aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--lib/Target/PowerPC/PPC.h2
-rw-r--r--lib/Target/PowerPC/PPC64ISelPattern.cpp1767
-rw-r--r--lib/Target/PowerPC/PPC64ISelSimple.cpp2946
-rw-r--r--lib/Target/PowerPC/PPCTargetMachine.cpp2
4 files changed, 1769 insertions, 2948 deletions
diff --git a/lib/Target/PowerPC/PPC.h b/lib/Target/PowerPC/PPC.h
index bd1f2ac..ddda03c 100644
--- a/lib/Target/PowerPC/PPC.h
+++ b/lib/Target/PowerPC/PPC.h
@@ -25,7 +25,7 @@ class TargetMachine;
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
FunctionPass *createPPC32ISelPattern(TargetMachine &TM);
-FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
+FunctionPass *createPPC64ISelPattern(TargetMachine &TM);
FunctionPass *createDarwinAsmPrinter(std::ostream &OS, TargetMachine &TM);
FunctionPass *createAIXAsmPrinter(std::ostream &OS, TargetMachine &TM);
diff --git a/lib/Target/PowerPC/PPC64ISelPattern.cpp b/lib/Target/PowerPC/PPC64ISelPattern.cpp
new file mode 100644
index 0000000..210acf5
--- /dev/null
+++ b/lib/Target/PowerPC/PPC64ISelPattern.cpp
@@ -0,0 +1,1767 @@
+//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Nate Begeman and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pattern matching instruction selector for 32 bit PowerPC.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PowerPC.h"
+#include "PowerPCInstrBuilder.h"
+#include "PowerPCInstrInfo.h"
+#include "PPC64RegisterInfo.h"
+#include "llvm/Constants.h" // FIXME: REMOVE
+#include "llvm/Function.h"
+#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include <set>
+#include <algorithm>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// PPC32TargetLowering - PPC32 Implementation of the TargetLowering interface
+namespace {
+ class PPC64TargetLowering : public TargetLowering {
+ int VarArgsFrameIndex; // FrameIndex for start of varargs area.
+ int ReturnAddrIndex; // FrameIndex for return slot.
+ public:
+ PPC64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
+ // Set up the register classes.
+ addRegisterClass(MVT::i64, PPC64::GPRCRegisterClass);
+ addRegisterClass(MVT::f32, PPC64::FPRCRegisterClass);
+ addRegisterClass(MVT::f64, PPC64::FPRCRegisterClass);
+
+ // PowerPC has no intrinsics for these particular operations
+ setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
+ setOperationAction(ISD::MEMSET, MVT::Other, Expand);
+ setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
+
+ // PPC 64 has i16 and i32 but no i8 (or i1) SEXTLOAD
+ setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
+ setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
+
+ setShiftAmountFlavor(Extend); // shl X, 32 == 0
+ addLegalFPImmediate(+0.0); // Necessary for FSEL
+ addLegalFPImmediate(-0.0); //
+
+ computeRegisterProperties();
+ }
+
+ /// LowerArguments - This hook must be implemented to indicate how we should
+ /// lower the arguments for the specified function, into the specified DAG.
+ virtual std::vector<SDOperand>
+ LowerArguments(Function &F, SelectionDAG &DAG);
+
+ /// LowerCallTo - This hook lowers an abstract call to a function into an
+ /// actual call.
+ virtual std::pair<SDOperand, SDOperand>
+ LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
+ SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
+
+ virtual std::pair<SDOperand, SDOperand>
+ LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
+
+ virtual std::pair<SDOperand,SDOperand>
+ LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
+ const Type *ArgTy, SelectionDAG &DAG);
+
+ virtual std::pair<SDOperand, SDOperand>
+ LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
+ SelectionDAG &DAG);
+ };
+}
+
+
+std::vector<SDOperand>
+PPC64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
+ //
+ // add beautiful description of PPC stack frame format, or at least some docs
+ //
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineBasicBlock& BB = MF.front();
+ std::vector<SDOperand> ArgValues;
+
+ // Due to the rather complicated nature of the PowerPC ABI, rather than a
+ // fixed size array of physical args, for the sake of simplicity let the STL
+ // handle tracking them for us.
+ std::vector<unsigned> argVR, argPR, argOp;
+ unsigned ArgOffset = 24;
+ unsigned GPR_remaining = 8;
+ unsigned FPR_remaining = 13;
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ // Add DAG nodes to load the arguments... On entry to a function on PPC,
+ // the arguments start at offset 24, although they are likely to be passed
+ // in registers.
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
+ SDOperand newroot, argt;
+ unsigned ObjSize;
+ bool needsLoad = false;
+ MVT::ValueType ObjectVT = getValueType(I->getType());
+
+ switch (ObjectVT) {
+ default: assert(0 && "Unhandled argument type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ ObjSize = 4;
+ if (GPR_remaining > 0) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ argt = newroot = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32,
+ DAG.getRoot());
+ if (ObjectVT != MVT::i32)
+ argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, newroot);
+ } else {
+ needsLoad = true;
+ }
+ break;
+ case MVT::i64: ObjSize = 8;
+ // FIXME: can split 64b load between reg/mem if it is last arg in regs
+ if (GPR_remaining > 1) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
+ // Copy the extracted halves into the virtual registers
+ SDOperand argHi = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32,
+ DAG.getRoot());
+ SDOperand argLo = DAG.getCopyFromReg(GPR[GPR_idx+1], MVT::i32, argHi);
+ // Build the outgoing arg thingy
+ argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
+ newroot = argLo;
+ } else {
+ needsLoad = true;
+ }
+ break;
+ case MVT::f32: ObjSize = 4;
+ case MVT::f64: ObjSize = 8;
+ if (FPR_remaining > 0) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+ argt = newroot = DAG.getCopyFromReg(FPR[FPR_idx], ObjectVT,
+ DAG.getRoot());
+ --FPR_remaining;
+ ++FPR_idx;
+ } else {
+ needsLoad = true;
+ }
+ break;
+ }
+
+ // We need to load the argument to a virtual register if we determined above
+ // that we ran out of physical registers of the appropriate type
+ if (needsLoad) {
+ unsigned SubregOffset = 0;
+ if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
+ if (ObjectVT == MVT::i16) SubregOffset = 2;
+ int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
+ SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
+ FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
+ DAG.getConstant(SubregOffset, MVT::i32));
+ argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN);
+ }
+
+ // Every 4 bytes of argument space consumes one of the GPRs available for
+ // argument passing.
+ if (GPR_remaining > 0) {
+ unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
+ GPR_remaining -= delta;
+ GPR_idx += delta;
+ }
+ ArgOffset += ObjSize;
+
+ DAG.setRoot(newroot.getValue(1));
+ ArgValues.push_back(argt);
+ }
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (F.isVarArg()) {
+ VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
+ SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing the
+ // result of va_next.
+ std::vector<SDOperand> MemOps;
+ for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
+ BuildMI(&BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ SDOperand Val = DAG.getCopyFromReg(GPR[GPR_idx], MVT::i32, DAG.getRoot());
+ SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
+ Val, FIN);
+ MemOps.push_back(Store);
+ // Increment the address by four for the next argument to store
+ SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
+ FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
+ }
+ DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
+ }
+
+ return ArgValues;
+}
+
+std::pair<SDOperand, SDOperand>
+PPC64TargetLowering::LowerCallTo(SDOperand Chain,
+ const Type *RetTy, bool isVarArg,
+ SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG) {
+ // args_to_use will accumulate outgoing args for the ISD::CALL case in
+ // SelectExpr to use to put the arguments in the appropriate registers.
+ std::vector<SDOperand> args_to_use;
+
+ // Count how many bytes are to be pushed on the stack, including the linkage
+ // area, and parameter passing area.
+ unsigned NumBytes = 24;
+
+ if (Args.empty()) {
+ Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, getPointerTy()));
+ } else {
+ for (unsigned i = 0, e = Args.size(); i != e; ++i)
+ switch (getValueType(Args[i].second)) {
+ default: assert(0 && "Unknown value type!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::f32:
+ NumBytes += 4;
+ break;
+ case MVT::i64:
+ case MVT::f64:
+ NumBytes += 8;
+ break;
+ }
+
+ // Just to be safe, we'll always reserve the full 24 bytes of linkage area
+ // plus 32 bytes of argument space in case any called code gets funky on us.
+ if (NumBytes < 56) NumBytes = 56;
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getNode(ISD::ADJCALLSTACKDOWN, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, getPointerTy()));
+
+ // Set up a copy of the stack pointer for use loading and storing any
+ // arguments that may not fit in the registers available for argument
+ // passing.
+ SDOperand StackPtr = DAG.getCopyFromReg(PPC::R1, MVT::i32,
+ DAG.getEntryNode());
+
+ // Figure out which arguments are going to go in registers, and which in
+ // memory. Also, if this is a vararg function, floating point operations
+ // must be stored to our stack, and loaded into integer regs as well, if
+ // any integer regs are available for argument passing.
+ unsigned ArgOffset = 24;
+ unsigned GPR_remaining = 8;
+ unsigned FPR_remaining = 13;
+
+ std::vector<SDOperand> MemOps;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ // PtrOff will be used to store the current argument to the stack if a
+ // register cannot be found for it.
+ SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
+ MVT::ValueType ArgVT = getValueType(Args[i].second);
+
+ switch (ArgVT) {
+ default: assert(0 && "Unexpected ValueType for argument!");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ // Promote the integer to 32 bits. If the input type is signed use a
+ // sign extend, otherwise use a zero extend.
+ if (Args[i].second->isSigned())
+ Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
+ else
+ Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
+ // FALL THROUGH
+ case MVT::i32:
+ if (GPR_remaining > 0) {
+ args_to_use.push_back(Args[i].first);
+ --GPR_remaining;
+ } else {
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff));
+ }
+ ArgOffset += 4;
+ break;
+ case MVT::i64:
+ // If we have one free GPR left, we can place the upper half of the i64
+ // in it, and store the other half to the stack. If we have two or more
+ // free GPRs, then we can pass both halves of the i64 in registers.
+ if (GPR_remaining > 0) {
+ SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
+ Args[i].first, DAG.getConstant(1, MVT::i32));
+ SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
+ Args[i].first, DAG.getConstant(0, MVT::i32));
+ args_to_use.push_back(Hi);
+ --GPR_remaining;
+ if (GPR_remaining > 0) {
+ args_to_use.push_back(Lo);
+ --GPR_remaining;
+ } else {
+ SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Lo, PtrOff));
+ }
+ } else {
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff));
+ }
+ ArgOffset += 8;
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ if (FPR_remaining > 0) {
+ args_to_use.push_back(Args[i].first);
+ --FPR_remaining;
+ if (isVarArg) {
+ SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff);
+ MemOps.push_back(Store);
+ // Float varargs are always shadowed in available integer registers
+ if (GPR_remaining > 0) {
+ SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff);
+ MemOps.push_back(Load);
+ args_to_use.push_back(Load);
+ --GPR_remaining;
+ }
+ if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
+ SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
+ PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
+ SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff);
+ MemOps.push_back(Load);
+ args_to_use.push_back(Load);
+ --GPR_remaining;
+ }
+ } else {
+ // If we have any FPRs remaining, we may also have GPRs remaining.
+ // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
+ // GPRs.
+ if (GPR_remaining > 0) {
+ args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
+ --GPR_remaining;
+ }
+ if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
+ args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
+ --GPR_remaining;
+ }
+ }
+ } else {
+ MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
+ Args[i].first, PtrOff));
+ }
+ ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
+ break;
+ }
+ }
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
+ }
+
+ std::vector<MVT::ValueType> RetVals;
+ MVT::ValueType RetTyVT = getValueType(RetTy);
+ if (RetTyVT != MVT::isVoid)
+ RetVals.push_back(RetTyVT);
+ RetVals.push_back(MVT::Other);
+
+ SDOperand TheCall = SDOperand(DAG.getCall(RetVals,
+ Chain, Callee, args_to_use), 0);
+ Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
+ Chain = DAG.getNode(ISD::ADJCALLSTACKUP, MVT::Other, Chain,
+ DAG.getConstant(NumBytes, getPointerTy()));
+ return std::make_pair(TheCall, Chain);
+}
+
+std::pair<SDOperand, SDOperand>
+PPC64TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
+ //vastart just returns the address of the VarArgsFrameIndex slot.
+ return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain);
+}
+
+std::pair<SDOperand,SDOperand> PPC64TargetLowering::
+LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
+ const Type *ArgTy, SelectionDAG &DAG) {
+ MVT::ValueType ArgVT = getValueType(ArgTy);
+ SDOperand Result;
+ if (!isVANext) {
+ Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList);
+ } else {
+ unsigned Amt;
+ if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
+ Amt = 4;
+ else {
+ assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
+ "Other types should have been promoted for varargs!");
+ Amt = 8;
+ }
+ Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
+ DAG.getConstant(Amt, VAList.getValueType()));
+ }
+ return std::make_pair(Result, Chain);
+}
+
+
+std::pair<SDOperand, SDOperand> PPC64TargetLowering::
+LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
+ SelectionDAG &DAG) {
+ assert(0 && "LowerFrameReturnAddress unimplemented");
+ abort();
+}
+
+namespace {
+Statistic<>NotLogic("ppc-codegen", "Number of inverted logical ops");
+Statistic<>FusedFP("ppc-codegen", "Number of fused fp operations");
+//===--------------------------------------------------------------------===//
+/// ISel - PPC32 specific code to select PPC32 machine instructions for
+/// SelectionDAG operations.
+//===--------------------------------------------------------------------===//
+class ISel : public SelectionDAGISel {
+
+ /// Comment Here.
+ PPC64TargetLowering PPC64Lowering;
+
+ /// ExprMap - As shared expressions are codegen'd, we keep track of which
+ /// vreg the value is produced in, so we only emit one copy of each compiled
+ /// tree.
+ std::map<SDOperand, unsigned> ExprMap;
+
+ unsigned GlobalBaseReg;
+ bool GlobalBaseInitialized;
+
+public:
+ ISel(TargetMachine &TM) : SelectionDAGISel(PPC64Lowering), PPC64Lowering(TM)
+ {}
+
+ /// runOnFunction - Override this function in order to reset our per-function
+ /// variables.
+ virtual bool runOnFunction(Function &Fn) {
+ // Make sure we re-emit a set of the global base reg if necessary
+ GlobalBaseInitialized = false;
+ return SelectionDAGISel::runOnFunction(Fn);
+ }
+
+ /// InstructionSelectBasicBlock - This callback is invoked by
+ /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
+ virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
+ DEBUG(BB->dump());
+ // Codegen the basic block.
+ Select(DAG.getRoot());
+
+ // Clear state used for selection.
+ ExprMap.clear();
+ }
+
+ unsigned getGlobalBaseReg();
+ unsigned getConstDouble(double floatVal, unsigned Result);
+ unsigned SelectSetCR0(SDOperand CC);
+ unsigned SelectExpr(SDOperand N);
+ unsigned SelectExprFP(SDOperand N, unsigned Result);
+ void Select(SDOperand N);
+
+ bool SelectAddr(SDOperand N, unsigned& Reg, int& offset);
+ void SelectBranchCC(SDOperand N);
+};
+
+/// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
+/// returns zero when the input is not exactly a power of two.
