aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--lib/Target/X86/X86FastISel.cpp16
-rw-r--r--lib/Target/X86/X86FloatingPoint.cpp485
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp11
-rw-r--r--lib/Target/X86/X86InstrFPStack.td40
-rw-r--r--lib/Target/X86/X86RegisterInfo.cpp12
-rw-r--r--lib/Target/X86/X86RegisterInfo.td25
-rw-r--r--test/CodeGen/X86/inline-asm-fpstack.ll169
7 files changed, 531 insertions, 227 deletions
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index 82f5d3a..a4d1c67 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -1848,16 +1848,18 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
// stack, but where we prefer to use the value in xmm registers, copy it
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
if ((RVLocs[i].getLocReg() == X86::ST0 ||
- RVLocs[i].getLocReg() == X86::ST1) &&
- isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
- CopyVT = MVT::f80;
+ RVLocs[i].getLocReg() == X86::ST1)) {
+ if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
+ CopyVT = MVT::f80;
CopyReg = createResultReg(X86::RFP80RegisterClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
+ CopyReg);
+ } else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ CopyReg).addReg(RVLocs[i].getLocReg());
+ UsedRegs.push_back(RVLocs[i].getLocReg());
}
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
- CopyReg).addReg(RVLocs[i].getLocReg());
- UsedRegs.push_back(RVLocs[i].getLocReg());
-
if (CopyVT != RVLocs[i].getValVT()) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp
index e16f217..3fb5493 100644
--- a/lib/Target/X86/X86FloatingPoint.cpp
+++ b/lib/Target/X86/X86FloatingPoint.cpp
@@ -37,6 +37,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/InlineAsm.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
@@ -134,11 +135,36 @@ namespace {
unsigned Stack[8]; // FP<n> Registers in each stack slot...
unsigned StackTop; // The current top of the FP stack.
+ enum {
+ NumFPRegs = 16 // Including scratch pseudo-registers.
+ };
+
// For each live FP<n> register, point to its Stack[] entry.
// The first entries correspond to FP0-FP6, the rest are scratch registers
// used when we need slightly different live registers than what the
// register allocator thinks.
- unsigned RegMap[16];
+ unsigned RegMap[NumFPRegs];
+
+ // Pending fixed registers - Inline assembly needs FP registers to appear
+ // in fixed stack slot positions. This is handled by copying FP registers
+ // to ST registers before the instruction, and copying back after the
+ // instruction.
+ //
+ // This is modeled with pending ST registers. NumPendingSTs is the number
+ // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
+ // register that holds the ST value. The ST registers are not moved into
+ // place until immediately before the instruction that needs them.
+ //
+ // It can happen that we need an ST register to be live when no FP register
+ // holds the value:
+ //
+ // %ST0 = COPY %FP4<kill>
+ //
+ // When that happens, we allocate a scratch FP register to hold the ST
+ // value. That means every register in PendingST must be live.
+
+ unsigned NumPendingSTs;
+ unsigned char PendingST[8];
// Set up our stack model to match the incoming registers to MBB.
void setupBlockStack();
@@ -152,13 +178,15 @@ namespace {
dbgs() << " FP" << Stack[i];
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
}
+ for (unsigned i = 0; i != NumPendingSTs; ++i)
+ dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
dbgs() << "\n";
}
/// getSlot - Return the stack slot number a particular register number is
/// in.
unsigned getSlot(unsigned RegNo) const {
- assert(RegNo < array_lengthof(RegMap) && "Regno out of range!");
+ assert(RegNo < NumFPRegs && "Regno out of range!");
return RegMap[RegNo];
}
@@ -170,12 +198,17 @@ namespace {
/// getScratchReg - Return an FP register that is not currently in use.
unsigned getScratchReg() {
- for (int i = array_lengthof(RegMap) - 1; i >= 8; --i)
+ for (int i = NumFPRegs - 1; i >= 8; --i)
if (!isLive(i))
return i;
llvm_unreachable("Ran out of scratch FP registers");
}
+ /// isScratchReg - Returns trus if RegNo is a scratch FP register.
