /// in the specified physreg. If CanClobber is true, the physreg can be - /// modified at any time without changing the semantics of the program. - void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { - // If this stack slot is thought to be available in some other physreg, - // remove its record. - ModifyStackSlotOrReMat(SlotOrReMat); - - PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); - SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | - (unsigned)CanClobber; - - if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) - DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1; - else - DOUT << "Remembering SS#" << SlotOrReMat; - DOUT << " in physreg " << TRI->getName(Reg) << "\n"; - } - - /// canClobberPhysRegForSS - Return true if the spiller is allowed to change - /// the value of the specified stackslot register if it desires. The - /// specified stack slot must be available in a physreg for this query to - /// make sense. - bool canClobberPhysRegForSS(int SlotOrReMat) const { - assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && - "Value not available!"); - return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; - } - - /// canClobberPhysReg - Return true if the spiller is allowed to clobber the - /// physical register where values for some stack slot(s) might be - /// available. - bool canClobberPhysReg(unsigned PhysReg) const { - std::multimap<unsigned, int>::const_iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int SlotOrReMat = I->second; - I++; - if (!canClobberPhysRegForSS(SlotOrReMat)) - return false; - } - return true; - } - - /// disallowClobberPhysReg - Unset the CanClobber bit of the specified - /// stackslot register. The register is still available but is no longer - /// allowed to be modifed. - void disallowClobberPhysReg(unsigned PhysReg); - - /// ClobberPhysReg - This is called when the specified physreg changes - /// value. We use this to invalidate any info about stuff that lives in - /// it and any of its aliases. - void ClobberPhysReg(unsigned PhysReg); - - /// ModifyStackSlotOrReMat - This method is called when the value in a stack - /// slot changes. This removes information about which register the - /// previous value for this slot lives in (as the previous value is dead - /// now). - void ModifyStackSlotOrReMat(int SlotOrReMat); - - /// AddAvailableRegsToLiveIn - Availability information is being kept coming - /// into the specified MBB. Add available physical registers as potential - /// live-in's. If they are reused in the MBB, they will be added to the - /// live-in set to make register scavenger and post-allocation scheduler. - void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps); - }; - - // ************************************************************************ // - - // ReusedOp - For each reused operand, we keep track of a bit of information, - // in case we need to rollback upon processing a new operand. See comments - // below. - struct ReusedOp { - // The MachineInstr operand that reused an available value. - unsigned Operand; - - // StackSlotOrReMat - The spill slot or remat id of the value being reused. - unsigned StackSlotOrReMat; - - // PhysRegReused - The physical register the value was available in. - unsigned PhysRegReused; - - // AssignedPhysReg - The physreg that was assigned for use by the reload. - unsigned AssignedPhysReg; - - // VirtReg - The virtual register itself. - unsigned VirtReg; - - ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, - unsigned vreg) - : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), - AssignedPhysReg(apr), VirtReg(vreg) {} - }; - - /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that - /// is reused instead of reloaded. - class VISIBILITY_HIDDEN ReuseInfo { - MachineInstr &MI; - std::vector<ReusedOp> Reuses; - BitVector PhysRegsClobbered; - public: - ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { - PhysRegsClobbered.resize(tri->getNumRegs()); - } - - bool hasReuses() const { - return !Reuses.empty(); - } - - /// addReuse - If we choose to reuse a virtual register that is already - /// available instead of reloading it, remember that we did so. - void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, - unsigned PhysRegReused, unsigned AssignedPhysReg, - unsigned VirtReg) { - // If the reload is to the assigned register anyway, no undo will be - // required. - if (PhysRegReused == AssignedPhysReg) return; - - // Otherwise, remember this. - Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, - AssignedPhysReg, VirtReg)); - } - - void markClobbered(unsigned PhysReg) { - PhysRegsClobbered.set(PhysReg); - } - - bool isClobbered(unsigned PhysReg) const { - return PhysRegsClobbered.test(PhysReg); - } - - /// GetRegForReload - We are about to emit a reload into PhysReg. If there - /// is some other operand that is using the specified register, either pick - /// a new register to use, or evict the previous reload and use this reg. - unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, - AvailableSpills &Spills, - std::vector<MachineInstr*> &MaybeDeadStores, - SmallSet<unsigned, 8> &Rejected, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM); - - /// GetRegForReload - Helper for the above GetRegForReload(). Add a - /// 'Rejected' set to remember which registers have been considered and - /// rejected for the reload. This avoids infinite looping in case like - /// this: - /// t1 := op t2, t3 - /// t2 <- assigned r0 for use by the reload but ended up reuse r1 - /// t3 <- assigned r1 for use by the reload but ended up reuse r0 - /// t1 <- desires r1 - /// sees r1 is taken by t2, tries t2's reload register r0 - /// sees r0 is taken by t3, tries t3's reload register r1 - /// sees r1 is taken by t2, tries t2's reload register r0 ... - unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, - AvailableSpills &Spills, - std::vector<MachineInstr*> &MaybeDeadStores, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM) { - SmallSet<unsigned, 8> Rejected; - return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected, - RegKills, KillOps, VRM); - } - }; - - // ************************************************************************ // - - /// LocalSpiller - This spiller does a simple pass over the machine basic - /// block to attempt to keep spills in registers as much as possible for - /// blocks that have low register pressure (the vreg may be spilled due to - /// register pressure in other blocks). - class VISIBILITY_HIDDEN LocalSpiller : public Spiller { - MachineRegisterInfo *RegInfo; - const TargetRegisterInfo *TRI; - const TargetInstrInfo *TII; - BitVector AllocatableRegs; - DenseMap<MachineInstr*, unsigned> DistanceMap; - public: - bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LI); - private: - void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, - unsigned Reg, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps); - - bool OptimizeByUnfold(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - std::vector<MachineInstr*> &MaybeDeadStores, - AvailableSpills &Spills, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM); - - bool OptimizeByUnfold2(unsigned VirtReg, int SS, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - std::vector<MachineInstr*> &MaybeDeadStores, - AvailableSpills &Spills, BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM); - - bool CommuteToFoldReload(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - unsigned VirtReg, unsigned SrcReg, int SS, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - const TargetRegisterInfo *TRI, - VirtRegMap &VRM); - - void SpillRegToStackSlot(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - int Idx, unsigned PhysReg, int StackSlot, - const TargetRegisterClass *RC, - bool isAvailable, MachineInstr *&LastStore, - AvailableSpills &Spills, - SmallSet<MachineInstr*, 4> &ReMatDefs, - BitVector &RegKills, - std::vector<MachineOperand*> &KillOps, - VirtRegMap &VRM); - - void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, - LiveIntervals *LIs, AvailableSpills &Spills, - BitVector &RegKills, std::vector<MachineOperand*> &KillOps); - }; -} - -#endif diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp new file mode 100644 index 0000000..025ce1b --- /dev/null +++ b/lib/CodeGen/VirtRegRewriter.cpp @@ -0,0 +1,2141 @@ +//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "virtregrewriter" +#include "VirtRegRewriter.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumDSE , "Number of dead stores elided"); +STATISTIC(NumDSS , "Number of dead spill slots removed"); +STATISTIC(NumCommutes, "Number of instructions commuted"); +STATISTIC(NumDRM , "Number of re-materializable defs elided"); +STATISTIC(NumStores , "Number of stores added"); +STATISTIC(NumPSpills , "Number of physical register spills"); +STATISTIC(NumOmitted , "Number of reloads omited"); +STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); +STATISTIC(NumCopified, "Number of available reloads turned into copies"); +STATISTIC(NumReMats , "Number of re-materialization"); +STATISTIC(NumLoads , "Number of loads added"); +STATISTIC(NumReused , "Number of values reused"); +STATISTIC(NumDCE , "Number of copies elided"); +STATISTIC(NumSUnfold , "Number of stores unfolded"); +STATISTIC(NumModRefUnfold, "Number of modref unfolded"); + +namespace { + enum RewriterName { simple, local }; +} + +static cl::opt<RewriterName> +RewriterOpt("rewriter", + cl::desc("Rewriter to use: (default: local)"), + cl::Prefix, + cl::values(clEnumVal(simple, "simple rewriter"), + clEnumVal(local, "local rewriter"), + clEnumValEnd), + cl::init(local)); + +VirtRegRewriter::~VirtRegRewriter() {} + + +// ****************************** // +// Simple Spiller Implementation // +// ****************************** // + +struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter { + + bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, + LiveIntervals* LIs) { + DOUT << "********** REWRITE MACHINE CODE **********\n"; + DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; + const TargetMachine &TM = MF.getTarget(); + const TargetInstrInfo &TII = *TM.getInstrInfo(); + const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); + + + // LoadedRegs - Keep track of which vregs are loaded, so that we only load + // each vreg once (in the case where a spilled vreg is used by multiple + // operands). This is always smaller than the number of operands to the + // current machine instr, so it should be small. + std::vector<unsigned> LoadedRegs; + + for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); + MBBI != E; ++MBBI) { + DOUT << MBBI->getBasicBlock()->getName() << ":\n"; + MachineBasicBlock &MBB = *MBBI; + for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); + MII != E; ++MII) { + MachineInstr &MI = *MII; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (MO.isReg() && MO.getReg()) { + if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { + unsigned VirtReg = MO.getReg(); + unsigned SubIdx = MO.getSubReg(); + unsigned PhysReg = VRM.getPhys(VirtReg); + unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg; + if (!VRM.isAssignedReg(VirtReg)) { + int StackSlot = VRM.getStackSlot(VirtReg); + const TargetRegisterClass* RC = + MF.getRegInfo().getRegClass(VirtReg); + + if (MO.isUse() && + std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) + == LoadedRegs.end()) { + TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(StackSlot, LoadMI); + LoadedRegs.push_back(VirtReg); + ++NumLoads; + DOUT << '\t' << *LoadMI; + } + + if (MO.isDef()) { + TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true, + StackSlot, RC); + MachineInstr *StoreMI = next(MII); + VRM.addSpillSlotUse(StackSlot, StoreMI); + ++NumStores; + } + } + MF.getRegInfo().setPhysRegUsed(RReg); + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + } else { + MF.getRegInfo().setPhysRegUsed(MO.getReg()); + } + } + } + + DOUT << '\t' << MI; + LoadedRegs.clear(); + } + } + return true; + } + +}; + +// ************************************************************************ // + +/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB +/// from top down, keep track of which spill slots or remat are available in +/// each register. +/// +/// Note that not all physregs are created equal here. In particular, some +/// physregs are reloads that we are allowed to clobber or ignore at any time. +/// Other physregs are values that the register allocated program is using +/// that we cannot CHANGE, but we can read if we like. We keep track of this +/// on a per-stack-slot / remat id basis as the low bit in the value of the +/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks +/// this bit and addAvailable sets it if. +class VISIBILITY_HIDDEN AvailableSpills { + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + + // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled + // or remat'ed virtual register values that are still available, due to + // being loaded or stored to, but not invalidated yet. + std::map<int, unsigned> SpillSlotsOrReMatsAvailable; + + // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, + // indicating which stack slot values are currently held by a physreg. This + // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a + // physreg is modified. + std::multimap<unsigned, int> PhysRegsAvailable; + + void disallowClobberPhysRegOnly(unsigned PhysReg); + + void ClobberPhysRegOnly(unsigned PhysReg); +public: + AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) + : TRI(tri), TII(tii) { + } + + /// clear - Reset the state. + void clear() { + SpillSlotsOrReMatsAvailable.clear(); + PhysRegsAvailable.clear(); + } + + const TargetRegisterInfo *getRegInfo() const { return TRI; } + + /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is + /// available in a physical register, return that PhysReg, otherwise + /// return 0. + unsigned getSpillSlotOrReMatPhysReg(int Slot) const { + std::map<int, unsigned>::const_iterator I = + SpillSlotsOrReMatsAvailable.find(Slot); + if (I != SpillSlotsOrReMatsAvailable.end()) { + return I->second >> 1; // Remove the CanClobber bit. + } + return 0; + } + + /// addAvailable - Mark that the specified stack slot / remat is available + /// in the specified physreg. If CanClobber is true, the physreg can be + /// modified at any time without changing the semantics of the program. + void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { + // If this stack slot is thought to be available in some other physreg, + // remove its record. + ModifyStackSlotOrReMat(SlotOrReMat); + + PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); + SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | + (unsigned)CanClobber; + + if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) + DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Remembering SS#" << SlotOrReMat; + DOUT << " in physreg " << TRI->getName(Reg) << "\n"; + } + + /// canClobberPhysRegForSS - Return true if the spiller is allowed to change + /// the value of the specified stackslot register if it desires. The + /// specified stack slot must be available in a physreg for this query to + /// make sense. + bool canClobberPhysRegForSS(int SlotOrReMat) const { + assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && + "Value not available!"); + return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; + } + + /// canClobberPhysReg - Return true if the spiller is allowed to clobber the + /// physical register where values for some stack slot(s) might be + /// available. + bool canClobberPhysReg(unsigned PhysReg) const { + std::multimap<unsigned, int>::const_iterator I = + PhysRegsAvailable.lower_bound(PhysReg); + while (I != PhysRegsAvailable.end() && I->first == PhysReg) { + int SlotOrReMat = I->second; + I++; + if (!canClobberPhysRegForSS(SlotOrReMat)) + return false; + } + return true; + } + + /// disallowClobberPhysReg - Unset the CanClobber bit of the specified + /// stackslot register. The register is still available but is no longer + /// allowed to be modifed. + void disallowClobberPhysReg(unsigned PhysReg); + + /// ClobberPhysReg - This is called when the specified physreg changes + /// value. We use this to invalidate any info about stuff that lives in + /// it and any of its aliases. + void ClobberPhysReg(unsigned PhysReg); + + /// ModifyStackSlotOrReMat - This method is called when the value in a stack + /// slot changes. This removes information about which register the + /// previous value for this slot lives in (as the previous value is dead + /// now). + void ModifyStackSlotOrReMat(int SlotOrReMat); + + /// AddAvailableRegsToLiveIn - Availability information is being kept coming + /// into the specified MBB. Add available physical registers as potential + /// live-in's. If they are reused in the MBB, they will be added to the + /// live-in set to make register scavenger and post-allocation scheduler. + void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps); +}; + +// ************************************************************************ // + +// ReusedOp - For each reused operand, we keep track of a bit of information, +// in case we need to rollback upon processing a new operand. See comments +// below. +struct ReusedOp { + // The MachineInstr operand that reused an available value. + unsigned Operand; + + // StackSlotOrReMat - The spill slot or remat id of the value being reused. + unsigned StackSlotOrReMat; + + // PhysRegReused - The physical register the value was available in. + unsigned PhysRegReused; + + // AssignedPhysReg - The physreg that was assigned for use by the reload. + unsigned AssignedPhysReg; + + // VirtReg - The virtual register itself. + unsigned VirtReg; + + ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, + unsigned vreg) + : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), + AssignedPhysReg(apr), VirtReg(vreg) {} +}; + +/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that +/// is reused instead of reloaded. +class VISIBILITY_HIDDEN ReuseInfo { + MachineInstr &MI; + std::vector<ReusedOp> Reuses; + BitVector PhysRegsClobbered; +public: + ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { + PhysRegsClobbered.resize(tri->getNumRegs()); + } + + bool hasReuses() const { + return !Reuses.empty(); + } + + /// addReuse - If we choose to reuse a virtual register that is already + /// available instead of reloading it, remember that we did so. + void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, + unsigned PhysRegReused, unsigned AssignedPhysReg, + unsigned VirtReg) { + // If the reload is to the assigned register anyway, no undo will be + // required. + if (PhysRegReused == AssignedPhysReg) return; + + // Otherwise, remember this. + Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, + AssignedPhysReg, VirtReg)); + } + + void markClobbered(unsigned PhysReg) { + PhysRegsClobbered.set(PhysReg); + } + + bool isClobbered(unsigned PhysReg) const { + return PhysRegsClobbered.test(PhysReg); + } + + /// GetRegForReload - We are about to emit a reload into PhysReg. If there + /// is some other operand that is using the specified register, either pick + /// a new register to use, or evict the previous reload and use this reg. + unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, + AvailableSpills &Spills, + std::vector<MachineInstr*> &MaybeDeadStores, + SmallSet<unsigned, 8> &Rejected, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM); + + /// GetRegForReload - Helper for the above GetRegForReload(). Add a + /// 'Rejected' set to remember which registers have been considered and + /// rejected for the reload. This avoids infinite looping in case like + /// this: + /// t1 := op t2, t3 + /// t2 <- assigned r0 for use by the reload but ended up reuse r1 + /// t3 <- assigned r1 for use by the reload but ended up reuse r0 + /// t1 <- desires r1 + /// sees r1 is taken by t2, tries t2's reload register r0 + /// sees r0 is taken by t3, tries t3's reload register r1 + /// sees r1 is