+static unsigned ExactLog2(unsigned Val) {
+ if (Val == 0 || (Val & (Val-1))) return 0;
+ unsigned Count = 0;
+ while (Val != 1) {
+ Val >>= 1;
+ ++Count;
+ }
+ return Count;
+}
+
+/// getImmediateForOpcode - This method returns a value indicating whether
+/// the ConstantSDNode N can be used as an immediate to Opcode. The return
+/// values are either 0, 1 or 2. 0 indicates that either N is not a
+/// ConstantSDNode, or is not suitable for use by that opcode. A return value
+/// of 1 indicates that the constant may be used in normal immediate form. A
+/// return value of 2 indicates that the constant may be used in shifted
+/// immediate form. A return value of 3 indicates that log base 2 of the
+/// constant may be used.
+///
+static unsigned getImmediateForOpcode(SDOperand N, unsigned Opcode,
+ unsigned& Imm, bool U = false) {
+ if (N.getOpcode() != ISD::Constant) return 0;
+
+ int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
+
+ switch(Opcode) {
+ default: return 0;
+ case ISD::ADD:
+ if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
+ if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
+ break;
+ case ISD::AND:
+ case ISD::XOR:
+ case ISD::OR:
+ if (v >= 0 && v <= 65535) { Imm = v & 0xFFFF; return 1; }
+ if ((v & 0x0000FFFF) == 0) { Imm = v >> 16; return 2; }
+ break;
+ case ISD::MUL:
+ case ISD::SUB:
+ if (v <= 32767 && v >= -32768) { Imm = v & 0xFFFF; return 1; }
+ break;
+ case ISD::SETCC:
+ if (U && (v >= 0 && v <= 65535)) { Imm = v & 0xFFFF; return 1; }
+ if (!U && (v <= 32767 && v >= -32768)) { Imm = v & 0xFFFF; return 1; }
+ break;
+ case ISD::SDIV:
+ if ((Imm = ExactLog2(v))) { return 3; }
+ break;
+ }
+ return 0;
+}
+
+/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
+/// to Condition. If the Condition is unordered or unsigned, the bool argument
+/// U is set to true, otherwise it is set to false.
+static unsigned getBCCForSetCC(unsigned Condition, bool& U) {
+ U = false;
+ switch (Condition) {
+ default: assert(0 && "Unknown condition!"); abort();
+ case ISD::SETEQ: return PPC::BEQ;
+ case ISD::SETNE: return PPC::BNE;
+ case ISD::SETULT: U = true;
+ case ISD::SETLT: return PPC::BLT;
+ case ISD::SETULE: U = true;
+ case ISD::SETLE: return PPC::BLE;
+ case ISD::SETUGT: U = true;
+ case ISD::SETGT: return PPC::BGT;
+ case ISD::SETUGE: U = true;
+ case ISD::SETGE: return PPC::BGE;
+ }
+ return 0;
+}
+
+/// IndexedOpForOp - Return the indexed variant for each of the PowerPC load
+/// and store immediate instructions.
+static unsigned IndexedOpForOp(unsigned Opcode) {
+ switch(Opcode) {
+ default: assert(0 && "Unknown opcode!"); abort();
+ case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX;
+ case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX;
+ case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX;
+ case PPC::LWZ: return PPC::LWZX; case PPC::STD: return PPC::STDX;
+ case PPC::LD: return PPC::LDX; case PPC::STFS: return PPC::STFSX;
+ case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX;
+ case PPC::LFD: return PPC::LFDX;
+ }
+ return 0;
+}
+}
+
+/// getGlobalBaseReg - Output the instructions required to put the
+/// base address to use for accessing globals into a register.
+///
+unsigned ISel::getGlobalBaseReg() {
+ if (!GlobalBaseInitialized) {
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = BB->getParent()->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ GlobalBaseReg = MakeReg(MVT::i64);
+ BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
+ BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR);
+ GlobalBaseInitialized = true;
+ }
+ return GlobalBaseReg;
+}
+
+/// getConstDouble - Loads a floating point value into a register, via the
+/// Constant Pool. Optionally takes a register in which to load the value.
+unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) {
+ unsigned Tmp1 = MakeReg(MVT::i32);
+ if (0 == Result) Result = MakeReg(MVT::f64);
+ MachineConstantPool *CP = BB->getParent()->getConstantPool();
+ ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal);
+ unsigned CPI = CP->getConstantPoolIndex(CFP);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(CPI);
+ BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
+ return Result;
+}
+
+unsigned ISel::SelectSetCR0(SDOperand CC) {
+ unsigned Opc, Tmp1, Tmp2;
+ static const unsigned CompareOpcodes[] =
+ { PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW };
+
+ // If the first operand to the select is a SETCC node, then we can fold it
+ // into the branch that selects which value to return.
+ SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(CC.Val);
+ if (SetCC && CC.getOpcode() == ISD::SETCC) {
+ bool U;
+ Opc = getBCCForSetCC(SetCC->getCondition(), U);
+ Tmp1 = SelectExpr(SetCC->getOperand(0));
+
+ // Pass the optional argument U to getImmediateForOpcode for SETCC,
+ // so that it knows whether the SETCC immediate range is signed or not.
+ if (1 == getImmediateForOpcode(SetCC->getOperand(1), ISD::SETCC,
+ Tmp2, U)) {
+ if (U)
+ BuildMI(BB, PPC::CMPLWI, 2, PPC::CR0).addReg(Tmp1).addImm(Tmp2);
+ else
+ BuildMI(BB, PPC::CMPWI, 2, PPC::CR0).addReg(Tmp1).addSImm(Tmp2);
+ } else {
+ bool IsInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
+ unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U];
+ Tmp2 = SelectExpr(SetCC->getOperand(1));
+ BuildMI(BB, CompareOpc, 2, PPC::CR0).addReg(Tmp1).addReg(Tmp2);
+ }
+ } else {
+ Tmp1 = SelectExpr(CC);
+ BuildMI(BB, PPC::CMPLWI, 2, PPC::CR0).addReg(Tmp1).addImm(0);
+ Opc = PPC::BNE;
+ }
+ return Opc;
+}
+
+/// Check to see if the load is a constant offset from a base register
+bool ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset)
+{
+ unsigned imm = 0, opcode = N.getOpcode();
+ if (N.getOpcode() == ISD::ADD) {
+ Reg = SelectExpr(N.getOperand(0));
+ if (1 == getImmediateForOpcode(N.getOperand(1), opcode, imm)) {
+ offset = imm;
+ return false;
+ }
+ offset = SelectExpr(N.getOperand(1));
+ return true;
+ }
+ Reg = SelectExpr(N);
+ offset = 0;
+ return false;
+}
+
+void ISel::SelectBranchCC(SDOperand N)
+{
+ assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
+ MachineBasicBlock *Dest =
+ cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
+
+ // Get the MBB we will fall through to so that we can hand it off to the
+ // branch selection pass as an argument to the PPC::COND_BRANCH pseudo op.
+ //ilist<MachineBasicBlock>::iterator It = BB;
+ //MachineBasicBlock *Fallthrough = ++It;
+
+ Select(N.getOperand(0)); //chain
+ unsigned Opc = SelectSetCR0(N.getOperand(1));
+ // FIXME: Use this once we have something approximating two-way branches
+ // We cannot currently use this in case the ISel hands us something like
+ // BRcc MBBx
+ // BR MBBy
+ // since the fallthrough basic block for the conditional branch does not start
+ // with the unconditional branch (it is skipped over).
+ //BuildMI(BB, PPC::COND_BRANCH, 4).addReg(PPC::CR0).addImm(Opc)
+ // .addMBB(Dest).addMBB(Fallthrough);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(Dest);
+ return;
+}
+
+unsigned ISel::SelectExprFP(SDOperand N, unsigned Result)
+{
+ unsigned Tmp1, Tmp2, Tmp3;
+ unsigned Opc = 0;
+ SDNode *Node = N.Val;
+ MVT::ValueType DestType = N.getValueType();
+ unsigned opcode = N.getOpcode();
+
+ switch (opcode) {
+ default:
+ Node->dump();
+ assert(0 && "Node not handled!\n");
+
+ case ISD::SELECT: {
+ // Attempt to generate FSEL. We can do this whenever we have an FP result,
+ // and an FP comparison in the SetCC node.
+ SetCCSDNode* SetCC = dyn_cast<SetCCSDNode>(N.getOperand(0).Val);
+ if (SetCC && N.getOperand(0).getOpcode() == ISD::SETCC &&
+ !MVT::isInteger(SetCC->getOperand(0).getValueType()) &&
+ SetCC->getCondition() != ISD::SETEQ &&
+ SetCC->getCondition() != ISD::SETNE) {
+ MVT::ValueType VT = SetCC->getOperand(0).getValueType();
+ Tmp1 = SelectExpr(SetCC->getOperand(0)); // Val to compare against
+ unsigned TV = SelectExpr(N.getOperand(1)); // Use if TRUE
+ unsigned FV = SelectExpr(N.getOperand(2)); // Use if FALSE
+
+ ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1));
+ if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) {
+ switch(SetCC->getCondition()) {
+ default: assert(0 && "Invalid FSEL condition"); abort();
+ case ISD::SETULT:
+ case ISD::SETLT:
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(FV).addReg(TV);
+ return Result;
+ case ISD::SETUGE:
+ case ISD::SETGE:
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV);
+ return Result;
+ case ISD::SETUGT:
+ case ISD::SETGT: {
+ Tmp2 = MakeReg(VT);
+ BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(FV).addReg(TV);
+ return Result;
+ }
+ case ISD::SETULE:
+ case ISD::SETLE: {
+ Tmp2 = MakeReg(VT);
+ BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV);
+ return Result;
+ }
+ }
+ } else {
+ Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS;
+ Tmp2 = SelectExpr(SetCC->getOperand(1));
+ Tmp3 = MakeReg(VT);
+ switch(SetCC->getCondition()) {
+ default: assert(0 && "Invalid FSEL condition"); abort();
+ case ISD::SETULT:
+ case ISD::SETLT:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
+ return Result;
+ case ISD::SETUGE:
+ case ISD::SETGE:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
+ return Result;
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV);
+ return Result;
+ case ISD::SETULE:
+ case ISD::SETLE:
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV);
+ return Result;
+ }
+ }
+ assert(0 && "Should never get here");
+ return 0;
+ }
+
+ unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
+ unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
+ Opc = SelectSetCR0(N.getOperand(0));
+
+ // Create an iterator with which to insert the MBB for copying the false
+ // value and the MBB to hold the PHI instruction for this SetCC.
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY cr0, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
+ return Result;
+ }
+
+ case ISD::FNEG:
+ if (!NoExcessFPPrecision &&
+ ISD::ADD == N.getOperand(0).getOpcode() &&
+ N.getOperand(0).Val->hasOneUse() &&
+ ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
+ N.getOperand(0).getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ } else if (!NoExcessFPPrecision &&
+ ISD::SUB == N.getOperand(0).getOpcode() &&
+ N.getOperand(0).Val->hasOneUse() &&
+ ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() &&
+ N.getOperand(0).getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(0).getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ } else if (ISD::FABS == N.getOperand(0).getOpcode()) {
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1);
+ } else {
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1);
+ }
+ return Result;
+
+ case ISD::FABS:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::FP_ROUND:
+ assert (DestType == MVT::f32 &&
+ N.getOperand(0).getValueType() == MVT::f64 &&
+ "only f64 to f32 conversion supported here");
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::FP_EXTEND:
+ assert (DestType == MVT::f64 &&
+ N.getOperand(0).getValueType() == MVT::f32 &&
+ "only f32 to f64 conversion supported here");
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::CopyFromReg:
+ if (Result == 1)
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+ Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
+ BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1);
+ return Result;
+
+ case ISD::ConstantFP: {
+ ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
+ Result = getConstDouble(CN->getValue(), Result);
+ return Result;
+ }
+
+ case ISD::ADD:
+ if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
+ N.getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ return Result;
+ }
+ Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS;
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::SUB:
+ if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL &&
+ N.getOperand(0).Val->hasOneUse()) {
+ ++FusedFP; // Statistic
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ Tmp3 = SelectExpr(N.getOperand(1));
+ Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS;
+ BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
+ return Result;
+ }
+ Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS;
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::MUL:
+ case ISD::SDIV:
+ switch( opcode ) {
+ case ISD::MUL: Opc = DestType == MVT::f64 ? PPC::FMUL : PPC::FMULS; break;
+ case ISD::SDIV: Opc = DestType == MVT::f64 ? PPC::FDIV : PPC::FDIVS; break;
+ };
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP: {
+ bool IsUnsigned = (ISD::UINT_TO_FP == opcode);
+ Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register
+ Tmp2 = MakeReg(MVT::f64); // temp reg to load the integer value into
+ Tmp3 = MakeReg(MVT::i64); // temp reg to hold the conversion constant
+ unsigned ConstF = MakeReg(MVT::f64); // temp reg to hold the fp constant
+
+ int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
+ MachineConstantPool *CP = BB->getParent()->getConstantPool();
+
+ // FIXME: pull this FP constant generation stuff out into something like
+ // the simple ISel's getReg.
+ if (IsUnsigned) {
+ addFrameReference(BuildMI(BB, PPC::STD, 3).addReg(Tmp1), FrameIdx);
+ addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
+ BuildMI(BB, PPC::FCFID, 1, Result).addReg(Tmp2);
+ } else {
+ ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, 0x1.000008p52);
+ unsigned CPI = CP->getConstantPoolIndex(CFP);
+ // Load constant fp value
+ unsigned Tmp4 = MakeReg(MVT::i32);
+ unsigned TmpL = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp4).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(CPI);
+ BuildMI(BB, PPC::LFD, 2, ConstF).addConstantPoolIndex(CPI).addReg(Tmp4);
+ // Store the hi & low halves of the fp value, currently in int regs
+ BuildMI(BB, PPC::LIS, 1, Tmp3).addSImm(0x4330);
+ addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(Tmp3), FrameIdx);
+ BuildMI(BB, PPC::XORIS, 2, TmpL).addReg(Tmp1).addImm(0x8000);
+ addFrameReference(BuildMI(BB, PPC::STW, 3).addReg(TmpL), FrameIdx, 4);
+ addFrameReference(BuildMI(BB, PPC::LFD, 2, Tmp2), FrameIdx);
+ // Generate the return value with a subtract
+ BuildMI(BB, PPC::FSUB, 2, Result).addReg(Tmp2).addReg(ConstF);
+ }
+ return Result;
+ }
+ }
+ assert(0 && "Should never get here");
+ return 0;
+}
+
+unsigned ISel::SelectExpr(SDOperand N) {
+ unsigned Result;
+ unsigned Tmp1, Tmp2, Tmp3;
+ unsigned Opc = 0;
+ unsigned opcode = N.getOpcode();
+
+ SDNode *Node = N.Val;
+ MVT::ValueType DestType = N.getValueType();
+
+ unsigned &Reg = ExprMap[N];
+ if (Reg) return Reg;
+
+ switch (N.getOpcode()) {
+ default:
+ Reg = Result = (N.getValueType() != MVT::Other) ?