+ bool isScratchReg(unsigned RegNo) {
+ return RegNo > 8 && RegNo < NumFPRegs;
+ }
+
/// getStackEntry - Return the X86::FP<n> register in register ST(i).
unsigned getStackEntry(unsigned STi) const {
if (STi >= StackTop)
@@ -191,7 +224,7 @@ namespace {
// pushReg - Push the specified FP<n> register onto the stack.
void pushReg(unsigned Reg) {
- assert(Reg < array_lengthof(RegMap) && "Register number out of range!");
+ assert(Reg < NumFPRegs && "Register number out of range!");
if (StackTop >= 8)
report_fatal_error("Stack overflow!");
Stack[StackTop] = Reg;
@@ -261,7 +294,14 @@ namespace {
void handleCondMovFP(MachineBasicBlock::iterator &I);
void handleSpecialFP(MachineBasicBlock::iterator &I);
- bool translateCopy(MachineInstr*);
+ // Check if a COPY instruction is using FP registers.
+ bool isFPCopy(MachineInstr *MI) {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+
+ return X86::RFP80RegClass.contains(DstReg) ||
+ X86::RFP80RegClass.contains(SrcReg);
+ }
};
char FPS::ID = 0;
}
@@ -351,6 +391,7 @@ void FPS::bundleCFG(MachineFunction &MF) {
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
bool Changed = false;
MBB = &BB;
+ NumPendingSTs = 0;
setupBlockStack();
@@ -362,7 +403,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
if (MI->isInlineAsm())
FPInstClass = X86II::SpecialFP;
- if (MI->isCopy() && translateCopy(MI))
+ if (MI->isCopy() && isFPCopy(MI))
FPInstClass = X86II::SpecialFP;
if (FPInstClass == X86II::NotFP)
@@ -891,7 +932,8 @@ void FPS::shuffleStackTop(const unsigned char *FixStack,
continue;
// (Reg st0) (OldReg st0) = (Reg OldReg st0)
moveToTop(Reg, I);
- moveToTop(OldReg, I);
+ if (FixCount > 0)
+ moveToTop(OldReg, I);
}
DEBUG(dumpStack());
}
@@ -1249,142 +1291,309 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
MachineInstr *MI = I;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown SpecialFP instruction!");
- case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
- assert(StackTop == 0 && "Stack should be empty after a call!");
- pushReg(getFPReg(MI->getOperand(0)));
- break;
- case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
- // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
- // The pattern we expect is:
- // CALL
- // FP1 = FpGET_ST0
- // FP4 = FpGET_ST1
- //
- // At this point, we've pushed FP1 on the top of stack, so it should be
- // present if it isn't dead. If it was dead, we already emitted a pop to
- // remove it from the stack and StackTop = 0.
-
- // Push FP4 as top of stack next.
- pushReg(getFPReg(MI->getOperand(0)));
+ case TargetOpcode::COPY: {
+ // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
+ const MachineOperand &MO1 = MI->getOperand(1);
+ const MachineOperand &MO0 = MI->getOperand(0);
+ unsigned DstST = MO0.getReg() - X86::ST0;
+ unsigned SrcST = MO1.getReg() - X86::ST0;
+ bool KillsSrc = MI->killsRegister(MO1.getReg());
+
+ // ST = COPY FP. Set up a pending ST register.
+ if (DstST < 8) {
+ unsigned SrcFP = getFPReg(MO1);
+ assert(isLive(SrcFP) && "Cannot copy dead register");
+ assert(!MO0.isDead() && "Cannot copy to dead ST register");
+
+ // Unallocated STs are marked as the nonexistent FP255.
+ while (NumPendingSTs <= DstST)
+ PendingST[NumPendingSTs++] = NumFPRegs;
+
+ // STi could still be live from a previous inline asm.
+ if (isScratchReg(PendingST[DstST])) {
+ DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
+ << '\n');
+ freeStackSlotBefore(MI, PendingST[DstST]);
+ }
- // If StackTop was 0 before we pushed our operand, then ST(0) must have been
- // dead. In this case, the ST(1) value is the only thing that is live, so
- // it should be on the TOS (after the pop that was emitted) and is. Just
- // continue in this case.
- if (StackTop == 1)
+ // When the source is killed, allocate a scratch FP register.
+ if (KillsSrc) {
+ unsigned Slot = getSlot(SrcFP);
+ unsigned SR = getScratchReg();
+ PendingST[DstST] = SR;
+ Stack[Slot] = SR;
+ RegMap[SR] = Slot;
+ } else
+ PendingST[DstST] = SrcFP;
break;
-
- // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
- // elements so that our accounting is correct.
- unsigned RegOnTop = getStackEntry(0);
- unsigned RegNo = getStackEntry(1);
-
- // Swap the slots the regs are in.
- std::swap(RegMap[RegNo], RegMap[RegOnTop]);
-
- // Swap stack slot contents.