taken by t2, tries t2's reload register r0 ... + unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, + AvailableSpills &Spills, + std::vector<MachineInstr*> &MaybeDeadStores, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + SmallSet<unsigned, 8> Rejected; + return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected, + RegKills, KillOps, VRM); + } +}; + + +// ****************** // +// Utility Functions // +// ****************** // + +/// InvalidateKill - A MI that defines the specified register is being deleted, +/// invalidate the register kill information. +static void InvalidateKill(unsigned Reg, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + if (RegKills[Reg]) { + KillOps[Reg]->setIsKill(false); + KillOps[Reg] = NULL; + RegKills.reset(Reg); + } +} + +/// findSinglePredSuccessor - Return via reference a vector of machine basic +/// blocks each of which is a successor of the specified BB and has no other +/// predecessor. +static void findSinglePredSuccessor(MachineBasicBlock *MBB, + SmallVectorImpl<MachineBasicBlock *> &Succs) { + for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), + SE = MBB->succ_end(); SI != SE; ++SI) { + MachineBasicBlock *SuccMBB = *SI; + if (SuccMBB->pred_size() == 1) + Succs.push_back(SuccMBB); + } +} + +/// InvalidateKills - MI is going to be deleted. If any of its operands are +/// marked kill, then invalidate the information. +static void InvalidateKills(MachineInstr &MI, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + SmallVector<unsigned, 2> *KillRegs = NULL) { + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isUse() || !MO.isKill()) + continue; + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + if (KillRegs) + KillRegs->push_back(Reg); + assert(Reg < KillOps.size()); + if (KillOps[Reg] == &MO) { + RegKills.reset(Reg); + KillOps[Reg] = NULL; + } + } +} + +/// InvalidateRegDef - If the def operand of the specified def MI is now dead +/// (since it's spill instruction is removed), mark it isDead. Also checks if +/// the def MI has other definition operands that are not dead. Returns it by +/// reference. +static bool InvalidateRegDef(MachineBasicBlock::iterator I, + MachineInstr &NewDef, unsigned Reg, + bool &HasLiveDef) { + // Due to remat, it's possible this reg isn't being reused. That is, + // the def of this reg (by prev MI) is now dead. + MachineInstr *DefMI = I; + MachineOperand *DefOp = NULL; + for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = DefMI->getOperand(i); + if (MO.isReg() && MO.isDef()) { + if (MO.getReg() == Reg) + DefOp = &MO; + else if (!MO.isDead()) + HasLiveDef = true; + } + } + if (!DefOp) + return false; + + bool FoundUse = false, Done = false; + MachineBasicBlock::iterator E = &NewDef; + ++I; ++E; + for (; !Done && I != E; ++I) { + MachineInstr *NMI = I; + for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { + MachineOperand &MO = NMI->getOperand(j); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (MO.isUse()) + FoundUse = true; + Done = true; // Stop after scanning all the operands of this MI. + } + } + if (!FoundUse) { + // Def is dead! + DefOp->setIsDead(); + return true; + } + return false; +} + +/// UpdateKills - Track and update kill info. If a MI reads a register that is +/// marked kill, then it must be due to register reuse. Transfer the kill info +/// over. +static void UpdateKills(MachineInstr &MI, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + const TargetRegisterInfo* TRI) { + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) + continue; + + if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { + // That can't be right. Register is killed but not re-defined and it's + // being reused. Let's fix that. + KillOps[Reg]->setIsKill(false); + KillOps[Reg] = NULL; + RegKills.reset(Reg); + if (!MI.isRegTiedToDefOperand(i)) + // Unless it's a two-address operand, this is the new kill. + MO.setIsKill(); + } + if (MO.isKill()) { + RegKills.set(Reg); + KillOps[Reg] = &MO; + } + } + + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned Reg = MO.getReg(); + RegKills.reset(Reg); + KillOps[Reg] = NULL; + // It also defines (or partially define) aliases. + for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { + RegKills.reset(*AS); + KillOps[*AS] = NULL; + } + } +} + +/// ReMaterialize - Re-materialize definition for Reg targetting DestReg. +/// +static void ReMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + unsigned DestReg, unsigned Reg, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, + VirtRegMap &VRM) { + TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg)); + MachineInstr *NewMI = prior(MII); + for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = NewMI->getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) + continue; + assert(MO.isUse()); + unsigned SubIdx = MO.getSubReg(); + unsigned Phys = VRM.getPhys(VirtReg); + assert(Phys); + unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; + MO.setReg(RReg); + MO.setSubReg(0); + } + ++NumReMats; +} + +/// findSuperReg - Find the SubReg's super-register of given register class +/// where its SubIdx sub-register is SubReg. +static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, + unsigned SubIdx, const TargetRegisterInfo *TRI) { + for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); + I != E; ++I) { + unsigned Reg = *I; + if (TRI->getSubReg(Reg, SubIdx) == SubReg) + return Reg; + } + return 0; +} + +// ******************************** // +// Available Spills Implementation // +// ******************************** // + +/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified +/// stackslot register. The register is still available but is no longer +/// allowed to be modifed. +void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { + std::multimap<unsigned, int>::iterator I = + PhysRegsAvailable.lower_bound(PhysReg); + while (I != PhysRegsAvailable.end() && I->first == PhysReg) { + int SlotOrReMat = I->second; + I++; + assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && + "Bidirectional map mismatch!"); + SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; + DOUT << "PhysReg " << TRI->getName(PhysReg) + << " copied, it is available for use but can no longer be modified\n"; + } +} + +/// disallowClobberPhysReg - Unset the CanClobber bit of the specified +/// stackslot register and its aliases. The register and its aliases may +/// still available but is no longer allowed to be modifed. +void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { + for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) + disallowClobberPhysRegOnly(*AS); + disallowClobberPhysRegOnly(PhysReg); +} + +/// ClobberPhysRegOnly - This is called when the specified physreg changes +/// value. We use this to invalidate any info about stuff we thing lives in it. +void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { + std::multimap<unsigned, int>::iterator I = + PhysRegsAvailable.lower_bound(PhysReg); + while (I != PhysRegsAvailable.end() && I->first == PhysReg) { + int SlotOrReMat = I->second; + PhysRegsAvailable.erase(I++); + assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && + "Bidirectional map mismatch!"); + SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); + DOUT << "PhysReg " << TRI->getName(PhysReg) + << " clobbered, invalidating "; + if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) + DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n"; + else + DOUT << "SS#" << SlotOrReMat << "\n"; + } +} + +/// ClobberPhysReg - This is called when the specified physreg changes +/// value. We use this to invalidate any info about stuff we thing lives in +/// it and any of its aliases. +void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { + for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) + ClobberPhysRegOnly(*AS); + ClobberPhysRegOnly(PhysReg); +} + +/// AddAvailableRegsToLiveIn - Availability information is being kept coming +/// into the specified MBB. Add available physical registers as potential +/// live-in's. If they are reused in the MBB, they will be added to the +/// live-in set to make register scavenger and post-allocation scheduler. +void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + std::set<unsigned> NotAvailable; + for (std::multimap<unsigned, int>::iterator + I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); + I != E; ++I) { + unsigned Reg = I->first; + const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg); + // FIXME: A temporary workaround. We can't reuse available value if it's + // not safe to move the def of the virtual register's class. e.g. + // X86::RFP* register classes. Do not add it as a live-in. + if (!TII->isSafeToMoveRegClassDefs(RC)) + // This is no longer available. + NotAvailable.insert(Reg); + else { + MBB.addLiveIn(Reg); + InvalidateKill(Reg, RegKills, KillOps); + } + + // Skip over the same register. + std::multimap<unsigned, int>::iterator NI = next(I); + while (NI != E && NI->first == Reg) { + ++I; + ++NI; + } + } + + for (std::set<unsigned>::iterator I = NotAvailable.begin(), + E = NotAvailable.end(); I != E; ++I) { + ClobberPhysReg(*I); + for (const unsigned *SubRegs = TRI->getSubRegisters(*I); + *SubRegs; ++SubRegs) + ClobberPhysReg(*SubRegs); + } +} + +/// ModifyStackSlotOrReMat - This method is called when the value in a stack +/// slot changes. This removes information about which register the previous +/// value for this slot lives in (as the previous value is dead now). +void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { + std::map<int, unsigned>::iterator It = + SpillSlotsOrReMatsAvailable.find(SlotOrReMat); + if (It == SpillSlotsOrReMatsAvailable.end()) return; + unsigned Reg = It->second >> 1; + SpillSlotsOrReMatsAvailable.erase(It); + + // This register may hold the value of multiple stack slots, only remove this + // stack slot from the set of values the register contains. + std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); + for (; ; ++I) { + assert(I != PhysRegsAvailable.end() && I->first == Reg && + "Map inverse broken!"); + if (I->second == SlotOrReMat) break; + } + PhysRegsAvailable.erase(I); +} + +// ************************** // +// Reuse Info Implementation // +// ************************** // + +/// GetRegForReload - We are about to emit a reload into PhysReg. If there +/// is some other operand that is using the specified register, either pick +/// a new register to use, or evict the previous reload and use this reg. +unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI, + AvailableSpills &Spills, + std::vector<MachineInstr*> &MaybeDeadStores, + SmallSet<unsigned, 8> &Rejected, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget() + .getInstrInfo(); + + if (Reuses.empty()) return PhysReg; // This is most often empty. + + for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { + ReusedOp &Op = Reuses[ro]; + // If we find some other reuse that was supposed to use this register + // exactly for its reload, we can change this reload to use ITS reload + // register. That is, unless its reload register has already been + // considered and subsequently rejected because it has also been reused + // by another operand. + if (Op.PhysRegReused == PhysReg && + Rejected.count(Op.AssignedPhysReg) == 0) { + // Yup, use the reload register that we didn't use before. + unsigned NewReg = Op.AssignedPhysReg; + Rejected.insert(PhysReg); + return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected, + RegKills, KillOps, VRM); + } else { + // Otherwise, we might also have a problem if a previously reused + // value aliases the new register. If so, codegen the previous reload + // and use this one. + unsigned PRRU = Op.PhysRegReused; + const TargetRegisterInfo *TRI = Spills.getRegInfo(); + if (TRI->areAliases(PRRU, PhysReg)) { + // Okay, we found out that an alias of a reused register + // was used. This isn't good because it means we have + // to undo a previous reuse. + MachineBasicBlock *MBB = MI->getParent(); + const TargetRegisterClass *AliasRC = + MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); + + // Copy Op out of the vector and remove it, we're going to insert an + // explicit load for it. + ReusedOp NewOp = Op; + Reuses.erase(Reuses.begin()+ro); + + // Ok, we're going to try to reload the assigned physreg into the + // slot that we were supposed to in the first place. However, that + // register could hold a reuse. Check to see if it conflicts or + // would prefer us to use a different register. + unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, + MI, Spills, MaybeDeadStores, + Rejected, RegKills, KillOps, VRM); + + MachineBasicBlock::iterator MII = MI; + if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) { + ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM); + } else { + TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg, + NewOp.StackSlotOrReMat, AliasRC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); + // Any stores to this stack slot are not dead anymore. + MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; + ++NumLoads; + } + Spills.ClobberPhysReg(NewPhysReg); + Spills.ClobberPhysReg(NewOp.PhysRegReused); + + unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg(); + unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg; + MI->getOperand(NewOp.Operand).setReg(RReg); + MI->getOperand(NewOp.Operand).setSubReg(0); + + Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); + --MII; + UpdateKills(*MII, RegKills, KillOps, TRI); + DOUT << '\t' << *MII; + + DOUT << "Reuse undone!\n"; + --NumReused; + + // Finally, PhysReg is now available, go ahead and use it. + return PhysReg; + } + } + } + return PhysReg; +} + +// ************************************************************************ // + +/// FoldsStackSlotModRef - Return true if the specified MI folds the specified +/// stack slot mod/ref. It also checks if it's possible to unfold the +/// instruction by having it define a specified physical register instead. +static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, + VirtRegMap &VRM) { + if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) + return false; + + bool Found = false; + VirtRegMap::MI2VirtMapTy::const_iterator I, End; + for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { + unsigned VirtReg = I->second.first; + VirtRegMap::ModRef MR = I->second.second; + if (MR & VirtRegMap::isModRef) + if (VRM.getStackSlot(VirtReg) == SS) { + Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; + break; + } + } + if (!Found) + return false; + + // Does the instruction uses a register that overlaps the scratch register? + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + if (!VRM.hasPhys(Reg)) + continue; + Reg = VRM.getPhys(Reg); + } + if (TRI->regsOverlap(PhysReg, Reg)) + return false; + } + return true; +} + +/// FindFreeRegister - Find a free register of a given register class by looking +/// at (at most) the last two machine instructions. +static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, + MachineBasicBlock &MBB, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI, + BitVector &AllocatableRegs) { + BitVector Defs(TRI->getNumRegs()); + BitVector Uses(TRI->getNumRegs()); + SmallVector<unsigned, 4> LocalUses; + SmallVector<unsigned, 4> Kills; + + // Take a look at 2 instructions at most. + for (unsigned Count = 0; Count < 2; ++Count) { + if (MII == MBB.begin()) + break; + MachineInstr *PrevMI = prior(MII); + for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = PrevMI->getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned Reg = MO.getReg(); + if (MO.isDef()) { + Defs.set(Reg); + for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) + Defs.set(*AS); + } else { + LocalUses.push_back(Reg); + if (MO.isKill() && AllocatableRegs[Reg]) + Kills.push_back(Reg); + } + } + + for (unsigned i = 0, e = Kills.size(); i != e; ++i) { + unsigned Kill = Kills[i]; + if (!Defs[Kill] && !Uses[Kill] && + TRI->getPhysicalRegisterRegClass(Kill) == RC) + return Kill; + } + for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { + unsigned Reg = LocalUses[i]; + Uses.set(Reg); + for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) + Uses.set(*AS); + } + + MII = PrevMI; + } + + return 0; +} + +static +void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.getReg() == VirtReg) + MO.setReg(PhysReg); + } +} + + +// ***************************** // +// Local Spiller Implementation // +// ***************************** // + +class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter { + MachineRegisterInfo *RegInfo; + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + BitVector AllocatableRegs; + DenseMap<MachineInstr*, unsigned> DistanceMap; +public: + + bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, + LiveIntervals* LIs) { + RegInfo = &MF.getRegInfo(); + TRI = MF.getTarget().getRegisterInfo(); + TII = MF.getTarget().getInstrInfo(); + AllocatableRegs = TRI->getAllocatableSet(MF); + DOUT << "\n**** Local spiller rewriting function '" + << MF.getFunction()->getName() << "':\n"; + DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)" + " ****\n"; + DEBUG(MF.dump()); + + // Spills - Keep track of which spilled values are available in physregs + // so that we can choose to reuse the physregs instead of emitting + // reloads. This is usually refreshed per basic block. + AvailableSpills Spills(TRI, TII); + + // Keep track of kill information. + BitVector RegKills(TRI->getNumRegs()); + std::vector<MachineOperand*> KillOps; + KillOps.resize(TRI->getNumRegs(), NULL); + + // SingleEntrySuccs - Successor blocks which have a single predecessor. + SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; + SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; + + // Traverse the basic blocks depth first. + MachineBasicBlock *Entry = MF.begin(); + SmallPtrSet<MachineBasicBlock*,16> Visited; + for (df_ext_iterator<MachineBasicBlock*, + SmallPtrSet<MachineBasicBlock*,16> > + DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); + DFI != E; ++DFI) { + MachineBasicBlock *MBB = *DFI; + if (!EarlyVisited.count(MBB)) + RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); + + // If this MBB is the only predecessor of a successor. Keep the + // availability information and visit it next. + do { + // Keep visiting single predecessor successor as long as possible. + SinglePredSuccs.clear(); + findSinglePredSuccessor(MBB, SinglePredSuccs); + if (SinglePredSuccs.empty()) + MBB = 0; + else { + // FIXME: More than one successors, each of which has MBB has + // the only predecessor. + MBB = SinglePredSuccs[0]; + if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { + Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); + RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); + } + } + } while (MBB); + + // Clear the availability info. + Spills.clear(); + } + + DOUT << "**** Post Machine Instrs ****\n"; + DEBUG(MF.dump()); + + // Mark unused spill slots. + MachineFrameInfo *MFI = MF.getFrameInfo(); + int SS = VRM.getLowSpillSlot(); + if (SS != VirtRegMap::NO_STACK_SLOT) + for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS) + if (!VRM.isSpillSlotUsed(SS)) { + MFI->RemoveStackObject(SS); + ++NumDSS; + } + + return true; + } + +private: + + /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if + /// a scratch register is available. + /// xorq %r12<kill>, %r13 + /// addq %rax, -184(%rbp) + /// addq %r13, -184(%rbp) + /// ==> + /// xorq %r12<kill>, %r13 + /// movq -184(%rbp), %r12 + /// addq %rax, %r12 + /// addq %r13, %r12 + /// movq %r12, -184(%rbp) + bool OptimizeByUnfold2(unsigned VirtReg, int SS, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + std::vector<MachineInstr*> &MaybeDeadStores, + AvailableSpills &Spills, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + + MachineBasicBlock::iterator NextMII = next(MII); + if (NextMII == MBB.end()) + return false; + + if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) + return false; + + // Now let's see if the last