+ MakeReg(N.getValueType()) : 1;
+ break;
+ case ISD::CALL:
+ // If this is a call instruction, make sure to prepare ALL of the result
+ // values as well as the chain.
+ if (Node->getNumValues() == 1)
+ Reg = Result = 1; // Void call, just a chain.
+ else {
+ Result = MakeReg(Node->getValueType(0));
+ ExprMap[N.getValue(0)] = Result;
+ for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
+ ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
+ ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
+ }
+ break;
+ }
+
+ if (ISD::CopyFromReg == opcode)
+ DestType = N.getValue(0).getValueType();
+
+ if (DestType == MVT::f64 || DestType == MVT::f32)
+ if (ISD::LOAD != opcode && ISD::EXTLOAD != opcode && ISD::UNDEF != opcode)
+ return SelectExprFP(N, Result);
+
+ switch (opcode) {
+ default:
+ Node->dump();
+ assert(0 && "Node not handled!\n");
+ case ISD::UNDEF:
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result);
+ return Result;
+ case ISD::DYNAMIC_STACKALLOC:
+ // Generate both result values. FIXME: Need a better commment here?
+ if (Result != 1)
+ ExprMap[N.getValue(1)] = 1;
+ else
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+
+ // FIXME: We are currently ignoring the requested alignment for handling
+ // greater than the stack alignment. This will need to be revisited at some
+ // point. Align = N.getOperand(2);
+ if (!isa<ConstantSDNode>(N.getOperand(2)) ||
+ cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
+ std::cerr << "Cannot allocate stack object with greater alignment than"
+ << " the stack alignment yet!";
+ abort();
+ }
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ // Subtract size from stack pointer, thereby allocating some space.
+ BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1);
+ // Put a pointer to the space into the result register by copying the SP
+ BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1);
+ return Result;
+
+ case ISD::ConstantPool:
+ Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
+ Tmp2 = MakeReg(MVT::i64);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp2).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(Tmp1);
+ BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1);
+ return Result;
+
+ case ISD::FrameIndex:
+ Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
+ addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false);
+ return Result;
+
+ case ISD::GlobalAddress: {
+ GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
+ Tmp1 = MakeReg(MVT::i64);
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
+ .addGlobalAddress(GV);
+ if (GV->hasWeakLinkage() || GV->isExternal()) {
+ BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1);
+ } else {
+ BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV);
+ }
+ return Result;
+ }
+
+ case ISD::LOAD:
+ case ISD::EXTLOAD:
+ case ISD::ZEXTLOAD:
+ case ISD::SEXTLOAD: {
+ MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ?
+ Node->getValueType(0) : cast<MVTSDNode>(Node)->getExtraValueType();
+ bool sext = (ISD::SEXTLOAD == opcode);
+ bool byte = (MVT::i8 == TypeBeingLoaded);
+
+ // Make sure we generate both values.
+ if (Result != 1)
+ ExprMap[N.getValue(1)] = 1; // Generate the token
+ else
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+
+ SDOperand Chain = N.getOperand(0);
+ SDOperand Address = N.getOperand(1);
+ Select(Chain);
+
+ switch (TypeBeingLoaded) {
+ default: Node->dump(); assert(0 && "Cannot load this type!");
+ case MVT::i1: Opc = PPC::LBZ; break;
+ case MVT::i8: Opc = PPC::LBZ; break;
+ case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break;
+ case MVT::i32: Opc = sext ? PPC::LWA : PPC::LWZ; break;
+ case MVT::i64: Opc = PPC::LD; break;
+ case MVT::f32: Opc = PPC::LFS; break;
+ case MVT::f64: Opc = PPC::LFD; break;
+ }
+
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
+ Tmp1 = MakeReg(MVT::i64);
+ int CPI = CP->getIndex();
+ BuildMI(BB, PPC::LOADHiAddr, 2, Tmp1).addReg(getGlobalBaseReg())
+ .addConstantPoolIndex(CPI);
+ BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1);
+ }
+ else if(Address.getOpcode() == ISD::FrameIndex) {
+ Tmp1 = cast<FrameIndexSDNode>(Address)->getIndex();
+ addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1);
+ } else {
+ int offset;
+ bool idx = SelectAddr(Address, Tmp1, offset);
+ if (idx) {
+ Opc = IndexedOpForOp(Opc);
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset);
+ } else {
+ BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1);
+ }
+ }
+ return Result;
+ }
+
+ case ISD::CALL: {
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ // Lower the chain for this call.
+ Select(N.getOperand(0));
+ ExprMap[N.getValue(Node->getNumValues()-1)] = 1;
+
+ MachineInstr *CallMI;
+ // Emit the correct call instruction based on the type of symbol called.
+ if (GlobalAddressSDNode *GASD =
+ dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
+ CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(),
+ true);
+ } else if (ExternalSymbolSDNode *ESSDN =
+ dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
+ CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(),
+ true);
+ } else {
+ Tmp1 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1);
+ BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12);
+ CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0)
+ .addReg(PPC::R12);
+ }
+
+ // Load the register args to virtual regs
+ std::vector<unsigned> ArgVR;
+ for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
+ ArgVR.push_back(SelectExpr(N.getOperand(i)));
+
+ // Copy the virtual registers into the appropriate argument register
+ for(int i = 0, e = ArgVR.size(); i < e; ++i) {
+ switch(N.getOperand(i+2).getValueType()) {
+ default: Node->dump(); assert(0 && "Unknown value type for call");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ assert(GPR_idx < 8 && "Too many int args");
+ if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) {
+ BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]);
+ CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
+ }
+ ++GPR_idx;
+ break;
+ case MVT::f64:
+ case MVT::f32:
+ assert(FPR_idx < 13 && "Too many fp args");
+ BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]);
+ CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
+ ++FPR_idx;
+ break;
+ }
+ }
+
+ // Put the call instruction in the correct place in the MachineBasicBlock
+ BB->push_back(CallMI);
+
+ switch (Node->getValueType(0)) {
+ default: assert(0 && "Unknown value type for call result!");
+ case MVT::Other: return 1;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3);
+ break;
+ case MVT::f32:
+ case MVT::f64:
+ BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1);
+ break;
+ }
+ return Result+N.ResNo;
+ }
+
+ case ISD::SIGN_EXTEND:
+ case ISD::SIGN_EXTEND_INREG:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
+ default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break;
+ case MVT::i32:
+ BuildMI(BB, PPC::EXTSW, 1, Result).addReg(Tmp1);
+ break;
+ case MVT::i16:
+ BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1);
+ break;
+ case MVT::i8:
+ BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1);
+ break;
+ case MVT::i1:
+ BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0);
+ break;
+ }
+ return Result;
+
+ case ISD::ZERO_EXTEND_INREG:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
+ default: Node->dump(); assert(0 && "Unhandled ZERO_EXTEND type"); break;
+ case MVT::i16: Tmp2 = 16; break;
+ case MVT::i8: Tmp2 = 24; break;
+ case MVT::i1: Tmp2 = 31; break;
+ }
+ BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(0).addImm(Tmp2)
+ .addImm(31);
+ return Result;
+
+ case ISD::CopyFromReg:
+ if (Result == 1)
+ Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
+ Tmp1 = dyn_cast<RegSDNode>(Node)->getReg();
+ BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1);
+ return Result;
+
+ case ISD::SHL:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ Tmp2 = CN->getValue() & 0x1F;
+ BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0)
+ .addImm(31-Tmp2);
+ } else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::SRL:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ Tmp2 = CN->getValue() & 0x1F;
+ BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(32-Tmp2)
+ .addImm(Tmp2).addImm(31);
+ } else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::SRA:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ Tmp2 = CN->getValue() & 0x1F;
+ BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ } else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::ADD:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
+ default: assert(0 && "unhandled result code");
+ case 0: // No immediate
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case 1: // Low immediate
+ BuildMI(BB, PPC::ADDI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
+ break;
+ case 2: // Shifted immediate
+ BuildMI(BB, PPC::ADDIS, 2, Result).addReg(Tmp1).addSImm(Tmp2);
+ break;
+ }
+ return Result;
+
+ case ISD::AND:
+ case ISD::OR:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
+ default: assert(0 && "unhandled result code");
+ case 0: // No immediate
+ Tmp2 = SelectExpr(N.getOperand(1));
+ switch (opcode) {
+ case ISD::AND: Opc = PPC::AND; break;
+ case ISD::OR: Opc = PPC::OR; break;
+ }
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case 1: // Low immediate
+ switch (opcode) {
+ case ISD::AND: Opc = PPC::ANDIo; break;
+ case ISD::OR: Opc = PPC::ORI; break;
+ }
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ case 2: // Shifted immediate
+ switch (opcode) {
+ case ISD::AND: Opc = PPC::ANDISo; break;
+ case ISD::OR: Opc = PPC::ORIS; break;
+ }
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ }
+ return Result;
+
+ case ISD::XOR: {
+ // Check for EQV: xor, (xor a, -1), b
+ if (N.getOperand(0).getOpcode() == ISD::XOR &&
+ N.getOperand(0).getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(N.getOperand(0).getOperand(1))->isAllOnesValue()) {
+ ++NotLogic;
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+ }
+ // Check for NOT, NOR, and NAND: xor (copy, or, and), -1
+ if (N.getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(N.getOperand(1))->isAllOnesValue()) {
+ ++NotLogic;
+ switch(N.getOperand(0).getOpcode()) {
+ case ISD::OR:
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case ISD::AND:
+ Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
+ BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ default:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1);
+ break;
+ }
+ return Result;
+ }
+ Tmp1 = SelectExpr(N.getOperand(0));
+ switch(getImmediateForOpcode(N.getOperand(1), opcode, Tmp2)) {
+ default: assert(0 && "unhandled result code");
+ case 0: // No immediate
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ break;
+ case 1: // Low immediate
+ BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ case 2: // Shifted immediate
+ BuildMI(BB, PPC::XORIS, 2, Result).addReg(Tmp1).addImm(Tmp2);
+ break;
+ }
+ return Result;
+ }
+
+ case ISD::SUB:
+ Tmp2 = SelectExpr(N.getOperand(1));
+ if (1 == getImmediateForOpcode(N.getOperand(0), opcode, Tmp1))
+ BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1);
+ else {
+ Tmp1 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1);
+ }
+ return Result;
+
+ case ISD::MUL:
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (1 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp2))
+ BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2);
+ else {
+ Tmp2 = SelectExpr(N.getOperand(1));
+ BuildMI(BB, PPC::MULLD, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ }
+ return Result;
+
+ case ISD::SDIV:
+ case ISD::UDIV:
+ if (3 == getImmediateForOpcode(N.getOperand(1), opcode, Tmp3)) {
+ Tmp1 = MakeReg(MVT::i64);
+ Tmp2 = SelectExpr(N.getOperand(0));
+ BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3);
+ BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1);
+ return Result;
+ }
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW;
+ BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
+ return Result;
+
+ case ISD::UREM:
+ case ISD::SREM: {
+ Tmp1 = SelectExpr(N.getOperand(0));
+ Tmp2 = SelectExpr(N.getOperand(1));
+ Tmp3 = MakeReg(MVT::i64);
+ unsigned Tmp4 = MakeReg(MVT::i64);
+ Opc = (ISD::UREM == opcode) ? PPC::DIVDU : PPC::DIVD;
+ BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(BB, PPC::MULLD, 2, Tmp4).addReg(Tmp3).addReg(Tmp2);
+ BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp4).addReg(Tmp1);
+ return Result;
+ }
+
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT: {
+ bool U = (ISD::FP_TO_UINT == opcode);
+ Tmp1 = SelectExpr(N.getOperand(0));
+ if (!U) {
+ Tmp2 = MakeReg(MVT::f64);
+ BuildMI(BB, PPC::FCTIWZ, 1, Tmp2).addReg(Tmp1);
+ int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8);
+ addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx);
+ addFrameReference(BuildMI(BB, PPC::LWZ, 2, Result), FrameIdx, 4);
+ return Result;
+ } else {
+ unsigned Zero = getConstDouble(0.0);
+ unsigned MaxInt = getConstDouble((1LL << 32) - 1);
+ unsigned Border = getConstDouble(1LL << 31);
+ unsigned UseZero = MakeReg(MVT::f64);
+ unsigned UseMaxInt = MakeReg(MVT::f64);
+ unsigned UseChoice = MakeReg(MVT::f64);
+ unsigned TmpReg = MakeReg(MVT::f64);
+ unsigned TmpReg2 = MakeReg(MVT::f64);
+ unsigned ConvReg = MakeReg(MVT::f64);
+ unsigned IntTmp = MakeReg(MVT::i32);
+ unsigned XorReg = MakeReg(MVT::i32);
+ MachineFunction *F = BB->getParent();
+ int FrameIdx = F->getFrameInfo()->CreateStackObject(8, 8);
+ // Update machine-CFG edges
+ MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
+ MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
+ MachineBasicBlock *OldMBB = BB;
+ ilist<MachineBasicBlock>::iterator It = BB; ++It;
+ F->getBasicBlockList().insert(It, XorMBB);
+ F->getBasicBlockList().insert(It, PhiMBB);
+ BB->addSuccessor(XorMBB);
+ BB->addSuccessor(PhiMBB);
+ // Convert from floating point to unsigned 32-bit value
+ // Use 0 if incoming value is < 0.0
+ BuildMI(BB, PPC::FSEL, 3, UseZero).addReg(Tmp1).addReg(Tmp1).addReg(Zero);
+ // Use 2**32 - 1 if incoming value is >= 2**32
+ BuildMI(BB, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(Tmp1);
+ BuildMI(BB, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt).addReg(UseZero)
+ .addReg(MaxInt);
+ // Subtract 2**31
+ BuildMI(BB, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
+ // Use difference if >= 2**31
+ BuildMI(BB, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice).addReg(Border);
+ BuildMI(BB, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
+ .addReg(UseChoice);
+ // Convert to integer
+ BuildMI(BB, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
+ addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(ConvReg), FrameIdx);
+ addFrameReference(BuildMI(BB, PPC::LWZ, 2, IntTmp), FrameIdx, 4);
+ BuildMI(BB, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
+ BuildMI(BB, PPC::B, 1).addMBB(XorMBB);
+
+ // XorMBB:
+ // add 2**31 if input was >= 2**31
+ BB = XorMBB;
+ BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
+ XorMBB->addSuccessor(PhiMBB);
+
+ // PhiMBB:
+ // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
+ BB = PhiMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(IntTmp).addMBB(OldMBB)
+ .addReg(XorReg).addMBB(XorMBB);
+ return Result;
+ }
+ assert(0 && "Should never get here");
+ return 0;
+ }
+
+ case ISD::SETCC:
+ if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Node)) {
+ Opc = SelectSetCR0(N);
+
+ unsigned TrueValue = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
+ unsigned FalseValue = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
+
+ // Create an iterator with which to insert the MBB for copying the false
+ // value and the MBB to hold the PHI instruction for this SetCC.