- if (RegMap[RegOnTop] >= StackTop)
- report_fatal_error("Access past stack top!");
- std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
- break;
- }
- case X86::FpSET_ST0_32:
- case X86::FpSET_ST0_64:
- case X86::FpSET_ST0_80: {
- // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
- // arguments that use an st constraint. We expect a sequence of
- // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
- unsigned Op0 = getFPReg(MI->getOperand(0));
-
- if (!MI->killsRegister(X86::FP0 + Op0)) {
- // Duplicate Op0 into a temporary on the stack top.
- duplicateToTop(Op0, getScratchReg(), I);
- } else {
- // Op0 is killed, so just swap it into position.
- moveToTop(Op0, I);
}
- --StackTop; // "Forget" we have something on the top of stack!
- break;
- }
- case X86::FpSET_ST1_32:
- case X86::FpSET_ST1_64:
- case X86::FpSET_ST1_80: {
- // Set up st(1) for inline asm. We are assuming that st(0) has already been
- // set up by FpSET_ST0, and our StackTop is off by one because of it.
- unsigned Op0 = getFPReg(MI->getOperand(0));
- // Restore the actual StackTop from before Fp_SET_ST0.
- // Note we can't handle Fp_SET_ST1 without a preceding Fp_SET_ST0, and we
- // are not enforcing the constraint.
- ++StackTop;
- unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
- if (!MI->killsRegister(X86::FP0 + Op0)) {
- duplicateToTop(Op0, getScratchReg(), I);
- moveToTop(RegOnTop, I);
- } else if (getSTReg(Op0) != X86::ST1) {
- // We have the wrong value at st(1). Shuffle! Untested!
- moveToTop(getStackEntry(1), I);
- moveToTop(Op0, I);
- moveToTop(RegOnTop, I);
+
+ // FP = COPY ST. Extract fixed stack value.
+ // Any instruction defining ST registers must have assigned them to a
+ // scratch register.
+ if (SrcST < 8) {
+ unsigned DstFP = getFPReg(MO0);
+ assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
+ assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
+ unsigned SrcFP = PendingST[SrcST];
+ assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
+ assert(isLive(SrcFP) && "Scratch holding ST is dead");
+
+ // DstFP steals the stack slot from SrcFP.
+ unsigned Slot = getSlot(SrcFP);
+ Stack[Slot] = DstFP;
+ RegMap[DstFP] = Slot;
+
+ // Always treat the ST as killed.
+ PendingST[SrcST] = NumFPRegs;
+ while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+ --NumPendingSTs;
+ break;
}
- assert(StackTop >= 2 && "Too few live registers");
- StackTop -= 2; // "Forget" both st(0) and st(1).
- break;
- }
- case X86::MOV_Fp3232:
- case X86::MOV_Fp3264:
- case X86::MOV_Fp6432:
- case X86::MOV_Fp6464:
- case X86::MOV_Fp3280:
- case X86::MOV_Fp6480:
- case X86::MOV_Fp8032:
- case X86::MOV_Fp8064:
- case X86::MOV_Fp8080: {
- const MachineOperand &MO1 = MI->getOperand(1);
- unsigned SrcReg = getFPReg(MO1);
- const MachineOperand &MO0 = MI->getOperand(0);
- unsigned DestReg = getFPReg(MO0);
- if (MI->killsRegister(X86::FP0+SrcReg)) {
+ // FP <- FP copy.
+ unsigned DstFP = getFPReg(MO0);
+ unsigned SrcFP = getFPReg(MO1);
+ assert(isLive(SrcFP) && "Cannot copy dead register");
+ if (KillsSrc) {
// If the input operand is killed, we can just change the owner of the
// incoming stack slot into the result.
- unsigned Slot = getSlot(SrcReg);
- assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
- Stack[Slot] = DestReg;
- RegMap[DestReg] = Slot;
-
+ unsigned Slot = getSlot(SrcFP);
+ Stack[Slot] = DstFP;
+ RegMap[DstFP] = Slot;
} else {
- // For FMOV we just duplicate the specified value to a new stack slot.
+ // For COPY we just duplicate the specified value to a new stack slot.
// This could be made better, but would require substantial changes.
- duplicateToTop(SrcReg, DestReg, I);
+ duplicateToTop(SrcFP, DstFP, I);
}
+ break;
+ }
+
+ case X86::FpPOP_RETVAL: {
+ // The FpPOP_RETVAL instruction is used after calls that return a value on
+ // the floating point stack. We cannot model this with ST defs since CALL
+ // instructions have fixed clobber lists. This instruction is interpreted
+ // to mean that there is one more live register on the stack than we
+ // thought.