couple of instructions happens to have freed up + // a register. + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs); + if (!PhysReg) + return false; + + MachineFunction &MF = *MBB.getParent(); + TRI = MF.getTarget().getRegisterInfo(); + MachineInstr &MI = *MII; + if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM)) + return false; + + // If the next instruction also folds the same SS modref and can be unfoled, + // then it's worthwhile to issue a load from SS into the free register and + // then unfold these instructions. + if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)) + return false; + + // Load from SS to the spare physical register. + TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC); + // This invalidates Phys. + Spills.ClobberPhysReg(PhysReg); + // Remember it's available. + Spills.addAvailable(SS, PhysReg); + MaybeDeadStores[SS] = NULL; + + // Unfold current MI. + SmallVector<MachineInstr*, 4> NewMIs; + if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) + assert(0 && "Unable unfold the load / store folding instruction!"); + assert(NewMIs.size() == 1); + AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); + VRM.transferRestorePts(&MI, NewMIs[0]); + MII = MBB.insert(MII, NewMIs[0]); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + ++NumModRefUnfold; + + // Unfold next instructions that fold the same SS. + do { + MachineInstr &NextMI = *NextMII; + NextMII = next(NextMII); + NewMIs.clear(); + if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) + assert(0 && "Unable unfold the load / store folding instruction!"); + assert(NewMIs.size() == 1); + AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); + VRM.transferRestorePts(&NextMI, NewMIs[0]); + MBB.insert(NextMII, NewMIs[0]); + InvalidateKills(NextMI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&NextMI); + MBB.erase(&NextMI); + ++NumModRefUnfold; + } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)); + + // Store the value back into SS. + TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC); + MachineInstr *StoreMI = prior(NextMII); + VRM.addSpillSlotUse(SS, StoreMI); + VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); + + return true; + } + + /// OptimizeByUnfold - Turn a store folding instruction into a load folding + /// instruction. e.g. + /// xorl %edi, %eax + /// movl %eax, -32(%ebp) + /// movl -36(%ebp), %eax + /// orl %eax, -32(%ebp) + /// ==> + /// xorl %edi, %eax + /// orl -36(%ebp), %eax + /// mov %eax, -32(%ebp) + /// This enables unfolding optimization for a subsequent instruction which will + /// also eliminate the newly introduced store instruction. + bool OptimizeByUnfold(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + std::vector<MachineInstr*> &MaybeDeadStores, + AvailableSpills &Spills, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + MachineFunction &MF = *MBB.getParent(); + MachineInstr &MI = *MII; + unsigned UnfoldedOpc = 0; + unsigned UnfoldPR = 0; + unsigned UnfoldVR = 0; + int FoldedSS = VirtRegMap::NO_STACK_SLOT; + VirtRegMap::MI2VirtMapTy::const_iterator I, End; + for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { + // Only transform a MI that folds a single register. + if (UnfoldedOpc) + return false; + UnfoldVR = I->second.first; + VirtRegMap::ModRef MR = I->second.second; + // MI2VirtMap be can updated which invalidate the iterator. + // Increment the iterator first. + ++I; + if (VRM.isAssignedReg(UnfoldVR)) + continue; + // If this reference is not a use, any previous store is now dead. + // Otherwise, the store to this stack slot is not dead anymore. + FoldedSS = VRM.getStackSlot(UnfoldVR); + MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; + if (DeadStore && (MR & VirtRegMap::isModRef)) { + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); + if (!PhysReg || !DeadStore->readsRegister(PhysReg)) + continue; + UnfoldPR = PhysReg; + UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), + false, true); + } + } + + if (!UnfoldedOpc) { + if (!UnfoldVR) + return false; + + // Look for other unfolding opportunities. + return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII, + MaybeDeadStores, Spills, RegKills, KillOps, VRM); + } + + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) + continue; + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) + continue; + if (VRM.isAssignedReg(VirtReg)) { + unsigned PhysReg = VRM.getPhys(VirtReg); + if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) + return false; + } else if (VRM.isReMaterialized(VirtReg)) + continue; + int SS = VRM.getStackSlot(VirtReg); + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); + if (PhysReg) { + if (TRI->regsOverlap(PhysReg, UnfoldPR)) + return false; + continue; + } + if (VRM.hasPhys(VirtReg)) { + PhysReg = VRM.getPhys(VirtReg); + if (!TRI->regsOverlap(PhysReg, UnfoldPR)) + continue; + } + + // Ok, we'll need to reload the value into a register which makes + // it impossible to perform the store unfolding optimization later. + // Let's see if it is possible to fold the load if the store is + // unfolded. This allows us to perform the store unfolding + // optimization. + SmallVector<MachineInstr*, 4> NewMIs; + if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { + assert(NewMIs.size() == 1); + MachineInstr *NewMI = NewMIs.back(); + NewMIs.clear(); + int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); + assert(Idx != -1); + SmallVector<unsigned, 1> Ops; + Ops.push_back(Idx); + MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); + if (FoldedMI) { + VRM.addSpillSlotUse(SS, FoldedMI); + if (!VRM.hasPhys(UnfoldVR)) + VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); + VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); + MII = MBB.insert(MII, FoldedMI); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + MF.DeleteMachineInstr(NewMI); + return true; + } + MF.DeleteMachineInstr(NewMI); + } + } + + return false; + } + + /// CommuteToFoldReload - + /// Look for + /// r1 = load fi#1 + /// r1 = op r1, r2<kill> + /// store r1, fi#1 + /// + /// If op is commutable and r2 is killed, then we can xform these to + /// r2 = op r2, fi#1 + /// store r2, fi#1 + bool CommuteToFoldReload(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + unsigned VirtReg, unsigned SrcReg, int SS, + AvailableSpills &Spills, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + const TargetRegisterInfo *TRI, + VirtRegMap &VRM) { + if (MII == MBB.begin() || !MII->killsRegister(SrcReg)) + return false; + + MachineFunction &MF = *MBB.getParent(); + MachineInstr &MI = *MII; + MachineBasicBlock::iterator DefMII = prior(MII); + MachineInstr *DefMI = DefMII; + const TargetInstrDesc &TID = DefMI->getDesc(); + unsigned NewDstIdx; + if (DefMII != MBB.begin() && + TID.isCommutable() && + TII->CommuteChangesDestination(DefMI, NewDstIdx)) { + MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); + unsigned NewReg = NewDstMO.getReg(); + if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) + return false; + MachineInstr *ReloadMI = prior(DefMII); + int FrameIdx; + unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); + if (DestReg != SrcReg || FrameIdx != SS) + return false; + int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); + if (UseIdx == -1) + return false; + unsigned DefIdx; + if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) + return false; + assert(DefMI->getOperand(DefIdx).isReg() && + DefMI->getOperand(DefIdx).getReg() == SrcReg); + + // Now commute def instruction. + MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); + if (!CommutedMI) + return false; + SmallVector<unsigned, 1> Ops; + Ops.push_back(NewDstIdx); + MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS); + // Not needed since foldMemoryOperand returns new MI. + MF.DeleteMachineInstr(CommutedMI); + if (!FoldedMI) + return false; + + VRM.addSpillSlotUse(SS, FoldedMI); + VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); + // Insert new def MI and spill MI. + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC); + MII = prior(MII); + MachineInstr *StoreMI = MII; + VRM.addSpillSlotUse(SS, StoreMI); + VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); + MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack. + + // Delete all 3 old instructions. + InvalidateKills(*ReloadMI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(ReloadMI); + MBB.erase(ReloadMI); + InvalidateKills(*DefMI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(DefMI); + MBB.erase(DefMI); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + + // If NewReg was previously holding value of some SS, it's now clobbered. + // This has to be done now because it's a physical register. When this + // instruction is re-visited, it's ignored. + Spills.ClobberPhysReg(NewReg); + + ++NumCommutes; + return true; + } + + return false; + } + + /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if + /// the last store to the same slot is now dead. If so, remove the last store. + void SpillRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + int Idx, unsigned PhysReg, int StackSlot, + const TargetRegisterClass *RC, + bool isAvailable, MachineInstr *&LastStore, + AvailableSpills &Spills, + SmallSet<MachineInstr*, 4> &ReMatDefs, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + + TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC); + MachineInstr *StoreMI = next(MII); + VRM.addSpillSlotUse(StackSlot, StoreMI); + DOUT << "Store:\t" << *StoreMI; + + // If there is a dead store to this stack slot, nuke it now. + if (LastStore) { + DOUT << "Removed dead store:\t" << *LastStore; + ++NumDSE; + SmallVector<unsigned, 2> KillRegs; + InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs); + MachineBasicBlock::iterator PrevMII = LastStore; + bool CheckDef = PrevMII != MBB.begin(); + if (CheckDef) + --PrevMII; + VRM.RemoveMachineInstrFromMaps(LastStore); + MBB.erase(LastStore); + if (CheckDef) { + // Look at defs of killed registers on the store. Mark the defs + // as