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // cmpTY cr0, r1, r2
+ // %TrueValue = li 1
+ // bCC sinkMBB
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = li 0
+ // fallthrough
+ BB = copy0MBB;
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
+ return Result;
+ }
+ assert(0 && "Is this legal?");
+ return 0;
+
+ case ISD::SELECT: {
+ unsigned TrueValue = SelectExpr(N.getOperand(1)); //Use if TRUE
+ unsigned FalseValue = SelectExpr(N.getOperand(2)); //Use if FALSE
+ Opc = SelectSetCR0(N.getOperand(0));
+
+ // Create an iterator with which to insert the MBB for copying the false
+ // value and the MBB to hold the PHI instruction for this SetCC.
+ MachineBasicBlock *thisMBB = BB;
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ ilist<MachineBasicBlock>::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY cr0, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+ BuildMI(BB, Opc, 2).addReg(PPC::CR0).addMBB(sinkMBB);
+ MachineFunction *F = BB->getParent();
+ F->getBasicBlockList().insert(It, copy0MBB);
+ F->getBasicBlockList().insert(It, sinkMBB);
+ // Update machine-CFG edges
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue)
+ .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB);
+
+ // FIXME: Select i64?
+ return Result;
+ }
+
+ case ISD::Constant:
+ switch (N.getValueType()) {
+ default: assert(0 && "Cannot use constants of this type!");
+ case MVT::i1:
+ BuildMI(BB, PPC::LI, 1, Result)
+ .addSImm(!cast<ConstantSDNode>(N)->isNullValue());
+ break;
+ case MVT::i32:
+ {
+ int v = (int)cast<ConstantSDNode>(N)->getSignExtended();
+ if (v < 32768 && v >= -32768) {
+ BuildMI(BB, PPC::LI, 1, Result).addSImm(v);
+ } else {
+ Tmp1 = MakeReg(MVT::i32);
+ BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16);
+ BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF);
+ }
+ }
+ }
+ return Result;
+ }
+
+ return 0;
+}
+
+void ISel::Select(SDOperand N) {
+ unsigned Tmp1, Tmp2, Opc;
+ unsigned opcode = N.getOpcode();
+
+ if (!ExprMap.insert(std::make_pair(N, 1)).second)
+ return; // Already selected.
+
+ SDNode *Node = N.Val;
+
+ switch (Node->getOpcode()) {
+ default:
+ Node->dump(); std::cerr << "\n";
+ assert(0 && "Node not handled yet!");
+ case ISD::EntryToken: return; // Noop
+ case ISD::TokenFactor:
+ for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
+ Select(Node->getOperand(i));
+ return;
+ case ISD::ADJCALLSTACKDOWN:
+ case ISD::ADJCALLSTACKUP:
+ Select(N.getOperand(0));
+ Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
+ Opc = N.getOpcode() == ISD::ADJCALLSTACKDOWN ? PPC::ADJCALLSTACKDOWN :
+ PPC::ADJCALLSTACKUP;
+ BuildMI(BB, Opc, 1).addImm(Tmp1);
+ return;
+ case ISD::BR: {
+ MachineBasicBlock *Dest =
+ cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
+ Select(N.getOperand(0));
+ BuildMI(BB, PPC::B, 1).addMBB(Dest);
+ return;
+ }
+ case ISD::BRCOND:
+ SelectBranchCC(N);
+ return;
+ case ISD::CopyToReg:
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ Tmp2 = cast<RegSDNode>(N)->getReg();
+
+ if (Tmp1 != Tmp2) {
+ if (N.getOperand(1).getValueType() == MVT::f64 ||
+ N.getOperand(1).getValueType() == MVT::f32)
+ BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1);
+ else
+ BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
+ }
+ return;
+ case ISD::ImplicitDef:
+ Select(N.getOperand(0));
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast<RegSDNode>(N)->getReg());
+ return;
+ case ISD::RET:
+ switch (N.getNumOperands()) {
+ default:
+ assert(0 && "Unknown return instruction!");
+ case 3:
+ assert(N.getOperand(1).getValueType() == MVT::i32 &&
+ N.getOperand(2).getValueType() == MVT::i32 &&
+ "Unknown two-register value!");
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ Tmp2 = SelectExpr(N.getOperand(2));
+ BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2);
+ BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1);
+ break;
+ case 2:
+ Select(N.getOperand(0));
+ Tmp1 = SelectExpr(N.getOperand(1));
+ switch (N.getOperand(1).getValueType()) {
+ default:
+ assert(0 && "Unknown return type!");
+ case MVT::f64:
+ case MVT::f32:
+ BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1);
+ break;
+ case MVT::i32:
+ BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1);
+ break;
+ }
+ case 1:
+ Select(N.getOperand(0));
+ break;
+ }
+ BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction
+ return;
+ case ISD::TRUNCSTORE:
+ case ISD::STORE:
+ {
+ SDOperand Chain = N.getOperand(0);
+ SDOperand Value = N.getOperand(1);
+ SDOperand Address = N.getOperand(2);
+ Select(Chain);
+
+ Tmp1 = SelectExpr(Value); //value
+
+ if (opcode == ISD::STORE) {
+ switch(Value.getValueType()) {
+ default: assert(0 && "unknown Type in store");
+ case MVT::i64: Opc = PPC::STD; break;
+ case MVT::f64: Opc = PPC::STFD; break;
+ case MVT::f32: Opc = PPC::STFS; break;
+ }
+ } else { //ISD::TRUNCSTORE
+ switch(cast<MVTSDNode>(Node)->getExtraValueType()) {
+ default: assert(0 && "unknown Type in store");
+ case MVT::i1: //FIXME: DAG does not promote this load
+ case MVT::i8: Opc= PPC::STB; break;
+ case MVT::i16: Opc = PPC::STH; break;
+ case MVT::i32: Opc = PPC::STW; break;
+ }
+ }
+
+ if(Address.getOpcode() == ISD::FrameIndex)
+ {
+ Tmp2 = cast<FrameIndexSDNode>(Address)->getIndex();
+ addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2);
+ }
+ else
+ {
+ int offset;
+ bool idx = SelectAddr(Address, Tmp2, offset);
+ if (idx) {
+ Opc = IndexedOpForOp(Opc);
+ BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset);
+ } else {
+ BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
+ }
+ }
+ return;
+ }
+ case ISD::EXTLOAD:
+ case ISD::SEXTLOAD:
+ case ISD::ZEXTLOAD:
+ case ISD::LOAD:
+ case ISD::CopyFromReg:
+ case ISD::CALL:
+ case ISD::DYNAMIC_STACKALLOC:
+ ExprMap.erase(N);
+ SelectExpr(N);
+ return;
+ }
+ assert(0 && "Should not be reached!");
+}
+
+
+/// createPPC32PatternInstructionSelector - This pass converts an LLVM function
+/// into a machine code representation using pattern matching and a machine
+/// description file.
+///
+FunctionPass *llvm::createPPC64ISelPattern(TargetMachine &TM) {
+ return new ISel(TM);
+}
+
diff --git a/lib/Target/PowerPC/PPC64ISelSimple.cpp b/lib/Target/PowerPC/PPC64ISelSimple.cpp
deleted file mode 100644
index 30531b6..0000000
--- a/lib/Target/PowerPC/PPC64ISelSimple.cpp
+++ /dev/null
@@ -1,2946 +0,0 @@
-//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "isel"
-#include "PowerPC.h"
-#include "PowerPCInstrBuilder.h"
-#include "PowerPCInstrInfo.h"
-#include "PPC64TargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
-#include <vector>
-using namespace llvm;
-
-namespace {
- Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
-
- /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
- /// PPC Representation.
- ///
- enum TypeClass {
- cByte, cShort, cInt, cFP32, cFP64, cLong
- };
-}
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::SByteTyID:
- case Type::UByteTyID: return cByte; // Byte operands are class #0
- case Type::ShortTyID:
- case Type::UShortTyID: return cShort; // Short operands are class #1
- case Type::IntTyID:
- case Type::UIntTyID: return cInt; // Ints are class #2
-
- case Type::FloatTyID: return cFP32; // Single float is #3
- case Type::DoubleTyID: return cFP64; // Double Point is #4
-
- case Type::PointerTyID:
- case Type::LongTyID:
- case Type::ULongTyID: return cLong; // Longs and pointers are class #5
- default:
- assert(0 && "Invalid type to getClass!");
- return cByte; // not reached
- }
-}
-
-// getClassB - Just like getClass, but treat boolean values as ints.
-static inline TypeClass getClassB(const Type *Ty) {
- if (Ty == Type::BoolTy) return cInt;
- return getClass(Ty);
-}
-
-namespace {
- struct PPC64ISel : public FunctionPass, InstVisitor<PPC64ISel> {
- PPC64TargetMachine &TM;
- MachineFunction *F; // The function we are compiling into
- MachineBasicBlock *BB; // The current MBB we are compiling
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
-
- std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
-
- // External functions used in the Module
- Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__fixsfdiFn, *__fixdfdiFn,
- *__fixunssfdiFn, *__fixunsdfdiFn, *mallocFn, *freeFn;
-
- // MBBMap - Mapping between LLVM BB -> Machine BB
- std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
- // AllocaMap - Mapping from fixed sized alloca instructions to the
- // FrameIndex for the alloca.
- std::map<AllocaInst*, unsigned> AllocaMap;
-
- // Target configuration data
- const unsigned ParameterSaveAreaOffset, MaxArgumentStackSpace;
-
- PPC64ISel(TargetMachine &tm):TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
- F(0), BB(0), ParameterSaveAreaOffset(24), MaxArgumentStackSpace(32) {}
-
- bool doInitialization(Module &M) {
- // Add external functions that we may call
- Type *i = Type::IntTy;
- Type *d = Type::DoubleTy;
- Type *f = Type::FloatTy;
- Type *l = Type::LongTy;
- Type *ul = Type::ULongTy;
- Type *voidPtr = PointerType::get(Type::SByteTy);
- // float fmodf(float, float);
- fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
- // double fmod(double, double);
- fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
- // int __cmpdi2(long, long);
- __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
- // long __fixsfdi(float)
- __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
- // long __fixdfdi(double)
- __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
- // unsigned long __fixunssfdi(float)
- __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
- // unsigned long __fixunsdfdi(double)
- __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
- // void* malloc(size_t)
- mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
- // void free(void*)
- freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
- return false;
- }
-
- /// runOnFunction - Top level implementation of instruction selection for
- /// the entire function.
- ///
- bool runOnFunction(Function &Fn) {
- // First pass over the function, lower any unknown intrinsic functions
- // with the IntrinsicLowering class.
- LowerUnknownIntrinsicFunctionCalls(Fn);
-
- F = &MachineFunction::construct(&Fn, TM);
-
- // Create all of the machine basic blocks for the function...
- for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
- BB = &F->front();
-
- // Copy incoming arguments off of the stack...
- LoadArgumentsToVirtualRegs(Fn);
-
- // Instruction select everything except PHI nodes
- visit(Fn);
-
- // Select the PHI nodes
- SelectPHINodes();
-
- RegMap.clear();
- MBBMap.clear();
- AllocaMap.clear();
- F = 0;
- // We always build a machine code representation for the function
- return true;
- }
-
- virtual const char *getPassName() const {
- return "PowerPC Simple Instruction Selection";
- }
-
- /// visitBasicBlock - This method is called when we are visiting a new basic
- /// block. This simply creates a new MachineBasicBlock to emit code into
- /// and adds it to the current MachineFunction. Subsequent visit* for
- /// instructions will be invoked for all instructions in the basic block.
- ///
- void visitBasicBlock(BasicBlock &LLVM_BB) {
- BB = MBBMap[&LLVM_BB];
- }
-
- /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
- /// function, lowering any calls to unknown intrinsic functions into the
- /// equivalent LLVM code.
- ///
- void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
- /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
- /// from the stack into virtual registers.
- ///
- void LoadArgumentsToVirtualRegs(Function &F);
-
- /// SelectPHINodes - Insert machine code to generate phis. This is tricky
- /// because we have to generate our sources into the source basic blocks,
- /// not the current one.
- ///
- void SelectPHINodes();
-
- // Visitation methods for various instructions. These methods simply emit
- // fixed PowerPC code for each instruction.
-
- // Control flow operators
- void visitReturnInst(ReturnInst &RI);
- void visitBranchInst(BranchInst &BI);
-
- struct ValueRecord {
- Value *Val;
- unsigned Reg;
- const Type *Ty;
- ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
- ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
- };
-
- // This struct is for recording the necessary operations to emit the GEP
- struct CollapsedGepOp {
- bool isMul;
- Value *index;
- ConstantSInt *size;
- CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
- isMul(mul), index(i), size(s) {}
- };
-
- void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg);
- void visitCallInst(CallInst &I);
- void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
- // Arithmetic operators
- void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
- void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
- void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
- void visitMul(BinaryOperator &B);
-
- void visitDiv(BinaryOperator &B) { visitDivRem(B); }
- void visitRem(BinaryOperator &B) { visitDivRem(B); }
- void visitDivRem(BinaryOperator &B);
-
- // Bitwise operators
- void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
- void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
- void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
-
- // Comparison operators...
- void visitSetCondInst(SetCondInst &I);
- unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI);
- void visitSelectInst(SelectInst &SI);
-
-
- // Memory Instructions
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitMallocInst(MallocInst &I);
- void visitFreeInst(FreeInst &I);
-
- // Other operators
- void visitShiftInst(ShiftInst &I);
- void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
- void visitCastInst(CastInst &I);
- void visitVANextInst(VANextInst &I);
- void visitVAArgInst(VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- std::cerr << "Cannot instruction select: " << I;
- abort();
- }
-
- /// promote32 - Make a value 32-bits wide, and put it somewhere.
- ///
- void promote32(unsigned targetReg, const ValueRecord &VR);
-
- /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
- /// constant expression GEP support.
- ///
- void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg,
- bool CollapseRemainder, ConstantSInt **Remainder,
- unsigned *PendingAddReg);
-
- /// emitCastOperation - Common code shared between visitCastInst and
- /// constant expression cast support.
- ///
- void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy, unsigned TargetReg);
-
- /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
- /// and constant expression support.
- ///
- void emitSimpleBinaryOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- /// emitBinaryFPOperation - This method handles emission of floating point
- /// Add (0), Sub (1), Mul (2), and Div (3) operations.
- void emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned TargetReg);
-
- void doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1);
-
- /// doMultiplyConst - This method will multiply the value in Op0Reg by the
- /// value of the ContantInt *CI
- void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI);
-
- void emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned TargetReg);
-
- /// emitSetCCOperation - Common code shared between visitSetCondInst and
- /// constant expression support.
- ///
- void emitSetCCOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg);
-
- /// emitShiftOperation - Common code shared between visitShiftInst and
- /// constant expression support.
- ///
- void emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg);
-
- /// emitSelectOperation - Common code shared between visitSelectInst and the
- /// constant expression support.