+ //
+ // This means that StackTop does not match the hardware stack between a
+ // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
+ // between CALL and FpPOP_RETVAL as long as they don't overflow the
+ // hardware stack.
+ unsigned DstFP = getFPReg(MI->getOperand(0));
+
+ // Move existing stack elements up to reflect reality.
+ assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
+ if (StackTop) {
+ std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
+ for (unsigned i = 0; i != NumFPRegs; ++i)
+ ++RegMap[i];
}
+ ++StackTop;
+
+ // DstFP is the new bottom of the stack.
+ Stack[0] = DstFP;
+ RegMap[DstFP] = 0;
+
+ // DstFP will be killed by processBasicBlock if this was a dead def.
break;
+ }
+
case TargetOpcode::INLINEASM: {
// The inline asm MachineInstr currently only *uses* FP registers for the
// 'f' constraint. These should be turned into the current ST(x) register
- // in the machine instr. Also, any kills should be explicitly popped after
- // the inline asm.
- unsigned Kills = 0;
+ // in the machine instr.
+ //
+ // There are special rules for x87 inline assembly. The compiler must know
+ // exactly how many registers are popped and pushed implicitly by the asm.
+ // Otherwise it is not possible to restore the stack state after the inline
+ // asm.
+ //
+ // There are 3 kinds of input operands:
+ //
+ // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
+ // popped input operand must be in a fixed stack slot, and it is either
+ // tied to an output operand, or in the clobber list. The MI has ST use
+ // and def operands for these inputs.
+ //
+ // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
+ // preserved by the inline asm. The fixed stack slots must be STn-STm
+ // following the popped inputs. A fixed input operand cannot be tied to
+ // an output or appear in the clobber list. The MI has ST use operands
+ // and no defs for these inputs.
+ //
+ // 3. Preserved inputs. These inputs use the "f" constraint which is
+ // represented as an FP register. The inline asm won't change these
+ // stack slots.
+ //
+ // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
+ // registers do not count as output operands. The inline asm changes the
+ // stack as if it popped all the popped inputs and then pushed all the
+ // output operands.
+
+ // Scan the assembly for ST registers used, defined and clobbered. We can
+ // only tell clobbers from defs by looking at the asm descriptor.
+ unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
+ unsigned NumOps = 0;
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
+ i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
+ unsigned Flags = MI->getOperand(i).getImm();
+ NumOps = InlineAsm::getNumOperandRegisters(Flags);
+ if (NumOps != 1)
+ continue;
+ const MachineOperand &MO = MI->getOperand(i + 1);
+ if (!MO.isReg())
+ continue;
+ unsigned STReg = MO.getReg() - X86::ST0;
+ if (STReg >= 8)
+ continue;
+
+ switch (InlineAsm::getKind(Flags)) {
+ case InlineAsm::Kind_RegUse:
+ STUses |= (1u << STReg);
+ break;
+ case InlineAsm::Kind_RegDef:
+ case InlineAsm::Kind_RegDefEarlyClobber:
+ STDefs |= (1u << STReg);
+ if (MO.isDead())
+ STDeadDefs |= (1u << STReg);
+ break;
+ case InlineAsm::Kind_Clobber:
+ STClobbers |= (1u << STReg);
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (STUses && !isMask_32(STUses))
+ report_fatal_error("Inline asm fixed inputs"
+ " must be last on the x87 stack");
+ unsigned NumSTUses = CountTrailingOnes_32(STUses);
+
+ // Defs must be contiguous from the stack top. ST0-STn.
+ if (STDefs && !isMask_32(STDefs))
+ report_fatal_error("Inline asm fixed outputs"
+ " must be last on the x87 stack");
+ unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
+
+ // So must the clobbered stack slots. ST0-STm, m >= n.
+ if (STClobbers && !isMask_32(STDefs | STClobbers))
+ report_fatal_error("Inline asm clobbers must be last on the x87 stack");
+
+ // Popped inputs are the ones that are also clobbered or defined.
+ unsigned STPopped = STUses & (STDefs | STClobbers);
+ if (STPopped && !isMask_32(STPopped))
+ report_fatal_error("Inline asm popped inputs"
+ " must be last on the x87 stack");
+ unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
+
+ DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
+ << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
+
+ // Scan the instruction for FP uses corresponding to "f" constraints.
+ // Collect FP registers to kill afer the instruction.
+ // Always kill all the scratch regs.
+ unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
+ unsigned FPUsed = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
continue;
- assert(Op.isUse() && "Only handle inline asm uses right now");
-
+ if (!Op.isUse())
+ report_fatal_error("Illegal \"f\" output constraint in inline asm");
unsigned FPReg = getFPReg(Op);
- Op.setReg(getSTReg(FPReg));
-
+ FPUsed |= 1U << FPReg;
+
// If we kill this operand, make sure to pop it from the stack after the
// asm. We just remember it for now, and pop them all off at the end in
// a batch.
if (Op.isKill())
- Kills |= 1U << FPReg;
+ FPKills |= 1U << FPReg;
+ }
+
+ // The popped inputs will be killed by the instruction, so duplicate them
+ // if the FP register needs to be live after the instruction, or if it is
+ // used in the instruction itself. We effectively treat the popped inputs
+ // as early clobbers.
+ for (unsigned i = 0; i < NumSTPopped; ++i) {
+ if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
+ continue;
+ unsigned SR = getScratchReg();
+ duplicateToTop(PendingST[i], SR, I);
+ DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+ << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
+ PendingST[i] = SR;
+ }
+
+ // Make sure we have a unique live register for every fixed use. Some of
+ // them could be undef uses, and we need to emit LD_F0 instructions.
+ for (unsigned i = 0; i < NumSTUses; ++i) {
+ if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
+ // Check for shared assignments.
+ for (unsigned j = 0; j < i; ++j) {
+ if (PendingST[j] != PendingST[i])
+ continue;
+ // STi and STj are inn the same register, create a copy.
+ unsigned SR = getScratchReg();
+ duplicateToTop(PendingST[i], SR, I);
+ DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+ << unsigned(PendingST[i])
+ << " to avoid collision with ST" << j << '\n');
+ PendingST[i] = SR;
+ }
+ continue;
+ }
+ unsigned SR = getScratchReg();
+ DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
+ BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
+ pushReg(SR);
+ PendingST[i] = SR;
+ if (NumPendingSTs == i)
+ ++NumPendingSTs;
+ }
+ assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
+
+ // Now we can rearrange the live registers to match what was requested.
+ shuffleStackTop(PendingST, NumPendingSTs, I);
+ DEBUG({dbgs() << "Before asm: "; dumpStack();});
+
+ // With the stack layout fixed, rewrite the FP registers.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
+ continue;
+ unsigned FPReg = getFPReg(Op);
+ Op.setReg(getSTReg(FPReg));
}
+ // Simulate the inline asm popping its inputs and pushing its outputs.
+ StackTop -= NumSTPopped;
+
+ // Hold the fixed output registers in scratch FP registers. They will be
+ // transferred to real FP registers by copies.
+ NumPendingSTs = 0;
+ for (unsigned i = 0; i < NumSTDefs; ++i) {
+ unsigned SR = getScratchReg();
+ pushReg(SR);
+ FPKills &= ~(1u << SR);
+ }
+ for (unsigned i = 0; i < NumSTDefs; ++i)
+ PendingST[NumPendingSTs++] = getStackEntry(i);
+ DEBUG({dbgs() << "After asm: "; dumpStack();});
+
+ // If any of the ST defs were dead, pop them immediately. Our caller only
+ // handles dead FP defs.
+ MachineBasicBlock::iterator InsertPt = MI;
+ for (unsigned i = 0; STDefs & (1u << i); ++i) {
+ if (!(STDeadDefs & (1u << i)))
+ continue;
+ freeStackSlotAfter(InsertPt, PendingST[i]);
+ PendingST[i] = NumFPRegs;
+ }
+ while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+ --NumPendingSTs;
+
// If this asm kills any FP registers (is the last use of them) we must
// explicitly emit pop instructions for them. Do this now after the asm has
// executed so that the ST(x) numbers are not off (which would happen if we
@@ -1392,16 +1601,16 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
//
// Note: this might be a non-optimal pop sequence. We might be able to do
// better by trying to pop in stack order or something.