dead since the store has been deleted and they aren't + // being reused. + for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { + bool HasOtherDef = false; + if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { + MachineInstr *DeadDef = PrevMII; + if (ReMatDefs.count(DeadDef) && !HasOtherDef) { + // FIXME: This assumes a remat def does not have side + // effects. + VRM.RemoveMachineInstrFromMaps(DeadDef); + MBB.erase(DeadDef); + ++NumDRM; + } + } + } + } + } + + LastStore = next(MII); + + // If the stack slot value was previously available in some other + // register, change it now. Otherwise, make the register available, + // in PhysReg. + Spills.ModifyStackSlotOrReMat(StackSlot); + Spills.ClobberPhysReg(PhysReg); + Spills.addAvailable(StackSlot, PhysReg, isAvailable); + ++NumStores; + } + + /// TransferDeadness - A identity copy definition is dead and it's being + /// removed. Find the last def or use and mark it as dead / kill. + void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, + unsigned Reg, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + int LastUDDist = -1; + MachineInstr *LastUDMI = NULL; + for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg), + RE = RegInfo->reg_end(); RI != RE; ++RI) { + MachineInstr *UDMI = &*RI; + if (UDMI->getParent() != MBB) + continue; + DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); + if (DI == DistanceMap.end() || DI->second > CurDist) + continue; + if ((int)DI->second < LastUDDist) + continue; + LastUDDist = DI->second; + LastUDMI = UDMI; + } + + if (LastUDMI) { + MachineOperand *LastUD = NULL; + for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = LastUDMI->getOperand(i); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (!LastUD || (LastUD->isUse() && MO.isDef())) + LastUD = &MO; + if (LastUDMI->isRegTiedToDefOperand(i)) + return; + } + if (LastUD->isDef()) + LastUD->setIsDead(); + else { + LastUD->setIsKill(); + RegKills.set(Reg); + KillOps[Reg] = LastUD; + } + } + } + + /// rewriteMBB - Keep track of which spills are available even after the + /// register allocator is done with them. If possible, avid reloading vregs. + void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, + LiveIntervals *LIs, + AvailableSpills &Spills, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + + DOUT << "\n**** Local spiller rewriting MBB '" + << MBB.getBasicBlock()->getName() << "':\n"; + + MachineFunction &MF = *MBB.getParent(); + + // MaybeDeadStores - When we need to write a value back into a stack slot, + // keep track of the inserted store. If the stack slot value is never read + // (because the value was used from some available register, for example), and + // subsequently stored to, the original store is dead. This map keeps track + // of inserted stores that are not used. If we see a subsequent store to the + // same stack slot, the original store is deleted. + std::vector<MachineInstr*> MaybeDeadStores; + MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); + + // ReMatDefs - These are rematerializable def MIs which are not deleted. + SmallSet<MachineInstr*, 4> ReMatDefs; + + // Clear kill info. + SmallSet<unsigned, 2> KilledMIRegs; + RegKills.reset(); + KillOps.clear(); + KillOps.resize(TRI->getNumRegs(), NULL); + + unsigned Dist = 0; + DistanceMap.clear(); + for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); + MII != E; ) { + MachineBasicBlock::iterator NextMII = next(MII); + + VirtRegMap::MI2VirtMapTy::const_iterator I, End; + bool Erased = false; + bool BackTracked = false; + if (OptimizeByUnfold(MBB, MII, + MaybeDeadStores, Spills, RegKills, KillOps, VRM)) + NextMII = next(MII); + + MachineInstr &MI = *MII; + + if (VRM.hasEmergencySpills(&MI)) { + // Spill physical register(s) in the rare case the allocator has run out + // of registers to allocate. + SmallSet<int, 4> UsedSS; + std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI); + for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { + unsigned PhysReg = EmSpills[i]; + const TargetRegisterClass *RC = + TRI->getPhysicalRegisterRegClass(PhysReg); + assert(RC && "Unable to determine register class!"); + int SS = VRM.getEmergencySpillSlot(RC); + if (UsedSS.count(SS)) + assert(0 && "Need to spill more than one physical registers!"); + UsedSS.insert(SS); + TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC); + MachineInstr *StoreMI = prior(MII); + VRM.addSpillSlotUse(SS, StoreMI); + TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC); + MachineInstr *LoadMI = next(MII); + VRM.addSpillSlotUse(SS, LoadMI); + ++NumPSpills; + } + NextMII = next(MII); + } + + // Insert restores here if asked to. + if (VRM.isRestorePt(&MI)) { + std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI); + for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { + unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. + if (!VRM.getPreSplitReg(VirtReg)) + continue; // Split interval spilled again. + unsigned Phys = VRM.getPhys(VirtReg); + RegInfo->setPhysRegUsed(Phys); + + // Check if the value being restored if available. If so, it must be + // from a predecessor BB that fallthrough into this BB. We do not + // expect: + // BB1: + // r1 = load fi#1 + // ... + // = r1<kill> + // ... # r1 not clobbered + // ... + // = load fi#1 + bool DoReMat = VRM.isReMaterialized(VirtReg); + int SSorRMId = DoReMat + ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); + if (InReg == Phys) { + // If the value is already available in the expected register, save + // a reload / remat. + if (SSorRMId) + DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << SSorRMId; + DOUT << " from physreg " + << TRI->getName(InReg) << " for vreg" + << VirtReg <<" instead of reloading into physreg " + << TRI->getName(Phys) << "\n"; + ++NumOmitted; + continue; + } else if (InReg && InReg != Phys) { + if (SSorRMId) + DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << SSorRMId; + DOUT << " from physreg " + << TRI->getName(InReg) << " for vreg" + << VirtReg <<" by copying it into physreg " + << TRI->getName(Phys) << "\n"; + + // If the reloaded / remat value is available in another register, + // copy it to the desired register. + TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC); + + // This invalidates Phys. + Spills.ClobberPhysReg(Phys); + // Remember it's available. + Spills.addAvailable(SSorRMId, Phys); + + // Mark is killed. + MachineInstr *CopyMI = prior(MII); + MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg); + KillOpnd->setIsKill(); + UpdateKills(*CopyMI, RegKills, KillOps, TRI); + + DOUT << '\t' << *CopyMI; + ++NumCopified; + continue; + } + + if (VRM.isReMaterialized(VirtReg)) { + ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM); + } else { + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(SSorRMId, LoadMI); + ++NumLoads; + } + + // This invalidates Phys. + Spills.ClobberPhysReg(Phys); + // Remember it's available. + Spills.addAvailable(SSorRMId, Phys); + + UpdateKills(*prior(MII), RegKills, KillOps, TRI); + DOUT << '\t' << *prior(MII); + } + } + + // Insert spills here if asked to. + if (VRM.isSpillPt(&MI)) { + std::vector<std::pair<unsigned,bool> > &SpillRegs = + VRM.getSpillPtSpills(&MI); + for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { + unsigned VirtReg = SpillRegs[i].first; + bool isKill = SpillRegs[i].second; + if (!VRM.getPreSplitReg(VirtReg)) + continue; // Split interval spilled again. + const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); + unsigned Phys = VRM.getPhys(VirtReg); + int StackSlot = VRM.getStackSlot(VirtReg); + TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC); + MachineInstr *StoreMI = next(MII); + VRM.addSpillSlotUse(StackSlot, StoreMI); + DOUT << "Store:\t" << *StoreMI; + VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); + } + NextMII = next(MII); + } + + /// ReusedOperands - Keep track of operand reuse in case we need to undo + /// reuse. + ReuseInfo ReusedOperands(MI, TRI); + SmallVector<unsigned, 4> VirtUseOps; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; // Ignore non-register operands. + + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { + // Ignore physregs for spilling, but remember that it is used by this + // function. + RegInfo->setPhysRegUsed(VirtReg); + continue; + } + + // We want to process implicit virtual register uses first. + if (MO.isImplicit()) + // If the virtual register is implicitly defined, emit a implicit_def + // before so scavenger knows it's "defined". + VirtUseOps.insert(VirtUseOps.begin(), i); + else + VirtUseOps.push_back(i); + } + + // Process all of the spilled uses and all non spilled reg references. + SmallVector<int, 2> PotentialDeadStoreSlots; + KilledMIRegs.clear(); + for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { + unsigned i = VirtUseOps[j]; + MachineOperand &MO = MI.getOperand(i); + unsigned VirtReg = MO.getReg(); + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Not a virtual register?"); + + unsigned SubIdx = MO.getSubReg(); + if (VRM.isAssignedReg(VirtReg)) { + // This virtual register was assigned a physreg! + unsigned Phys = VRM.getPhys(VirtReg); + RegInfo->setPhysRegUsed(Phys); + if (MO.isDef()) + ReusedOperands.markClobbered(Phys); + unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + if (VRM.isImplicitlyDefined(VirtReg)) + BuildMI(MBB, &MI, MI.getDebugLoc(), + TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg); + continue; + } + + // This virtual register is now known to be a spilled value. + if (!MO.isUse()) + continue; // Handle defs in the loop below (handle use&def here though) + + bool AvoidReload = false; + if (LIs->hasInterval(VirtReg)) { + LiveInterval &LI = LIs->getInterval(VirtReg); + if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber()))) + // Must be defined by an implicit def. It should not be spilled. Note, + // this is for correctness reason. e.g. + // 8 %reg1024<def> = IMPLICIT_DEF + // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 + // The live range [12, 14) are not part