- ///
- void emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg);
-
- /// copyConstantToRegister - Output the instructions required to put the
- /// specified constant into the specified register.
- ///
- void copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- Constant *C, unsigned Reg);
-
- void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned LHS, unsigned RHS);
-
- /// makeAnotherReg - This method returns the next register number we haven't
- /// yet used.
- ///
- unsigned makeAnotherReg(const Type *Ty) {
- assert(dynamic_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()) &&
- "Current target doesn't have PPC reg info??");
- const PPC64RegisterInfo *PPCRI =
- static_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo());
- // Add the mapping of regnumber => reg class to MachineFunction
- const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
- return F->getSSARegMap()->createVirtualRegister(RC);
- }
-
- /// getReg - This method turns an LLVM value into a register number.
- ///
- unsigned getReg(Value &V) { return getReg(&V); } // Allow references
- unsigned getReg(Value *V) {
- // Just append to the end of the current bb.
- MachineBasicBlock::iterator It = BB->end();
- return getReg(V, BB, It);
- }
- unsigned getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt);
-
- /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
- /// is okay to use as an immediate argument to a certain binary operation
- bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
-
- /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
- /// that is to be statically allocated with the initial stack frame
- /// adjustment.
- unsigned getFixedSizedAllocaFI(AllocaInst *AI);
- };
-}
-
-/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
-/// instruction in the entry block, return it. Otherwise, return a null
-/// pointer.
-static AllocaInst *dyn_castFixedAlloca(Value *V) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- BasicBlock *BB = AI->getParent();
- if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
- return AI;
- }
- return 0;
-}
-
-/// getReg - This method turns an LLVM value into a register number.
-///
-unsigned PPC64ISel::getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- copyConstantToRegister(MBB, IPt, C, Reg);
- return Reg;
- } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
- return Reg;
- }
-
- unsigned &Reg = RegMap[V];
- if (Reg == 0) {
- Reg = makeAnotherReg(V->getType());
- RegMap[V] = Reg;
- }
-
- return Reg;
-}
-
-/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
-/// is okay to use as an immediate argument to a certain binary operator.
-///
-/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
-bool PPC64ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
- ConstantSInt *Op1Cs;
- ConstantUInt *Op1Cu;
-
- // ADDI, Compare, and non-indexed Load take SIMM
- bool cond1 = (Operator == 0)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() <= 32767)
- && (Op1Cs->getValue() >= -32768);
-
- // SUBI takes -SIMM since it is a mnemonic for ADDI
- bool cond2 = (Operator == 1)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() <= 32768)
- && (Op1Cs->getValue() >= -32767);
-
- // ANDIo, ORI, and XORI take unsigned values
- bool cond3 = (Operator >= 2)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() >= 0)
- && (Op1Cs->getValue() <= 32767);
-
- // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
- bool cond4 = (Operator < 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 32767);
-
- // ANDIo, ORI, and XORI take UIMMs, so they can be larger
- bool cond5 = (Operator >= 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 65535);
-
- if (cond1 || cond2 || cond3 || cond4 || cond5)
- return true;
-
- return false;
-}
-
-/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-/// that is to be statically allocated with the initial stack frame
-/// adjustment.
-unsigned PPC64ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
- // Already computed this?
- std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
- if (I != AllocaMap.end() && I->first == AI) return I->second;
-
- const Type *Ty = AI->getAllocatedType();
- ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
- TySize *= CUI->getValue(); // Get total allocated size...
- unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-
- // Create a new stack object using the frame manager...
- int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
- AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
- return FrameIdx;
-}
-
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void PPC64ISel::copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Constant *C, unsigned R) {
- if (C->getType()->isIntegral()) {
- unsigned Class = getClassB(C->getType());
-
- if (Class == cLong) {
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- uint64_t uval = CUI->getValue();
- if (uval < (1LL << 32)) {
- ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
- copyConstantToRegister(MBB, IP, CU, R);
- return;
- }
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int64_t val = CUI->getValue();
- if (val < (1LL << 31)) {
- ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
- copyConstantToRegister(MBB, IP, CU, R);
- return;
- }
- } else {
- std::cerr << "Unhandled long constant type!\n";
- abort();
- }
- // Spill long to the constant pool and load it
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(C);
- BuildMI(*MBB, IP, PPC::LD, 1, R)
- .addReg(PPC::R2).addConstantPoolIndex(CPI);
- return;
- }
-
- assert(Class <= cInt && "Type not handled yet!");
-
- // Handle bool
- if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
- return;
- }
-
- // Handle int
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- unsigned uval = CUI->getValue();
- if (uval < 32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
- }
- return;
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int sval = CSI->getValue();
- if (sval < 32768 && sval >= -32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
- }
- return;
- }
- std::cerr << "Unhandled integer constant!\n";
- abort();
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- // We need to spill the constant to memory...
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
- unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
- BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
- } else if (isa<ConstantPointerNull>(C)) {
- // Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
- static unsigned OpcodeTable[] = {
- PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD
- };
- unsigned Opcode = OpcodeTable[getClassB(GV->getType())];
- BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2);
- } else {
- std::cerr << "Offending constant: " << *C << "\n";
- assert(0 && "Type not handled yet!");
- }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-void PPC64ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
- unsigned ArgOffset = ParameterSaveAreaOffset;
- unsigned GPR_remaining = 8;
- unsigned FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
- };
-
- MachineFrameInfo *MFI = F->getFrameInfo();
-
- for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); I != E; ++I) {
- bool ArgLive = !I->use_empty();
- unsigned Reg = ArgLive ? getReg(*I) : 0;
- int FI; // Frame object index
-
- switch (getClassB(I->getType())) {
- case cByte:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
- }
- }
- break;
- case cShort:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
- }
- }
- break;
- case cInt:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
- }
- }
- break;
- case cLong:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
- }
- }
- // longs require 4 additional bytes
- ArgOffset += 4;
- break;
- case cFP32:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
-
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
- }
- }
- break;
- case cFP64:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
-
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
- }
- }
-
- // doubles require 4 additional bytes and use 2 GPRs of param space
- ArgOffset += 4;
- if (GPR_remaining > 0) {
- GPR_remaining--;
- GPR_idx++;
- }
- break;
- default:
- assert(0 && "Unhandled argument type!");
- }
- ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
- if (GPR_remaining > 0) {
- GPR_remaining--; // uses up 2 GPRs
- GPR_idx++;
- }
- }
-
- // If the function takes variable number of arguments, add a frame offset for
- // the start of the first vararg value... this is used to expand
- // llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis. This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void PPC64ISel::SelectPHINodes() {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const Function &LF = *F->getFunction(); // The LLVM function...
- for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
- const BasicBlock *BB = I;
- MachineBasicBlock &MBB = *MBBMap[I];
-
- // Loop over all of the PHI nodes in the LLVM basic block...
- MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
- for (BasicBlock::const_iterator I = BB->begin();
- PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
- // Create a new machine instr PHI node, and insert it.
- unsigned PHIReg = getReg(*PN);
- MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
- PPC::PHI, PN->getNumOperands(), PHIReg);
-
- // PHIValues - Map of blocks to incoming virtual registers. We use this
- // so that we only initialize one incoming value for a particular block,
- // even if the block has multiple entries in the PHI node.
- //
- std::map<MachineBasicBlock*, unsigned> PHIValues;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- MachineBasicBlock *PredMBB = 0;
- for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
- PE = MBB.pred_end (); PI != PE; ++PI)
- if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
- PredMBB = *PI;
- break;
- }
- assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
-
- unsigned ValReg;
- std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
- PHIValues.lower_bound(PredMBB);
-
- if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
- // We already inserted an initialization of the register for this
- // predecessor. Recycle it.
- ValReg = EntryIt->second;
- } else {
- // Get the incoming value into a virtual register.
- //
- Value *Val = PN->getIncomingValue(i);
-
- // If this is a constant or GlobalValue, we may have to insert code
- // into the basic block to compute it into a virtual register.
- if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
- isa<GlobalValue>(Val)) {
- // Simple constants get emitted at the end of the basic block,
- // before any terminator instructions. We "know" that the code to
- // move a constant into a register will never clobber any flags.
- ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
- } else {
- // Because we don't want to clobber any values which might be in
- // physical registers with the computation of this constant (which
- // might be arbitrarily complex if it is a constant expression),
- // just insert the computation at the top of the basic block.
- MachineBasicBlock::iterator PI = PredMBB->begin();
-
- // Skip over any PHI nodes though!
- while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
- ++PI;
-
- ValReg = getReg(Val, PredMBB, PI);
- }
-
- // Remember that we inserted a value for this PHI for this predecessor
- PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
- }
-
- PhiMI->addRegOperand(ValReg);
- PhiMI->addMachineBasicBlockOperand(PredMBB);
- }
-
- // Now that we emitted all of the incoming values for the PHI node, make
- // sure to reposition the InsertPoint after the PHI that we just added.
- // This is needed because we might have inserted a constant into this
- // block, right after the PHI's which is before the old insert point!
- PHIInsertPoint = PhiMI;
- ++PHIInsertPoint;
- }
- }
-}
-
-
-// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
-// it into the conditional branch or select instruction which is the only user
-// of the cc instruction. This is the case if the conditional branch is the
-// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch.
-//
-static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
- if (SCI->hasOneUse()) {
- Instruction *User = cast<Instruction>(SCI->use_back());
- if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
- SCI->getParent() == User->getParent())
- return SCI;
- }
- return 0;
-}
-
-
-// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
-// the load or store instruction that is the only user of the GEP.
-//
-static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
- if (GEPI->hasOneUse()) {
- Instruction *User = cast<Instruction>(GEPI->use_back());
- if (isa<StoreInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) != GEPI &&
- User->getOperand(1) == GEPI) {
- ++GEPFolds;
- return GEPI;
- }
- if (isa<LoadInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) == GEPI) {
- ++GEPFolds;
- return GEPI;
- }
- }
- return 0;
-}
-
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return 0;
- case Instruction::SetNE: return 1;
- case Instruction::SetLT: return 2;
- case Instruction::SetGE: return 3;
- case Instruction::SetGT: return 4;
- case Instruction::SetLE: return 5;
- }
-}
-
-static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return PPC::BEQ;
- case Instruction::SetNE: return PPC::BNE;
- case Instruction::SetLT: return PPC::BLT;
- case Instruction::SetGE: return PPC::BGE;
- case Instruction::SetGT: return PPC::BGT;
- case Instruction::SetLE: return PPC::BLE;
- }
-}
-
-/// emitUCOM - emits an unordered FP compare.
-void PPC64ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- unsigned LHS, unsigned RHS) {
- BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
-}
-
-/// EmitComparison - emits a comparison of the two operands, returning the
-/// extended setcc code to use. The result is in CR0.
-///
-unsigned PPC64ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP) {
- // The arguments are already supposed to be of the same type.
- const Type *CompTy = Op0->getType();
- unsigned Class = getClassB(CompTy);
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // Before we do a comparison, we have to make sure that we're truncating our
- // registers appropriately.
- if (Class == cByte) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
- .addImm(24).addImm(31);
- Op0r = TmpReg;
- } else if (Class == cShort) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
- .addImm(16).addImm(31);
- Op0r = TmpReg;
- }
-
- // Use crand for lt, gt and crandc for le, ge
- unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
- unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
- unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
- if (Class == cLong) {
- Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
- OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
- }
-
- // Special case handling of: cmp R, i
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned Op1v = CI->getRawValue() & 0xFFFF;
-
- // Treat compare like ADDI for the purposes of immediate suitability
- if (canUseAsImmediateForOpcode(CI, 0)) {
- BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
- } else {
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- }
- return OpNum;
- }
-
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- switch (Class) {
- default: assert(0 && "Unknown type class!");
- case cByte:
- case cShort:
- case cInt:
- case cLong:
- BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
- break;
-
- case cFP32:
- case cFP64:
- emitUCOM(MBB, IP, Op0r, Op1r);
- break;
- }
-
- return OpNum;
-}
-
-/// visitSetCondInst - emit code to calculate the condition via
-/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
-///
-void PPC64ISel::visitSetCondInst(SetCondInst &I) {
- if (canFoldSetCCIntoBranchOrSelect(&I))
- return;
-
- unsigned DestReg = getReg(I);
- unsigned OpNum = I.getOpcode();
- const Type *Ty = I.getOperand (0)->getType();
-
- EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
-
- unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // thisMBB:
- // ...
- // cmpTY cr0, r1, r2
- // bCC copy1MBB
- // b copy0MBB
-
- // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
- // if we could insert other, non-terminator instructions after the
- // bCC. But MBB->getFirstTerminator() can't understand this.
- MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy1MBB);
- BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy0MBB);
- BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // copy1MBB:
- // %TrueValue = li 1
- // b sinkMBB
- BB = copy1MBB;
- unsigned TrueValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
- BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = li 0
- // fallthrough
- BB = copy0MBB;
- unsigned FalseValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
- .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
-}
-
-void PPC64ISel::visitSelectInst(SelectInst &SI) {
- unsigned DestReg = getReg(SI);
- MachineBasicBlock::iterator MII = BB->end();
- emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
- SI.getFalseValue(), DestReg);
-}
-
-/// emitSelect - Common code shared between visitSelectInst and the constant
-/// expression support.
-/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
-/// no select instruction. FSEL only works for comparisons against zero.
-void PPC64ISel::emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal,
- Value *FalseVal, unsigned DestReg) {
- unsigned SelectClass = getClassB(TrueVal->getType());
- unsigned Opcode;
-
- // See if we can fold the setcc into the select instruction, or if we have
- // to get the register of the Cond value
- if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
- // We successfully folded the setcc into the select instruction.
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
- Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
- } else {
- unsigned CondReg = getReg(Cond, MBB, IP);
- BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
- Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
- }
-
- // thisMBB:
- // ...
- // cmpTY cr0, r1, r2
- // bCC copy1MBB
- // b copy0MBB
-
- MachineBasicBlock *thisMBB = BB;
- const BasicBlock *LLVM_BB = BB->getBasicBlock();
- ilist<MachineBasicBlock>::iterator It = BB;
- ++It;
-
- // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
- // if we could insert other, non-terminator instructions after the
- // bCC. But MBB->getFirstTerminator() can't understand this.
- MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy1MBB);
- BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
- MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, copy0MBB);
- BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
- MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
- F->getBasicBlockList().insert(It, sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // copy1MBB:
- // %TrueValue = ...
- // b sinkMBB
- BB = copy1MBB;
- unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
- BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // copy0MBB:
- // %FalseValue = ...
- // fallthrough
- BB = copy0MBB;
- unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
- // Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- // sinkMBB:
- // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
- // ...
- BB = sinkMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
- .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
- return;
-}
-
-
-
-/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
-/// operand, in the specified target register.
-///
-void PPC64ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
- bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
-
- Value *Val = VR.Val;
- const Type *Ty = VR.Ty;
- if (Val) {
- if (Constant *C = dyn_cast<Constant>(Val)) {
- Val = ConstantExpr::getCast(C, Type::IntTy);
- if (isa<ConstantExpr>(Val)) // Could not fold
- Val = C;
- else
- Ty = Type::IntTy; // Folded!