- MachineBasicBlock::iterator InsertPt = MI;
- while (Kills) {
- unsigned FPReg = CountTrailingZeros_32(Kills);
- freeStackSlotAfter(InsertPt, FPReg);
- Kills &= ~(1U << FPReg);
+ while (FPKills) {
+ unsigned FPReg = CountTrailingZeros_32(FPKills);
+ if (isLive(FPReg))
+ freeStackSlotAfter(InsertPt, FPReg);
+ FPKills &= ~(1U << FPReg);
}
// Don't delete the inline asm!
return;
}
-
+
case X86::RET:
case X86::RETI:
// If RET has an FP register use operand, pass the first one in ST(0) and
@@ -1499,33 +1708,3 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
} else
--I;
}
-
-// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
-bool FPS::translateCopy(MachineInstr *MI) {
- unsigned DstReg = MI->getOperand(0).getReg();
- unsigned SrcReg = MI->getOperand(1).getReg();
-
- if (DstReg == X86::ST0) {
- MI->setDesc(TII->get(X86::FpSET_ST0_80));
- MI->RemoveOperand(0);
- return true;
- }
- if (DstReg == X86::ST1) {
- MI->setDesc(TII->get(X86::FpSET_ST1_80));
- MI->RemoveOperand(0);
- return true;
- }
- if (SrcReg == X86::ST0) {
- MI->setDesc(TII->get(X86::FpGET_ST0_80));
- return true;
- }
- if (SrcReg == X86::ST1) {
- MI->setDesc(TII->get(X86::FpGET_ST1_80));
- return true;
- }
- if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
- MI->setDesc(TII->get(X86::MOV_Fp8080));
- return true;
- }
- return false;
-}
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 0810267..b327f1b 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -1511,20 +1511,15 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// If this is a call to a function that returns an fp value on the floating
// point stack, we must guarantee the the value is popped from the stack, so
// a CopyFromReg is not good enough - the copy instruction may be eliminated
- // if the return value is not used. We use the FpGET_ST0 instructions
+ // if the return value is not used. We use the FpPOP_RETVAL instruction
// instead.
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
// If we prefer to use the value in xmm registers, copy it out as f80 and
// use a truncate to move it from fp stack reg to xmm reg.
if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
- bool isST0 = VA.getLocReg() == X86::ST0;
- unsigned Opc = 0;
- if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
- if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
- if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
SDValue Ops[] = { Chain, InFlag };
- Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
- Ops, 2), 1);
+ Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
+ MVT::Other, MVT::Glue, Ops, 2), 1);
Val = Chain.getValue(0);
// Round the f80 to the right size, which also moves it to the appropriate
diff --git a/lib/Target/X86/X86InstrFPStack.td b/lib/Target/X86/X86InstrFPStack.td
index b506f5e..7cb870f 100644
--- a/lib/Target/X86/X86InstrFPStack.td
+++ b/lib/Target/X86/X86InstrFPStack.td
@@ -112,31 +112,8 @@ let usesCustomInserter = 1 in { // Expanded after instruction selection.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
-// Pseudo Instructions for FP stack return values.
-def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
-def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
-def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
-
-// FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when
-// there are two values live out on the stack from a call or inlineasm. This
-// magic is handled by the stackifier. It is not valid to emit FpGET_ST1* and
-// then FpGET_ST0*. In addition, it is invalid for any FP-using operations to
-// occur between them.
-def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
-def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
-def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
-
-let Defs = [ST0] in {
-def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR
-def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR
-def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR
-}
-
-let Defs = [ST1] in {
-def FpSET_ST1_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(1) = FPR
-def FpSET_ST1_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(1) = FPR
-def FpSET_ST1_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(1) = FPR
-}
+// Pseudo Instruction for FP stack return values.
+def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
@@ -147,19 +124,6 @@ class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
-// Register copies. Just copies, the shortening ones do not truncate.
-let neverHasSideEffects = 1 in {
- def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>;
- def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>;
- def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>;
- def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>;
- def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>;
- def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>;
- def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>;
- def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>;
- def MOV_Fp8080 : FpI_ <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>;
-}
-
// Factoring for arithmetic.
multiclass FPBinary_rr<SDNode OpNode> {
// Register op register -> register
diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp
index 48f60f8..9e4fdad 100644
--- a/lib/Target/X86/X86RegisterInfo.cpp
+++ b/lib/Target/X86/X86RegisterInfo.cpp
@@ -500,18 +500,6 @@ BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
Reserved.set(X86::BPL);
}
- // Mark the x87 stack registers as reserved, since they don't behave normally
- // with respect to liveness. We don't fully model the effects of x87 stack
- // pushes and pops after stackification.
- Reserved.set(X86::ST0);
- Reserved.set(X86::ST1);
- Reserved.set(X86::ST2);
- Reserved.set(X86::ST3);
- Reserved.set(X86::ST4);
- Reserved.set(X86::ST5);
- Reserved.set(X86::ST6);
- Reserved.set(X86::ST7);
-
// Mark the segment registers as reserved.