of the r1024 live interval since + // it's defined by an implicit def. It will not conflicts with live + // interval of r1025. Now suppose both registers are spilled, you can + // easily see a situation where both registers are reloaded before + // the INSERT_SUBREG and both target registers that would overlap. + AvoidReload = true; + } + + bool DoReMat = VRM.isReMaterialized(VirtReg); + int SSorRMId = DoReMat + ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); + int ReuseSlot = SSorRMId; + + // Check to see if this stack slot is available. + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); + + // If this is a sub-register use, make sure the reuse register is in the + // right register class. For example, for x86 not all of the 32-bit + // registers have accessible sub-registers. + // Similarly so for EXTRACT_SUBREG. Consider this: + // EDI = op + // MOV32_mr fi#1, EDI + // ... + // = EXTRACT_SUBREG fi#1 + // fi#1 is available in EDI, but it cannot be reused because it's not in + // the right register file. + if (PhysReg && !AvoidReload && + (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + if (!RC->contains(PhysReg)) + PhysReg = 0; + } + + if (PhysReg && !AvoidReload) { + // This spilled operand might be part of a two-address operand. If this + // is the case, then changing it will necessarily require changing the + // def part of the instruction as well. However, in some cases, we + // aren't allowed to modify the reused register. If none of these cases + // apply, reuse it. + bool CanReuse = true; + bool isTied = MI.isRegTiedToDefOperand(i); + if (isTied) { + // Okay, we have a two address operand. We can reuse this physreg as + // long as we are allowed to clobber the value and there isn't an + // earlier def that has already clobbered the physreg. + CanReuse = !ReusedOperands.isClobbered(PhysReg) && + Spills.canClobberPhysReg(PhysReg); + } + + if (CanReuse) { + // If this stack slot value is already available, reuse it! + if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) + DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << ReuseSlot; + DOUT << " from physreg " + << TRI->getName(PhysReg) << " for vreg" + << VirtReg <<" instead of reloading into physreg " + << TRI->getName(VRM.getPhys(VirtReg)) << "\n"; + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + + // The only technical detail we have is that we don't know that + // PhysReg won't be clobbered by a reloaded stack slot that occurs + // later in the instruction. In particular, consider 'op V1, V2'. + // If V1 is available in physreg R0, we would choose to reuse it + // here, instead of reloading it into the register the allocator + // indicated (say R1). However, V2 might have to be reloaded + // later, and it might indicate that it needs to live in R0. When + // this occurs, we need to have information available that + // indicates it is safe to use R1 for the reload instead of R0. + // + // To further complicate matters, we might conflict with an alias, + // or R0 and R1 might not be compatible with each other. In this + // case, we actually insert a reload for V1 in R1, ensuring that + // we can get at R0 or its alias. + ReusedOperands.addReuse(i, ReuseSlot, PhysReg, + VRM.getPhys(VirtReg), VirtReg); + if (isTied) + // Only mark it clobbered if this is a use&def operand. + ReusedOperands.markClobbered(PhysReg); + ++NumReused; + + if (MI.getOperand(i).isKill() && + ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { + + // The store of this spilled value is potentially dead, but we + // won't know for certain until we've confirmed that the re-use + // above is valid, which means waiting until the other operands + // are processed. For now we just track the spill slot, we'll + // remove it after the other operands are processed if valid. + + PotentialDeadStoreSlots.push_back(ReuseSlot); + } + + // Mark is isKill if it's there no other uses of the same virtual + // register and it's not a two-address operand. IsKill will be + // unset if reg is reused. + if (!isTied && KilledMIRegs.count(VirtReg) == 0) { + MI.getOperand(i).setIsKill(); + KilledMIRegs.insert(VirtReg); + } + + continue; + } // CanReuse + + // Otherwise we have a situation where we have a two-address instruction + // whose mod/ref operand needs to be reloaded. This reload is already + // available in some register "PhysReg", but if we used PhysReg as the + // operand to our 2-addr instruction, the instruction would modify + // PhysReg. This isn't cool if something later uses PhysReg and expects + // to get its initial value. + // + // To avoid this problem, and to avoid doing a load right after a store, + // we emit a copy from PhysReg into the designated register for this + // operand. + unsigned DesignatedReg = VRM.getPhys(VirtReg); + assert(DesignatedReg && "Must map virtreg to physreg!"); + + // Note that, if we reused a register for a previous operand, the + // register we want to reload into might not actually be + // available. If this occurs, use the register indicated by the + // reuser. + if (ReusedOperands.hasReuses()) + DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, VRM); + + // If the mapped designated register is actually the physreg we have + // incoming, we don't need to inserted a dead copy. + if (DesignatedReg == PhysReg) { + // If this stack slot value is already available, reuse it! + if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) + DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << ReuseSlot; + DOUT << " from physreg " << TRI->getName(PhysReg) + << " for vreg" << VirtReg + << " instead of reloading into same physreg.\n"; + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + ReusedOperands.markClobbered(RReg); + ++NumReused; + continue; + } + + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + RegInfo->setPhysRegUsed(DesignatedReg); + ReusedOperands.markClobbered(DesignatedReg); + TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC); + + MachineInstr *CopyMI = prior(MII); + UpdateKills(*CopyMI, RegKills, KillOps, TRI); + + // This invalidates DesignatedReg. + Spills.ClobberPhysReg(DesignatedReg); + + Spills.addAvailable(ReuseSlot, DesignatedReg); + unsigned RReg = + SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + DOUT << '\t' << *prior(MII); + ++NumReused; + continue; + } // if (PhysReg) + + // Otherwise, reload it and remember that we have it. + PhysReg = VRM.getPhys(VirtReg); + assert(PhysReg && "Must map virtreg to physreg!"); + + // Note that, if we reused a register for a previous operand, the + // register we want to reload into might not actually be + // available. If this occurs, use the register indicated by the + // reuser. + if (ReusedOperands.hasReuses()) + PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, VRM); + + RegInfo->setPhysRegUsed(PhysReg); + ReusedOperands.markClobbered(PhysReg); + if (AvoidReload) + ++NumAvoided; + else { + if (DoReMat) { + ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM); + } else { + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(SSorRMId, LoadMI); + ++NumLoads; + } + // This invalidates PhysReg. + Spills.ClobberPhysReg(PhysReg); + + // Any stores to this stack slot are not dead anymore. + if (!DoReMat) + MaybeDeadStores[SSorRMId] = NULL; + Spills.addAvailable(SSorRMId, PhysReg); + // Assumes this is the last use. IsKill will be unset if reg is reused + // unless it's a two-address operand. + if (!MI.isRegTiedToDefOperand(i) && + KilledMIRegs.count(VirtReg) == 0) { + MI.getOperand(i).setIsKill(); + KilledMIRegs.insert(VirtReg); + } + + UpdateKills(*prior(MII), RegKills, KillOps, TRI); + DOUT << '\t' << *prior(MII); + } + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + } + + // Ok - now we can remove stores that have been confirmed dead. + for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { + // This was the last use and the spilled value is still available + // for reuse. That means the spill was unnecessary! + int PDSSlot = PotentialDeadStoreSlots[j]; + MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; + if (DeadStore) { + DOUT << "Removed dead store:\t" << *DeadStore; + InvalidateKills(*DeadStore, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(DeadStore); + MBB.erase(DeadStore); + MaybeDeadStores[PDSSlot] = NULL; + ++NumDSE; + } + } + + + DOUT << '\t' << MI; + + + // If we have folded references to memory operands, make sure we clear all + // physical registers that may contain the value of the spilled virtual + // register + SmallSet<int, 2> FoldedSS; + for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { + unsigned VirtReg = I->second.first; + VirtRegMap::ModRef MR = I->second.second; + DOUT << "Folded vreg: " << VirtReg << " MR: " << MR; + + // MI2VirtMap be can updated which invalidate the iterator. + // Increment the iterator first. + ++I; + int SS = VRM.getStackSlot(VirtReg); + if (SS == VirtRegMap::NO_STACK_SLOT) + continue; + FoldedSS.insert(SS); + DOUT << " - StackSlot: " << SS << "\n"; + + // If this folded instruction is just a use, check to see if it's a + // straight load from the virt reg slot. + if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { + int FrameIdx; + unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); + if (DestReg && FrameIdx == SS) { + // If this spill slot is available, turn it into a copy (or nothing) + // instead of leaving it as a load! + if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { + DOUT << "Promoted Load To Copy: " << MI; + if (DestReg != InReg) { + const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); + TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); + MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); + unsigned SubIdx = DefMO->getSubReg(); + // Revisit the copy so we make sure to notice the effects of the + // operation on the destreg (either needing to RA it if it's + // virtual or needing to clobber any values if it's physical). + NextMII = &MI; + --NextMII; // backtrack to the copy. + // Propagate the sub-register index over. + if (SubIdx) { + DefMO = NextMII->findRegisterDefOperand(DestReg); + DefMO->setSubReg(SubIdx); + } + + // Mark is killed. + MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg); + KillOpnd->setIsKill(); + + BackTracked = true; + } else { + DOUT << "Removing now-noop copy: " << MI; + // Unset last kill since it's being reused. + InvalidateKill(InReg, RegKills, KillOps); + Spills.disallowClobberPhysReg(InReg); + } + + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + goto ProcessNextInst; + } + } else { + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); + SmallVector<MachineInstr*, 4> NewMIs; + if (PhysReg && + TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { + MBB.insert(MII, NewMIs[0]); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + --NextMII; // backtrack to the unfolded instruction. + BackTracked = true; + goto ProcessNextInst; + } + } + } + + // If this reference is not a use, any previous store is now dead. + // Otherwise, the store to this stack slot is not dead anymore. + MachineInstr* DeadStore = MaybeDeadStores[SS]; + if (DeadStore) { + bool isDead = !