- }
-
- // If this is a simple constant, just emit a load directly to avoid the copy
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- int TheVal = CI->getRawValue() & 0xFFFFFFFF;
-
- if (TheVal < 32768 && TheVal >= -32768) {
- BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
- } else {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
- BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
- .addImm(TheVal & 0xFFFF);
- }
- return;
- }
- }
-
- // Make sure we have the register number for this value...
- unsigned Reg = Val ? getReg(Val) : VR.Reg;
- switch (getClassB(Ty)) {
- case cByte:
- // Extend value into target register (8->32)
- if (isUnsigned)
- BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
- .addZImm(24).addZImm(31);
- else
- BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
- break;
- case cShort:
- // Extend value into target register (16->32)
- if (isUnsigned)
- BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
- .addZImm(16).addZImm(31);
- else
- BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
- break;
- case cInt:
- case cLong:
- // Move value into target register (32->32)
- BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
- break;
- default:
- assert(0 && "Unpromotable operand class in promote32");
- }
-}
-
-/// visitReturnInst - implemented with BLR
-///
-void PPC64ISel::visitReturnInst(ReturnInst &I) {
- // Only do the processing if this is a non-void return
- if (I.getNumOperands() > 0) {
- Value *RetVal = I.getOperand(0);
- switch (getClassB(RetVal->getType())) {
- case cByte: // integral return values: extend or move into r3 and return
- case cShort:
- case cInt:
- case cLong:
- promote32(PPC::R3, ValueRecord(RetVal));
- break;
- case cFP32:
- case cFP64: { // Floats & Doubles: Return in f1
- unsigned RetReg = getReg(RetVal);
- BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
- break;
- }
- default:
- visitInstruction(I);
- }
- }
- BuildMI(BB, PPC::BLR, 1).addImm(1);
-}
-
-// getBlockAfter - Return the basic block which occurs lexically after the
-// specified one.
-static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
- Function::iterator I = BB; ++I; // Get iterator to next block
- return I != BB->getParent()->end() ? &*I : 0;
-}
-
-/// visitBranchInst - Handle conditional and unconditional branches here. Note
-/// that since code layout is frozen at this point, that if we are trying to
-/// jump to a block that is the immediate successor of the current block, we can
-/// just make a fall-through (but we don't currently).
-///
-void PPC64ISel::visitBranchInst(BranchInst &BI) {
- // Update machine-CFG edges
- BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
- if (BI.isConditional())
- BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
-
- BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
-
- if (!BI.isConditional()) { // Unconditional branch?
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- return;
- }
-
- // See if we can fold the setcc into the branch itself...
- SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
- if (SCI == 0) {
- // Nope, cannot fold setcc into this branch. Emit a branch on a condition
- // computed some other way...
- unsigned condReg = getReg(BI.getCondition());
- BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
- .addImm(0);
- if (BI.getSuccessor(1) == NextBB) {
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
- .addMBB(MBBMap[BI.getSuccessor(0)])
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
- .addMBB(MBBMap[BI.getSuccessor(1)])
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- if (BI.getSuccessor(0) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- return;
- }
-
- unsigned OpNum = getSetCCNumber(SCI->getOpcode());
- unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
- MachineBasicBlock::iterator MII = BB->end();
- OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
-
- if (BI.getSuccessor(0) != NextBB) {
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
- .addMBB(MBBMap[BI.getSuccessor(0)])
- .addMBB(MBBMap[BI.getSuccessor(1)]);
- if (BI.getSuccessor(1) != NextBB)
- BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
- } else {
- // Change to the inverse condition...
- if (BI.getSuccessor(1) != NextBB) {
- Opcode = PPC64InstrInfo::invertPPCBranchOpcode(Opcode);
- BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
- .addMBB(MBBMap[BI.getSuccessor(1)])
- .addMBB(MBBMap[BI.getSuccessor(0)]);
- }
- }
-}
-
-/// doCall - This emits an abstract call instruction, setting up the arguments
-/// and the return value as appropriate. For the actual function call itself,
-/// it inserts the specified CallMI instruction into the stream.
-///
-void PPC64ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg) {
- // Count how many bytes are to be pushed on the stack, including the linkage
- // area, and parameter passing area.
- unsigned NumBytes = ParameterSaveAreaOffset;
- unsigned ArgOffset = ParameterSaveAreaOffset;
-
- if (!Args.empty()) {
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- switch (getClassB(Args[i].Ty)) {
- case cByte: case cShort: case cInt:
- NumBytes += 4; break;
- case cLong:
- NumBytes += 8; break;
- case cFP32:
- NumBytes += 4; break;
- case cFP64:
- NumBytes += 8; break;
- break;
- default: assert(0 && "Unknown class!");
- }
-
- // Just to be safe, we'll always reserve the full argument passing space in
- // case any called code gets funky on us.
- if (NumBytes < ParameterSaveAreaOffset + MaxArgumentStackSpace)
- NumBytes = ParameterSaveAreaOffset + MaxArgumentStackSpace;
-
- // Adjust the stack pointer for the new arguments...
- // These functions are automatically eliminated by the prolog/epilog pass
- BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
-
- // Arguments go on the stack in reverse order, as specified by the ABI.
- int GPR_remaining = 8, FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
- PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
- PPC::F13
- };
-
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- unsigned ArgReg;
- switch (getClassB(Args[i].Ty)) {
- case cByte:
- case cShort:
- // Promote arg to 32 bits wide into a temporary register...
- ArgReg = makeAnotherReg(Type::UIntTy);
- promote32(ArgReg, Args[i]);
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cInt:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cLong:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
-
- // Reg or stack?
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
- .addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- if (GPR_remaining <= 0 || isVarArg) {
- BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- ArgOffset += 4; // 8 byte entry, not 4.
- break;
- case cFP32:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- // Reg or stack?
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
- CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
- FPR_remaining--;
- FPR_idx++;
-
- // If this is a vararg function, and there are GPRs left, also
- // pass the float in an int. Otherwise, put it on the stack.
- if (isVarArg) {
- BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
- .addSImm(ArgOffset).addReg(ArgReg);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- }
- } else {
- BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- break;
- case cFP64:
- ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
- // Reg or stack?
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
- CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
- FPR_remaining--;
- FPR_idx++;
- // For vararg functions, must pass doubles via int regs as well
- if (isVarArg) {
- BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
-
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
- .addReg(PPC::R1);
- CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
- }
- }
- } else {
- BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
- .addReg(PPC::R1);
- }
- // Doubles use 8 bytes
- ArgOffset += 4;
- break;
-
- default: assert(0 && "Unknown class!");
- }
- ArgOffset += 4;
- GPR_remaining--;
- GPR_idx++;
- }
- } else {
- BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
- }
-
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
- BB->push_back(CallMI);
- BuildMI(BB, PPC::NOP, 0);
-
- // These functions are automatically eliminated by the prolog/epilog pass
- BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
-
- // If there is a return value, scavenge the result from the location the call
- // leaves it in...
- //
- if (Ret.Ty != Type::VoidTy) {
- unsigned DestClass = getClassB(Ret.Ty);
- switch (DestClass) {
- case cByte:
- case cShort:
- case cInt:
- case cLong:
- // Integral results are in r3
- BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
- break;
- case cFP32: // Floating-point return values live in f1
- case cFP64:
- BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
- break;
- default: assert(0 && "Unknown class!");
- }
- }
-}
-
-
-/// visitCallInst - Push args on stack and do a procedure call instruction.
-void PPC64ISel::visitCallInst(CallInst &CI) {
- MachineInstr *TheCall;
- Function *F = CI.getCalledFunction();
- if (F) {
- // Is it an intrinsic function call?
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
- visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
- return;
- }
- // Emit a CALL instruction with PC-relative displacement.
- TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
- } else { // Emit an indirect call through the CTR
- unsigned Reg = getReg(CI.getCalledValue());
- BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
- TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
- }
-
- std::vector<ValueRecord> Args;
- for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
- Args.push_back(ValueRecord(CI.getOperand(i)));
-
- unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
- bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
- doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
-}
-
-
-/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
-///
-static Value *dyncastIsNan(Value *V) {
- if (CallInst *CI = dyn_cast<CallInst>(V))
- if (Function *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::isunordered)
- return CI->getOperand(1);
- return 0;
-}
-
-/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
-/// or's whos operands are all calls to the isnan predicate.
-static bool isOnlyUsedByUnorderedComparisons(Value *V) {
- assert(dyncastIsNan(V) && "The value isn't an isnan call!");
-
- // Check all uses, which will be or's of isnans if this predicate is true.
- for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
- Instruction *I = cast<Instruction>(*UI);
- if (I->getOpcode() != Instruction::Or) return false;
- if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
- if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
- }
-
- return true;
-}
-
-/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
-/// function, lowering any calls to unknown intrinsic functions into the
-/// equivalent LLVM code.
-///
-void PPC64ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- // FIXME: should lower these ourselves
- // case Intrinsic::isunordered:
- // case Intrinsic::memcpy: -> doCall(). system memcpy almost
- // guaranteed to be faster than anything we generate ourselves
- // We directly implement these intrinsics
- break;
- case Intrinsic::readio: {
- // On PPC, memory operations are in-order. Lower this intrinsic
- // into a volatile load.
- LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
- CI->replaceAllUsesWith(LI);
- BB->getInstList().erase(CI);
- break;
- }
- case Intrinsic::writeio: {
- // On PPC, memory operations are in-order. Lower this intrinsic
- // into a volatile store.
- StoreInst *SI = new StoreInst(CI->getOperand(1),
- CI->getOperand(2), true, CI);
- CI->replaceAllUsesWith(SI);
- BB->getInstList().erase(CI);
- break;
- }
- default:
- // All other intrinsic calls we must lower.
- Instruction *Before = CI->getPrev();
- TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- }
-}
-
-void PPC64ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
- unsigned TmpReg1, TmpReg2, TmpReg3;
- switch (ID) {
- case Intrinsic::vastart:
- // Get the address of the first vararg value...
- TmpReg1 = getReg(CI);
- addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
- 0, false);
- return;
-
- case Intrinsic::vacopy:
- TmpReg1 = getReg(CI);
- TmpReg2 = getReg(CI.getOperand(1));
- BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
- return;
- case Intrinsic::vaend: return;
-
- case Intrinsic::returnaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- MachineFrameInfo *MFI = F->getFrameInfo();
- unsigned NumBytes = MFI->getStackSize();
-
- BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
- .addReg(PPC::R1);
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
- }
- return;
-
- case Intrinsic::frameaddress:
- TmpReg1 = getReg(CI);
- if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
- BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
- } else {
- // Values other than zero are not implemented yet.
- BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
- }
- return;
-
-#if 0
- // This may be useful for supporting isunordered
- case Intrinsic::isnan:
- // If this is only used by 'isunordered' style comparisons, don't emit it.
- if (isOnlyUsedByUnorderedComparisons(&CI)) return;
- TmpReg1 = getReg(CI.getOperand(1));
- emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
- TmpReg2 = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC::MFCR, TmpReg2);
- TmpReg3 = getReg(CI);
- BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
- return;
-#endif
-
- default: assert(0 && "Error: unknown intrinsics should have been lowered!");
- }
-}
-
-/// visitSimpleBinary - Implement simple binary operators for integral types...
-/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
-/// Xor.
-///
-void PPC64ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
- unsigned DestReg = getReg(B);
- MachineBasicBlock::iterator MI = BB->end();
- Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
- unsigned Class = getClassB(B.getType());
-
- emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
-}
-
-/// emitBinaryFPOperation - This method handles emission of floating point
-/// Add (0), Sub (1), Mul (2), and Div (3) operations.
-void PPC64ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned DestReg){
-
- static const unsigned OpcodeTab[][4] = {
- { PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
- { PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
- };
-
- // Special case: R1 = op <const fp>, R2
- if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
- if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
- // -0.0 - X === -X
- unsigned op1Reg = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
- return;
- }
-
- unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
- unsigned Op0r = getReg(Op0, BB, IP);
- unsigned Op1r = getReg(Op1, BB, IP);
- BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-}
-
-/// emitSimpleBinaryOperation - Implement simple binary operators for integral
-/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
-/// Or, 4 for Xor.
-///
-/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
-/// and constant expression support.
-///
-void PPC64ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass,
- unsigned DestReg) {
- unsigned Class = getClassB(Op0->getType());
-
- // Arithmetic and Bitwise operators
- static const unsigned OpcodeTab[] = {
- PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
- };
- // FIXME: Convert this to the version from PPC32ISel
- static const unsigned ImmOpcodeTab[] = {
- PPC::ADDI, PPC::ADDI, PPC::ANDIo, PPC::ORI, PPC::XORI
- };
- static const unsigned RImmOpcodeTab[] = {
- PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
- };
-
- if (Class == cFP32 || Class == cFP64) {
- assert(OperatorClass < 2 && "No logical ops for FP!");
- emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
- return;
- }
-
- if (Op0->getType() == Type::BoolTy) {
- if (OperatorClass == 3)
- // If this is an or of two isnan's, emit an FP comparison directly instead
- // of or'ing two isnan's together.
- if (Value *LHS = dyncastIsNan(Op0))
- if (Value *RHS = dyncastIsNan(Op1)) {
- unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- emitUCOM(MBB, IP, Op0Reg, Op1Reg);
- BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
- .addImm(31).addImm(31);
- return;
- }
- }
-
- // Special case: op <const int>, Reg
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
- // sub 0, X -> subfic
- if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
- unsigned Op1r = getReg(Op1, MBB, IP);
- int imm = CI->getRawValue() & 0xFFFF;
- BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
- return;
- }
-
- // If it is easy to do, swap the operands and emit an immediate op
- if (Class != cLong && OperatorClass != 1 &&
- canUseAsImmediateForOpcode(CI, OperatorClass)) {
- unsigned Op1r = getReg(Op1, MBB, IP);
- int imm = CI->getRawValue() & 0xFFFF;
-
- if (OperatorClass < 2)
- BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
- .addSImm(imm);
- else
- BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
- .addZImm(imm);
- return;
- }
- }
-
- // Special case: op Reg, <const int>
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // xor X, -1 -> not X
- if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
- BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- return;
- }
-
- if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
- int immediate = Op1C->getRawValue() & 0xFFFF;
-
- if (OperatorClass < 2)
- BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
- .addSImm(immediate);
- else
- BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
- .addZImm(immediate);
- } else {
- unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- }
- return;
- }
-
- // We couldn't generate an immediate variant of the op, load both halves into
- // registers and emit the appropriate opcode.
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
- unsigned Opcode = OpcodeTab[OperatorClass];
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
-}
-
-// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
-// returns zero when the input is not exactly a power of two.
-static unsigned ExactLog2(unsigned Val) {
- if (Val == 0 || (Val & (Val-1))) return 0;
- unsigned Count = 0;
- while (Val != 1) {
- Val >>= 1;
- ++Count;
- }
- return Count;
-}
-
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// Values Op0 and Op1, and put the result in DestReg.
