aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Transforms/Scalar/GCSE.h16
-rw-r--r--lib/Transforms/Scalar/GCSE.cpp272
2 files changed, 288 insertions, 0 deletions
diff --git a/include/llvm/Transforms/Scalar/GCSE.h b/include/llvm/Transforms/Scalar/GCSE.h
new file mode 100644
index 0000000..f3b005f
--- /dev/null
+++ b/include/llvm/Transforms/Scalar/GCSE.h
@@ -0,0 +1,16 @@
+//===-- GCSE.h - SSA based Global Common Subexpr Elimination -----*- C++ -*--=//
+//
+// This pass is designed to be a very quick global transformation that
+// eliminates global common subexpressions from a function. It does this by
+// examining the SSA value graph of the function, instead of doing slow
+// bit-vector computations.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_SCALAR_GCSE_H
+#define LLVM_TRANSFORMS_SCALAR_GCSE_H
+
+class Pass;
+Pass *createGCSEPass();
+
+#endif
diff --git a/lib/Transforms/Scalar/GCSE.cpp b/lib/Transforms/Scalar/GCSE.cpp
new file mode 100644
index 0000000..d3f893f
--- /dev/null
+++ b/lib/Transforms/Scalar/GCSE.cpp
@@ -0,0 +1,272 @@
+//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
+//
+// This pass is designed to be a very quick global transformation that
+// eliminates global common subexpressions from a function. It does this by
+// examining the SSA value graph of the function, instead of doing slow, dense,
+// bit-vector computations.
+//
+// This pass works best if it is proceeded with a simple constant propogation
+// pass and an instruction combination pass because this pass does not do any
+// value numbering (in order to be speedy).
+//
+// This pass does not attempt to CSE load instructions, because it does not use
+// pointer analysis to determine when it is safe.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/GCSE.h"
+#include "llvm/Pass.h"
+#include "llvm/InstrTypes.h"
+#include "llvm/iMemory.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Support/InstVisitor.h"
+#include "llvm/Support/InstIterator.h"
+#include <set>
+#include <algorithm>
+using namespace cfg;
+
+namespace {
+ class GCSE : public FunctionPass, public InstVisitor<GCSE, bool> {
+ set<Instruction*> WorkList;
+ DominatorSet *DomSetInfo;
+ ImmediateDominators *ImmDominator;
+ public:
+ virtual bool runOnFunction(Function *F);
+
+ // Visitation methods, these are invoked depending on the type of
+ // instruction being checked. They should return true if a common
+ // subexpression was folded.
+ //
+ bool visitUnaryOperator(Instruction *I);
+ bool visitBinaryOperator(Instruction *I);
+ bool visitGetElementPtrInst(GetElementPtrInst *I);
+ bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);}
+ bool visitShiftInst(ShiftInst *I) {
+ return visitBinaryOperator((Instruction*)I);
+ }
+ bool visitInstruction(Instruction *) { return false; }
+
+ private:
+ void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
+ void CommonSubExpressionFound(Instruction *I, Instruction *Other);
+
+ // This transformation requires dominator and immediate dominator info
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ //preservesCFG(AU);
+ AU.addRequired(DominatorSet::ID);
+ AU.addRequired(ImmediateDominators::ID);
+ }
+ };
+}
+
+// createGCSEPass - The public interface to this file...
+Pass *createGCSEPass() { return new GCSE(); }
+
+
+// GCSE::runOnFunction - This is the main transformation entry point for a
+// function.
+//
+bool GCSE::runOnFunction(Function *F) {
+ bool Changed = false;
+
+ DomSetInfo = &getAnalysis<DominatorSet>();
+ ImmDominator = &getAnalysis<ImmediateDominators>();
+
+ // Step #1: Add all instructions in the function to the worklist for
+ // processing. All of the instructions are considered to be our
+ // subexpressions to eliminate if possible.
+ //
+ WorkList.insert(inst_begin(F), inst_end(F));
+
+ // Step #2: WorkList processing. Iterate through all of the instructions,
+ // checking to see if there are any additionally defined subexpressions in the
+ // program. If so, eliminate them!
+ //
+ while (!WorkList.empty()) {
+ Instruction *I = *WorkList.begin(); // Get an instruction from the worklist
+ WorkList.erase(WorkList.begin());
+
+ // Visit the instruction, dispatching to the correct visit function based on
+ // the instruction type. This does the checking.
+ //
+ Changed |= visit(I);
+ }
+
+ // When the worklist is empty, return whether or not we changed anything...
+ return Changed;
+}
+
+
+// ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
+// uses of the instruction use First now instead.
+//
+void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
+ Instruction *Second = *SI;
+
+ // Add the first instruction back to the worklist
+ WorkList.insert(First);
+
+ // Add all uses of the second instruction to the worklist
+ for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end();
+ UI != UE; ++UI)
+ WorkList.insert(cast<Instruction>(*UI));
+
+ // Make all users of 'Second' now use 'First'
+ Second->replaceAllUsesWith(First);
+
+ // Erase the second instruction from the program
+ delete Second->getParent()->getInstList().remove(SI);
+}
+
+// CommonSubExpressionFound - The two instruction I & Other have been found to
+// be common subexpressions. This function is responsible for eliminating one
+// of them, and for fixing the worklist to be correct.
+//
+void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) {
+ // I has already been removed from the worklist, Other needs to be.