Reserved.set(X86::CS);
Reserved.set(X86::SS);
diff --git a/lib/Target/X86/X86RegisterInfo.td b/lib/Target/X86/X86RegisterInfo.td
index 14d6d64..203722a 100644
--- a/lib/Target/X86/X86RegisterInfo.td
+++ b/lib/Target/X86/X86RegisterInfo.td
@@ -206,15 +206,22 @@ let Namespace = "X86" in {
def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegAlias<XMM15>;
}
- // Floating point stack registers
- def ST0 : Register<"st(0)">, DwarfRegNum<[33, 12, 11]>;
- def ST1 : Register<"st(1)">, DwarfRegNum<[34, 13, 12]>;
- def ST2 : Register<"st(2)">, DwarfRegNum<[35, 14, 13]>;
- def ST3 : Register<"st(3)">, DwarfRegNum<[36, 15, 14]>;
- def ST4 : Register<"st(4)">, DwarfRegNum<[37, 16, 15]>;
- def ST5 : Register<"st(5)">, DwarfRegNum<[38, 17, 16]>;
- def ST6 : Register<"st(6)">, DwarfRegNum<[39, 18, 17]>;
- def ST7 : Register<"st(7)">, DwarfRegNum<[40, 19, 18]>;
+ class STRegister<string Name, list<Register> A> : Register<Name> {
+ let Aliases = A;
+ }
+
+ // Floating point stack registers. These don't map one-to-one to the FP
+ // pseudo registers, but we still mark them as aliasing FP registers. That
+ // way both kinds can be live without exceeding the stack depth. ST registers
+ // are only live around inline assembly.
+ def ST0 : STRegister<"st(0)", []>, DwarfRegNum<[33, 12, 11]>;
+ def ST1 : STRegister<"st(1)", [FP6]>, DwarfRegNum<[34, 13, 12]>;
+ def ST2 : STRegister<"st(2)", [FP5]>, DwarfRegNum<[35, 14, 13]>;
+ def ST3 : STRegister<"st(3)", [FP4]>, DwarfRegNum<[36, 15, 14]>;
+ def ST4 : STRegister<"st(4)", [FP3]>, DwarfRegNum<[37, 16, 15]>;
+ def ST5 : STRegister<"st(5)", [FP2]>, DwarfRegNum<[38, 17, 16]>;
+ def ST6 : STRegister<"st(6)", [FP1]>, DwarfRegNum<[39, 18, 17]>;
+ def ST7 : STRegister<"st(7)", [FP0]>, DwarfRegNum<[40, 19, 18]>;
// Status flags register
def EFLAGS : Register<"flags">;
diff --git a/test/CodeGen/X86/inline-asm-fpstack.ll b/test/CodeGen/X86/inline-asm-fpstack.ll
index d15f7ff..8e48bbe 100644
--- a/test/CodeGen/X86/inline-asm-fpstack.ll
+++ b/test/CodeGen/X86/inline-asm-fpstack.ll
@@ -106,6 +106,25 @@ return:
ret void
}
+; Passing a non-killed value through asm in {st}.
+; Make sure it is not duped before.
+; Second asm kills st(0), so we shouldn't pop anything
+; CHECK: testPR4185b
+; CHECK-NOT: fld %st(0)
+; CHECK: fistl
+; CHECK-NOT: fstp
+; CHECK: fistpl
+; CHECK-NOT: fstp
+; CHECK: ret
+; A valid alternative would be to remat the constant pool load before each
+; inline asm.
+define void @testPR4185b() {
+return:
+ call void asm sideeffect "fistl $0", "{st}"(double 1.000000e+06)
+ call void asm sideeffect "fistpl $0", "{st},~{st}"(double 1.000000e+06)
+ ret void
+}
+
; PR4459
; The return value from ceil must be duped before being consumed by asm.
; CHECK: testPR4459
@@ -160,3 +179,153 @@ entry:
tail call void asm sideeffect "fistpl $0", "{st},~{st}"(x86_fp80 %5)
ret void
}
+
+; An input argument in a fixed position is implicitly popped by the asm only if
+; the input argument is tied to an output register, or it is in the clobber list.
+; The clobber list case is tested above.
+;
+; This doesn't implicitly pop the stack:
+;
+; void fist1(long double x, int *p) {
+; asm volatile ("fistl %1" : : "t"(x), "m"(*p));
+; }
+;
+; CHECK: fist1
+; CHECK: fldt
+; CHECK: fistl (%e
+; CHECK: fstp
+; CHECK: ret
+define void @fist1(x86_fp80 %x, i32* %p) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fistl $1", "{st},*m,~{memory},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, i32* %p) nounwind
+ ret void
+}
+
+; Here, the input operand is tied to an output which means that is is
+; implicitly popped (and then the output is implicitly pushed).