-///
-void PPC64ISel::doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1) {
- unsigned Class0 = getClass(Op0->getType());
- unsigned Class1 = getClass(Op1->getType());
-
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- // 64 x 64 -> 64
- if (Class0 == cLong && Class1 == cLong) {
- BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
- if (Class0 == cLong && Class1 <= cInt) {
- // FIXME: CLEAR or SIGN EXTEND Op1
- BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- // 32 x 32 -> 32
- if (Class0 <= cInt && Class1 <= cInt) {
- BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- assert(0 && "doMultiply cannot operate on unknown type!");
-}
-
-/// doMultiplyConst - This method will multiply the value in Op0 by the
-/// value of the ContantInt *CI
-void PPC64ISel::doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI) {
- unsigned Class = getClass(Op0->getType());
-
- // Mul op0, 0 ==> 0
- if (CI->isNullValue()) {
- BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
- return;
- }
-
- // Mul op0, 1 ==> op0
- if (CI->equalsInt(1)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- return;
- }
-
- // If the element size is exactly a power of 2, use a shift to get it.
- if (unsigned Shift = ExactLog2(CI->getRawValue())) {
- ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
- emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
- return;
- }
-
- // If 32 bits or less and immediate is in right range, emit mul by immediate
- if (Class == cByte || Class == cShort || Class == cInt) {
- if (canUseAsImmediateForOpcode(CI, 0)) {
- unsigned Op0r = getReg(Op0, MBB, IP);
- unsigned imm = CI->getRawValue() & 0xFFFF;
- BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
- return;
- }
- }
-
- doMultiply(MBB, IP, DestReg, Op0, CI);
-}
-
-void PPC64ISel::visitMul(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
-
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitMultiply(BB, IP, Op0, Op1, ResultReg);
-}
-
-void PPC64ISel::emitMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned DestReg) {
- TypeClass Class = getClass(Op0->getType());
-
- switch (Class) {
- case cByte:
- case cShort:
- case cInt:
- case cLong:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- doMultiplyConst(MBB, IP, DestReg, Op0, CI);
- } else {
- doMultiply(MBB, IP, DestReg, Op0, Op1);
- }
- return;
- case cFP32:
- case cFP64:
- emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
- return;
- break;
- }
-}
-
-
-/// visitDivRem - Handle division and remainder instructions... these
-/// instruction both require the same instructions to be generated, they just
-/// select the result from a different register. Note that both of these
-/// instructions work differently for signed and unsigned operands.
-///
-void PPC64ISel::visitDivRem(BinaryOperator &I) {
- unsigned ResultReg = getReg(I);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- MachineBasicBlock::iterator IP = BB->end();
- emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
- ResultReg);
-}
-
-void PPC64ISel::emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned ResultReg) {
- const Type *Ty = Op0->getType();
- unsigned Class = getClass(Ty);
- switch (Class) {
- case cFP32:
- if (isDiv) {
- // Floating point divide...
- emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else {
- // Floating point remainder via fmodf(float x, float y);
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
- Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
- doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
- }
- return;
- case cFP64:
- if (isDiv) {
- // Floating point divide...
- emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
- return;
- } else {
- // Floating point remainder via fmod(double x, double y);
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
- Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
- doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
- }
- return;
- case cLong: case cByte: case cShort: case cInt:
- break; // Small integrals, handled below...
- default: assert(0 && "Unknown class!");
- }
-
- // Special case signed division by power of 2.
- if (isDiv)
- if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
- assert(Class != cLong && "This doesn't handle 64-bit divides!");
- int V = CI->getValue();
-
- if (V == 1) { // X /s 1 => X
- unsigned Op0Reg = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
- return;
- }
-
- if (V == -1) { // X /s -1 => -X
- unsigned Op0Reg = getReg(Op0, BB, IP);
- BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
- return;
- }
-
- unsigned log2V = ExactLog2(V);
- if (log2V != 0 && Ty->isSigned()) {
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned TmpReg = makeAnotherReg(Op0->getType());
- unsigned Opcode = Class == cLong ? PPC::SRADI : PPC::SRAWI;
-
- BuildMI(*BB, IP, Opcode, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
- BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
- return;
- }
- }
-
- static const unsigned DivOpcodes[] =
- { PPC::DIVWU, PPC::DIVW, PPC::DIVDU, PPC::DIVD };
-
- unsigned Op0Reg = getReg(Op0, BB, IP);
- unsigned Op1Reg = getReg(Op1, BB, IP);
- unsigned Opcode = DivOpcodes[2*(Class == cLong) + Ty->isSigned()];
-
- if (isDiv) {
- BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
- } else { // Remainder
- unsigned TmpReg1 = makeAnotherReg(Op0->getType());
- unsigned TmpReg2 = makeAnotherReg(Op0->getType());
- unsigned MulOpcode = Class == cLong ? PPC::MULLD : PPC::MULLW;
-
- BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
- BuildMI(*BB, IP, MulOpcode, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
- BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
- }
-}
-
-
-/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
-/// for constant immediate shift values, and for constant immediate
-/// shift values equal to 1. Even the general case is sort of special,
-/// because the shift amount has to be in CL, not just any old register.
-///
-void PPC64ISel::visitShiftInst(ShiftInst &I) {
- MachineBasicBlock::iterator IP = BB->end();
- emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
- I.getOpcode() == Instruction::Shl, I.getType(),
- getReg(I));
-}
-
-/// emitShiftOperation - Common code shared between visitShiftInst and
-/// constant expression support.
-///
-void PPC64ISel::emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount,
- bool isLeftShift, const Type *ResultTy,
- unsigned DestReg) {
- unsigned SrcReg = getReg (Op, MBB, IP);
- bool isSigned = ResultTy->isSigned ();
- unsigned Class = getClass (ResultTy);
-
- // Longs, as usual, are handled specially...
- if (Class == cLong) {
- // If we have a constant shift, we can generate much more efficient code
- // than otherwise...
- //
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- unsigned Amount = CUI->getValue();
- assert(Amount < 64 && "Invalid immediate shift amount!");
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::RLDICR, 3, DestReg).addReg(SrcReg).addImm(Amount)
- .addImm(63-Amount);
- } else {
- if (isSigned) {
- BuildMI(*MBB, IP, PPC::SRADI, 2, DestReg).addReg(SrcReg)
- .addImm(Amount);
- } else {
- BuildMI(*MBB, IP, PPC::RLDICL, 3, DestReg).addReg(SrcReg)
- .addImm(64-Amount).addImm(Amount);
- }
- }
- } else {
- unsigned ShiftReg = getReg (ShiftAmount, MBB, IP);
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::SLD, 2, DestReg).addReg(SrcReg).addReg(ShiftReg);
- } else {
- unsigned Opcode = (isSigned) ? PPC::SRAD : PPC::SRD;
- BuildMI(*MBB, IP, Opcode, DestReg).addReg(SrcReg).addReg(ShiftReg);
- }
- }
- return;
- }
-
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
- // The shift amount is constant, guaranteed to be a ubyte. Get its value.
- assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
- unsigned Amount = CUI->getValue();
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(Amount).addImm(0).addImm(31-Amount);
- } else {
- if (isSigned) {
- BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
- } else {
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(32-Amount).addImm(Amount).addImm(31);
- }
- }
- } else { // The shift amount is non-constant.
- unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
-
- if (isLeftShift) {
- BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
- .addReg(ShiftAmountReg);
- } else {
- BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
- .addReg(SrcReg).addReg(ShiftAmountReg);
- }
- }
-}
-
-
-/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
-/// mapping of LLVM classes to PPC load instructions, with the exception of
-/// signed byte loads, which need a sign extension following them.
-///
-void PPC64ISel::visitLoadInst(LoadInst &I) {
- // Immediate opcodes, for reg+imm addressing
- static const unsigned ImmOpcodes[] = {
- PPC::LBZ, PPC::LHZ, PPC::LWZ,
- PPC::LFS, PPC::LFD, PPC::LWZ
- };
- // Indexed opcodes, for reg+reg addressing
- static const unsigned IdxOpcodes[] = {
- PPC::LBZX, PPC::LHZX, PPC::LWZX,
- PPC::LFSX, PPC::LFDX, PPC::LWZX
- };
-
- unsigned Class = getClassB(I.getType());
- unsigned ImmOpcode = ImmOpcodes[Class];
- unsigned IdxOpcode = IdxOpcodes[Class];
- unsigned DestReg = getReg(I);
- Value *SourceAddr = I.getOperand(0);
-
- if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
- if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
-
- if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
- unsigned FI = getFixedSizedAllocaFI(AI);
- if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
- }
- return;
- }
-
- // If this load is the only use of the GEP instruction that is its address,
- // then we can fold the GEP directly into the load instruction.
- // emitGEPOperation with a second to last arg of 'true' will place the
- // base register for the GEP into baseReg, and the constant offset from that
- // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
- // otherwise, we copy the offset into another reg, and use reg+reg addressing.
- if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
- unsigned baseReg = getReg(GEPI);
- unsigned pendingAdd;
- ConstantSInt *offset;
-
- emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
- GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
-
- if (pendingAdd == 0 && Class != cLong &&
- canUseAsImmediateForOpcode(offset, 0)) {
- if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
- .addReg(baseReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
- .addReg(baseReg);
- }
- return;
- }
-
- unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
-
- if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
- }
- return;
- }
-
- // The fallback case, where the load was from a source that could not be
- // folded into the load instruction.
- unsigned SrcAddrReg = getReg(SourceAddr);
-
- if (Class == cByte && I.getType()->isSigned()) {
- unsigned TmpReg = makeAnotherReg(I.getType());
- BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
- BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
- } else {
- BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
- }
-}
-
-/// visitStoreInst - Implement LLVM store instructions
-///
-void PPC64ISel::visitStoreInst(StoreInst &I) {
- // Immediate opcodes, for reg+imm addressing
- static const unsigned ImmOpcodes[] = {
- PPC::STB, PPC::STH, PPC::STW,
- PPC::STFS, PPC::STFD, PPC::STW
- };
- // Indexed opcodes, for reg+reg addressing
- static const unsigned IdxOpcodes[] = {
- PPC::STBX, PPC::STHX, PPC::STWX,
- PPC::STFSX, PPC::STFDX, PPC::STWX
- };
-
- Value *SourceAddr = I.getOperand(1);
- const Type *ValTy = I.getOperand(0)->getType();
- unsigned Class = getClassB(ValTy);
- unsigned ImmOpcode = ImmOpcodes[Class];
- unsigned IdxOpcode = IdxOpcodes[Class];
- unsigned ValReg = getReg(I.getOperand(0));
-
- // If this store is the only use of the GEP instruction that is its address,
- // then we can fold the GEP directly into the store instruction.
- // emitGEPOperation with a second to last arg of 'true' will place the
- // base register for the GEP into baseReg, and the constant offset from that
- // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
- // otherwise, we copy the offset into another reg, and use reg+reg addressing.
- if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
- unsigned baseReg = getReg(GEPI);
- unsigned pendingAdd;
- ConstantSInt *offset;
-
- emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
- GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
-
- if (0 == pendingAdd && Class != cLong &&
- canUseAsImmediateForOpcode(offset, 0)) {
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
- .addReg(baseReg);
- return;
- }
-
- unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
- BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
- return;
- }
-
- // If the store address wasn't the only use of a GEP, we fall back to the
- // standard path: store the ValReg at the value in AddressReg.
- unsigned AddressReg = getReg(I.getOperand(1));
- BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
-}
-
-
-/// visitCastInst - Here we have various kinds of copying with or without sign
-/// extension going on.
-///
-void PPC64ISel::visitCastInst(CastInst &CI) {
- Value *Op = CI.getOperand(0);
-
- unsigned SrcClass = getClassB(Op->getType());
- unsigned DestClass = getClassB(CI.getType());
-
- // If this is a cast from a 32-bit integer to a Long type, and the only uses
- // of the case are GEP instructions, then the cast does not need to be
- // generated explicitly, it will be folded into the GEP.
- if (DestClass == cLong && SrcClass == cInt) {
- bool AllUsesAreGEPs = true;
- for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
- if (!isa<GetElementPtrInst>(*I)) {
- AllUsesAreGEPs = false;
- break;
- }
-
- // No need to codegen this cast if all users are getelementptr instrs...
- if (AllUsesAreGEPs) return;
- }
-
- unsigned DestReg = getReg(CI);
- MachineBasicBlock::iterator MI = BB->end();
- emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
-}
-
-/// emitCastOperation - Common code shared between visitCastInst and constant
-/// expression cast support.
-///
-void PPC64ISel::emitCastOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy,
- unsigned DestReg) {
- const Type *SrcTy = Src->getType();
- unsigned SrcClass = getClassB(SrcTy);
- unsigned DestClass = getClassB(DestTy);
- unsigned SrcReg = getReg(Src, MBB, IP);
-
- // Implement casts to bool by using compare on the operand followed by set if
- // not zero on the result.
- if (DestTy == Type::BoolTy) {
- switch (SrcClass) {
- case cByte:
- case cShort:
- case cInt:
- case cLong: {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
- BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
- break;
- }
- case cFP32:
- case cFP64:
- // FSEL perhaps?
- std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
- abort();
- }
- return;
- }
-
- // Handle cast of Float -> Double
- if (SrcClass == cFP32 && DestClass == cFP64) {
- BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle cast of Double -> Float
- if (SrcClass == cFP64 && DestClass == cFP32) {
- BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
- return;
- }
-
- // Handle casts from integer to floating point now...
- if (DestClass == cFP32 || DestClass == cFP64) {
-
- // Spill the integer to memory and reload it from there.
- unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
- int ValueFrameIdx =
- F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
-
- if (SrcClass == cLong) {
- if (SrcTy->isSigned()) {
- addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(SrcReg),
- ValueFrameIdx);
- addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TmpReg),
- ValueFrameIdx);
- BuildMI(*MBB, IP, PPC::FCFID, 1, DestReg).addReg(TmpReg);
- } else {
- unsigned Scale = getReg(ConstantFP::get(Type::DoubleTy, 0x1p32));
- unsigned TmpHi = makeAnotherReg(Type::IntTy);
- unsigned TmpLo = makeAnotherReg(Type::IntTy);
- unsigned FPLow = makeAnotherReg(Type::DoubleTy);
- unsigned FPTmpHi = makeAnotherReg(Type::DoubleTy);
- unsigned FPTmpLo = makeAnotherReg(Type::DoubleTy);
- int OtherFrameIdx = F->getFrameInfo()->CreateStackObject(Type::DoubleTy,
- TM.getTargetData());
- BuildMI(*MBB, IP, PPC::RLDICL, 3, TmpHi).addReg(SrcReg).addImm(32)
- .addImm(32);
- BuildMI(*MBB, IP, PPC::RLDICL, 3, TmpLo).addReg(SrcReg).addImm(0)
- .addImm(32);
- addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(TmpHi),
- ValueFrameIdx);
- addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(TmpLo),
- OtherFrameIdx);
- addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TmpReg),
- ValueFrameIdx);
- addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, FPLow),
- OtherFrameIdx);
- BuildMI(*MBB, IP, PPC::FCFID, 1, FPTmpHi).addReg(TmpReg);
- BuildMI(*MBB, IP, PPC::FCFID, 1, FPTmpLo).addReg(FPLow);
- BuildMI(*MBB, IP, PPC::FMADD, 3, DestReg).addReg(Scale).addReg(FPTmpHi)
- .addReg(FPTmpLo);
- }
- return;
- }
-
- // FIXME: really want a promote64
- unsigned IntTmp = makeAnotherReg(Type::IntTy);
-
- if (SrcTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSW, 1, IntTmp).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLDICL, 3, IntTmp).addReg(SrcReg).addImm(0)
- .addImm(32);
- addFrameReference(BuildMI(*MBB, IP, PPC::STD, 3).addReg(IntTmp),
- ValueFrameIdx);
- addFrameReference(BuildMI(*MBB, IP, PPC::LFD, 2, TmpReg),
- ValueFrameIdx);
- BuildMI(*MBB, IP, PPC::FCFID, 1, DestReg).addReg(TmpReg);
- return;
- }
-
- // Handle casts from floating point to integer now...