+ assert(WorkList.count(I) == 0 && WorkList.count(Other) &&
+ "I in worklist or Other not!");
+ WorkList.erase(Other);
+
+ // Handle the easy case, where both instructions are in the same basic block
+ BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
+ if (BB1 == BB2) {
+ // Eliminate the second occuring instruction. Add all uses of the second
+ // instruction to the worklist.
+ //
+ // Scan the basic block looking for the "first" instruction
+ BasicBlock::iterator BI = BB1->begin();
+ while (*BI != I && *BI != Other) {
+ ++BI;
+ assert(BI != BB1->end() && "Instructions not found in parent BB!");
+ }
+
+ // Keep track of which instructions occurred first & second
+ Instruction *First = *BI;
+ Instruction *Second = I != First ? I : Other; // Get iterator to second inst
+ BI = find(BI, BB1->end(), Second);
+ assert(BI != BB1->end() && "Second instruction not found in parent block!");
+
+ // Destroy Second, using First instead.
+ ReplaceInstWithInst(First, BI);
+
+ // Otherwise, the two instructions are in different basic blocks. If one
+ // dominates the other instruction, we can simply use it
+ //
+ } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other?
+ BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other);
+ assert(BI != BB2->end() && "Other not in parent basic block!");
+ ReplaceInstWithInst(I, BI);
+ } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I?
+ BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I);
+ assert(BI != BB1->end() && "I not in parent basic block!");
+ ReplaceInstWithInst(Other, BI);
+ } else {
+ // Handle the most general case now. In this case, neither I dom Other nor
+ // Other dom I. Because we are in SSA form, we are guaranteed that the
+ // operands of the two instructions both dominate the uses, so we _know_
+ // that there must exist a block that dominates both instructions (if the
+ // operands of the instructions are globals or constants, worst case we
+ // would get the entry node of the function). Search for this block now.
+ //
+
+ // Search up the immediate dominator chain of BB1 for the shared dominator
+ BasicBlock *SharedDom = (*ImmDominator)[BB1];
+ while (!DomSetInfo->dominates(SharedDom, BB2))
+ SharedDom = (*ImmDominator)[SharedDom];
+
+ // At this point, shared dom must dominate BOTH BB1 and BB2...
+ assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) &&
+ DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!");
+
+ // Rip 'I' out of BB1, and move it to the end of SharedDom.
+ BB1->getInstList().remove(I);
+ SharedDom->getInstList().insert(SharedDom->end()-1, I);
+
+ // Eliminate 'Other' now.
+ BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other);
+ assert(BI != BB2->end() && "I not in parent basic block!");
+ ReplaceInstWithInst(I, BI);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+//
+// Visitation methods, these are invoked depending on the type of instruction
+// being checked. They should return true if a common subexpression was folded.
+//
+//===----------------------------------------------------------------------===//
+
+bool GCSE::visitUnaryOperator(Instruction *I) {
+ Value *Op = I->getOperand(0);
+ Function *F = I->getParent()->getParent();
+
+ for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
+ UI != UE; ++UI)
+ if (Instruction *Other = dyn_cast<Instruction>(*UI))
+ // Check to see if this new binary operator is not I, but same operand...
+ if (Other != I && Other->getOpcode() == I->getOpcode() &&
+ Other->getOperand(0) == Op && // Is the operand the same?
+ // Is it embeded in the same function? (This could be false if LHS
+ // is a constant or global!)
+ Other->getParent()->getParent() == F &&
+
+ // Check that the types are the same, since this code handles casts...
+ Other->getType() == I->getType()) {
+
+ // These instructions are identical. Handle the situation.
+ CommonSubExpressionFound(I, Other);
+ return true; // One instruction eliminated!
+ }
+
+ return false;
+}
+
+bool GCSE::visitBinaryOperator(Instruction *I) {
+ Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
+ Function *F = I->getParent()->getParent();
+
+ for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
+ UI != UE; ++UI)
+ if (Instruction *Other = dyn_cast<Instruction>(*UI))
+ // Check to see if this new binary operator is not I, but same operand...
+ if (Other != I && Other->getOpcode() == I->getOpcode() &&
+ // Are the LHS and RHS the same?
+ Other->getOperand(0) == LHS && Other->getOperand(1) == RHS &&
+ // Is it embeded in the same function? (This could be false if LHS
+ // is a constant or global!)
+ Other->getParent()->getParent() == F) {
+
+ // These instructions are identical. Handle the situation.
+ CommonSubExpressionFound(I, Other);
+ return true; // One instruction eliminated!
+ }
+
+ return false;
+}
+
+bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) {
+ Value *Op = I->getOperand(0);
+ Function *F = I->getParent()->getParent();
+
+ for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
+ UI != UE; ++UI)
+ if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
+ // Check to see if this new binary operator is not I, but same operand...
+ if (Other != I && Other->getParent()->getParent() == F &&
+ Other->getType() == I->getType()) {
+
+ // Check to see that all operators past the 0th are the same...
+ unsigned i = 1, e = I->getNumOperands();
+ for (; i != e; ++i)
+ if (I->getOperand(i) != Other->getOperand(i)) break;
+
+ if (i == e) {
+ // These instructions are identical. Handle the situation.
+ CommonSubExpressionFound(I, Other);
+ return true; // One instruction eliminated!
+ }
+ }
+
+ return false;
+}