+;
+; long double fist2(long double x, int *p) {
+; long double y;
+; asm ("fistl %1" : "=&t"(y) : "0"(x), "m"(*p) : "memory");
+; return y;
+; }
+;
+; CHECK: fist2
+; CHECK: fldt
+; CHECK: fistl (%e
+; CHECK-NOT: fstp
+; CHECK: ret
+define x86_fp80 @fist2(x86_fp80 %x, i32* %p) nounwind ssp {
+entry:
+ %0 = tail call x86_fp80 asm "fistl $2", "=&{st},0,*m,~{memory},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, i32* %p) nounwind
+ ret x86_fp80 %0
+}
+
+; An 'f' constraint is never implicitly popped:
+;
+; void fucomp1(long double x, long double y) {
+; asm volatile ("fucomp %1" : : "t"(x), "f"(y) : "st");
+; }
+; CHECK: fucomp1
+; CHECK: fldt
+; CHECK: fldt
+; CHECK: fucomp %st
+; CHECK: fstp
+; CHECK-NOT: fstp
+; CHECK: ret
+define void @fucomp1(x86_fp80 %x, x86_fp80 %y) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fucomp $1", "{st},f,~{st},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, x86_fp80 %y) nounwind
+ ret void
+}
+
+; The 'u' constraint is only popped implicitly when clobbered:
+;
+; void fucomp2(long double x, long double y) {
+; asm volatile ("fucomp %1" : : "t"(x), "u"(y) : "st");
+; }
+;
+; void fucomp3(long double x, long double y) {
+; asm volatile ("fucompp %1" : : "t"(x), "u"(y) : "st", "st(1)");
+; }
+;
+; CHECK: fucomp2
+; CHECK: fldt
+; CHECK: fldt
+; CHECK: fucomp %st(1)
+; CHECK: fstp
+; CHECK-NOT: fstp
+; CHECK: ret
+;
+; CHECK: fucomp3
+; CHECK: fldt
+; CHECK: fldt
+; CHECK: fucompp %st(1)
+; CHECK-NOT: fstp
+; CHECK: ret
+define void @fucomp2(x86_fp80 %x, x86_fp80 %y) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fucomp $1", "{st},{st(1)},~{st},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, x86_fp80 %y) nounwind
+ ret void
+}
+define void @fucomp3(x86_fp80 %x, x86_fp80 %y) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fucompp $1", "{st},{st(1)},~{st},~{st(1)},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, x86_fp80 %y) nounwind
+ ret void
+}
+
+; One input, two outputs, one dead output.
+%complex = type { float, float }
+; CHECK: sincos1
+; CHECK: flds
+; CHECK-NOT: fxch
+; CHECK: sincos
+; CHECK-NOT: fstp
+; CHECK: fstp %st(1)
+; CHECK-NOT: fstp
+; CHECK: ret
+define float @sincos1(float %x) nounwind ssp {
+entry:
+ %0 = tail call %complex asm "sincos", "={st},={st(1)},0,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %asmresult = extractvalue %complex %0, 0
+ ret float %asmresult
+}
+
+; Same thing, swapped output operands.
+; CHECK: sincos2
+; CHECK: flds
+; CHECK-NOT: fxch
+; CHECK: sincos
+; CHECK-NOT: fstp
+; CHECK: fstp %st(1)
+; CHECK-NOT: fstp
+; CHECK: ret
+define float @sincos2(float %x) nounwind ssp {
+entry:
+ %0 = tail call %complex asm "sincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %asmresult = extractvalue %complex %0, 1
+ ret float %asmresult
+}
+
+; Clobber st(0) after it was live-out/dead from the previous asm.
+; CHECK: sincos3
+; Load x, make a copy for the second asm.
+; CHECK: flds
+; CHECK: fld %st(0)
+; CHECK: sincos
+; Discard dead result in st(0), bring x to the top.
+; CHECK: fstp %st(0)
+; CHECK: fxch
+; x is now in st(0) for the second asm
+; CHECK: sincos
+; Discard both results.
+; CHECK: fstp
+; CHECK: fstp
+; CHECK: ret
+define float @sincos3(float %x) nounwind ssp {
+entry:
+ %0 = tail call %complex asm sideeffect "sincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %1 = tail call %complex asm sideeffect "sincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %asmresult = extractvalue %complex %0, 0
+ ret float %asmresult
+}