(MR & VirtRegMap::isRef); + MachineInstr *NewStore = NULL; + if (MR & VirtRegMap::isModRef) { + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); + SmallVector<MachineInstr*, 4> NewMIs; + // We can reuse this physreg as long as we are allowed to clobber + // the value and there isn't an earlier def that has already clobbered + // the physreg. + if (PhysReg && + !ReusedOperands.isClobbered(PhysReg) && + Spills.canClobberPhysReg(PhysReg) && + !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! + MachineOperand *KillOpnd = + DeadStore->findRegisterUseOperand(PhysReg, true); + // Note, if the store is storing a sub-register, it's possible the + // super-register is needed below. + if (KillOpnd && !KillOpnd->getSubReg() && + TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ + MBB.insert(MII, NewMIs[0]); + NewStore = NewMIs[1]; + MBB.insert(MII, NewStore); + VRM.addSpillSlotUse(SS, NewStore); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + --NextMII; + --NextMII; // backtrack to the unfolded instruction. + BackTracked = true; + isDead = true; + ++NumSUnfold; + } + } + } + + if (isDead) { // Previous store is dead. + // If we get here, the store is dead, nuke it now. + DOUT << "Removed dead store:\t" << *DeadStore; + InvalidateKills(*DeadStore, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(DeadStore); + MBB.erase(DeadStore); + if (!NewStore) + ++NumDSE; + } + + MaybeDeadStores[SS] = NULL; + if (NewStore) { + // Treat this store as a spill merged into a copy. That makes the + // stack slot value available. + VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); + goto ProcessNextInst; + } + } + + // If the spill slot value is available, and this is a new definition of + // the value, the value is not available anymore. + if (MR & VirtRegMap::isMod) { + // Notice that the value in this stack slot has been modified. + Spills.ModifyStackSlotOrReMat(SS); + + // If this is *just* a mod of the value, check to see if this is just a + // store to the spill slot (i.e. the spill got merged into the copy). If + // so, realize that the vreg is available now, and add the store to the + // MaybeDeadStore info. + int StackSlot; + if (!(MR & VirtRegMap::isRef)) { + if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { + assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && + "Src hasn't been allocated yet?"); + + if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot, + Spills, RegKills, KillOps, TRI, VRM)) { + NextMII = next(MII); + BackTracked = true; + goto ProcessNextInst; + } + + // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark + // this as a potentially dead store in case there is a subsequent + // store into the stack slot without a read from it. + MaybeDeadStores[StackSlot] = &MI; + + // If the stack slot value was previously available in some other + // register, change it now. Otherwise, make the register + // available in PhysReg. + Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); + } + } + } + } + + // Process all of the spilled defs. + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!(MO.isReg() && MO.getReg() && MO.isDef())) + continue; + + unsigned VirtReg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { + // Check to see if this is a noop copy. If so, eliminate the + // instruction before considering the dest reg to be changed. + unsigned Src, Dst, SrcSR, DstSR; + if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { + ++NumDCE; + DOUT << "Removing now-noop copy: " << MI; + SmallVector<unsigned, 2> KillRegs; + InvalidateKills(MI, RegKills, KillOps, &KillRegs); + if (MO.isDead() && !KillRegs.empty()) { + // Source register or an implicit super/sub-register use is killed. + assert(KillRegs[0] == Dst || + TRI->isSubRegister(KillRegs[0], Dst) || + TRI->isSuperRegister(KillRegs[0], Dst)); + // Last def is now dead. + TransferDeadness(&MBB, Dist, Src, RegKills, KillOps); + } + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + Spills.disallowClobberPhysReg(VirtReg); + goto ProcessNextInst; + } + + // If it's not a no-op copy, it clobbers the value in the destreg. + Spills.ClobberPhysReg(VirtReg); + ReusedOperands.markClobbered(VirtReg); + + // Check to see if this instruction is a load from a stack slot into + // a register. If so, this provides the stack slot value in the reg. + int FrameIdx; + if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { + assert(DestReg == VirtReg && "Unknown load situation!"); + + // If it is a folded reference, then it's not safe to clobber. + bool Folded = FoldedSS.count(FrameIdx); + // Otherwise, if it wasn't available, remember that it is now! + Spills.addAvailable(FrameIdx, DestReg, !Folded); + goto ProcessNextInst; + } + + continue; + } + + unsigned SubIdx = MO.getSubReg(); + bool DoReMat = VRM.isReMaterialized(VirtReg); + if (DoReMat) + ReMatDefs.insert(&MI); + + // The only vregs left are stack slot definitions. + int StackSlot = VRM.getStackSlot(VirtReg); + const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); + + // If this def is part of a two-address operand, make sure to execute + // the store from the correct physical register. + unsigned PhysReg; + unsigned TiedOp; + if (MI.isRegTiedToUseOperand(i, &TiedOp)) { + PhysReg = MI.getOperand(TiedOp).getReg(); + if (SubIdx) { + unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); + assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && + "Can't find corresponding super-register!"); + PhysReg = SuperReg; + } + } else { + PhysReg = VRM.getPhys(VirtReg); + if (ReusedOperands.isClobbered(PhysReg)) { + // Another def has taken the assigned physreg. It must have been a + // use&def which got it due to reuse. Undo the reuse! + PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, VRM); + } + } + + assert(PhysReg && "VR not assigned a physical register?"); + RegInfo->setPhysRegUsed(PhysReg); + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + ReusedOperands.markClobbered(RReg); + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + + if (!MO.isDead()) { + MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; + SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true, + LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); + NextMII = next(MII); + + // Check to see if this is a noop copy. If so, eliminate the + // instruction before considering the dest reg to be changed. + { + unsigned Src, Dst, SrcSR, DstSR; + if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { + ++NumDCE; + DOUT << "Removing now-noop copy: " << MI; + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + UpdateKills(*LastStore, RegKills, KillOps, TRI); + goto ProcessNextInst; + } + } + } + } + ProcessNextInst: + DistanceMap.insert(std::make_pair(&MI, Dist++)); + if (!Erased && !BackTracked) { + for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) + UpdateKills(*II, RegKills, KillOps, TRI); + } + MII = NextMII; + } + + } + +}; + +llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { + switch (RewriterOpt) { + default: assert(0 && "Unreachable!"); + case local: + return new LocalRewriter(); + case simple: + return new SimpleRewriter(); + } +} diff --git a/lib/CodeGen/VirtRegRewriter.h b/lib/CodeGen/VirtRegRewriter.h new file mode 100644 index 0000000..bc830f7 --- /dev/null +++ b/lib/CodeGen/VirtRegRewriter.h @@ -0,0 +1,56 @@ +//===-- llvm/CodeGen/VirtRegRewriter.h - VirtRegRewriter -*- C++ -*--------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H +#define LLVM_CODEGEN_VIRTREGREWRITER_H + +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/IndexedMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Streams.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallSet.h" +#include "VirtRegMap.h" +#include <map> + +// TODO: +// - Finish renaming Spiller -> Rewriter +// - SimpleSpiller +// - LocalSpiller + +namespace llvm { + + /// VirtRegRewriter interface: Implementations of this interface assign + /// spilled virtual registers to stack slots, rewriting the code. + struct VirtRegRewriter { + virtual ~VirtRegRewriter(); + virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, + LiveIntervals* LIs) = 0; + }; + + /// createVirtRegRewriter - Create an return a rewriter object, as specified + /// on the command line. + VirtRegRewriter* createVirtRegRewriter(); + +} + +#endif diff --git a/test/CodeGen/X86/2009-03-16-SpillerBug.ll b/test/CodeGen/X86/2009-03-16-SpillerBug.ll index e633d35..09782a2 100644 --- a/test/CodeGen/X86/2009-03-16-SpillerBug.ll +++ b/test/CodeGen/X86/2009-03-16-SpillerBug.ll @@ -1,4 +1,4 @@ -; RUN: llvm-as < %s | llc -mtriple=i386-apple-darwin -stats |& grep spiller | not grep {stores unfolded} +; RUN: llvm-as < %s | llc -mtriple=i386-apple-darwin -stats |& grep virtregrewriter | not grep {stores unfolded} ; rdar://6682365 ; Do not clobber a register if another spill slot is available in it and it's marked "do not clobber". |