- if (SrcClass == cFP32 || SrcClass == cFP64) {
- static Function* const Funcs[] =
- { __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
- // emit library call
- if (DestClass == cLong) {
- bool isDouble = SrcClass == cFP64;
- unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(SrcReg, SrcTy));
- Function *floatFn = Funcs[nameIndex];
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
- doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
- return;
- }
-
- int ValueFrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
-
- if (DestTy->isSigned()) {
- unsigned TempReg = makeAnotherReg(Type::DoubleTy);
-
- // Convert to integer in the FP reg and store it to a stack slot
- BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
- addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
- .addReg(TempReg), ValueFrameIdx);
-
- // There is no load signed byte opcode, so we must emit a sign extend for
- // that particular size. Make sure to source the new integer from the
- // correct offset.
- if (DestClass == cByte) {
- unsigned TempReg2 = makeAnotherReg(DestTy);
- addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2),
- ValueFrameIdx, 7);
- BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
- } else {
- int offset = (DestClass == cShort) ? 6 : 4;
- unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
- addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
- ValueFrameIdx, offset);
- }
- } else {
- unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
- double maxInt = (1LL << 32) - 1;
- unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
- double border = 1LL << 31;
- unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
- unsigned UseZero = makeAnotherReg(Type::DoubleTy);
- unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
- unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
- unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
- unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
- unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
- unsigned IntTmp = makeAnotherReg(Type::IntTy);
- unsigned XorReg = makeAnotherReg(Type::IntTy);
- int FrameIdx =
- F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
- // Update machine-CFG edges
- MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
- MachineBasicBlock *OldMBB = BB;
- ilist<MachineBasicBlock>::iterator It = BB; ++It;
- F->getBasicBlockList().insert(It, XorMBB);
- F->getBasicBlockList().insert(It, PhiMBB);
- BB->addSuccessor(XorMBB);
- BB->addSuccessor(PhiMBB);
-
- // Convert from floating point to unsigned 32-bit value
- // Use 0 if incoming value is < 0.0
- BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
- .addReg(Zero);
- // Use 2**32 - 1 if incoming value is >= 2**32
- BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
- BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
- .addReg(UseZero).addReg(MaxInt);
- // Subtract 2**31
- BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
- // Use difference if >= 2**31
- BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
- .addReg(Border);
- BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
- .addReg(UseChoice);
- // Convert to integer
- BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
- addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
- FrameIdx);
- if (DestClass == cByte) {
- addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
- FrameIdx, 7);
- } else if (DestClass == cShort) {
- addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
- FrameIdx, 6);
- } if (DestClass == cInt) {
- addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
- FrameIdx, 4);
- BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
- BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
-
- // XorMBB:
- // add 2**31 if input was >= 2**31
- BB = XorMBB;
- BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
- XorMBB->addSuccessor(PhiMBB);
-
- // PhiMBB:
- // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
- BB = PhiMBB;
- BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
- .addReg(XorReg).addMBB(XorMBB);
- }
- }
- return;
- }
-
- // Check our invariants
- assert((SrcClass <= cInt || SrcClass == cLong) &&
- "Unhandled source class for cast operation!");
- assert((DestClass <= cInt || DestClass == cLong) &&
- "Unhandled destination class for cast operation!");
-
- bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
- bool destUnsigned = DestTy->isUnsigned();
-
- // Unsigned -> Unsigned, clear if larger
- if (sourceUnsigned && destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- }
-
- // handle u{ byte, short, int } x u{ byte, short, int }
- unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
- switch (SrcClass) {
- case cByte:
- case cShort:
- if (SrcClass == DestClass)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- case cInt:
- case cLong:
- if (DestClass == cInt)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- }
- return;
- }
-
- // Signed -> Signed
- if (!sourceUnsigned && !destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- }
-
- // handle { byte, short, int } x { byte, short, int }
- switch (SrcClass) {
- case cByte:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- break;
- case cInt:
- case cLong:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- }
- return;
- }
-
- // Unsigned -> Signed
- if (sourceUnsigned && !destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- }
-
- // handle u{ byte, short, int } -> { byte, short, int }
- switch (SrcClass) {
- case cByte:
- if (DestClass == cByte)
- // uByte 255 -> signed byte == -1
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else
- // uByte 255 -> signed short/int == 255
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
- .addImm(24).addImm(31);
- break;
- case cShort:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
- .addImm(16).addImm(31);
- break;
- case cInt:
- case cLong:
- if (DestClass == cByte)
- BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
- else if (DestClass == cShort)
- BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- }
- return;
- }
-
- // Signed -> Unsigned
- if (!sourceUnsigned && destUnsigned) {
- // handle long dest class now to keep switch clean
- if (DestClass == cLong) {
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- return;
- }
-
- // handle { byte, short, int } -> u{ byte, short, int }
- unsigned clearBits = (DestClass == cByte) ? 24 : 16;
- switch (SrcClass) {
- case cByte:
- case cShort:
- if (DestClass == cByte || DestClass == cShort)
- // sbyte -1 -> ubyte 0x000000FF
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- else
- // sbyte -1 -> ubyte 0xFFFFFFFF
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- break;
- case cInt:
- case cLong:
- if (DestClass == cInt)
- BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
- .addImm(0).addImm(clearBits).addImm(31);
- break;
- }
- return;
- }
-
- // Anything we haven't handled already, we can't (yet) handle at all.
- std::cerr << "Unhandled cast from " << SrcTy->getDescription()
- << "to " << DestTy->getDescription() << '\n';
- abort();
-}
-
-/// visitVANextInst - Implement the va_next instruction...
-///
-void PPC64ISel::visitVANextInst(VANextInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- unsigned Size;
- switch (I.getArgType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- Size = 4;
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- case Type::DoubleTyID:
- Size = 8;
- break;
- }
-
- // Increment the VAList pointer...
- BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
-}
-
-void PPC64ISel::visitVAArgInst(VAArgInst &I) {
- unsigned VAList = getReg(I.getOperand(0));
- unsigned DestReg = getReg(I);
-
- switch (I.getType()->getTypeID()) {
- default:
- std::cerr << I;
- assert(0 && "Error: bad type for va_next instruction!");
- return;
- case Type::PointerTyID:
- case Type::UIntTyID:
- case Type::IntTyID:
- BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::ULongTyID:
- case Type::LongTyID:
- BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::FloatTyID:
- BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- case Type::DoubleTyID:
- BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
- break;
- }
-}
-
-/// visitGetElementPtrInst - instruction-select GEP instructions
-///
-void PPC64ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
- if (canFoldGEPIntoLoadOrStore(&I))
- return;
-
- unsigned outputReg = getReg(I);
- emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
- outputReg, false, 0, 0);
-}
-
-/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
-/// constant expression GEP support.
-///
-void PPC64ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg,
- bool GEPIsFolded, ConstantSInt **RemainderPtr,
- unsigned *PendingAddReg) {
- const TargetData &TD = TM.getTargetData();
- const Type *Ty = Src->getType();
- unsigned basePtrReg = getReg(Src, MBB, IP);
- int64_t constValue = 0;
-
- // Record the operations to emit the GEP in a vector so that we can emit them
- // after having analyzed the entire instruction.
- std::vector<CollapsedGepOp> ops;
-
- // GEPs have zero or more indices; we must perform a struct access
- // or array access for each one.
- for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
- ++oi) {
- Value *idx = *oi;
- if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
- // It's a struct access. idx is the index into the structure,
- // which names the field. Use the TargetData structure to
- // pick out what the layout of the structure is in memory.
- // Use the (constant) structure index's value to find the
- // right byte offset from the StructLayout class's list of
- // structure member offsets.
- unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
- unsigned memberOffset =
- TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
-
- // StructType member offsets are always constant values. Add it to the
- // running total.
- constValue += memberOffset;
-
- // The next type is the member of the structure selected by the
- // index.
- Ty = StTy->getElementType (fieldIndex);
- } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
- // Many GEP instructions use a [cast (int/uint) to LongTy] as their
- // operand. Handle this case directly now...
- if (CastInst *CI = dyn_cast<CastInst>(idx))
- if (CI->getOperand(0)->getType() == Type::IntTy ||
- CI->getOperand(0)->getType() == Type::UIntTy)
- idx = CI->getOperand(0);
-
- // It's an array or pointer access: [ArraySize x ElementType].
- // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- Ty = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(Ty);
-
- if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
- if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
- constValue += CS->getValue() * elementSize;
- else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
- constValue += CU->getValue() * elementSize;
- else
- assert(0 && "Invalid ConstantInt GEP index type!");
- } else {
- // Push current gep state to this point as an add
- ops.push_back(CollapsedGepOp(false, 0,
- ConstantSInt::get(Type::IntTy,constValue)));
-
- // Push multiply gep op and reset constant value
- ops.push_back(CollapsedGepOp(true, idx,
- ConstantSInt::get(Type::IntTy, elementSize)));
-
- constValue = 0;
- }
- }
- }
- // Emit instructions for all the collapsed ops
- bool pendingAdd = false;
- unsigned pendingAddReg = 0;
-
- for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
- cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
- CollapsedGepOp& cgo = *cgo_i;
- unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
-
- // If we didn't emit an add last time through the loop, we need to now so
- // that the base reg is updated appropriately.
- if (pendingAdd) {
- assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
- BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(pendingAddReg);
- basePtrReg = nextBasePtrReg;
- nextBasePtrReg = makeAnotherReg(Type::IntTy);
- pendingAddReg = 0;
- pendingAdd = false;
- }
-
- if (cgo.isMul) {
- // We know the elementSize is a constant, so we can emit a constant mul
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
- pendingAddReg = basePtrReg;
- pendingAdd = true;
- } else {
- // Try and generate an immediate addition if possible
- if (cgo.size->isNullValue()) {
- BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
- BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
- .addSImm(cgo.size->getValue());
- } else {
- unsigned Op1r = getReg(cgo.size, MBB, IP);
- BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(Op1r);
- }
- }
-
- basePtrReg = nextBasePtrReg;
- }
- // Add the current base register plus any accumulated constant value
- ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
-
- // If we are emitting this during a fold, copy the current base register to
- // the target, and save the current constant offset so the folding load or
- // store can try and use it as an immediate.
- if (GEPIsFolded) {
- // If this is a folded GEP and the last element was an index, then we need
- // to do some extra work to turn a shift/add/stw into a shift/stwx
- if (pendingAdd && 0 == remainder->getValue()) {
- assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
- *PendingAddReg = pendingAddReg;
- } else {
- *PendingAddReg = 0;
- if (pendingAdd) {
- unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
- assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
- BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
- .addReg(pendingAddReg);
- basePtrReg = nextBasePtrReg;
- }
- }
- BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- *RemainderPtr = remainder;
- return;
- }
-
- // If we still have a pending add at this point, emit it now
- if (pendingAdd) {
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
- .addReg(basePtrReg);
- basePtrReg = TmpReg;
- }
-
- // After we have processed all the indices, the result is left in
- // basePtrReg. Move it to the register where we were expected to
- // put the answer.
- if (remainder->isNullValue()) {
- BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
- .addReg(basePtrReg);
- } else if (canUseAsImmediateForOpcode(remainder, 0)) {
- BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
- .addSImm(remainder->getValue());
- } else {
- unsigned Op1r = getReg(remainder, MBB, IP);
- BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
- }
-}
-
-/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
-/// frame manager, otherwise do it the hard way.
-///
-void PPC64ISel::visitAllocaInst(AllocaInst &I) {
- // If this is a fixed size alloca in the entry block for the function, we
- // statically stack allocate the space, so we don't need to do anything here.
- //
- if (dyn_castFixedAlloca(&I)) return;
-
- // Find the data size of the alloca inst's getAllocatedType.
- const Type *Ty = I.getAllocatedType();
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
-
- // Create a register to hold the temporary result of multiplying the type size
- // constant by the variable amount.
- unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
-
- // TotalSizeReg = mul <numelements>, <TypeSize>
- MachineBasicBlock::iterator MBBI = BB->end();
- ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
- doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
-
- // AddedSize = add <TotalSizeReg>, 15
- unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
-
- // AlignedSize = and <AddedSize>, ~15
- unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
- .addImm(0).addImm(27);
-
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
-
- // Put a pointer to the space into the result register, by copying
- // the stack pointer.
- BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
-
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- F->getFrameInfo()->CreateVariableSizedObject();
-}
-
-/// visitMallocInst - Malloc instructions are code generated into direct calls
-/// to the library malloc.
-///
-void PPC64ISel::visitMallocInst(MallocInst &I) {
- unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
- unsigned Arg;
-
- if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
- Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
- } else {
- Arg = makeAnotherReg(Type::UIntTy);
- MachineBasicBlock::iterator MBBI = BB->end();
- ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
- doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
- }
-
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(Arg, Type::UIntTy));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
- doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
-}
-
-
-/// visitFreeInst - Free instructions are code gen'd to call the free libc
-/// function.
-///
-void PPC64ISel::visitFreeInst(FreeInst &I) {
- std::vector<ValueRecord> Args;
- Args.push_back(ValueRecord(I.getOperand(0)));
- MachineInstr *TheCall =
- BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
- doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
-}
-
-/// createPPC64ISelSimple - This pass converts an LLVM function into a machine
-/// code representation is a very simple peep-hole fashion.
-///
-FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
- return new PPC64ISel(TM);
-}
diff --git a/lib/Target/PowerPC/PPCTargetMachine.cpp b/lib/Target/PowerPC/PPCTargetMachine.cpp
index e7ab04f..3d27c98 100644
--- a/lib/Target/PowerPC/PPCTargetMachine.cpp
+++ b/lib/Target/PowerPC/PPCTargetMachine.cpp
@@ -97,7 +97,7 @@ bool PowerPCTargetMachine::addPassesToEmitAssembly(PassManager &PM,
PM.add(createUnreachableBlockEliminationPass());
if (LP64)
- PM.add(createPPC64ISelSimple(*this));
+ PM.add(createPPC64ISelPattern(*this));
else if (EnablePatternISel)
PM.add(createPPC32ISelPattern(*this));
else